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Abstract 

Many algorithms for achieving mutual exclusion in 

distributed computing systems have been proposed. The 

three most often used performance measures are the 

number of messages exchanged between the nodes per 

Critical Section (CS) execution, the response time, and 

the synchronization delay. In this paper, we present a new 

fully distributed mutual exclusion algorithm. A node 

requesting the CS sends out the request message which 

will roam in the network. The message will be forwarded 

among the nodes until the requesting node obtains 

enough permissions to decide its order to enter the CS. 

The decision is made by using Relative Consensus Voting 

(RCV), which is a variation of the well-known Majority 

Consensus Voting (MCV) scheme. Unlike existing 

algorithms which determine the node to enter the CS one 

by one, in our algorithm, several nodes can be decided 

and ordered for executing the CS. The synchronization 

delay is minimal. Although the message complexity can 

be up to ( )NO  in the worst case in a system with N nodes, 

our simulation results show that, on average, the 

algorithm needs less number of messages and has less 

response time than most of those existing algorithms 

which do not require a logical topology imposed on the 

nodes. This is especially true when the system is under 

heavy demand. Another feature of the proposed algorithm 

is that it does not require the FIFO property of the 

underlying message passing mechanism.   

1. Introduction 

Solving the mutual exclusion problem in a distributed 

system imposes more challenges than in a centralized 

system. The mutual exclusion problem states that to enter 

a Critical Section (CS), a process must first obtain the 

lock for it and ensure that no other processes enter the 

same CS at the same time. When competing processes are 

distributed on the nodes over a network, how to achieve 

mutual exclusion efficiently still remains a difficult 

problem to solve in distributed systems. Over the last two 

decades, many algorithms for mutual exclusion in 

distributed computing systems have been proposed. Three 

performance measures are often used to evaluate their 

performance. They are message complexity, response time

and synchronization delay [16]. The message complexity is 

measured in terms of the number of messages exchanged 

between the nodes per CS execution. The response time is 

the time interval a request waits for its CS execution to be 

over after its request messages have been sent out. The 

synchronization delay is the time interval between two 

successive executions of the CS. The response time and 

synchronization delay both reveal how soon a requesting 

node can enter the CS and are measured in terms of the 

average message propagation delay Tn.

Distributed mutual exclusion algorithms can be divided 

into two categories: structured and non-structured. 

Structured algorithms impose some logical topologies, such 

as tree, ring and star, on the nodes in the system. These 

algorithms usually have good message complexity when the 

load is “heavy”, i.e., there is always a pending request for 

mutual exclusion in the system. For example, Raymond’s 

tree-based algorithm [12] requires only 4 messages 

exchanged per CS execution at heavy loads. However, these 

algorithms increase average response time delay as high 

as ( )( )NO log . Meanwhile, the organization and maintenance 

of the specified topology also lead to a large overload. 

Furthermore, most structured algorithms work well only 

under their specified topologies, and may be inefficient in 

some other environments [20]. In this paper, we are 

concerned with non-structured algorithms which are generic 

in the sense that they are suitable for arbitrary network 

topologies. 

For non-structured algorithms, the message complexity 

can be as low as ( )NO  or ( )( )NO log . The response time can 

be 2Tn at light loads and N*(Tn+Tc) at heavy loads, where 

Tc is the average CS execution time. But either the 

reduction of the message complexity is achieved at the cost 

of long synchronization delay or the decrease in response 

time is gained at the cost of high message complexity. In 

other words, they either cause high message complexity or 

result in long response time. More importantly, most of the 

algorithms require the FIFO (First In First Out) property as 

prerequisite for the underlying message passing 

communications. If this property can not be satisfied, extra 
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messages or mechanisms needed to be employed to solve 

possible deadlock [5].  

In this paper, we present a novel non-structured 

algorithm that can solve distributed mutual exclusion 

efficiently and resiliently. A node requesting the CS sends 

out the request message which will roam in the network. 

The message will be forwarded among the nodes until the 

requesting node obtains enough permissions to decide its 

order to enter the CS. The decision is made by using 

Relative Consensus Voting (RCV), which is a variation of 

the well-known Majority Consensus Voting (MCV) 

scheme [18]. In RCV, the request of a node can be 

granted if it either can eventually obtain the largest 

number of permissions against other currently competing 

requests, or the node has the smallest id among the 

requesting nodes potentially with the same number of 

permissions. Since nodes are not always required to 

collect permissions from the majority of all the nodes in 

the system, the number of messages exchanged can be 

reduced.  

The proposed algorithm requires no pre-configuration 

on the system but only needs to know the total number of 

the network nodes that are involved. It possesses several 

other advantages. First, it does not require the FIFO 

property of the underlying message passing mechanism. 

Even when messages are delivered out of order, there is 

no impact on the algorithm’s correctness and performance. 

Second, unlike existing algorithms which determine the 

node to enter the CS one by one, in our algorithm, several 

nodes can be decided and ordered for executing the CS so 

that the delay time before entering the CS can be reduced. 

The algorithm generates a sequence of requesting nodes 

that describes their order to execute the CS. Each node 

executes the CS directly if it stands on the top the 

sequence or waits for a message from its immediate 

preceding node in the sequence informing it to enter the 

CS, so the synchronization delay is minimal, i.e., T (T is 

the average delay of passing a message between two 

nodes). Another advantage introduced by the RCV 

scheme is resiliency which is inherited from the MCV. 

Since the correct operation of the algorithm does not 

depend on any specific node, crash of nodes will not 

affect the algorithm’s execution. Although the message 

complexity can be up to ( )NO  in the worst case, our 

simulation results show that, on average, the algorithm 

needs less number of messages and has less response time 

than most of those existing algorithms which do not 

require a logical topology imposed on the nodes. This is 

especially true when the system is under heavy demand.  

We argue that performance of distributed mutual 

exclusion algorithms under light load is not as critical as 

under the heavy loads, because system resources are rich 

under light load, thus algorithms with higher overhead can 

work well. 

The remainder of this paper is organized as follows: 

Section 2 overviews related work. Section 3 describes our 

system model. In Section 4, we present the design of the 

proposed algorithm. Sections 5 and 6 contain the 

correctness proof of and performance evaluation of the 

proposed algorithm, respectively. Finally we conclude the 

paper in Section 7. 

