
An Efficient Distributed Mutual Exclusion Algorithm

Based on Relative Consensus Voting

Jiannong Cao

Hong Kong Polytechnic

University

Kowloon, Hong Kong

csjcao@comp.polyu.edu.hk

Jingyang Zhou

Nanjing University

Nanjing, China

jingyang@nju.edu.cn

Daoxu Chen

Nanjing University

Nanjing, China

cdx@nju.edu.cn

Jie Wu

Florida Atlantic

University

Boca Raton, USA

jie@cse.fau.edu

Abstract

Many algorithms for achieving mutual exclusion in

distributed computing systems have been proposed. The

three most often used performance measures are the

number of messages exchanged between the nodes per

Critical Section (CS) execution, the response time, and

the synchronization delay. In this paper, we present a new

fully distributed mutual exclusion algorithm. A node

requesting the CS sends out the request message which

will roam in the network. The message will be forwarded

among the nodes until the requesting node obtains

enough permissions to decide its order to enter the CS.

The decision is made by using Relative Consensus Voting

(RCV), which is a variation of the well-known Majority

Consensus Voting (MCV) scheme. Unlike existing

algorithms which determine the node to enter the CS one

by one, in our algorithm, several nodes can be decided

and ordered for executing the CS. The synchronization

delay is minimal. Although the message complexity can

be up to ()NO in the worst case in a system with N nodes,

our simulation results show that, on average, the

algorithm needs less number of messages and has less

response time than most of those existing algorithms

which do not require a logical topology imposed on the

nodes. This is especially true when the system is under

heavy demand. Another feature of the proposed algorithm

is that it does not require the FIFO property of the

underlying message passing mechanism.

1. Introduction

Solving the mutual exclusion problem in a distributed

system imposes more challenges than in a centralized

system. The mutual exclusion problem states that to enter

a Critical Section (CS), a process must first obtain the

lock for it and ensure that no other processes enter the

same CS at the same time. When competing processes are

distributed on the nodes over a network, how to achieve

mutual exclusion efficiently still remains a difficult

problem to solve in distributed systems. Over the last two

decades, many algorithms for mutual exclusion in

distributed computing systems have been proposed. Three

performance measures are often used to evaluate their

performance. They are message complexity, response time

and synchronization delay [16]. The message complexity is

measured in terms of the number of messages exchanged

between the nodes per CS execution. The response time is

the time interval a request waits for its CS execution to be

over after its request messages have been sent out. The

synchronization delay is the time interval between two

successive executions of the CS. The response time and

synchronization delay both reveal how soon a requesting

node can enter the CS and are measured in terms of the

average message propagation delay Tn.

Distributed mutual exclusion algorithms can be divided

into two categories: structured and non-structured.

Structured algorithms impose some logical topologies, such

as tree, ring and star, on the nodes in the system. These

algorithms usually have good message complexity when the

load is “heavy”, i.e., there is always a pending request for

mutual exclusion in the system. For example, Raymond’s

tree-based algorithm [12] requires only 4 messages

exchanged per CS execution at heavy loads. However, these

algorithms increase average response time delay as high

as ()()NO log . Meanwhile, the organization and maintenance

of the specified topology also lead to a large overload.

Furthermore, most structured algorithms work well only

under their specified topologies, and may be inefficient in

some other environments [20]. In this paper, we are

concerned with non-structured algorithms which are generic

in the sense that they are suitable for arbitrary network

topologies.

For non-structured algorithms, the message complexity

can be as low as ()NO or ()()NO log . The response time can

be 2Tn at light loads and N*(Tn+Tc) at heavy loads, where

Tc is the average CS execution time. But either the

reduction of the message complexity is achieved at the cost

of long synchronization delay or the decrease in response

time is gained at the cost of high message complexity. In

other words, they either cause high message complexity or

result in long response time. More importantly, most of the

algorithms require the FIFO (First In First Out) property as

prerequisite for the underlying message passing

communications. If this property can not be satisfied, extra

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 01:31 from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PolyU Institutional Repository

https://core.ac.uk/display/61006475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

messages or mechanisms needed to be employed to solve

possible deadlock [5].

In this paper, we present a novel non-structured

algorithm that can solve distributed mutual exclusion

efficiently and resiliently. A node requesting the CS sends

out the request message which will roam in the network.

The message will be forwarded among the nodes until the

requesting node obtains enough permissions to decide its

order to enter the CS. The decision is made by using

Relative Consensus Voting (RCV), which is a variation of

the well-known Majority Consensus Voting (MCV)

scheme [18]. In RCV, the request of a node can be

granted if it either can eventually obtain the largest

number of permissions against other currently competing

requests, or the node has the smallest id among the

requesting nodes potentially with the same number of

permissions. Since nodes are not always required to

collect permissions from the majority of all the nodes in

the system, the number of messages exchanged can be

reduced.

The proposed algorithm requires no pre-configuration

on the system but only needs to know the total number of

the network nodes that are involved. It possesses several

other advantages. First, it does not require the FIFO

property of the underlying message passing mechanism.

Even when messages are delivered out of order, there is

no impact on the algorithm’s correctness and performance.

Second, unlike existing algorithms which determine the

node to enter the CS one by one, in our algorithm, several

nodes can be decided and ordered for executing the CS so

that the delay time before entering the CS can be reduced.

The algorithm generates a sequence of requesting nodes

that describes their order to execute the CS. Each node

executes the CS directly if it stands on the top the

sequence or waits for a message from its immediate

preceding node in the sequence informing it to enter the

CS, so the synchronization delay is minimal, i.e., T (T is

the average delay of passing a message between two

nodes). Another advantage introduced by the RCV

scheme is resiliency which is inherited from the MCV.

