
Process Migration for MPI Applications 

based on Coordinated Checkpoint 

Jiannong Cao, Yinghao Li 

Department of Computing 

The Hong Kong Polytechnic University 

Kowloon, Hung Hom 

Hong Kong, China PR 

{csjcao, c2990103}@comp.polyu.edu.hk 

Minyi Guo 

Department of Computer Software 

The University of Aizu 

Aizu-Wakamatsu City, 

Fukushima 965-8580, Japan 

minyi@u-aizu.ac.jp

Abstract 

A lot of research has been done on fault-

tolerance for MPI applications, some on 
checkpoint/restart, and some on network fault-

tolerance. Process migration, however, has not 

gained widespread use due to the additional 
complexity of the requirement that the knowledge 

about the new location of a migrated process has 

to be made known to every other process in the 
application. Here we present a simple yet 

effective method of process migration based on 

coordinated checkpointing of MPI applications. 
Migration is achieved by checkpointing the 

application, modifying the process location 

information in the checkpoint files, and 
restarting the application. Checkpoint/restart 

and migration are transparent to MPI 

applications. Performance evaluation results 
showed that the additional checkpoint/restart 

capability has little impact on application 
performance, and the migration method scales 

well on a large number of nodes. 

Keywords: process migration, checkpoint/restart, 

coordinated checkpoint, MPI 

1 Introduction

In recent years, the parallel computing 

community has seen a trend of building high-

performance computers with clusters of 

workstations instead of traditional massive 

parallel processor (MPP) architectures. The 

cluster architecture offers a more cost effective 

way to build high-performance computers. Many 

of these clusters, however, built with commodity 

hardware and software, present great challenges 

on reliability and scalability. 

The Message Passing Interface (MPI) [18] is 

a de facto standard for communication among 

the nodes running a parallel program on a 

distributed memory system. However, the MPI 

standard itself does not specify any checkpoint or 

process migration behavior to support reliable 

and scalable execution of applications. Many 

widely used MPI implementations have not been 

designed to be fault-tolerant. 

In this paper, we present a simple method 

and prototype implementation for process 

migration based on coordinated checkpoints for 

MPI applications. Our solution has the following 

features: 

Portability: The system is an extension to 

LAM/MPI [10], a widely used and open-source 

MPI implementation, and Berkeley Lab’s 

Checkpoint/Restart (BLCR) [3] library, a kernel 

level checkpoint system. LAM/MPI integrates 

with BLCR through a checkpoint interface, 

which allows checkpoint/restart support to be 

extended to other checkpoint libraries. Our 

prototype system does not modify LAM/MPI or 

BLCR, but only modifies the process location 

information in the checkpoint files produced by 

them, so it can be used with existing installations. 

The system can also be modified to work with 

other checkpoint systems. 

Transparency: The LAM/MPI integration with 

BLCR is transparent to MPI programs. Source 

code of MPI programs does not need to be 

modified and migration is involuntary. To 

perform process migration, our system needs 

process location information of every MPI 

process in the application. In the current 

implementation, some information can only be 

obtained by calling a function at the beginning of 

the MPI program. This restriction can later be 

eliminated by a more thorough study of the 

LAM/MPI runtime system. Apart from that, MPI 

programs are totally unaware of the migration. 

Simplicity: Since our system is based on 

coordinated checkpoint, process migration is 

performed by merely modifying the checkpoint 

files in between checkpointing and restarting. 

Synchronization is dealt with at the checkpoint 

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 23:27 from IEEE Xplore.  Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PolyU Institutional Repository

https://core.ac.uk/display/61006485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


stage. Such approach does not require 

modification of either the MPI implementation 

or the checkpoint/restart library. The algorithm 

for processing checkpoint files is simple and fast. 

Performance: According to the experiments, 

adding coordinated checkpoint/restart to 

LAM/MPI has insignificant impact on message 

passing performance. Noticeable application 

latency occurs only during checkpointing. The 

percentage of increases in running time can be 

further reduced by adopting a suitable time 

interval between checkpoints according to the 

scale of the application. 