2. Background and related works 

Some of the non-structured algorithms employ a logical 

token to achieve mutual exclusion [3, 14, 17]. In the token-

based algorithms, a unique token is shared among the nodes 

and only the node which possesses the token is able to enter 

the CS. The most representative algorithm that uses token is 

broadcast [17]: a requesting node sends token requests to 

all other nodes and the token holder then passes the token to 

the requesting node after it finishing executing the CS or it 

no longer need the token. An optimization on the broadcast 

is that a node only sends its token requests to nodes that 

either has the token or is going to get it in near future [14] 

so that the number of messages exchanged per CS 

execution can be reduced from N to N/2 on the average at 

light loads, and the response time keeps 2Tn at light loads 

and N*(Tn+Tc) at heavy loads. [3] proposes an interesting 

algorithm where the token contains an ordered list of all 

requesting nodes that have been determined the order to 

enter the CS. The messages needed to exchange per CS 

execution is 3-2/N at heavy load. But when calculating the 

response time, an extra “request collect time” must be 

considered. Another drawback of the algorithm is that it is 

not a fully distributed algorithm because at any time, there 

is an “arbiter” acting as the coordinator in the system. In 

addition, it is difficult for token-enabled algorithms to 

detect loss of the token and regenerate a new unique one. 

Although some efforts have been made to tackle this 

problem [2, 6, 10], solutions always induce extra high 

overloads. 

For algorithms without using token, usually several 

rounds of message exchanges among the nodes are required 

to obtain the permission for a node to enter the CS. 

Lamport’s logical timestamp [7] is often adopted in this 

type of non token-based algorithms. Ricart and Agrawala 

proposed an algorithm [13] as an optimization of Lamport’s 

algorithm. In their algorithm, a node grants multiple 

permissions to requesting nodes immediately if it is not 

requesting the CS or its own request has lower priority. 

Otherwise, it defers granting permission until its execution 

in the CS is over. Only after receiving grants from all other 

nodes, can the requesting node enter the CS. Ricart-

Agrawala’s mutual exclusion algorithm has low delays 

because of parallelism in transfer of messages. The 

response time is 2Tn and N*(Tn+Tc) under light load and 

heavy load, respectively. But the number of messages 

exchanged per CS execution is a constant of 2*(N-1), which 

is quite large. Under light load, the average number of 

messages can be reduced to N-1 by using a dynamic 

algorithm [15].  A more recent work described in [8] 

reduces message traffic of the Ricart-Agrawala type 

algorithms to somewhere between N-1 and 2(N-1) by 
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making use of the concurrency of requests and some other 

methods. Nevertheless, the message complexity 

remains ( )NO .

Another type of non-structured algorithms that does not 

need to use token is the quorum-based algorithms. A 

quorum is a set of nodes associated with each node in the 

system and every two quorums have a nonempty 

intersection. The commonality of quorum-based 

algorithms lies in that a requesting node can enter the CS 

with permissions from only the nodes in its quorum. 

Obviously, messages needed to be exchanged are decided 

by the size of the quorum. A well known example is 

Maekawa’s algorithm [9], where nodes issue permission 

only to one request at a time and a requesting node is only 

needed to receive permissions from all members of its 

quorum before it is able to enter the CS. In [9], the 

quorum size is N  while in the Rangarajan-Setia-Tripathi 

algorithm [11], the size is reduced to
G

NG

2

1+ , where G 

is the subgroup size. [1] organizes all N nodes to a binary 

tree and a quorum is formed by including all nodes along 

any path that starts from the root of the spanning tree and 

terminates at a leaf. So the quorum size is log(N) in the 

best case and (N+1)/2 in the worst case. However, the 

algorithm will degenerate to a centralized algorithm 

because the root node is included in all quorums when it is 

always available.   

As to the response time, it is comparatively high under 

heavy load in Maekawa’s algorithm because the 

synchronization delay is 2Tn. Some improvements have 

been made to the Maekawa type algorithms [4, 19] by 

introducing more types of messages and exchanging a few 

more messages so that the synchronization delay can be 

reduced to Tn. Despite its good performance, the quorum-

based mutual exclusion algorithms still have two 

disadvantages. First, the overhead of generating quorum 

for each node must be taken into account especially when 

the number of network nodes tends to change dynamically. 

Second, if the FIFO property can not be satisfied, which 

means that messages between two nodes are not always 

delivered in the same order as being sent, extra 

mechanism should be employed to avoid possible 

deadlock, and when conflicts occur frequently, more than 

N messages may need to be exchanged [5]. 

3. System model and data structures 

A distributed system consists of N nodes that are 

numbered from N0 to NN-1. The term node used here refers 

to a process as well as the computer on which the process 

is executing. There is no shared memory or global clock 

and the nodes communicate with each other only through 

message passing. In this paper, we do not consider fault 

tolerance issues. We assume that the nodes do not crash 

underlying communication medium is reliable so that the 

messages will not be lost, duplicated. 

It is assumed that each node can issue a request for 

entering the CS only when there is no outstanding request 

issued from the same node. Figure 1 shows the structure of 

a node. On each node, a MPM (Message Processing Model) 

is deployed. It processes messages cached in the Incoming 

Message Queue of that node and sends messages to other 

nodes when necessary. Also, every node maintains a table 

recording the system information (SI). Figure 2 illustrates 

the data structure used for SI. It contains three fields: 

Next indicates which node, if any, will enter the   CS  

      immediately after this node.  

NONL (Node Ordered Node List) is a sequence of 

ordered tuples. A tuple, in the form of < NodeID, TS >, 

records the requesting node’s ID and the timestamp at 

which moment the corresponding request message was 

firstly initialized. 

NSIT (Node System Information Table) consists of N

rows, one for each node in the system (including the 

node itself). Each row records the information about a 

node known to it, including the ID, the timestamp TS,

and a tuple list MNL of that node. MNL is a list of tuples 

like <NodeID, TS>, showing all the nodes from which a 

request message has been received. TS represents how 

up-to-date the information about the node is. Since the 

status of the node’s information is updated whenever the 

node issues a request message or receives a request 

message, TS is implemented as a counter recording the 

number of request messages that have been initialized at 

or sent to the node. 

In the remaining part of the paper, we denote a node 

with ID “i” as Ni, and the SI maintained by Ni as SIi.

