
IEEE INTERNET COMPUTING 1089-7801/02/$17.00©2002 IEEE http://computer.org/internet/ MAY • JUNE 2002 27

D
is

tr
ib

ut
ed

 C
om

pu
ti

ng

Alvin T.S. Chan, Florine Tse,
Jiannong Cao,
and Hong Va Leong
Hong Kong Polytechnic University

Enabling Distributed
Corba Access to Smart
Card Applications
The OrbCard framework uses Corba wrapper technology

to extend smart card services to a distributed computing

environment.

With the increasing use of the
Web as the platform for online
e-commerce applications,

smart card technology presents an attrac-
tive solution for providing security and
access control mechanisms for processing
online transactions. A user can insert the
smart card into a reader attached to a ter-
minal that provides Web access and
client-side processing capabilities; the
card performs all processing of secured
information for the transaction using an
embedded chip. Upon completing the
transaction, the user removes the card
without having transferred any secured
data or algorithms to the hosting terminal.

Smart card services have not been inte-
grated into the networked environment in
the way that other portable computing
devices — notebooks, PDAs, mobile
phones, and so on — have been. With the
growing need for distributed Web appli-
cations that support personalized services
in a truly secured platform,1 the smart
card’s architecture makes it an ideal

device for storing an individual’s person-
al information and service requirements.

Designed primarily for identification
applications, a smart card operates
through a built-in integrated circuit. The
programming environment therefore lacks
the architectural flexibility to support net-
worked computing applications. Such lim-
itations motivate our design for a distrib-
uted computing architecture that uses
common object request broker architecture
(Corba) wrapping technology to integrate
smart card services. The design allows us
to exploit Corba’s flexibility to provide a
heterogeneous platform and promote rapid
application development. Corba provides
a distributed object paradigm for smart
card application development, and allows
us to interoperate with existing and evolv-
ing Corba-compliant services. In this arti-
cle we describe the architecture and imple-
mentation of the OrbCard framework,
which leverages Corba middleware ser-
vices to integrate smart card services with
the object request broker (Orb) bus.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:22 from IEEE Xplore.  Restrictions apply. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61006506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Smart Card
Application Development
Until recently, most applications of smart card
technology were restricted to specialized domains
and ad hoc systems, with little or no integration
with mainstream information systems. A main
inhibitor is the fact that, unlike the PC, smart cards
lack a good operating system and development
environment.2 The absence of a common architec-
ture and open programming interface has led to ad
hoc implementations of smart card systems that
are neither interoperable nor simple to develop.

Java Card
Sun Microsystems has recently developed the Java
Card programming architecture3 for smart cards to
facilitate the concept of “write once, run on all
cards.” Java Card provides a lightweight Java vir-
tual machine (JVM) that supports smart card appli-
cation development using familiar Java language
and programming paradigms. Importantly, the
Java Card’s JVM encapsulates the card manufac-
turer’s proprietary technology through a common
system interface.

Application Protocol
While Java Card resolves the important issue of
providing a common programming interface, it
maintains nonstandard and often ad hoc commu-
nications between the card’s “applet” (not to be

confused with Web browser applets) and the host
terminal. Smart card implementations typically
include both the on-card and off-card applica-
tions.2 The off-card application, residing on the
host terminal, sustains communications with the
on-card application via the card terminal reader
(see Figure 1). 

To standardize the communication protocol
between the off-card program and the on-card
application, the International Organization for
Standardization (ISO) has taken the initiative with
standard ISO/IEC 7816,4 which defines the com-
mand messages sent to and response formats
returned by the card based on application proto-
col data units (APDU). Developing applications
with this specification requires a detailed under-
standing of the card’s command set, whereas the
Java Card software package provides classes for
constructing and parsing the primitive APDUs for
message exchange. In either case, however, off-
card and on-card applications still communicate
using a nonstandardized, often unstructured, byte
format.5

Networked Smart Card Applications
Traditionally, smart card applications developers
have created stand-alone programs, dedicating
minimal effort to incorporating smart card services
directly into network environments.5 With the
increase in processing resources and the important
role of smart cards in providing personalized and
mobile services over the Internet, it is desirable
that future smart card services can be added to
interact and communicate directly over a distrib-
uted processing environment. Researchers are cur-
rently exploring several approaches to network-
enabling smart card applications.