Since the correct operation of the algorithm does not

depend on any specific node, crash of nodes will not

affect the algorithm’s execution. Although the message

complexity can be up to ()NO in the worst case, our

simulation results show that, on average, the algorithm

needs less number of messages and has less response time

than most of those existing algorithms which do not

require a logical topology imposed on the nodes. This is

especially true when the system is under heavy demand.

We argue that performance of distributed mutual

exclusion algorithms under light load is not as critical as

under the heavy loads, because system resources are rich

under light load, thus algorithms with higher overhead can

work well.

The remainder of this paper is organized as follows:

Section 2 overviews related work. Section 3 describes our

system model. In Section 4, we present the design of the

proposed algorithm. Sections 5 and 6 contain the

correctness proof of and performance evaluation of the

proposed algorithm, respectively. Finally we conclude the

paper in Section 7.

2. Background and related works

Some of the non-structured algorithms employ a logical

token to achieve mutual exclusion [3, 14, 17]. In the token-

based algorithms, a unique token is shared among the nodes

and only the node which possesses the token is able to enter

the CS. The most representative algorithm that uses token is

broadcast [17]: a requesting node sends token requests to

all other nodes and the token holder then passes the token to

the requesting node after it finishing executing the CS or it

no longer need the token. An optimization on the broadcast

is that a node only sends its token requests to nodes that

either has the token or is going to get it in near future [14]

so that the number of messages exchanged per CS

execution can be reduced from N to N/2 on the average at

light loads, and the response time keeps 2Tn at light loads

and N*(Tn+Tc) at heavy loads. [3] proposes an interesting

algorithm where the token contains an ordered list of all

requesting nodes that have been determined the order to

enter the CS. The messages needed to exchange per CS

execution is 3-2/N at heavy load. But when calculating the

response time, an extra “request collect time” must be

considered. Another drawback of the algorithm is that it is

not a fully distributed algorithm because at any time, there

is an “arbiter” acting as the coordinator in the system. In

addition, it is difficult for token-enabled algorithms to

detect loss of the token and regenerate a new unique one.

Although some efforts have been made to tackle this

problem [2, 6, 10], solutions always induce extra high

overloads.

For algorithms without using token, usually several

rounds of message exchanges among the nodes are required

to obtain the permission for a node to enter the CS.

Lamport’s logical timestamp [7] is often adopted in this

type of non token-based algorithms. Ricart and Agrawala

proposed an algorithm [13] as an optimization of Lamport’s

algorithm. In their algorithm, a node grants multiple

permissions to requesting nodes immediately if it is not

requesting the CS or its own request has lower priority.

Otherwise, it defers granting permission until its execution

in the CS is over. Only after receiving grants from all other

nodes, can the requesting node enter the CS. Ricart-

Agrawala’s mutual exclusion algorithm has low delays

because of parallelism in transfer of messages. The

response time is 2Tn and N*(Tn+Tc) under light load and

heavy load, respectively. But the number of messages

exchanged per CS execution is a constant of 2*(N-1), which

is quite large. Under light load, the average number of

messages can be reduced to N-1 by using a dynamic

algorithm [15]. A more recent work described in [8]

reduces message traffic of the Ricart-Agrawala type

algorithms to somewhere between N-1 and 2(N-1) by

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 01:31 from IEEE Xplore. Restrictions apply.

Server Nodei

SI MPM

 Incoming Message Queue

Incoming Message

Message sent out

Figure 1. Node Structure Node Structure Node Structure Node Structure

making use of the concurrency of requests and some other

methods. Nevertheless, the message complexity

remains ()NO .

Another type of non-structured algorithms that does not

need to use token is the quorum-based algorithms. A

quorum is a set of nodes associated with each node in the

system and every two quorums have a nonempty

intersection. The commonality of quorum-based

algorithms lies in that a requesting node can enter the CS

with permissions from only the nodes in its quorum.

Obviously, messages needed to be exchanged are decided

by the size of the quorum. A well known example is

Maekawa’s algorithm [9], where nodes issue permission

only to one request at a time and a requesting node is only

needed to receive permissions from all members of its

quorum before it is able to enter the CS. In [9], the

quorum size is N while in the Rangarajan-Setia-Tripathi

algorithm [11], the size is reduced to
G

NG

2

1+ , where G

is the subgroup size. [1] organizes all N nodes to a binary

tree and a quorum is formed by including all nodes along

any path that starts from the root of the spanning tree and

terminates at a leaf. So the quorum size is log(N) in the

best case and (N+1)/2 in the worst case. However, the

algorithm will degenerate to a centralized algorithm

because the root node is included in all quorums when it is

always available.

As to the response time, it is comparatively high under

heavy load in Maekawa’s algorithm because the

synchronization delay is 2Tn. Some improvements have

been made to the Maekawa type algorithms [4, 19] by

introducing more types of messages and exchanging a few

more messages so that the synchronization delay can be

reduced to Tn. Despite its good performance, the quorum-

based mutual exclusion algorithms still have two

disadvantages. First, the overhead of generating quorum

for each node must be taken into account especially when

the number of network nodes tends to change dynamically.

Second, if the FIFO property can not be satisfied, which

means that messages between two nodes are not always

delivered in the same order as being sent, extra

mechanism should be employed to avoid possible

deadlock, and when conflicts occur frequently, more than

N messages may need to be exchanged [5].