 Only three types of messages are employed in our 

proposed algorithm. They are: 

Request Message (RM)  

Enter Message (EM)  

Next 

NONL

NSIT 

ID TS MN

Figure 2.

Data structure of SI Data structure of SI Data structure of SI Data structure of SI 
Figure 3. 

RM initialized by NodeRM initialized by NodeRM initialized by NodeRM initialized by Nodeiiii

Host   i 

UL 

MSIT 

ID TS MN

MONL 

Type   RM 
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Inform Message (IM)  

Since a RM message can be forwarded by different 

nodes, we call the node that initially sends the message the 

home node of the message. Each message is associated 

with a flag which indicates the type of the message. Data 

structures contained in messages are similar to that used 

for SI. As an example, figure 3 shows the data structure 

used in RM. “MONL” (Message Ordered Node List) is a 

sequence of ordered tuples. “MSIT” (Message System 

Information Table) records the newest system information 

updated during the roaming of the message. In addition, a 

field Host indicates the home node of the message. “UL”

records unvisited nodes’ ID.  

The EM and IM messages do not have the UL and Host

fields. IM messages have a field “Next” recording the id 

of the node that will enter the CS after the message’s 

destination node. 

4. The algorithm 

When a node wants to enter the CS, it initializes a RM 

message and sends it to some other node. As described 

before, the field MNL in the data structure maintained by a 

node records all the nodes that have sent RM to the node. 

When a RM message is processed by the MPM on a node, 

a tuple is generated and appended to the MNL. After 

exchanging with the information carried in the incoming 

messages (using the Exchange procedure), the MPM will 

calculate whether the RM message’s home node has 

gained enough information to determine its rank among 

all the competing nodes (using the Order procedure). If 

not, the RM will be forwarded to other nodes that the 

message has not visited. Otherwise, if the rank can be 

determined, we say that the requesting node, or its RM, or 

the corresponding tuple is ordered. An ordered tuple 

knows the order for its home node to enter the CS and will 

not be forwarded among the nodes. If the MPM finds that 

a tuple has the highest rank, it immediately sends an EM 

message to the tuple’s home node. If the tuple hasn’t the 

highest rank, its immediate preceding tuple’s home node 

will be informed by an IM the immediate next node to 

execute the CS. After a node finishes executing the CS, it 

will send an EM message to its successor.  

In the following subsections, we will describe the 

algorithm executed by MPM, the Exchange procedure, 

and the Order procedure.  

4.1. The MPM Algorithm 

Once a node Ni wants to enter a CS, it increases its 

timestamp ti by one, and appends the tuple <i, ti> to 

SIi.NSIT[i].MNL (Line 4, 5). After doing so, it generates a 

RM message and sends it out for roaming over the 

network to confer with other nodes on its order of entering 

the CS. The RM message is initialized with a partial SI 

copy of the home node (Line 6-13).  

If node Ni has been ordered, it will receive an EM 

message when it is on top of the Ordered Nodes List, or 

its immediate preceding node “k” in the list will receive an 

IM informing it to update the Next field to “i”. When on top 

of the Ordered Node List, Ni will either receive an EM from 

Nk which just exits the CS or from Nj where its order is 

determined. On getting enough permissions to enter the CS, 

Ni will first invoke the Exchange procedure to update its SI 

with the incoming EM and then enter the CS (Line 14-16).  

Whenever finishing executing the CS, Ni must send an 

EM to the node represented by Nexti, if any, and delete its 

own tuple from the top of SIi.NONL (Line 17-24). 

At times Ni will receive an IM indicating that Nj is the 

next node to it that enters CS. If Ni hasn’t entered the CS or 

is currently executing the CS (this can be determined by 

whether tuple <i, ti> is still in SIi.NONL), the only thing left 

to do reset the value SIi.Next to “j”. Otherwise, which 

means that Ni has finished executing CS, Ni should generate 

an EM with a copy of its SI and send it to Nj immediately 

(Line 25-32).  

Upon receiving a RM originally initialized in Nj, the 

MPM in Ni must increase its timestamp and register tuple 

<j, tj>, then (1) call Exchange procedure to update its SI, 

(2) call Order procedure to determine several node’s order 

to enter the CS (if they can be ordered) employing RCV 

algorithm (Line 33-37). Obviously, the information 

included in the message is collected from the nodes along 

its forwarding path. If Nj is ordered, then its immediate 

preceding node in the NONL Nk will receive an IM or Nj

itself will receive an EM from Ni (if Nj is on top of NONL)

(Line 38-45). Otherwise, when Ni cannot be determined its 

access order (that is to say the information carried by the 

request message is not enough for determining its home 

node’s access order), Ni will regenerate an RM with newest 

system information but remains the “Host” to be “j” and 

forward it to some other node which exists in the RM’s UL

(any of the unvisited nodes) (Line 46-53).  

The MPM Algorithm 

1. Initialization: 

2.  //Omitted 

3. Upon requesting the CS: 

4.     SIi.NSIT[i].TS++;

5.     Append tuple <i, SIi.NSIT[i].TS> to    

SIi.NSIT[i].MNL;

6.     Create a message with following content:  

7.         //initialize RM, copying information needed

8.         Host = i; 

9.         UL = {Nx | 0≤ x ≤ N-1}-Ni;

10.         MONL = SIi.NONL; 

11.         MSIT = SIi.NSIT; 

12.     Select an unvisited node randomly and delete  

corresponding id from message UL;  

13.     Send the message to the selected node; 

14. Upon receiving the EM: 

15.     Call Exchange Procedure to update the SIi.NSITi ;

16.     Enter the CS; 

17. Upon releasing the CS: 

18.     SIi.NSIT[i].TS++; 

19.     Delete i from SIi.NONLi
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20.     If ( SIi . Next<> NULL ) then // send EM message 

informing the next node to enter CS if any 

21.         Initialize an EM with newest MONL and MSIT 

copy from SIi ;

22.         Send the EM to the SIi.Next ;

23.         SIi.Next = NULL; 

24.     End if  

25. Upon receiving an IM: 

           (IM indicating next to be node j) 

26.     If ( tuple <i, ti> which is immediate precedes tuple  

<j, tj> is not in the list of SIi.NONL) then     

27.         // this node has finished executing the CS      

28.         initialize an EM with newest MONL and MSIT 

copy from SIi;