Socket approach. Socket programming for client-
server distributed computing directly uses TCP/IP
for end-to-end communications. As illustrated in
Figure 2, using the socket approach to network-
enable services on the smart card requires an off-
card proxy to act as a bridge between the network
and the on-card applet. 

The proxy implements the socket interface to
marshal and unmarshal network messages. The
proxy parses and translates network messages into
equivalent APDU messages for the on-card applet.
Conversely, the proxy extracts and encodes data
from the card’s APDU response for the network.
The application must provide its own format con-
ventions for network communications and APDU
exchanges. In addition, both the server and proxy

28 MAY • JUNE 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Distributed Computing

Figure 1. Communications using application protocol data units. The
interactions between a host program, card reader, and smart card
use APDU command set and responses.

Client
program

Host computer

Reader driver

APDU message

Reader

APDU response APDU response

APDU message Smart card

Card
application

Figure 2. Socket approach. The proxy residing on the host acts as a
gateway between the smart card applet service and the Internet.

Network

Smart card

Applet
IP

Proxy

APDU Card reader

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:22 from IEEE Xplore.  Restrictions apply. 



must marshal and unmarshal buffered messages
communicated between the entities. The direct
approach is manageable under a simple client-
server communication model with a simple mes-
sage format convention. Any upgrade to the ser-
vice provision or application model requires direct
modification of the source code and possibly the
message and communication formats. 

Java RMI approach. Java supports native distrib-
uted object computing through remote method
invocation (RMI) (java.sun.com/marketing/collat-
eral/javarmi.html). With RMI, a client object can
call another object’s method, irrespective of the
object’s physical location. In other words, a Java
object can invoke an object in another JVM by
using the published interfaces. The lightweight
Java Card virtual machine, however, does not sup-
port RMI with its native, on-card services. Instead,
we can use the proxy wrapper approach to map
the on-card services to the RMI distributed object
model. As in the socket approach, the proxy must
bridge the RMI-specific protocol exchanges and
the native APDU messages. 

This higher level of distributed object services
abstracts the entities’ communication details from
the distributed application. The programmer is
thus freed from managing the processing and mar-
shalling of messages across the distributed envi-
ronment. While RMI provides a comprehensive
distributed object model for remote object invoca-
tion, however, it applies only to Java objects.
RMI’s language-dependency represents a signifi-
cant drawback because distributed computing
must work across heterogeneous operating sys-
tems and languages.

Corba approach. The Object Management Group
(OMG) developed Corba6 as a middleware speci-
fication to realize the benefits of a truly interop-
erable and open distributed object-computing
platform. Corba’s interface definition language
(IDL) separates an object’s implementation (in
native language) from the interface to the object
bus, or Orb. Using Corba object brokering, our
OrbCard framework can enable distributed ser-
vices (possibly legacy, and written in different
languages) to interoperate seamlessly with smart
card applications.

OrbCard
Programming Environment
With Java Card, programmers can employ well-
known object-oriented design semantics and

methodologies to develop on-card services and,
compile and execute them on the Java Card vir-
tual machine. However, detailed observation
reveals that, although Java Card supports object-
oriented development, the object services exposed
by the on-card applications are far from object-
oriented. As mentioned, the off-card program
invokes the smart card application by communi-
cating with on-card services through native APDU
commands. Although developed as an object, the
on-card service relies on the off-card program to
construct those commands and to interpret its
corresponding APDU responses. This violates the
principle of object modularity, which promotes
encapsulation and information-hiding through
well-defined interfaces.