3. System model and data structures

A distributed system consists of N nodes that are

numbered from N0 to NN-1. The term node used here refers

to a process as well as the computer on which the process

is executing. There is no shared memory or global clock

and the nodes communicate with each other only through

message passing. In this paper, we do not consider fault

tolerance issues. We assume that the nodes do not crash

underlying communication medium is reliable so that the

messages will not be lost, duplicated.

It is assumed that each node can issue a request for

entering the CS only when there is no outstanding request

issued from the same node. Figure 1 shows the structure of

a node. On each node, a MPM (Message Processing Model)

is deployed. It processes messages cached in the Incoming

Message Queue of that node and sends messages to other

nodes when necessary. Also, every node maintains a table

recording the system information (SI). Figure 2 illustrates

the data structure used for SI. It contains three fields:

Next indicates which node, if any, will enter the CS

 immediately after this node.

NONL (Node Ordered Node List) is a sequence of

ordered tuples. A tuple, in the form of < NodeID, TS >,

records the requesting node’s ID and the timestamp at

which moment the corresponding request message was

firstly initialized.

NSIT (Node System Information Table) consists of N

rows, one for each node in the system (including the

node itself). Each row records the information about a

node known to it, including the ID, the timestamp TS,

and a tuple list MNL of that node. MNL is a list of tuples

like <NodeID, TS>, showing all the nodes from which a

request message has been received. TS represents how

up-to-date the information about the node is. Since the

status of the node’s information is updated whenever the

node issues a request message or receives a request

message, TS is implemented as a counter recording the

number of request messages that have been initialized at

or sent to the node.

In the remaining part of the paper, we denote a node

with ID “i” as Ni, and the SI maintained by Ni as SIi.

 Only three types of messages are employed in our

proposed algorithm. They are:

Request Message (RM)

Enter Message (EM)

Next

NONL

NSIT

ID TS MN

Figure 2.

Data structure of SI Data structure of SI Data structure of SI Data structure of SI
Figure 3.

RM initialized by NodeRM initialized by NodeRM initialized by NodeRM initialized by Nodeiiii

Host i

UL

MSIT

ID TS MN

MONL

Type RM

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 01:31 from IEEE Xplore. Restrictions apply.

Inform Message (IM)

Since a RM message can be forwarded by different

nodes, we call the node that initially sends the message the

home node of the message. Each message is associated

with a flag which indicates the type of the message. Data

structures contained in messages are similar to that used

for SI. As an example, figure 3 shows the data structure

used in RM. “MONL” (Message Ordered Node List) is a

sequence of ordered tuples. “MSIT” (Message System

Information Table) records the newest system information

updated during the roaming of the message. In addition, a

field Host indicates the home node of the message. “UL”

records unvisited nodes’ ID.

The EM and IM messages do not have the UL and Host

fields. IM messages have a field “Next” recording the id

of the node that will enter the CS after the message’s

destination node.

4. The algorithm

When a node wants to enter the CS, it initializes a RM

message and sends it to some other node. As described

before, the field MNL in the data structure maintained by a

node records all the nodes that have sent RM to the node.

When a RM message is processed by the MPM on a node,

a tuple is generated and appended to the MNL. After

exchanging with the information carried in the incoming

messages (using the Exchange procedure), the MPM will

calculate whether the RM message’s home node has

gained enough information to determine its rank among

all the competing nodes (using the Order procedure). If

not, the RM will be forwarded to other nodes that the

message has not visited. Otherwise, if the rank can be

determined, we say that the requesting node, or its RM, or

the corresponding tuple is ordered. An ordered tuple

knows the order for its home node to enter the CS and will

not be forwarded among the nodes. If the MPM finds that

a tuple has the highest rank, it immediately sends an EM

message to the tuple’s home node. If the tuple hasn’t the

highest rank, its immediate preceding tuple’s home node

will be informed by an IM the immediate next node to

execute the CS. After a node finishes executing the CS, it

will send an EM message to its successor.

In the following subsections, we will describe the

algorithm executed by MPM, the Exchange procedure,

and the Order procedure.

4.1. The MPM Algorithm

Once a node Ni wants to enter a CS, it increases its

timestamp ti by one, and appends the tuple <i, ti> to

SIi.NSIT[i].MNL (Line 4, 5). After doing so, it generates a

RM message and sends it out for roaming over the

network to confer with other nodes on its order of entering

the CS. The RM message is initialized with a partial SI

copy of the home node (Line 6-13).

If node Ni has been ordered, it will receive an EM

message when it is on top of the Ordered Nodes List, or

its immediate preceding node “k” in the list will receive an

IM informing it to update the Next field to “i”. When on top

of the Ordered Node List, Ni will either receive an EM from

Nk which just exits the CS or from Nj where its order is

determined. On getting enough permissions to enter the CS,

Ni will first invoke the Exchange procedure to update its SI

with the incoming EM and then enter the CS (Line 14-16).

Whenever finishing executing the CS, Ni must send an

EM to the node represented by Nexti, if any, and delete its

own tuple from the top of SIi.NONL (Line 17-24).

At times Ni will receive an IM indicating that Nj is the

next node to it that enters CS. If Ni hasn’t entered the CS or

is currently executing the CS (this can be determined by

whether tuple <i, ti> is still in SIi.NONL), the only thing left

to do reset the value SIi.Next to “j”. Otherwise, which

means that Ni has finished executing CS, Ni should generate

an EM with a copy of its SI and send it to Nj immediately

(Line 25-32).