29.         send the EM to node j; 

30.     else 

31.         set SIi.Next = j; 

32.     end if  

33. Upon receiving/processing a RM: (Assume that the 

message initialized at node k arrives in node i) 

34.     Call Exchange Procedure to update SIi.NSIT; 

35.     Append tuple <k, tk> to SIi.NSIT[i].MNL;   

36.     SIi.NSIT[i].TS=max(SIi.NSIT[h].TS)+1          

(h∈[0, N-1]); 

37.     Call Order procedure; 

38.     if BeOrdered = true  then 

39.         if Highest_Priority = true then 

40.             Initialize an EM with newest MONL and 

MSIT copy from SIi ;

41.             send the EM to node k; 

42.         else  

43.             // informing k’s preceding node to reset its 

Next field  

44.             send an IM to node k’s immediate preceding 

node according to NONL; 

45.         end if 

46.     else  // forward this RM with updated information 

47.         generate a new RM’ with following content: 

48.             Host’ = k; 

49.             MONL’ = SIi.NONL; 

50.             MSIT’ = SIi.NSIT; 

51.             choose one unvisited node (assume node h) 

from the UL of RM; 

52.             UL’ = UL - Nh;

53.         send the message to node h; 

54.     end if     

4.2. The Order specifications  

When request message originally initialized in Nj is

delivered to Ni, in this procedure, it will determine 

whether Nj can be ordered by employing the RCV scheme. 

First, all tuples existing in the NSIT will be organized as a 

sequence {TPi} temporarily. The rank of a tuple in the 

sequence is defined by two parameters: the number of 

MNLs in which the tuple is placed on the top and the value 

of NodeID. The latter is used to resolve any tie: when 

more than one tuple are placed on the same number of

MNLs, the tuple with smallest NodeID wins and will be 

assigned the highest rank (Line 12). Afterwards, the first 

tuple in {TPi} is tested to determine whether it can be 

ordered (Line 13).   

 All ordered tuple will be appended to NONL and 

removed from all MNLs of the NSIT (Line 14, 15). The 

boolean variables BeOrdered and Highest_Priority will be 

set to true if node Ni is ordered (Line 16-19) and is on top 

of the NONL (Line25). 

The Order Procedure 

1. Continue = true; 

2. BeOrdered = false; 

3. if (tuple <j, tj> is in ONL) // already ordered when 

processing other RM 

4.     Continue = false 

5.     BeOrdered = true; 

6.     delete <j ,tjk> from any entry of NSIT; 

7. end if 

8. while Continue = true Do 

9.     begin 

10. //calculate upon the SI stored in node j after 

updating with the incoming message. 

11.      // RCV scheme, some node(s) can be ordered 

simultaneously in this procedure 

12.      finds all the M (M <= N) different tuple in the 

NIST to build the sequence {TPh}: here, each TPh

reaches the top of Sh (Sh >=1) rows of MNL in 

NSIT, and ),1(, Mlklk ≤≤∀ , if 

)( lk < then{ ( lk SS > or [( lk SS = ) and 

TP1.NodeID < TP2.NodeID)]}; if there is only one 

tuple in the sequence, then S2=0, S2.NodeID=1;

13.       if ( )
=

−>− M

h hSNSS
121

 or (
=

−=− M

h hSNSS
121

and (TP1.NodeID < TP2.NodeID ))  then  

14.           append the TP1  to NONLj ;

15.           delete TP1 from any row of NSITi ; 

16.           if (TP1.NodeID = j ) then   

17.               Continue = false; 

18.               BeOrdered = true; 

19.           endif 

20.      else  

21.           Continue = false; 

22.      endif 

23.   end 

24. endif 

25. if OnTopOf(NONLi) then Highest_Priority = True ; 

26. // node j can enter CS immediately 

4.3. The Exchange specifications 

In this procedure, MPM updates the node’s SI with the 

incoming message by comparing the content of tuples. After 

executing this procedure, newest information will be 

append and outdated data will be deleted. (Assume that a 

message arrives at node i) 
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First, the information in SIi.NONL and MONL are

synchronized: outdated tuples are deleted from MONL

(line 1, 2). According to line 1-2, if a tuple <j, tj> is in 

MONL but not in SIi.NONL and SIi.NSIT[j].MNL, it can 

be inferred that node Nj has been ordered. However, to the 

current node i, it may be the case that Nj had finished 

executing the CS or that no message containing 

information about Nj has never visited Ni before. The two 

cases can be distinguished by the difference between the 

timestamp of Nj maintained by the message (MSIT[j].TS)

and that of the current node (SIi.NSIT[i].TS). If the 

timestamp of Nj maintained by the message is smaller than 

that of the current node, j must be outdated and can be 

removed.  

When Ni receives an EM, it knows that all the nodes 

whose tuple is preceding it’s tuple in the Ordered Node 

List have finished executing the CS and can be safely 

deleted from its own NONL. So, in this procedure, tuples 

that precede <i, ti> in Ordered Node List also can be 

deleted (line 3, 4). Otherwise, it will be added to 

SIi.NONL in the rest of the procedure. Next, SIi.NONL and 

MONL are combined if needed and relevant tuples are 

deleted from SIi.NSIT (line 5-12). 

Last, SIi.NSIT and MSIT are synchronized (line 13-22). 

If the Nj’s timestamp in MSIT of the message and the 

current node is the same, then no information need to be 

exchanged because the message and the current node 

maintain the same state about Nj. Otherwise, information 

update is needed. First, outdated tuples, if any, are deleted 

from SIi.NSIT and MSIT (line 15-18). Then SIi.NSIT[j] is 

set as MSIT if its TS is smaller (line 19, 20). 