In designing OrbCard, we wanted to create a
software architecture that incorporated the Corba
framework seamlessly around smart card applica-
tions, so that on-card services would appear as
part of the distributed Corba object community.
Figure 3 shows how OrbCard maps smart card ser-
vices to the Corba environment by leveraging
Corba’s object interactions and brokering services
to integrate smart card services as part of the net-
worked services. 

The central element of the architecture is the Orb-
Card adaptor, which functions as a proxy gateway
for on-card services. To communicate with an on-
card service, the client Corba object invokes the Orb-
Card adaptor via the Orb bus. The adaptor captures
all Corba-specific requests, translates them to their

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2002 29

Smart Card Applications

Figure 3. OrbCard architecture. To communicate with the on-card
service, the client Corba object invokes the OrbCard adaptor, which
captures all Corba-specific requests, translates them to their APDU
representations, and routes them to the on-card applet.

Corba object Corba object

OrbCard adaptor

Local host

AppletApplet

Industry add-on classes

Java card framework

Java card VM

O.S. and native functions

Java card
system

APDU message

Orb bus

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:22 from IEEE Xplore.  Restrictions apply. 



APDU representations, and routes them to the on-
card applet. Similarly, the on-card service presents
responses to the adaptor as APDU representations.
The adaptor maps and relays the Corba responses
back to the calling client Corba object. The OrbCard

adaptor’s representation of the on-card service
appears as a normal Corba object to typical Corba
objects on the Orb bus. In fact, these off-card objects
do not even need to be aware that the adaptor is
functioning as a Corba wrapper over the service. 

The development effort remains the same for
on-card objects, which are implemented as normal
Java Card applets. Our OrbCard compiler auto-
matically generates all the necessary classes
required to implement the adaptor functions, as
well as the stub classes for the client object.

OrbCard’s architecture enables us to specify
interfaces to heterogeneous objects in a platform-
and language-independent manner. The Corba IDL
is a declarative language that allows objects to
specify the contractual interfaces that will allow
other client objects to invoke their services across
the Orb bus. As with common Corba objects, Orb-
Card uses OMG IDL to specify interface attributes
(parameters for generating the OrbCard adaptor
and the interface stubs).

� The programmer defines an IDL file that
describes the interface attributes and methods
available from the on-card services. The file
describes the object encapsulation of the ser-
vice in terms of attributes, parameters, and
available methods.

� The programmer runs the OrbCard compiler
against the IDL file and the CardReader descrip-
tion file, which specifies the smart card reader
type. The description file is required for the
compiler to generate the correct classes to
allow the adaptor to communicate with the
reader using APDU as the native protocol.

� The class libraries generated from the compila-
tion result in three groups of classes: the client
stub, adaptor skeleton, and APDU mapper, as
shown in Figure 4. 

The client’s object uses the client stub to statical-
ly invoke the smart card service residing on the
Orb bus. The adaptor skeleton classes provide an
interface to the Orb bus, which captures invoca-
tion requests and invokes the required methods of
the mapper classes. The methods are proxy refer-
ences to the actual services that the on-card
applets offer. The mapper classes translate the
invoked method to the equivalent APDU request-
reply cycle to communicate with the requested
on-card service.

Implementation
To demonstrate OrbCard’s operation, we have

30 MAY • JUNE 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Distributed Computing

Figure 5.Class diagram of CounterApp applet. The
on-card counter, implemented as a typical Java Card
applet, offers three methods: add, debit, and enquiry.

javacard.framework

APDU

+getBuffer():byte
+setOutgoing():short
+setOutgoingLength()

Applet

+register()
+select(in apdu  : APDU)
+process(in apdu : APDU)
+install(in apdu : APDU)

CounterApp
-COMMAND_ENQUIRY
-COMMAND_ADD
-COMMAND_DEBIT
-count: int
+register()
+install(in apdu : APDU)
+select(): boolean
+Enquiry(in apdu : APDU)
+Add(in apdu : APDU)
+Debit(in apdu : APDU)
+Process(in apdu : APDU)

Figure 4. OrbCard compilation. This diagram shows the operational
flow of the OrbCard compiler, which accepts IDL files and card read-
er description files as inputs. The class libraries generated from the
compilation results in three groups of classes: the client stub, adaptor
skeleton, and APDU mapper.