Upon receiving a RM originally initialized in Nj, the

MPM in Ni must increase its timestamp and register tuple

<j, tj>, then (1) call Exchange procedure to update its SI,

(2) call Order procedure to determine several node’s order

to enter the CS (if they can be ordered) employing RCV

algorithm (Line 33-37). Obviously, the information

included in the message is collected from the nodes along

its forwarding path. If Nj is ordered, then its immediate

preceding node in the NONL Nk will receive an IM or Nj

itself will receive an EM from Ni (if Nj is on top of NONL)

(Line 38-45). Otherwise, when Ni cannot be determined its

access order (that is to say the information carried by the

request message is not enough for determining its home

node’s access order), Ni will regenerate an RM with newest

system information but remains the “Host” to be “j” and

forward it to some other node which exists in the RM’s UL

(any of the unvisited nodes) (Line 46-53).

The MPM Algorithm

1. Initialization:

2. //Omitted

3. Upon requesting the CS:

4. SIi.NSIT[i].TS++;

5. Append tuple <i, SIi.NSIT[i].TS> to

SIi.NSIT[i].MNL;

6. Create a message with following content:

7. //initialize RM, copying information needed

8. Host = i;

9. UL = {Nx | 0≤ x ≤ N-1}-Ni;

10. MONL = SIi.NONL;

11. MSIT = SIi.NSIT;

12. Select an unvisited node randomly and delete

corresponding id from message UL;

13. Send the message to the selected node;

14. Upon receiving the EM:

15. Call Exchange Procedure to update the SIi.NSITi ;

16. Enter the CS;

17. Upon releasing the CS:

18. SIi.NSIT[i].TS++;

19. Delete i from SIi.NONLi

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 01:31 from IEEE Xplore. Restrictions apply.

20. If (SIi . Next<> NULL) then // send EM message

informing the next node to enter CS if any

21. Initialize an EM with newest MONL and MSIT

copy from SIi ;

22. Send the EM to the SIi.Next ;

23. SIi.Next = NULL;

24. End if

25. Upon receiving an IM:

 (IM indicating next to be node j)

26. If (tuple <i, ti> which is immediate precedes tuple

<j, tj> is not in the list of SIi.NONL) then

27. // this node has finished executing the CS

28. initialize an EM with newest MONL and MSIT

copy from SIi;

29. send the EM to node j;

30. else

31. set SIi.Next = j;

32. end if

33. Upon receiving/processing a RM: (Assume that the

message initialized at node k arrives in node i)

34. Call Exchange Procedure to update SIi.NSIT;

35. Append tuple <k, tk> to SIi.NSIT[i].MNL;

36. SIi.NSIT[i].TS=max(SIi.NSIT[h].TS)+1

(h∈[0, N-1]);

37. Call Order procedure;

38. if BeOrdered = true then

39. if Highest_Priority = true then

40. Initialize an EM with newest MONL and

MSIT copy from SIi ;

41. send the EM to node k;

42. else

43. // informing k’s preceding node to reset its

Next field

44. send an IM to node k’s immediate preceding

node according to NONL;

45. end if

46. else // forward this RM with updated information

47. generate a new RM’ with following content:

48. Host’ = k;

49. MONL’ = SIi.NONL;

50. MSIT’ = SIi.NSIT;

51. choose one unvisited node (assume node h)

from the UL of RM;

52. UL’ = UL - Nh;

53. send the message to node h;

54. end if

4.2. The Order specifications

When request message originally initialized in Nj is

delivered to Ni, in this procedure, it will determine

whether Nj can be ordered by employing the RCV scheme.

First, all tuples existing in the NSIT will be organized as a

sequence {TPi} temporarily. The rank of a tuple in the

sequence is defined by two parameters: the number of

MNLs in which the tuple is placed on the top and the value

of NodeID. The latter is used to resolve any tie: when

more than one tuple are placed on the same number of

MNLs, the tuple with smallest NodeID wins and will be

assigned the highest rank (Line 12). Afterwards, the first

tuple in {TPi} is tested to determine whether it can be

ordered (Line 13).

 All ordered tuple will be appended to NONL and

removed from all MNLs of the NSIT (Line 14, 15). The

boolean variables BeOrdered and Highest_Priority will be

set to true if node Ni is ordered (Line 16-19) and is on top

of the NONL (Line25).

The Order Procedure

1. Continue = true;

2. BeOrdered = false;

3. if (tuple <j, tj> is in ONL) // already ordered when

processing other RM

4. Continue = false

5. BeOrdered = true;

6. delete <j ,tjk> from any entry of NSIT;

7. end if

8. while Continue = true Do

9. begin

10. //calculate upon the SI stored in node j after

updating with the incoming message.

11. // RCV scheme, some node(s) can be ordered

simultaneously in this procedure

12. finds all the M (M <= N) different tuple in the

NIST to build the sequence {TPh}: here, each TPh

reaches the top of Sh (Sh >=1) rows of MNL in

NSIT, and),1(, Mlklk ≤≤∀ , if

)(lk < then{ (lk SS > or [(lk SS =) and

TP1.NodeID < TP2.NodeID)]}; if there is only one

tuple in the sequence, then S2=0, S2.NodeID=1;

13. if ()
=

−>− M

h hSNSS
121

 or (
=

−=− M

h hSNSS
121

and (TP1.NodeID < TP2.NodeID)) then

14. append the TP1 to NONLj ;

15. delete TP1 from any row of NSITi ;

16. if (TP1.NodeID = j) then

17. Continue = false;

18. BeOrdered = true;

19. endif

20. else

21. Continue = false;

22. endif

23. end

24. endif

25. if OnTopOf(NONLi) then Highest_Priority = True ;

26. // node j can enter CS immediately

4.3. The Exchange specifications

In this procedure, MPM updates the node’s SI with the

incoming message by comparing the content of tuples. After

executing this procedure, newest information will be

append and outdated data will be deleted. (Assume that a

message arrives at node i)

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 01:31 from IEEE Xplore. Restrictions apply.