The Exchange Procedure 

1. if MONLa ∈∃  and NONLSIa i .∉  and 

MNLHostNSITSIa i ].[.∉  and 

TSNodeIDaNSITSITSNodeIDaMSIT i ]..[.]..[ <  then 

2.     delete tuples which precede a and a from MONL; 

3. if NONLSIb i .∈∃  and MONLb ∉  and 

MNLHostMSITb ].[∉  and 

TSNodeIDaNSITSITSNodeIDaMSIT i ]..[.]..[ >  then 

4.     delete tuples which precede a and a from 

SIi.NONL;  

5. if Length (MONL) >Length (SIi.NONL) then 

6.     for every tuple c in MONL and not in SIi.NONL  

7.         delete c from any entry of SIi.NSIT; 

8.     Set SIi.NONL = MONL; 

9. else 

10.     for every tuple c in in SIi.NONL but not in MONL  

11.         delete c from any entry of MSIT 

12. end if 

13. for k = 1 to N do 

14.     if SIi.NSIT[k].TS <> MSIT[k].TS then 

15.         if there exists a tuple <k, tk> in 

SIi.NSIT[k].MNL but is not in MSIT[k].MNL 

and     ( TSkMSITTSkNSITSIi ].[].[. < ) then  

16.             delete <k, tk> from any entry of SIi.NSIT; 

17.         if there exists a tuple <k, tk> in MSIT[k].MNL but 

is not in  SIi.NSIT[k].MNL and 

( TSkMSITTSkNSITSIi ].[].[. > ) then 

18.             delete <k, tk> from any entry of MSIT; 

19.         if SIi.NSIT[k].TS < MSIT[k].TS then 

20.             set SIi.NSIT[k] = MSIT[k]; 

21.     end if 

22. end for   

5. Correctness proof 

In this section, we present the correctness argument 

which shows that the proposed algorithm achieves mutual 

exclusion and is also free of deadlock and starvation. We 

first give some lemmas. 

Lemma 1. i j, |Si.NSIT[j].MNL| < N  (|MNL| is the 

length of MNL)

Proof: In the assumed distributed system consisting of N

nodes, each node contains only one process that makes a 

request to mutual exclusively access the CS and each 

process initiates at most one outstanding request at any time. 

So, a node will never issue a new request message until it 

finishes executing the CS for the previous request. In other 

words, there won’t be two different tuples for a node itself 

in the node’s own NSIT.

A node’ knowledge about other nodes is reflected in its 

NSIT. The NSIT stores tuples in the field of MNL,

representing who and when sent request message to that 

node. It is obviously that the tuples come from the 

information carried by an incoming message. The message 

copies information from the node where it is generated. 

When a message (RM, EM or IM) arrives in a node, it will 

firstly processed by the Exchange procedure, which ensures 

that a MNL does not contain any pair of tuples that has the 

same NodeID: if there exist two tuples with the same 

NodeID but different TS in MSIT and NSIT respectively, the 

one with smaller timestamp must be outdated and will be 

deleted in the procedure. As only one tuple survives for any 

other nodes in each entry of the NSIT, there will be at most 

N tuples in a MNL.

Lemma 2. When every MNL in NSIT is nonempty, at 

least one node can be ordered after the execution of the 

Order procedure. 

Proof: During the execution of Order, a sequence of 

tuples regarding their order is generated.  The order is 

determined by the number of MNLs of which a tuple stands 

on the top and the value of its NodeID. If every MNL in the 

NSIT is nonempty, we then have 0
1

=−
=

M

h hSN . At least, 

the first tuple in the sequence can be ordered after the 

execution of the Order procedure because either the first 

tuple in the sequence either holds more first positions or it 

has smaller NodeID value. 

Lemma 3.  A node Ni’s rank to enter the CS can be 

determined after its corresponding RM message has been 

forwarded at most N-1 times. 
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Proof:  Since the RM
t
i (RM

t
i means the request 

message was initialized at node Ni at timestamp t) will not 

be sent to a node that it has already been forwarded to, 

after N-1 times of forwarding and information exchange, 

tuple <i, t> will appear in each MNL of NSIT of the last 

visiting node (we assume the node is Nk). It’s obviously 

that every MNL isn’t empty. By Lemma 2, at least one 

node can be ordered, so its corresponding tuple <j, t’>

will be deleted from NSITk and appended to NONLk. If 

j i, another tuple will be deleted from NSITk and 

appended to NONLk. This procedure will be repeated 

according to Lemma 2 and the specification of Order. By 

Lemma 1, there are at most N tuples in each MNL, which 

means that after finite times of iterations, node Ni will be 

ordered at some node Nk.

Lemma 4. When a RMt
i is ordered and is appended to 

the NONL at certain node, the tuple for the nodes which 

precede Ni in NONL and haven’t finished executing the 

CS, if any, must still exist in that NONL.

Proof: When a node Nj precedes Ni in entering the CS 

was ordered, if any, then according to Order procedure, 

tuple <j, t’> must have been ranked the highest among the 

M (M<N) tuples competing for entering the CS at that 

time. Semantically, a tuple <j, t’> will not be deleted from 

any NONL and NSIT until Nj hasn’t finished executing the 

CS. Otherwise in any node, <j, t’> will either exists in the 

NONL or is still in the NSIT keeping unordered. When 

RMt
i is processed at certain node Nk, if tuple <j, t’> hasn’t 

been ordered, the rank that tuple <i, t> can achieve should 

be no higher than that of tuple <j, t’>. Consequently, RMt
i

cannot determine its own order because it needs to wait 

until RMt
j is ordered. Thus, when RMt

i is able to be 

ordered and appended to NONL at some node, RMt
j is

already in that NONL if Nj hasn’t exited from the CS. 

Lemma 5. Two different tuples cannot achieve the 

same rank. 

Proof: By definition, a tuple is ranked according to the 

number of MNLs in which it stands on the top and the 

value of the NodeID field. It is straightforward that two 

different tuples cannot achieve the same rank. 

Lemma 6. In the Exchange procedure, after outdated 

tuples are deleted, either MONL NONL or MONL

NONL and tuples on the top of the two lists are the same if 

both are nonempty. 

Proof: Assume the contrary, neither MONL NONL

nor MONL NONL is true. It is clear that | NONL | >0 and 

|MONL | > 0. So there must exist at least one tuple, which 

can be denoted as A, and we have A∈ MONL, A∉NONL.

Also, there must exist tuples, which is denoted as B, we 

have B∈NONL but B∉MONL. We assume that 

MONL={Ak} (1 k M), NONL ={Bk}(1 k M’).

Firstly, we consider NONL MONL =∅. According to 

the Order Procedure, Ak1 is ranked higher than Ak2 if k1 <

k2 in MONL, and Bk’1 is ranked higher than Bk’2 if k’1 < 

k’2 in NONL. By Lemma 5, two different tuples could not 

achieve the same order. Since NONL MONL=∅, by 

Lemma 4, either AM precedes all tuples in NONL or BM’

precedes all tuples in MONL. But in the first case, since B1

must know AM is ordered before it got ordered, AM is sure to 

exist in NONL. In the second case, A1 must know BM’ is

ordered before it got ordered, then BM’ should exist in 

MONL. This is obviously contrary to NONL MONL =∅.