IDL file Card reader
description file

OrbCard compiler

Corba skeleton
classes

Mapper classes

OrbCard adaptor

Client object

Client stub classes

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:22 from IEEE Xplore.  Restrictions apply. 



implemented a simple distributed client-server
application that shows the complex interactions
between objects within the framework. The client
Corba object invokes a distributed on-card
counter service via the adaptor object on the Orb
bus using one of the on-card applet’s three meth-
ods: add, debit, or enquiry. The counter service
is implemented as a typical applet running over
a Java Card virtual machine. 

Figure 5 shows the class diagram for the
implementation. The applet’s IDL file describes
the interface and methods available. The inter-
face name and the IDL file name should match
the applet’s class name. In addition, the methods
declared in the interface file should correspond
to the APDU commands provided by the Java
Card CounterApp. (Note that it is only necessary
to declare the supporting methods that the appli-
cation uses.)

Running OrbCard Compiler
Next, we process the IDL file with the OrbCard
compiler tool, a Java application that generates
Corba custom classes (including the client stub and
implementation base classes) and a mapper class
based on the input IDL file: 

module CounterApp{
interface Counter
{

void Add(int v);
void Debit(int v);
long Enquiry(void);

};
};

All classes are generated in Java source. The syn-
tax for executing the compiler tool is 

OrbCard Counter.idl gemplus

The first argument specifies the required IDL file,
and the second specifies the card reader type. 

Corba implementation requires custom classes,
such as data marshalling, unmarshalling, and
name service lookup. The mapper class encap-
sulates the details of APDU commands and han-
dles card reader communications. At execution,
the OrbCard program generates the required Corba
custom classes and processes the IDL file line by
line to generate the mapper class.

The compiler reads the interface name in the IDL

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2002 31

Smart Card Applications

Related Work in Distributed Smart Card Applications

Distributed smart card applications devel-
opment is not new. In fact, the smart card
itself can be thought of as a dedicated
machine that executes a service applica-
tion.A host application follows a distrib-
uted client-server communication model
to invoke a service by exchanging low-level
messages.Vandewalle and Vetillard1 propose
an RPC-like communication protocol,
called direct method invocation (DMI), for
use in marshalling object method calls and
returning results between the host appli-
cation and the card’s applet.DMI provides a
distributed object-calling model in which
communications between card applets and
host applications are abstracted from low-
level protocols.This approach treats the
card’s applet as a remote object whose ser-
vices the host application invokes through
an object-calling convention.

In developing a PDA-based smart card
controller for managing digital signatures,
Kehr, Posegga, and Vogt2 propose using Jini
as the infrastructure for seamless com-

munication between devices. Jini provides
centralized registration and service
lookup. Potential clients can download a
proxy object and use it as the basis for
locating and invoking a desired service. In
their implementation, the PDA and the
card reader must register with a lookup
service on the services offered.The smart
card is primarily responsible for the sign-
ing service, and the PDA is a proxy for
registering the service with the Jini
lookup service.

In other work,3 we have investigated
building a proxy intermediary for Web-
based access to a mobile repository of
Web objects including html pages, medical
data objects, and a record browsing and
updating applet stored on a smart card.We
developed the Java Card Web Servlet
(JCWS) to provide seamless access
between a Web browser and a Java-
enabled medical smart card. As the patient
changes location, the mobile smart card
database can dynamically bind to the

JCWS framework to facilitate ubiquitous
access and allow medical staff to update
the patient’s information via a standard
Web browser. Our OrbCard proxy gate-
way follows a similar approach to the oth-
ers described here: the common goal is to
provide an abstraction of the distributed
computing model that seamlessly inte-
grates with the platform, while encapsulat-
ing the low-level protocol exchanges in
accessing smart card services.