First, the information in SIi.NONL and MONL are

synchronized: outdated tuples are deleted from MONL

(line 1, 2). According to line 1-2, if a tuple <j, tj> is in

MONL but not in SIi.NONL and SIi.NSIT[j].MNL, it can

be inferred that node Nj has been ordered. However, to the

current node i, it may be the case that Nj had finished

executing the CS or that no message containing

information about Nj has never visited Ni before. The two

cases can be distinguished by the difference between the

timestamp of Nj maintained by the message (MSIT[j].TS)

and that of the current node (SIi.NSIT[i].TS). If the

timestamp of Nj maintained by the message is smaller than

that of the current node, j must be outdated and can be

removed.

When Ni receives an EM, it knows that all the nodes

whose tuple is preceding it’s tuple in the Ordered Node

List have finished executing the CS and can be safely

deleted from its own NONL. So, in this procedure, tuples

that precede <i, ti> in Ordered Node List also can be

deleted (line 3, 4). Otherwise, it will be added to

SIi.NONL in the rest of the procedure. Next, SIi.NONL and

MONL are combined if needed and relevant tuples are

deleted from SIi.NSIT (line 5-12).

Last, SIi.NSIT and MSIT are synchronized (line 13-22).

If the Nj’s timestamp in MSIT of the message and the

current node is the same, then no information need to be

exchanged because the message and the current node

maintain the same state about Nj. Otherwise, information

update is needed. First, outdated tuples, if any, are deleted

from SIi.NSIT and MSIT (line 15-18). Then SIi.NSIT[j] is

set as MSIT if its TS is smaller (line 19, 20).

The Exchange Procedure

1. if MONLa ∈∃ and NONLSIa i .∉ and

MNLHostNSITSIa i].[.∉ and

TSNodeIDaNSITSITSNodeIDaMSIT i]..[.]..[< then

2. delete tuples which precede a and a from MONL;

3. if NONLSIb i .∈∃ and MONLb ∉ and

MNLHostMSITb].[∉ and

TSNodeIDaNSITSITSNodeIDaMSIT i]..[.]..[> then

4. delete tuples which precede a and a from

SIi.NONL;

5. if Length (MONL) >Length (SIi.NONL) then

6. for every tuple c in MONL and not in SIi.NONL

7. delete c from any entry of SIi.NSIT;

8. Set SIi.NONL = MONL;

9. else

10. for every tuple c in in SIi.NONL but not in MONL

11. delete c from any entry of MSIT

12. end if

13. for k = 1 to N do

14. if SIi.NSIT[k].TS <> MSIT[k].TS then

15. if there exists a tuple <k, tk> in

SIi.NSIT[k].MNL but is not in MSIT[k].MNL

and (TSkMSITTSkNSITSIi].[].[. <) then

16. delete <k, tk> from any entry of SIi.NSIT;

17. if there exists a tuple <k, tk> in MSIT[k].MNL but

is not in SIi.NSIT[k].MNL and

(TSkMSITTSkNSITSIi].[].[. >) then

18. delete <k, tk> from any entry of MSIT;

19. if SIi.NSIT[k].TS < MSIT[k].TS then

20. set SIi.NSIT[k] = MSIT[k];

21. end if

22. end for

5. Correctness proof

In this section, we present the correctness argument

which shows that the proposed algorithm achieves mutual

exclusion and is also free of deadlock and starvation. We

first give some lemmas.

Lemma 1. i j, |Si.NSIT[j].MNL| < N (|MNL| is the

length of MNL)

Proof: In the assumed distributed system consisting of N

nodes, each node contains only one process that makes a

request to mutual exclusively access the CS and each

process initiates at most one outstanding request at any time.

So, a node will never issue a new request message until it

finishes executing the CS for the previous request. In other

words, there won’t be two different tuples for a node itself

in the node’s own NSIT.

A node’ knowledge about other nodes is reflected in its

NSIT. The NSIT stores tuples in the field of MNL,

representing who and when sent request message to that

node. It is obviously that the tuples come from the

information carried by an incoming message. The message

copies information from the node where it is generated.

When a message (RM, EM or IM) arrives in a node, it will

firstly processed by the Exchange procedure, which ensures

that a MNL does not contain any pair of tuples that has the

same NodeID: if there exist two tuples with the same

NodeID but different TS in MSIT and NSIT respectively, the

one with smaller timestamp must be outdated and will be

deleted in the procedure. As only one tuple survives for any

other nodes in each entry of the NSIT, there will be at most

N tuples in a MNL.

Lemma 2. When every MNL in NSIT is nonempty, at

least one node can be ordered after the execution of the

Order procedure.

Proof: During the execution of Order, a sequence of

tuples regarding their order is generated. The order is

determined by the number of MNLs of which a tuple stands

on the top and the value of its NodeID. If every MNL in the

NSIT is nonempty, we then have 0
1

=−
=

M

h hSN . At least,

the first tuple in the sequence can be ordered after the

execution of the Order procedure because either the first

tuple in the sequence either holds more first positions or it

has smaller NodeID value.

Lemma 3. A node Ni’s rank to enter the CS can be

determined after its corresponding RM message has been

forwarded at most N-1 times.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 01:31 from IEEE Xplore. Restrictions apply.