When NONL MONL ∅, we consider the minimum k

where Ak Bk. When k>1, An-1=Bn-1 for any n∈ [1, k). But we 

have the instance that different Ak and Bk achieve the same 

rank (they both rank kth
 in the NONL and MONL), which is 

contrary to Lemma 5. In case of k=1, we can find the 

minimum k’, where Ak’ = Bk’. And if k’ >1, An-1 Bn-1 for any 

n∈ [1, k’). According to the proposed algorithm, both Ak’-1

and Bk’-1 precede Ak’, but by Lemma 5, Ak’-1 and Bk’-1 which 

are different tuples cannot achieve the same rank. Assume 

they are of different rank, by Lemma 4, if Ak’-1 precedes Bk’-

1, Bk’-1will be appended to MONL after Ak’-1 but before Ak’.

Or if Bk’-1 precedes Ak’-1, Ak’-1 will be appended to NONL

after Bk’-1 but before Bk’. It is contrary to the assumption. In 

each case, there is contradiction. 

Lemma 7. Tuples in any NONLs are ranked in the same 

order.

Proof: We assume that a RM
t
i is sent from node Nj to Nj,

so MONL = NONLi and MSIT= NSITi (here, we use NONLi

and SIi.NONL equally for simplicity). We re-denote MONL

and NONLk as MONL’ and NONLk’ after outdated ordered 

tuples being deleted. By Lemma 6,  either MONL’

NONLk’ or MONL NONLk’ is true, and tuples on the top 

of the two lists are the same if both are nonempty. This 

means tuples in MONL and NONLk are ranked in the same 

order except outdated ordered tuples. 

Without losing generality, we assume that MONL’

NONLk’. What is left to be proved now is that an outdated 

ordered tuple, before it is deleted, is ordered equally in 

MONL and NONLk. According to the definition of outdated 

ordered tuple given in section 3.2.2 and the specification of 

Order procedure, such a tuple precedes all the ordered 

tuples that is not outdated and there is no such tuple 

existing in both NONLk and MONL.

If both MONL’and NONLk’ are nonempty, we only need 

to prove that all of outdated tuples must exist either in 

NONLk or in MONL. Assume the contrary, there is an 

outdated ordered tuple A∈MONL and A∉ NONLk and 

another outdated ordered tuple B∈NONLk and B∉MONL.

By Lemma 5, tuple A and B cannot achieve the same rank. 

But by Lemma 4, if tuple B precedes A, A precedes all 

tuples in NONLk’, A will be appended to NONLk after B and 

before any other tuples in NONLk’. Otherwise, i.e. tuple A

precedes B, B will be appended to MONL after A and 

before any other tuples in MONL’. We can see that both 

cases result in contradiction distinctly. 

If MONL’ is empty, we only need to prove that any 

outdated tuples in MONL precedes all tuples in NONLk.

Also assume the contrary, there is an outdated ordered tuple 

A∈MONL, A∉NONLk while another outdated ordered tuple 

B∈ NONLk, B∉MONL and B precedes A. By Lemma 4, A
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will be appended to NONLk after B and before any other 

tuples in NONLk’. It is contradiction to A∉NONLk.

Thus, tuples in any two different NONLs are ranked in 

the same order. 

Lemma 8. When a node Ni is executing the CS, tuple 

<i, t> must stand on the top of NONLi.

Proof: From the algorithm presented above, there are 

only two cases in which Ni can enter the CS. One is that 

when Ni is ordered at some node Nk after executing the 

Order procedure, its corresponding tuple <i, t> is nicely 

on the top of NONLk. Since <i, t> gets Highest_Priority,

Nk will send an EM message to Ni informing it to enter the 

CS immediately. When Ni receives the EM, it will invoke 

the Exchange procedure. Since tuple <i, t> is on the top of 

MONL of the incoming EM, after executing the Exchange 

procedure, <i, t> will stand on the top of NONLi by 

Lemma 6.

In another case, the order of Ni is determined without 

Highest_Priority. Only when Ni receives an EM message 

from its directly preceding node Nj can it enter the CS. 

Since Nj has finished executing the CS, Nj will delete its 

corresponding tuple from NONLj so that <i, t> will stand 

on the top. When Ni receives the EM, it will delete all 

tuples which precede <i, t> from NONLi. Thus tuple <i, t>

will be also on the top of NONLi.

Theorem 1. Mutual exclusion is achieved. 

Proof: Mutual exclusion is achieved when any pair of 

nodes is never simultaneously executing the critical 

section. Assuming the contrary that two nodes Ni and Nj

are in the CS at the same time, so tuple <i, ti> and <j, tj>

must reside on top of NONLi and NONLj respectively 

according to Lemma 8.

Now, let’s assume that a message (RM, IM or EM) is 

sent from node Ni to Nj with MONL=NONLi and 

MSIT=NSITi. Because both Ni and Nj are simultaneously 

in their CS, neither <i, ti> or <j, tj> can be considered as 

outdated tuples and be deleted as in the Exchange 

procedure. Thus the facet that tuples in NONLi and NONLj

are not ranked in the same order is contrary to Lemma 6

and Lemma 7.

Theorem 2. Deadlock is impossible. 

Proof: The system is deadlocked when no node is in its 

critical section and no requesting node can ever proceed 

to its own critical section. Assume the contrary that the 

deadlock is possible, in our algorithm, it will result in two 

cases. First case, no node could determine its order to 

enter the CS. This is contrary to Lemma 2 and Lemma 3

because every requesting node could determine its order 

to enter the CS after its corresponding RM message is 

forwarded no more than N-1 times. In the second case, 

there exist three node NA, NB and NC, where NA is waiting 

for EM message from NB directly or indirectly, NB is

waiting for EM message from NC directly or indirectly and 

NC is waiting for EM message from NA directly or 

indirectly. Then NA precedes NC, NC precedes NB and NB

precedes NA. It is contradiction to Lemma 7, so in our 

algorithm, deadlock is impossible. 