References
1. J.Vandewalle and E.Vetillard,“Developing Smart

Card-based Application Using Java Card,” Proc. 4th

Smart Card Research and Advanced Application Conf.

(CARDIS 98), Louvain-la-Neuve, Belgium, 1998.

2 R. Kehr, J. Posegga, and H.Vogt, “PCA: Jini-based

Personal Card Assistant,” Proc. CQRE 99, LCNS

1740, Springer-Verlag, Berlin, pp. 64-75, 1999.

3. A.T.S.Chan,“Web-Enabled Smart Card for Ubiqui-

tous Access of Patient’s Medical Record,” Proc. 8th

Int’l World Wide Web Conf, World Wide Web Con-

sortium (W3C), May 1999, pp.1591-1598.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:22 from IEEE Xplore.  Restrictions apply. 



file to determine which applet the IDL references.
It must identify the applet because the mapper class
will send a select APDU command with the
applet’s application identification (AID) to select
the applet. An adaptor can handle a variety of
applets, but only applets with a qualified AID will
be generated in the mapper class. After identifica-
tion, the adapter scans each method in the inter-
face file and matches the method name with the
applet’s APDU command specifications. The com-
piler then creates a method with a syntax name
that corresponds to the one specified in the IDL file.
(Enquiry is a method in the IDL file as well as an
APDU command, for example.) The method con-
tains instructions to perform APDU constructions
and handles card reader communications. To com-
municate with the card reader, the mapper class
creates a CardReader instance with the reader type
specified in the compiler’s input argument. 

Developing Client and Server Programs
Figure 6 shows the UML class diagram design for
the client program, which implements the client
object that invokes the methods of the Corba-
wrapped, on-card services.

Figure 6 shows a typical Corba client, Counter-
Client, that imports Corba-specific packages such

as org.omg.CosNaming and org.omg.Corba, and
application packages such as CounterApp, for com-
munication between client and server programs.
The IDL file generates the CounterApp package via
the compiler tool. This package comprises six class-
es: Counter (interface class), CounterHolder,
CounterHelper, CounterStub, Counter-
ImplBase, and CounterMapper. The first five are
Corba custom classes; the last is required in server
applications only. 

CounterClient contains a main method and
several private methods. When a client starts up,
it calls the resolve_initial_references func-
tion in the Orb class to obtain an object reference
for the name server —  the Java IDL name server,
tnameserv, in this case. In our implementation, the
name server runs in the same terminal as the smart
card reader. Next, the client invokes the narrow
function to narrow the generic object reference to
the Counter object reference. The mechanism is
based on supplying the server’s name path to the
name server, which is similar to a file path in a
typical hierarchical file system. Our project uses a
single-level server name path: Counter. The
returned object reference is an instance of the
_CounterStub class, which implements the
Counter interface class.

32 MAY • JUNE 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Distributed Computing

«implementation class»
_CounterStub

+Enquiry() : int
+Add(in add_value : int)
+Debit(in debit_value : int)

org.omg.CORBA org.omg.CosNaming

ORB NameContext NamingComponent

+init()
+resolve_initial_references()

CounterClient

-choice : int

+main() : void
-select_function() : int
-perform_enquiry() : int
-perform_add(in add_value : int) : void
-perform_debit(in debit_value : int)  

CounterHelper

+narrow() : Counter

CounterHolder

CounterApp

+Enquiry() : int
+Add(in add_value : int)
+Debit(in debit_value : int)

«interface»
Counter

Figure 6. Class diagram for Corba client. The CounterApp package generated from the IDL compiler
forms the core of the Corba wrapper classes.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:22 from IEEE Xplore.  Restrictions apply. 