Proof: Since the RM
t
i (RM

t
i means the request

message was initialized at node Ni at timestamp t) will not

be sent to a node that it has already been forwarded to,

after N-1 times of forwarding and information exchange,

tuple <i, t> will appear in each MNL of NSIT of the last

visiting node (we assume the node is Nk). It’s obviously

that every MNL isn’t empty. By Lemma 2, at least one

node can be ordered, so its corresponding tuple <j, t’>

will be deleted from NSITk and appended to NONLk. If

j i, another tuple will be deleted from NSITk and

appended to NONLk. This procedure will be repeated

according to Lemma 2 and the specification of Order. By

Lemma 1, there are at most N tuples in each MNL, which

means that after finite times of iterations, node Ni will be

ordered at some node Nk.

Lemma 4. When a RMt
i is ordered and is appended to

the NONL at certain node, the tuple for the nodes which

precede Ni in NONL and haven’t finished executing the

CS, if any, must still exist in that NONL.

Proof: When a node Nj precedes Ni in entering the CS

was ordered, if any, then according to Order procedure,

tuple <j, t’> must have been ranked the highest among the

M (M<N) tuples competing for entering the CS at that

time. Semantically, a tuple <j, t’> will not be deleted from

any NONL and NSIT until Nj hasn’t finished executing the

CS. Otherwise in any node, <j, t’> will either exists in the

NONL or is still in the NSIT keeping unordered. When

RMt
i is processed at certain node Nk, if tuple <j, t’> hasn’t

been ordered, the rank that tuple <i, t> can achieve should

be no higher than that of tuple <j, t’>. Consequently, RMt
i

cannot determine its own order because it needs to wait

until RMt
j is ordered. Thus, when RMt

i is able to be

ordered and appended to NONL at some node, RMt
j is

already in that NONL if Nj hasn’t exited from the CS.

Lemma 5. Two different tuples cannot achieve the

same rank.

Proof: By definition, a tuple is ranked according to the

number of MNLs in which it stands on the top and the

value of the NodeID field. It is straightforward that two

different tuples cannot achieve the same rank.

Lemma 6. In the Exchange procedure, after outdated

tuples are deleted, either MONL NONL or MONL

NONL and tuples on the top of the two lists are the same if

both are nonempty.

Proof: Assume the contrary, neither MONL NONL

nor MONL NONL is true. It is clear that | NONL | >0 and

|MONL | > 0. So there must exist at least one tuple, which

can be denoted as A, and we have A∈ MONL, A∉NONL.

Also, there must exist tuples, which is denoted as B, we

have B∈NONL but B∉MONL. We assume that

MONL={Ak} (1 k M), NONL ={Bk}(1 k M’).

Firstly, we consider NONL MONL =∅. According to

the Order Procedure, Ak1 is ranked higher than Ak2 if k1 <

k2 in MONL, and Bk’1 is ranked higher than Bk’2 if k’1 <

k’2 in NONL. By Lemma 5, two different tuples could not

achieve the same order. Since NONL MONL=∅, by

Lemma 4, either AM precedes all tuples in NONL or BM’

precedes all tuples in MONL. But in the first case, since B1

must know AM is ordered before it got ordered, AM is sure to

exist in NONL. In the second case, A1 must know BM’ is

ordered before it got ordered, then BM’ should exist in

MONL. This is obviously contrary to NONL MONL =∅.

When NONL MONL ∅, we consider the minimum k

where Ak Bk. When k>1, An-1=Bn-1 for any n∈ [1, k). But we

have the instance that different Ak and Bk achieve the same

rank (they both rank kth
 in the NONL and MONL), which is

contrary to Lemma 5. In case of k=1, we can find the

minimum k’, where Ak’ = Bk’. And if k’ >1, An-1 Bn-1 for any

n∈ [1, k’). According to the proposed algorithm, both Ak’-1

and Bk’-1 precede Ak’, but by Lemma 5, Ak’-1 and Bk’-1 which

are different tuples cannot achieve the same rank. Assume

they are of different rank, by Lemma 4, if Ak’-1 precedes Bk’-

1, Bk’-1will be appended to MONL after Ak’-1 but before Ak’.

Or if Bk’-1 precedes Ak’-1, Ak’-1 will be appended to NONL

after Bk’-1 but before Bk’. It is contrary to the assumption. In

each case, there is contradiction.

Lemma 7. Tuples in any NONLs are ranked in the same

order.

Proof: We assume that a RM
t
i is sent from node Nj to Nj,

so MONL = NONLi and MSIT= NSITi (here, we use NONLi

and SIi.NONL equally for simplicity). We re-denote MONL

and NONLk as MONL’ and NONLk’ after outdated ordered

tuples being deleted. By Lemma 6, either MONL’

NONLk’ or MONL NONLk’ is true, and tuples on the top

of the two lists are the same if both are nonempty. This

means tuples in MONL and NONLk are ranked in the same

order except outdated ordered tuples.

Without losing generality, we assume that MONL’

NONLk’. What is left to be proved now is that an outdated

ordered tuple, before it is deleted, is ordered equally in

MONL and NONLk. According to the definition of outdated

ordered tuple given in section 3.2.2 and the specification of

Order procedure, such a tuple precedes all the ordered

tuples that is not outdated and there is no such tuple

existing in both NONLk and MONL.

If both MONL’and NONLk’ are nonempty, we only need

to prove that all of outdated tuples must exist either in

NONLk or in MONL. Assume the contrary, there is an

outdated ordered tuple A∈MONL and A∉ NONLk and

another outdated ordered tuple B∈NONLk and B∉MONL.

By Lemma 5, tuple A and B cannot achieve the same rank.

But by Lemma 4, if tuple B precedes A, A precedes all

tuples in NONLk’, A will be appended to NONLk after B and

before any other tuples in NONLk’. Otherwise, i.e. tuple A

precedes B, B will be appended to MONL after A and

before any other tuples in MONL’. We can see that both

cases result in contradiction distinctly.