Theorem 3. Starvation is impossible. 

Proof:  Starvation occurs when one node must wait 

indefinitely to enter its critical section even though other 

nodes are entering and exiting their own critical section. 

Assume the contrary, that starvation is possible. In our 

algorithm, time need to execute the algorithm and CS and 

the time for message transfer are all finite. Since a 

requesting node’s order to enter the CS is determined after 

its corresponding RM message has been forwarded at most 

N-1 times (Lemma 3), the reason that cause a node to be in 

starvation must be waiting for its preceding nodes infinitely. 

But by Lemma 4 and Lemma 7, the sequence of ordered 

nodes which precede it is determined once one node gets 

ordered. So, the node in starvation will receive an EM 

message from its directly preceding node and enter the CS 

in finite time. Thus a contradiction occurs and the theorem 

must be true. 

6. Performance Evaluation 

As mentioned before, there are three measures to 

evaluate the performance of a mutual exclusion algorithm: 

message complexity, response time and synchronization 

delay. The performance of an algorithm depends upon 

loading conditions of the system and has been usually 

studied under two special loading conditions: light load and 

heavy load. Under the light load condition, there is seldom 

more than one request for mutual exclusion simultaneously 

in the system while under the heavy load condition, there is 

always a pending request in a node. We first present an 

analysis of the performance of the proposed algorithm 

under the two different cases. Then we describe our 

simulation study, which focus on the heavy load condition, 

and discuss the simulation results.  

6.1. Performance Analysis 

6.1.1. Message Complexity. When a node wants to enter 

the CS, it must firstly initialize a RM message with a copy 

of its SI. The RM message will be forwarded among nodes 

carrying up-to-date system information until its home 

node’s ID stands on top of relative majority of MNLs, 

meaning that it gains enough permissions. Under the light 

load condition, if there is no outdated information, the 

RM’s host ID will be on top of each MNL the message 

travels. So, after being forwarded [N/2]+1 times (the RM 

will be updated on each forwarding), the currently 

processing MPM will find that the RM’s host ID has been 

ordered with Hightest_Priority and immediately send an 

EM message to that server. Hereby, the message complexity 

is [N/2]+2.  (Here, we use the square brackets denoting a 

function that gets the integer part of a digit.) 

When there exists outdated information, if the outdated 

information can be deleted within [N/2]+1 forwarding 

times,  the message complexity will be [N/2]+2 all the 

same. Otherwise, in the worst case, the RM will be 

forwarded N-1 times visiting all system nodes until it can be 

ordered. In this case, the message complexity is O(N).
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Under the heavy load condition, when a total of m

nodes are competing for the same CS, a node who is 

granted the privilege must have its ID standing on the top 

of at least [N/m]+1 MNLs. The minimum times the RM 

message is forwarded is [N/m]+2. So the message 

complexity is calculated by counting how many nodes in 

the system are competing the CS simultaneously, and the 

number of competing nodes m is decided by the 

distribution model that describes how frequently a node 

requests the CS.  

6.1.2. Synchronization delay. It is obvious that the 

synchronization delay of our algorithm is T where T is 

average message propagation delay, because only one 

enter message is needed to be passed between two 

successive executions of the CS. 

6.1.3. Response Time. Under low load condition, before 

a node can enter the CS, its corresponding request 

message needs to be forwarded N/2 to N-1 times to 

determine its order and one enter message for entering the 

CS. So the response time will be ([N/2]+2)*Tn  to (N-

1)*Tn. Under high load condition, if each node will wait 

for an enter message to enter the CS, the response time is 

sure to be N*(Tn+Tc) under heavy load condition where Tc

is the average CS executing time. 

6.2. Simulation Results 

Although our algorithm has high message complexity 

and long response time in the worst case, it has good 

performance in general. In fact, the heaver the system load 

is, the better our algorithm performances. To demonstrate 

that, a simulation is conducted to evaluate our algorithm 

against several other algorithms including the Maekawa 

which is low in message complexity and the Broadcast, 

Ricart which are low in response time.  

We adopt a simulation model similar to the one used in 

[14]: requests for CS execution arrive at a site according 

Poisson distribution with parameter λ; message 

propagation delay between any pair of nodes Tn and CS 

execution time Tc are all constant to be 5 and 10 time units 

(although this condition is not necessary, we still take it 

for ease). The whole system is free of node crash and 

communication failure. Two measure results are collected, 

viz. number of message exchanged (NME) and response 

time (RT) per CS execution. Here, we use the first method 

mentioned in [9] to generate quorums for Maekawa’s 

algorithm.  

We first consider the situation that all nodes are 

requesting the CS simultaneously as soon as the system is 

initialized. Every node only requests once. When the 

system is initialized, each node knows nothing about 

others in our algorithm. So in this situation, we can see 

how soon and sufficient the system information exchanges. 

Figure 4 and 5 plot the average NME and RT against the 

number of nodes in the system.  It is shown that when the 

number of nodes increases, the messages exchanged and 

time delay both increase. Moreover, our algorithm has the 

least messages exchanged of the four algorithms while its 

average response time is similar to the other three’s.  

Afterwards, a system of 30 nodes is simulated with 

different request arrival rate λ. We run the simulation for 

enough long time (100000 time units) repeatedly and record 

the NME and RT for all successful requests. Figure 6 and 

Figure 7 illustrate the performance comparison of the four 

simulated algorithms. As the load increases, messages 

needed for per mutual exclusion decreases in our algorithm. 

It is clear that the heaver the system load is, the better our 

algorithm outperforms the Maekawa in average NME.

Although the average response time of our algorithm is a 

little higher than that of the Broadcast and the Ricart, it is 

much lower than the Maekawa’s. Since the Broadcast and 

the Ricart need much more messages exchanged to achieve 

mutual exclusion, our algorithm performances better than 

the other three in general.  

7. Conclusion 

In this paper, we described an efficient fully distributed 

algorithm for mutual exclusion. Our algorithm imposes no 

specified structure on the system topology and doesn’t force 

messages to be delivered in FIFO order. These two merits 

make our algorithm more attractive in applications. In 

addition, we adopt the RCV scheme to schedule nodes that 

are intended to execute the critical section. Since the RCV 

scheme comes from the famous MCV scheme, the 

algorithm gains high resiliency. We have presented the 
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proof of correctness of the algorithm, with respect to 

guaranteed mutual exclusion, deadlock freedom and 

starvation freedom.  Both analysis and simulation are used 

to evaluate the algorithm’s performance. Simulation 

results compare our algorithms with some existing 

algorithms and show that the proposed algorithm 

outperforms other algorithms especially under high load 

condition.  