The client application presents a user menu with
three selections: Add a value, Debit a value, and
Enquire. The user selects an item and enters the
corresponding parameter value, and the client
application invokes the corresponding on-card
service object method. Specifically, the proxy
method passes parameter data to the Counter-
Stub, which marshals the data and routes the
request to the server-side Orb.

Figure 7 shows the class diagram for the server
implementation. As with the client program, the
server program references CounterApp and the
Corba-specific packages. CounterServer is the

main class in the server program, and it performs
the necessary Corba initialization. Counter-
Servant contains the implementation details of
the IDL interface. CounterMapper maps invoca-
tions to APDU commands. CardReader performs
low-level communications with the reader. When
the server bootstraps, it performs two steps: regis-
tering the server name with the name server, and
entering a loop waiting for the client request.

When the server receives a client request, it
invokes the corresponding method in the servant
class, based on the request’s property. The servant
class first checks whether there is an instance of the

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2002 33

Smart Card Applications

org.omg.Corba org.omg.CosNaming

NameComponent

NameContext

+rebind(in path : NameComponent, in countRef : CounterServant)

ORB

+init() : ORB
+connect(in countRef : CounterServant)
+resolve_initial_references(in "NameService")

CounterServer
-countRef : CounterServant

+main() : void

+Enquiry() : int
+Debit(in debit_value : int) : void
+Add(in add_value : int)

-count : int
-mapper : CounterMapper

CounterServant

CounterApp
+Enquiry() : int
+Add(in add_value : int)
+Debit(in debit_value : int)

«interface»
Counter

+CounterMapper()
+Enquiry() : int
+Add(in add_value : int)
+Debit(in debit_value : int)

-myReader:CardReader :
-myCard : GxCard
-aid : ApplicationID

CounterMapper

CardResponse ApplicationID

gemplus.gcr.toolkit

APDUCommand CardReader

+dispose()

gemplus.gcr.toolkit.gemxpresso

+GxCard(in myReader : CardReader)
+send(in command : APDUCommand) : CardResponse
+select()
+dispose()

GxCard

«implementation class»
_CounterImplBase

Figure 7. Class diagram for server. The server program references CounterApp and the Corba-specific
packages. CounterServer, the main class in the server program, performs Corba initialization.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:22 from IEEE Xplore.  Restrictions apply. 



mapper class and creates a new one if needed. The
mapper class constructor, in turn, creates an
instance of CardReader and selects the Java Card
applet immediately by sending a SELECT APDU
command. Next, the servant class passes input
arguments to the corresponding mapper class
method. The mapper class constructs an APDU
command with the input parameters and invokes
CardReader’s send method to transmit the APDU
to the Java Card counter applet. The counter applet
shown in Figure 5 was developed as a standard
Java Card applet. It references the javacard.frame-
work and java.lang packages. When the applet
receives an APDU command from the Counter-
Mapper, it checks the instruction byte stored in
APDU and executes the requested function. Mean-
while, the mapper class waits for the response
APDU, decodes the embedded data, and returns the
data to CounterServant. 

Performance Evaluation
To evaluate the performance of the three
approaches we considered for our distributed smart
card implementation — socket, RMI, and Corba —
we compared response times for each. In the
experiments, the client ran on a remote machine
and communicated with the server application
across a token-ring network. The server program
formed a proxy to the Java Card applet, which
implemented the counter application.

The performance evaluation measured the dis-
tributed application’s response time from when the
client program issued the request to when it
received the reply. Hence, the response time

includes the network transmission time and pro-
cessing time for all the software components along
the request-response path.

tresp = tnetwork + tclient + tproxy + tAPDU + tapplet

To test the approaches, we performed two
experiments using two identical Pentium 500 PCs
with 64 Mbytes of RAM and 20-Gbyte hard drives,
connected via IBM token ring 16/4 network inter-
face cards. The first experiment measured response
time for increasing argument lengths. In this case,
the argument represents controlled-length data (in
bytes) sent as part of the invocation argument. The
second experiment measured response time with
an increasing number of requests. 