Our prototype system proves that the 

concept of process migration for MPI 

applications based on coordinated checkpoints is 

feasible. The performance is promising and the 

implementation is simple and straightforward. 

Because of these features, our system can be 

adopted easily to work with other MPI 

implementations with coordinated checkpoint 

capability, thus benefiting users with immediate 

need of process migration for MPI applications. 

2 Background and Related Work 

In this section we present the issues in 

checkpoint/restart and process migration for 

parallel programs, as well as some previous work 

in related fields. We also present considerations 

when choosing an MPI implementation to build 

our prototype system. 

2.1 Process Migration 

Process migration is the act of transferring a 

process from one machine to another for 

continuing its execution [4]. Process migration is 

particularly useful for long-running MPI 

applications when the cost of restarting the job 

on a different set of nodes from the beginning is 

not acceptable. 

Migration of processes in an MPI 

application is more difficult than that of 

individual processes because MPI processes are 

more tightly coupled. If an MPI process is 

migrated while the application is still running, 

every other process that communicates with the 

migrated one must be informed of its new 

location. If there are pending messages involving 

the migrating process between the start point of 

migration and the point when notification of 

peers is completed, the application will fail. 

One solution is to use a communication 

broker to coordinate message passing. Only the 

broker is aware of the location of processes and 

all messages are sent to the broker to be 

dispatched to their destination. This approach, 

however, will greatly reduce communication 

bandwidth and increase latency. 

The other solution is to coordinate the 

processes to reach a consistent global state. 

Before a process migration can commence, 

requests are sent to all MPI processes and they 

interact with each other to guarantee that their 

local state will result in a consistent global state 

where no pending message exists. This is 

analogous to a coordinated checkpoint. The CL 

protocol of MPICH-V and LAM/MPI use this 

method [2] [15].

2.2 Checkpointing

In the context of message-passing parallel 

applications, a global state is a collection of the 

individual states of all participating processes 

and of the status of the communication channels. 

A consistent global state is one that may occur 

during a failure-free, correct execution of a 

distributed computation [15]. Within a consistent 

global state, if a given process has a local state 

indicating that a particular message has been 

received, then the state of the corresponding 

sender must indicate that the message has been 

sent [9]. A consistent global checkpoint is a set 

of local checkpoints, one for each process, 

forming a consistent global state. Any consistent 

global checkpoint can be used to restart process 

execution upon failure. 

Checkpoint/restart implementations can be 

broadly categorized into two classes, system 

level and user level [19]. System level 

implementations require the library be compiled 

into the operating system kernel or as a loadable 

kernel module, since they need to access data in 

the system kernel. Berkeley Lab’s 

Checkpoint/Restart (BLCR) library is an 

implementation of such kind. It supports 

transparent checkpoint/restart of multi-threaded 

applications on Linux. User level libraries 

require minimal modification of the operating 

system kernel. But most of them require either 

pre-processing of the source code, or linking the 

object code with their library routine. Also, since 

user space programs can not access the system 

kernel, these implementations usually have fewer 

capabilities than system level implementations. 

File descriptor, sockets, etc. may not be properly 

saved upon checkpoints. Condor [17] and 

Libckpt [7] are examples of user level 

checkpoint/restart libraries.  

There are several tools that support 

checkpoint/restart in MPI. CoCheck [5] is an 

independent application for checkpointing PVM 

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 23:27 from IEEE Xplore.  Restrictions apply.



and MPI applications. However, it was built to 

work with tuMPI, a research purpose MPI 

implementation that has not gained widespread 

use. Another consideration is that the MPI 

version of CoCheck is no longer supported by its 

developers. Starfish [1] provides failure 

detection and recovery at the runtime level for 

dynamic and static MPI-2 programs. However, 

Starfish only supports MPI applications written 

in the OCaml programming language, which 

limited its practical usage. MPICH-V [14] is an 

extension to the popular MPICH [13]

implementation and features three different 

protocols, V1, V2, and CL. V1 adopts 

uncoordinated checkpoint and remote message 

pessimistic logging through channel memories. 