If MONL’ is empty, we only need to prove that any

outdated tuples in MONL precedes all tuples in NONLk.

Also assume the contrary, there is an outdated ordered tuple

A∈MONL, A∉NONLk while another outdated ordered tuple

B∈ NONLk, B∉MONL and B precedes A. By Lemma 4, A

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 01:31 from IEEE Xplore. Restrictions apply.

will be appended to NONLk after B and before any other

tuples in NONLk’. It is contradiction to A∉NONLk.

Thus, tuples in any two different NONLs are ranked in

the same order.

Lemma 8. When a node Ni is executing the CS, tuple

<i, t> must stand on the top of NONLi.

Proof: From the algorithm presented above, there are

only two cases in which Ni can enter the CS. One is that

when Ni is ordered at some node Nk after executing the

Order procedure, its corresponding tuple <i, t> is nicely

on the top of NONLk. Since <i, t> gets Highest_Priority,

Nk will send an EM message to Ni informing it to enter the

CS immediately. When Ni receives the EM, it will invoke

the Exchange procedure. Since tuple <i, t> is on the top of

MONL of the incoming EM, after executing the Exchange

procedure, <i, t> will stand on the top of NONLi by

Lemma 6.

In another case, the order of Ni is determined without

Highest_Priority. Only when Ni receives an EM message

from its directly preceding node Nj can it enter the CS.

Since Nj has finished executing the CS, Nj will delete its

corresponding tuple from NONLj so that <i, t> will stand

on the top. When Ni receives the EM, it will delete all

tuples which precede <i, t> from NONLi. Thus tuple <i, t>

will be also on the top of NONLi.

Theorem 1. Mutual exclusion is achieved.

Proof: Mutual exclusion is achieved when any pair of

nodes is never simultaneously executing the critical

section. Assuming the contrary that two nodes Ni and Nj

are in the CS at the same time, so tuple <i, ti> and <j, tj>

must reside on top of NONLi and NONLj respectively

according to Lemma 8.

Now, let’s assume that a message (RM, IM or EM) is

sent from node Ni to Nj with MONL=NONLi and

MSIT=NSITi. Because both Ni and Nj are simultaneously

in their CS, neither <i, ti> or <j, tj> can be considered as

outdated tuples and be deleted as in the Exchange

procedure. Thus the facet that tuples in NONLi and NONLj

are not ranked in the same order is contrary to Lemma 6

and Lemma 7.

Theorem 2. Deadlock is impossible.

Proof: The system is deadlocked when no node is in its

critical section and no requesting node can ever proceed

to its own critical section. Assume the contrary that the

deadlock is possible, in our algorithm, it will result in two

cases. First case, no node could determine its order to

enter the CS. This is contrary to Lemma 2 and Lemma 3

because every requesting node could determine its order

to enter the CS after its corresponding RM message is

forwarded no more than N-1 times. In the second case,

there exist three node NA, NB and NC, where NA is waiting

for EM message from NB directly or indirectly, NB is

waiting for EM message from NC directly or indirectly and

NC is waiting for EM message from NA directly or

indirectly. Then NA precedes NC, NC precedes NB and NB

precedes NA. It is contradiction to Lemma 7, so in our

algorithm, deadlock is impossible.

Theorem 3. Starvation is impossible.

Proof: Starvation occurs when one node must wait

indefinitely to enter its critical section even though other

nodes are entering and exiting their own critical section.

Assume the contrary, that starvation is possible. In our

algorithm, time need to execute the algorithm and CS and

the time for message transfer are all finite. Since a

requesting node’s order to enter the CS is determined after

its corresponding RM message has been forwarded at most

N-1 times (Lemma 3), the reason that cause a node to be in

starvation must be waiting for its preceding nodes infinitely.

But by Lemma 4 and Lemma 7, the sequence of ordered

nodes which precede it is determined once one node gets

ordered. So, the node in starvation will receive an EM

message from its directly preceding node and enter the CS

in finite time. Thus a contradiction occurs and the theorem

must be true.

6. Performance Evaluation

As mentioned before, there are three measures to

evaluate the performance of a mutual exclusion algorithm:

message complexity, response time and synchronization

delay. The performance of an algorithm depends upon

loading conditions of the system and has been usually

studied under two special loading conditions: light load and

heavy load. Under the light load condition, there is seldom

more than one request for mutual exclusion simultaneously

in the system while under the heavy load condition, there is

always a pending request in a node. We first present an

analysis of the performance of the proposed algorithm

under the two different cases. Then we describe our

simulation study, which focus on the heavy load condition,

and discuss the simulation results.

6.1. Performance Analysis

6.1.1. Message Complexity. When a node wants to enter

the CS, it must firstly initialize a RM message with a copy

of its SI. The RM message will be forwarded among nodes

carrying up-to-date system information until its home

node’s ID stands on top of relative majority of MNLs,

meaning that it gains enough permissions. Under the light

load condition, if there is no outdated information, the

RM’s host ID will be on top of each MNL the message

travels. So, after being forwarded [N/2]+1 times (the RM

will be updated on each forwarding), the currently

processing MPM will find that the RM’s host ID has been

ordered with Hightest_Priority and immediately send an

EM message to that server. Hereby, the message complexity

is [N/2]+2. (Here, we use the square brackets denoting a

function that gets the integer part of a digit.)

When there exists outdated information, if the outdated

information can be deleted within [N/2]+1 forwarding

times, the message complexity will be [N/2]+2 all the

same. Otherwise, in the worst case, the RM will be

forwarded N-1 times visiting all system nodes until it can be

ordered. In this case, the message complexity is O(N).