Argument Length
In the first experiment, the client application
invokes the add service in the smart card with
argument lengths varying from 5 to 45 bytes, in
5-byte steps. For each sample, we conducted 500
cycles and averaged the results. As the diagram in
Figure 8 shows, response time generally increases
with argument length, mainly because of increas-
ing data transmission time across the network and
into the smart card.

The socket approach, which uses native TCP/IP
directly, performed best among the three
approaches because it does not incur extra pro-
cessing overhead at the middleware layer. The pro-
gram natively handles the marshalling and com-
munication of data across the network. Between
the middleware approaches, RMI performed slight-
ly better than the Corba approach because RMI is
the “native” middleware layer for Java-based dis-
tributed application environments. As such, the
services are better integrated to the framework and
incur minimal overhead. When comparing the RMI
and Corba approaches, the performance difference
is around 19 percent, which is acceptable consid-
ering the fact that Corba is an industrial distrib-
uted object standard that is interoperable across
heterogeneous environments and languages.

Number of Requests
In the second experiment, the client application
invoked the add service on the smart card continu-
ously with a loop count of 0 to 5500, in steps of
500. We measured the response time for every loop
size and computed an average over 500 testing
cycles. As in the previous experiment, the invoca-
tion from the client to the applet was synchronous,
such that the client proceeded to the next invoca-

34 MAY • JUNE 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Distributed Computing

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 10 20 30 40 50

Argument length (bytes)

R
es

po
ns

e 
tim

e 
(s

ec
on

ds
)

Corba
RMI
Socket

Figure 8. Response time vs. argument length. OrbCard’s performance
cost is around 19 percent, which we believe is acceptable given that
Corba is an industrial distributed object standard that is interopera-
ble across heterogeneous environments and languages.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:22 from IEEE Xplore.  Restrictions apply. 



tion only upon receiving a reply from the adaptor
proxy. Figure 9 shows the results of the experiment.

As expected, the response time for all three
invocation methods increased almost linearly with
the number of invocations per loop count cycle.
As in the first experiment, the socket approach
performed best. Given Corba’s benefits as a wide-
ly accepted and interoperable distributed object
computing platform, we believe that the slight
performance drawback is acceptable. This is par-
ticularly true for OrbCard applications that do not
incur extensive invocations on smart card services
over the network.

Future Challenges
The pocket portability of smart cards translates to
the benefit of strong binding to the owner’s iden-
tity. A card can carry relevant authentication
information, such as a digital certificate, as the
cardholder moves without restriction. Practical
smart card applications must address various
security concerns, however, in order to operate
over public networks such as the Internet. To
make it broadly successful, the OrbCard frame-
work could be extended to include several possi-
ble solutions.

A two-stage approach to security in distributed
Java Card applications can exploit digital signa-
ture and authentication capabilities on the card
and in the proxy. While digital certificates and
public key encryption possess numerous advan-
tages, their high computational overhead makes
them unacceptable for some smart card contexts
because the typical smart card has limited pro-
cessing capabilities (although some include a
dedicated hardware encryption engine to accel-
erate processing). On the other hand, a trustwor-
thy proxy (at least with respect to the smart card
holder) could reduce the encryption requirement.
The card and proxy can communicate in clear
text, and the system can generate a session key
for the cardholder for each smart card connection
session and encrypt Internet communication for
messages from the proxy to other Corba entities.
This is reasonable, especially when the OrbCard
proxy is collocated with the card reader.