Processes are checkpointed independently and 

stored on checkpoint servers. All communication 

traffic goes through the channel memory servers 

for logging, so the number of such servers is 

directly proportional to the throughput of 

message passing traffic. These servers also lead 

to additional latency during message passing. V2 

adopts sender based pessimistic message logging 

instead of channel memory servers. A 

communication daemon runs on each node and 

messages go through it for logging. Direct point-

to-point communication is achieved in this 

protocol, but the use of these daemons still yield 

latency. CL protocol of MPICH-V adopts the 

Chandy-Lamport’s algorithm [9] for coordinated 

checkpoint. MPICH-V integrates the Condor 

checkpoint library [11] for checkpoint/restart of 

MPI processes. 

Most of the tools described above are 

designed for MPI implementations that have not 

gained widespread industrial usage. LAM/MPI, 

on the other hand, has gained a wide range of 

users. It also has outstanding performance 

compared to other implementations [12].

LAM/MPI has built-in support for coordinated 

checkpointing, which provides us with a 

platform for process migration based on 

checkpoint files. Currently, it integrates with 

BLCR as its checkpoint library, but the modular 

design of LAM/MPI makes it easy to integrate 

other checkpoint libraries. To enable 

checkpoint/restart support in LAM/MPI, one has 

to use a “cr-aware” communication module (one 

that can accept checkpoint requests and 

coordinate with processes to reach a consistent 

global state). At the moment, crtcp (TCP socket 

with checkpoint/restart) and gm (Myrinet 

interconnect) module support this. Support for 

InfiniBand and other high-speed interconnects 

are going underway. 

Previous research work indicates that, in 

some cases, it is possible to boot LAM/MPI on a 

set of nodes, start the MPI application, 

checkpoint, and reboot LAM/MPI on another set 

of nodes with the same topology [15]. In this 

approach, however, LAM node (as opposed to 

real computer) is the unit of migration rather 

than processes. This approach also requires the 

modification of checkpoint files. Rebooting the 

LAM/MPI increases process migration cost and 

complexity. 

3 Design and Implementation 

This section presents the design and 

implementation of our prototype system. The 

main idea of our system is to perform 

coordinated checkpointing of the MPI 

application, modify process location related 

information in the checkpoint files, and restart 

the application using the modified checkpoint 

files. The system currently supports process 

migration for MPI-1 applications. It is built on 

top of, but not limited to, LAM/MPI and BLCR. 

Currently, MPI-2 dynamic processes can not be 

checkpointed by LAM/MPI, thus can not be 

migrated using our system. 

In a failure-free (in which no failure actually 

occurs) environment, coordinated checkpoint 

approach has smaller overhead compared to 

uncoordinated approach. So for smaller scale 

parallel programs which have less probability of 

encountering a failure during execution, this 

approach has little impact on performance. For 

bigger applications that run for a long time, the 

longer time for recovering from failures 

(compared to log-based approaches) is still 

reasonable comparing to the total time needed 

for the application. Therefore coordinated 

checkpoint and process migration based on 

coordinated checkpoint are adopted. 

3.1 Process Migration based on 

Coordinated Checkpointing 

Our prototype system is based on the 

coordinated checkpoint approach of LAM/MPI. 

The process of a checkpoint/restart in LAM/MPI 

is summarized below [15].

Sequence of events at checkpoint: 

1. mpirun: receives a checkpoint request 

from a user or batch scheduler. 

2. mpirun: propagates the checkpoint request 

to each MPI process. 

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 23:27 from IEEE Xplore.  Restrictions apply.



3. mpirun: indicates that it is ready to be 

checkpointed. 

4. each MPI process: coordinates with the 

others to reach a consistent global state in 

which the MPI job can be checkpointed. 

For example, processes using TCP for MPI 

message passing drain in-flight messages 

from the network to achieve a consistent 

global state. 

5. each MPI process: indicates that it is 

ready to be individually checkpointed. 

6. underlying checkpointer: saves the 

execution context of each process to stable 

storage. 

7. each MPI process: continues execution 

after the checkpoint is taken. 

Sequence of events at restart: 

1. mpirun: restarts all the process from the 

saved process images. 

2. each MPI process: sends its new process 

information to mpirun.