In our future work, we will conduct simulation studies 

to compare with more existing algorithms. We will also 

investigate how to improve the algorithm by designing 

different methods for forwarding the request messages. 

Acknowledgement  

This work is partially supported by Hong Kong 

Polytechnic University under HK PolyU research grants 

G-YD63 and G-YY41, and The National 973 Program of 

China under grant 2002CB312002. 

Reference 
[1] D. Agrawal, and A. E. Abbadi, “An Efficient and Fault-

 Tolerant Solution for Distributed Mutual Exclusion”, ACM 

 Transactions on Computer Systems, Vol. 9(1), Feb  1991, 

 pp.  1-20. 

[2] D. Agrawal, and A. E. Abbadi, “A Token-Based Fault-

 Tolerant Distributed Mutual Exclusion Algorithm”, Journal 

 of Parallel and Distributed Computing, Vol. 24(2), 1995, 

 pp.  164-176. 

[3] S. Banerjee , and P. K. Chrysanthis, “A New Token Passing 

 Distributed Mutual Exclusion Algorithm”, In Proceedings 

 of  16th International Conference on Distributed 

 Computing  Systems, 1996, Hong Kong, May. 27-30, 

 1996, pp. 717 -724. 

[4] G. Cao, and M. Singhal, “A Delay-Optimal Quorum-Based 

 Mutual Exclusion Algorithm for Distributed Systems”,  IEEE

 Transaction on Parallel and Distributed  Systems, Vol. 

 12(12),  Dec. 2001, pp. 1256-1267. 

[5] Ye-In Chang, “Notes on Maekawa's O( N) Distributed 

 Mutual Exclusion Algorithm”, In Proceedings of the 5th IEEE 

 Symposium on Parallel and Distributed Processing, Dallas, 

 USA, Dec. 1-4, 1993, pp. 352-355. 

[6] M. Choy, “Robust Distributed Mutual Exclusion”, In 

Proceedings of the 16th International Conference on 

 Distributed Computing Systems, Hong Kong, May. 27-30, 

 1996, pp. 760 -767. 

[7] L. Lamport, “Time, Clocks and Ordering of Events in 

 Distributed Systems”, Communications of the ACM, Vol. 

 21(7), Jul. 1978, pp. 558-565.  

[8] S. Lodha, and A. Kshemkalyani, “A Fair Distributed Mutual 

 Exclusion Algorithm”, IEEE Transactions on Parallel and 

 Distributed Systems, Vol. 11(6), June 2000, pp. 537-549. 

[9] M. Maekawa, “A N Algorithm for Mutual Exclusion in 

 Decentralized Systems”, ACM Transaction on Computer 

 Systems, Vol. 3(2), May. 1985, pp. 145-159. 

[10] S. Nishio, K. F. Li, and Manning E. G. “A Resilient Mutual 

 Exclusion Algorithm for Computer Networks”, IEEE

 Transactions on Parallel Distributed Systems, Vol. 1(3), Jul. 

 1990, pp. 344-355. 

[11] S. Rangarajan, S. Setia, and S.K. Tripathi, “A Fault-

 Tolerant Algorithm for Replicated Data Management”, 

IEEE Transactions on Parallel and Distributed Systems,

 Vol. 6(12), Dec. 1995, pp. 1271-1282. 

[12] K. Raymond, “A Tree-based Algorithm for Distributed 

 Mutual Exclusion”, ACM Transactions on Computer Systems,

 Vol. 7(1), Feb. 1989, pp. 61-77. 

[13] G. Ricart, and A. K. Agrawala, “An Optimal Algorithm for 

 Mutual Exclusion in Computer Networks”, Communications 

 of the ACM, Vol. 24(1), Jan. 1981, pp. 9-17. 

[14] M. Singhal, “A Heuristically-Aided Algorithm for Mutual 

 Exclusion in Distributed Systems”, IEEE Transactions on 

 Computers, Vol. 38(5), May. 1989, pp. 651-662.   

[15] M. Singhal, “A Dynamic Information Structure Mutual 

 Exclusion Algorithm for Distributed Systems”, IEEE

 Transactions on Parallel and Distributed Systems, Vol. 3(1), 

 Jan. 1992, pp. 121-125. 

[16] M. Singhal, “A Taxonomy of Distributed Mutual Exclusion”, 

Journal of Parallel and Distributed Computing, Vol. 18, 

 1993, pp. 94-101. 

[17] I. Suzuki, and T. Kasami “A Distributed Mutual Exclusion 

 Algorithm”, ACM Transactions on Computer Systems, Vol. 

 3(4), Nov. 1985, pp. 344 - 349. 

[18] R. H. Thomas, “A Majority Consensus Approach to 

 Concurrency Control for Multiple Copy Databases”, ACM 

 Transactions on Database Systems, Vol. 4(2), Jun. 1979, 

 pp. 180–209. 

[19] T. Tsuchiya, M. Yamaguchi, and T. Kikuno, “Minimizing 

 the Maximum Delay for Reaching Consensus in Quorum-

 Based Mutual Exclusion Schemes”, IEEE Transactions on 

 Parallel and Distributed Systems, Vol. 10(4), Apr. 1999, 

 pp. 337-345. 

[20] J. E. Walter, J. L. Welch, and N. H. Vaidya, “A Mutual 

 Exclusion Algorithm for Ad Hoc Mobile Networks”, 

Wireless Networks, Vol. 7(6), Nov. 2001, pp. 585-600.   

17

17.5

18

18.5

19

19.5

20

0 5 10 15 20 25 30

Our Algorithm

Maekawa

NME

Figure 6. Message Message Message Message nnnnumber Vs umber Vs umber Vs umber Vs λλλλ
1/λ

320

340

360

380

400

0 5 10 15 20 25 30

Our Algorithm Maekawa

Broadcast Ricart

Time 

Figure 7. Response Response Response Response ttttime Vs ime Vs ime Vs ime Vs λλλλ
1/λ

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 01:31 from IEEE Xplore.  Restrictions apply.