To further improve security, we need to
enforce end-to-end authentication before remote
service invocations. Performing authentication
within the Java Card would require public key
encryption and message digest computation, as
with the MD5 algorithm, which imposes higher
computational demands on the card. We could
employ digital certificates, timestamps, and a

message digest signed by both parties, which
could be exchanged and verified by the card and
the networked service. Alternatively, the Java
Card could pass its certificate to a trusted proxy,
which could attach its certificate, sign it, and
forward it to the appropriate Corba module. A
known trusted party could issue certificates for
Java Cards that the Corba system could easily
authenticate. After the end-to-end authentica-
tion procedure, the trustworthy proxy would
encrypt all other service messages using the ses-
sion key. This message encryption could be over-
loaded to the relevant classes generated by the
OrbCard compiler by extending the functions for
the various interfaces, especially those related to
argument marshalling.

Acknowledgments
The authors would like to thank the reviewers for their critical

comments and helpful advice. This project is supported by the

Hong Kong Research Grants Council (RGC) competitive grant

under the account code B-Q453.

References

1. I. Cingil, A. Dogac, and A. Azgin, “A Broader Approach to

Personalization,” Comm. ACM, vol. 43, no. 8, Aug. 2000.

2. U. Hansmann et al., Smart Card Application Development

Using Java, Springer-Verlag, New York, 2000.

3. S.B. Guthery, “Java Card: Internet Computing on a Smart

Card,” IEEE Internet Computing, Jan./Feb. 1997, vol. 1, no.

1 pp. 57-59.

4. ISO/IEC 7816: Integrated Circuit(s) Cards with Contacts —

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2002 35

Smart Card Applications

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 1000 2000 3000 4000 5000 6000

Loop count

R
es

po
ns

e 
tim

e 
(s

ec
on

ds
)

Corba
RMI
Socket

Figure 9. Response time vs. loop count. The client application
invoked the add service continuously with a loop count of 0 to 5500,
in steps of 500. Averaging response time over 500 testing cycles, we
found that Corba generally performed modestly poorer than the
other approaches with increasing invocations.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:22 from IEEE Xplore.  Restrictions apply. 



36 MAY • JUNE 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Distributed Computing

Part 3: Electronic Signals and Transmission Protocols,

International Organization for Standardization (ISO), Gene-

va, Nov. 1994.

5. A.T.S. Chan et al., “Web-based Smart Card for Applica-

tion in Health Services,” accepted for publication in

Comm. ACM.

6. M. Elenko, J. Jones, and G. Palumbo, Distributed Object

Architectures with Corba, Cambridge Univ. Press, June 2000.

Alvin Chan is currently an assistant professor at the Hong

Kong Polytechnic University and director of a university

spin-off company, Information Access Technology, Lim-

ited. He received a PhD from the University of New South

Wales, Australia, in computer engineering. His research

interests include computer networking, mobile comput-

ing, and context-aware computing. Chan is a member of

the ACM and IEEE.

Florine Tse received her MSc degree in software technology

from the Hong Kong Polytechnic University in 2001. Her

research interests include distributed computing in Corba,

Java technology, and smart card applications.

Jiannong Cao is an associate professor in the department of

computing at Hong Kong Polytechnic University. He

received a BSc from Nanjing University, China, and MSc

and PhD degrees from Washington State University, all

in computer science. His research interests include paral-

lel and distributed computing, computer networks, Inter-

net computing, fault tolerance, and mobile computing.

Cao is a member of the ACM, the IEEE, the IEEE Comput-

er Society, and the American Association for the

Advancement of Science.

Hong Va Leong is an assistant professor at the Hong Kong

Polytechnic University. He received a PhD from the Uni-

versity of California, Santa Barbara, in computer science.

His research interests are in distributed systems, distrib-

uted databases, mobile computing, Internet computing, and

digital libraries. Leong is a member of the ACM and the

IEEE Computer Society.

Readers can contact the authors at cstschan@comp.

polyu.edu.hk.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 03:22 from IEEE Xplore.  Restrictions apply. 