3. mpirun: updates the global list containing 

information about each process in the MPI 

job and broadcasts it to all processes. 

4. each MPI process: receives information 

about all the other processes from mpirun.

5. each MPI process: re-builds its 

communication channels with the other 

processes. 

6. each MPI process: resumes execution 

from the saved state. 

Since the checkpoint files contain execution 

context of MPI processes in a consistent global 

state, modifying the process location information 

in these files is equal to notifying all processes of 

the migration event. Modifying the checkpoint 

files has two additional benefits. First, multiple 

migrations can be performed simultaneously by 

modifying multiple variables in the checkpoint 

files. Second, checkpoint files can be used to 

restart the application in case of failures. 

At the moment, there are several limitations 

on checkpoint/restart support in LAM/MPI. The 

system can not checkpoint dynamically spawned 

processes in MPI-2. BLCR only supports Linux 

kernel version 2.4 on several architectures. Our 

system’s migration ability is also affected by 

these limitations. 

Our system assumes a stable, shared storage 

so that the checkpoint files of processes on 

different nodes can be managed and processed in 

a centralized manner. Shared storage also assures 

that checkpoint files of all the processes are 

available to all nodes in the system, so that the 

checkpoint of a process can be restarted on 

another node which also has access to the 

checkpoint files. 

3.2 Location Sensitive Information 

To perform process migration, the following 

location information in all of the checkpoint files 

must be modified. 

Checkpoint file names: The LAM/MPI and 

BLCR checkpoint system will generate one 

checkpoint file for the mpirun process and one 

checkpoint file for each of the MPI processes. 

The checkpoint file of the mpirun process is 

named in the form of “context.PID”, where PID 

is the process ID of mpirun. The checkpoint 

files of the MPI processes are named in the form 

of “context.PID1-nNID-PID2”, where 

PID1 is the process ID of mpirun, NID is the 

node ID on which the process runs, and PID2 is 

the ID of the MPI process. To reflect the 

migration, the NID field in the file name of the 

process checkpoint to migrate is changed to its 

new node ID. 

Process location: LAM/MPI use type struct 

_gps to identify the location of a process in the 

LAM universe [8]. The definition of this type is 

given below: 
struct _gps { 

int4 gps_node; 
int4 gps_pid; 
int4 gps_idx; 
int4 gps_grank; 

};

The individual elements are:  

gps_node: The node ID in the LAM 

universe where the process is running. This 

will be an integer in [0, N), where N is the 

number of nodes in the LAM universe. 

gps_pid: The POSIX PID of the process 

that invoked MPI_INIT. 

gps_idx: The index of the process in the 

local LAM daemon’s process table. 

gps_grank: The “global rank” of the 

process. This is the integer rank of this 

process in MPI_COMM_WORLD. 

Each process in a running MPI application, 

including the mpirun process, keeps local 

copies of _gps for every MPI process in the 

MPI application. Since the checkpoint library 

stores execution context of processes in the 

checkpoint files, these process location structures 

can also be found in the checkpoint files. One 

key step in our migration prototype is to search 

in the checkpoint files _gps of process we want 

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 23:27 from IEEE Xplore.  Restrictions apply.



to migrate, and replace gps_node with the 

node number to migrate to. 

LAM/MPI uses a daemon on each node for 

process control, meta-environment control, and, 

in some cases, message passing. Due to some 

implementation limitations, the field gps_idx

is no longer useful when the MPI application is 

checkpointed, stopped and restarted. So we 

choose to neglect this field when modifying 

process location. This issue will later be 

addressed through our coordination with the 

LAM/MPI team. 

Checkpoint of mpirun: The mpirun process 

keeps a string for each MPI process as the 

command to restart that process. The string is in 

the form of “path filename”, where path

is the absolute path to the executable of restart 

command of the checkpoint/restart library (in the 

case of BLCR, cr_restart) and filename is the 

file name of the checkpoint of that process. Since 

we rename the checkpoint file to reflect process 

migration, this filename will also be modified. 

Checkpoint of process to migrate: In the 

checkpoint file of the process to migrate, there is 

a string “<nNID/PID/RANK>crtcp: ”. This 

is a debug message used by the crtcp module 

(TCP communication with checkpoint/restart 

support). NID is the node ID the process is 

running on; PID is the POSIX PID of the 

process and RANK is the global rank of the 

process. The system replaces NID with the node 

ID of the target node for migration. 

There is also a string in the form of 

“TMP/lam-USER@HOST”. TMP is the system 

temporary directory, by default “/tmp”; USER is 

the username of the user running MPI 

applications; HOST is the hostname of the node. 

This is the path to the temporary directory of 

LAM/MPI. When a process is migrated to 

another node, hostname of the node is also 

changed. Therefore we need to replace HOST

with the hostname of the target node of 

migration. 

3.3 Obtaining the Process Location 

To perform process migration on a process 

in an MPI application, we need the complete 

_gps structure of that process. It is more 

convenient to construct a table containing _gps

structure of every MPI process when the MPI 

application is started. The table can later be used 

to locate the _gps structure of any process and 

do migration on that process. 

Our system uses a wrapper program of 

mpirun command to start MPI applications. 

The wrapper delegates all its command line 

arguments to mpirun, and starts a modified 

version of mpitask (a utility in LAM/MPI that 

displays information of running MPI processes) 

in another process to obtain the process location 

table. Our modified version of mpitask generates 

process ID in addition to node ID and index in 

the original version. Due to some technical 

difficulties, the rank of running processes, 

however, can not be obtained. An additional 

function call is placed right after MPI_INIT in 

the MPI program. This function gathers rank, 

node ID and process ID of every process and 

passes the information to the wrapper program. 

Based on these two sources of information, the 

wrapper program can produce a complete table 

of _gps and write it in a file for later reuse. 

3.4 Processing the Checkpoint Files 

We provide a program to automate the task 

of processing checkpoint files. It accepts a task 

file as input and modifies the checkpoint files 

according to the migration tasks in the task file. 

The structure of the file is very simple. It 

contains the process ID of mpirun and a set of 

migration tasks. Each task is composed of four 

members of the _gps structure of the process to 

be migrated and the node ID it will be migrated 

to. The task file can be produced by manually 

modifying the process location table file 

described in the previous section. 

The program scans parts of the checkpoint 

files for relevant variables and replaces them 

with designated values. It also renames 

checkpoint files of nodes to reflect the migration. 

4 Performance Evaluation 

Three sets of experiments were conducted to 

measure the performance of our prototype 

system. The first set measures communication 

performance using NetPIPE [16] (A Network 

Protocol Independent Performance Evaluator). 

The second set measures overhead of 

checkpoint/restart using High-Performance 

Linpack [6]. The third set measures processing 

time of checkpoint files. The test platform is a 4-

node Linux mini-cluster. Each node has a 

Pentium III 500Mhz processor; 256 MB of 

memory and Fast Ethernet interconnect. 

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 23:27 from IEEE Xplore.  Restrictions apply.



4.1 Communication Performance 

NetPIPE is a program that performs ping-

pong tests, bouncing messages of increasing size 

between two processes across a network to 

measure communication performance. We ran 

NetPIPE on top of TCP sockets, LAM/MPI’s 

TCP RPI module (TCP point-to-point channel 

without checkpoint/restart support), and CRTCP 

module (TCP with checkpoint/restart). As seen 

in figure 1, the TCP communication module of 

LAM/MPI causes slight overhead than the native 

TCP socket communication. The CRTCP 

module has more overhead than its counterpart 

with no checkpoint/restart support. But the 

discrepancy is almost negligible. 
Figure 1: Communication Performance

0

10

20

30

40

50

60

70

80

90

100

1 6

1
6

2
7

4
5

6
4

9
9

1
8

9

2
5

6

3
8

7

7
6

5

1
0
2

4

1
5
3

9

3
0
6

9

4
0
9

6

6
1
4

7

1
2

2
8

5

1
6

3
8

4

2
4

5
7

9

4
9

1
4

9

6
5

5
3

6

9
8

3
0

7

2
E

+
0

5

3
E

+
0

5

4
E

+
0

5

8
E

+
0

5

1
E

+
0

6

2
E

+
0

6

3
E

+
0

6

4
E

+
0

6

6
E

+
0

6

Message Size (bytes)

B
a

n
d

w
id

th
 (

M
b

p
s

)

TCP

LAM/MPI TCP

LAM/MPI CRTCP

4.2 Checkpoint/Restart Restart 

High-Performance Linpack is a software 

package that solves a (random) dense linear 

system in double precision (64 bits) arithmetic 

on distributed-memory computers, commonly 

used to benchmark parallel computers. Since the 

problem size can be defined by the user, it offers 

us a convenient way to evaluate the performance 

of checkpoint when dealing with processes of 

different sizes. When the problem size reaches 

5000, the checkpoint file of each process is 

almost as big as 180MB. MPI process that 

occupies this amount of memory is not 

uncommon in large-scale applications. 

We conducted the experiment using problem 

sizes from 500 to 5000 with an interval of 500. 

The same experiment is carried out three times, 

the first time with TCP module, the second with 

CRTCP module, and the third with CRTCP 

module and a 5 minutes checkpoint interval. As 

shown in figure 2, experiments using TCP and 

CRTCP module without checkpoint have almost 

the same execution time. The experiment with 

CRTCP module and checkpoint interval of 5 

minutes, however, yields extra execution time of 

about 6%. The percentage of extra execution 

time increases as the problem size increases. It 

reaches 8% when the problem size is 5000. The 

execution time is also expected to increase 

drastically when the number of MPI processes 

increases. 

The performance bottleneck in these 

experiments lies in the file system, since the four 

nodes in our testing cluster use a shared network 

file system located on one of the nodes. Each 

node is equipped with only one SCSI hard disk 

and all of them are connected with Fast Ethernet. 

The performance is greatly reduced when all 

processes are transferring and storing checkpoint 

files concurrently to the file server. This issue 

can be improved by using some high-

performance cluster file system. 
Figure 2: Checkpoint Overhead

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Problem Size

R
u

n
n

in
g

 T
im

e
 (

s
e
c

)

RPI=TCP

RPI=CRTCP

RPI=CRTCP, 5 min

4.3 Processing Time of Checkpoint Files 

The processing time of a single checkpoint 

file is independent of the file size because the 

processing program only scans several 

designated areas of fixed size in the file. The 

total processing time is only affected by the 

product of the number of processes and the 

number of migration tasks. Experiments show 

that migrating one, two, three, or four processes 

out of four requires about 1.8, 5.2, 5.8, or 6.0 

seconds respectively. The speed can be further 

increased by adjusting the algorithm for 

processing the checkpoint files. 

We used HPL again to test the integrity of 

the system, since it involves extensive message 

passing traffic and heavy computation that 

resembles many real live applications. Only two 

lines of code are added to enable process 

migration in HPL. Our system succeeded in 

migrating arbitrary process to any node within 

the LAM universe. It can also migrate processes 

to nodes added at a later time. Even processes on 

the master node (the node from which the MPI 

program is initiated) can be migrated, result in a 

system with no single point of failure. 

5 Future Work 

While the prototype discussed in this paper 

proved the feasibility of the idea, future work on 

several directions is planned. The first priority is 

to refine the system for practical use, such as 

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 23:27 from IEEE Xplore.  Restrictions apply.



eliminating the need for modifying the MPI 

programs, and taking gps_idx into account 

when processing the checkpoint file. The next 

step is to increase the speed of processing 

checkpoint files, especially when dealing with a 

large number of MPI processes. The algorithm 

for processing checkpoint files will also be 

adjusted to reduce processing time, possibly by 

omitting checkpoints of processes that are not 

affected by the migration, and by locating the 

variables of interest more effectively through in 

depth study of the structure of checkpoint files. 

The long term goal is to integrate the system 

with some monitoring and scheduling system to 

build a fault-tolerant MPI runtime environment. 

The system should be able to recover from node 

failures and to perform processes migration 

when more powerful nodes are added or when 

system load of the working nodes change. 

6 Conclusions 

This paper presents a simple yet effective 

approach to process migration of MPI 

applications. A prototype system is built for 

LAM/MPI and BLCR. It performs process 

migration by modifying the process location 

information in the coordinated checkpoint files. 

Performance tests were conducted and results 

show that adding checkpoint/restart support to 

MPI leads to trivial performance penalty, and the 

processing time of checkpoint files is 

insignificant. In a failure-free environment, the 

execution time of a checkpoint and migration 

enabled application is almost identical to one 

without it. 

7 References 

[1] A. M. Agbaria, and R. Friedman. Starfish: 

Fault-Tolerant Dynamic MPI Programs on 

Clusters of Workstations. Proceedings of the 

8th IEEE International Symposium on High 

Performance Distributed Computing, p. 31, 
1999.

[2] A. Bouteiller, P. Lemarinier, G. Krawezik, 

and F. Cappello. Coordinated Checkpoint 

versus Message Log for Fault Tolerant MPI. 

IEEE International Conference on Cluster 

Computing (CLUSTER’03), p. 242, Dec 01-
04, 2004, Hong Kong.

[3] Berkeley Lab Checkpoint/Restart (BLCR). 

http://ftg.lbl.gov/checkpoint.

[4] D. S. Milojicic, F. Douglis, Y. Paindaveine, 

R. Wheeler, and S. Zhou. Process Migration. 

ACM Computing Surveys (CSUR), Vol. 32, 

Issue 3, p. 241-299, 2000.

[5] G. Stellner. CoCheck: Checkpointing and 

Process Migration for MPI. Proceedings of 
the 10th International Parallel Processing 

Symposium, p. 526-531, 1996.

[6] HPL – A Portable Implementation of the 

High-Performance Linpack Benchmark for 

Distributed-Memory Computers. 

http://www.netlib.org/benchmark/hpl.

[7] J. S. Plank, M. Beck, G. Kingsley, and K. Li. 

Libckpt: Transparent Checkpointing under 

Unix. Technical Report: UT-CS-94-242, 
1994.

[8] J. M. Squyres, B. Barrett, A. Lumsdaine. 

Request Progression Interface (RPI) System 

Services Interface (SSI) Modules for 

LAM/MPI, API Version 1.0.0 / SSI Version 

1.0.0. 

[9] K. M. Chandy and L. Lamport. Distributed 

Snapshots: Determining Global States of 

Distributed Systems. ACM Transactions on 

Computer Systems (TOCS), Vol. 3, Issue 1, p. 

63-75, 1985.
[10] LAM/MPI Parallel Computing. 

http://www.lam-mpi.org.

[11] M. Litzkow, T. Tannenbaum, J. Basney, and 

M. Livny. Checkpoint and Migration of 

UNIX Processes in the Condor Distributed 

Processing System. University of Wisconsin-
Madison Computer Sciences Technical 

Report #1346, April 1997.

[12] MPI Performance on Coral. 

http://www.icase.edu/coral/mpi/MPIonCoral

.html.

[13] MPICH - A Portable Implementation of MPI. 

http://www-unix.mcs.anl.gov/mpi/mpich.

[14] MPICH-V – Introduction. 

http://www.lri.fr/~gk/MPICH-V.

[15] S. Sankaran, J. M. Squyres, B. Barrett, and 

A. Lumsdaine. The LAM/MPI 

Checkpoint/Restart Framework: System-

Initiated Checkpointing. Los Alamos 

Computer Science Institute (LACSI) 
Symposium, Oct 2003.

[16] Q. O. Snell, A. R. Mikler, and J. L. 

Gustafson. NetPIPE: A Network Protocol 

Independent Performance Evaluator. 

http://www.scl.ameslab.gov/netpipe.

[17] The Condor Project Homepage. 

http://www.cs.wisc.edu/condor.  

[18] The Message Passing Inteface (MPI) 

Standard. http://www-unix.mcs.anl.gov/mpi. 

[19] Y. M. Wang, Y. Huang, K.P. Vo, P. Y. 

Chung, and C. Kintala. Checkpointing and 

Its Applications. Proceedings of the 25th

International Symposium on Fault-Tolerant 

Computing, p. 22, 1995.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 23:27 from IEEE Xplore.  Restrictions apply.