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 01:31 from IEEE Xplore. Restrictions apply.

Under the heavy load condition, when a total of m

nodes are competing for the same CS, a node who is

granted the privilege must have its ID standing on the top

of at least [N/m]+1 MNLs. The minimum times the RM

message is forwarded is [N/m]+2. So the message

complexity is calculated by counting how many nodes in

the system are competing the CS simultaneously, and the

number of competing nodes m is decided by the

distribution model that describes how frequently a node

requests the CS.

6.1.2. Synchronization delay. It is obvious that the

synchronization delay of our algorithm is T where T is

average message propagation delay, because only one

enter message is needed to be passed between two

successive executions of the CS.

6.1.3. Response Time. Under low load condition, before

a node can enter the CS, its corresponding request

message needs to be forwarded N/2 to N-1 times to

determine its order and one enter message for entering the

CS. So the response time will be ([N/2]+2)*Tn to (N-

1)*Tn. Under high load condition, if each node will wait

for an enter message to enter the CS, the response time is

sure to be N*(Tn+Tc) under heavy load condition where Tc

is the average CS executing time.

6.2. Simulation Results

Although our algorithm has high message complexity

and long response time in the worst case, it has good

performance in general. In fact, the heaver the system load

is, the better our algorithm performances. To demonstrate

that, a simulation is conducted to evaluate our algorithm

against several other algorithms including the Maekawa

which is low in message complexity and the Broadcast,

Ricart which are low in response time.

We adopt a simulation model similar to the one used in

[14]: requests for CS execution arrive at a site according

Poisson distribution with parameter λ; message

propagation delay between any pair of nodes Tn and CS

execution time Tc are all constant to be 5 and 10 time units

(although this condition is not necessary, we still take it

for ease). The whole system is free of node crash and

communication failure. Two measure results are collected,

viz. number of message exchanged (NME) and response

time (RT) per CS execution. Here, we use the first method

mentioned in [9] to generate quorums for Maekawa’s

algorithm.

We first consider the situation that all nodes are

requesting the CS simultaneously as soon as the system is

initialized. Every node only requests once. When the

system is initialized, each node knows nothing about

others in our algorithm. So in this situation, we can see

how soon and sufficient the system information exchanges.

Figure 4 and 5 plot the average NME and RT against the

number of nodes in the system. It is shown that when the

number of nodes increases, the messages exchanged and

time delay both increase. Moreover, our algorithm has the

least messages exchanged of the four algorithms while its

average response time is similar to the other three’s.

Afterwards, a system of 30 nodes is simulated with

different request arrival rate λ. We run the simulation for

enough long time (100000 time units) repeatedly and record

the NME and RT for all successful requests. Figure 6 and

Figure 7 illustrate the performance comparison of the four

simulated algorithms. As the load increases, messages

needed for per mutual exclusion decreases in our algorithm.

It is clear that the heaver the system load is, the better our

algorithm outperforms the Maekawa in average NME.

Although the average response time of our algorithm is a

little higher than that of the Broadcast and the Ricart, it is

much lower than the Maekawa’s. Since the Broadcast and

the Ricart need much more messages exchanged to achieve

mutual exclusion, our algorithm performances better than

the other three in general.

7. Conclusion

In this paper, we described an efficient fully distributed

algorithm for mutual exclusion. Our algorithm imposes no

specified structure on the system topology and doesn’t force

messages to be delivered in FIFO order. These two merits

make our algorithm more attractive in applications. In

addition, we adopt the RCV scheme to schedule nodes that

are intended to execute the critical section. Since the RCV

scheme comes from the famous MCV scheme, the

algorithm gains high resiliency. We have presented the

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

Our Algorithm Maekawa

Ricart Broadcast

NME

Figure 4. Message Message Message Message nnnnumber Vs umber Vs umber Vs umber Vs nnnnode ode ode ode nnnnumberumberumberumber
N

Figure 5. Response Response Response Response ttttime Vs ime Vs ime Vs ime Vs nnnnode ode ode ode nnnnumberumberumberumber

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

Our Alogrithm Maekawa

Broadcast Ricart

Time

N

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 01:31 from IEEE Xplore. Restrictions apply.

proof of correctness of the algorithm, with respect to

guaranteed mutual exclusion, deadlock freedom and

starvation freedom. Both analysis and simulation are used

to evaluate the algorithm’s performance. Simulation

results compare our algorithms with some existing

algorithms and show that the proposed algorithm

outperforms other algorithms especially under high load

condition.

In our future work, we will conduct simulation studies

to compare with more existing algorithms. We will also

investigate how to improve the algorithm by designing

different methods for forwarding the request messages.

Acknowledgement

This work is partially supported by Hong Kong

Polytechnic University under HK PolyU research grants

G-YD63 and G-YY41, and The National 973 Program of

China under grant 2002CB312002.

Reference
[1] D. Agrawal, and A. E. Abbadi, “An Efficient and Fault-

 Tolerant Solution for Distributed Mutual Exclusion”, ACM

 Transactions on Computer Systems, Vol. 9(1), Feb 1991,

 pp. 1-20.

[2] D. Agrawal, and A. E. Abbadi, “A Token-Based Fault-

 Tolerant Distributed Mutual Exclusion Algorithm”, Journal

 of Parallel and Distributed Computing, Vol. 24(2), 1995,

 pp. 164-176.

[3] S. Banerjee , and P. K. Chrysanthis, “A New Token Passing

 Distributed Mutual Exclusion Algorithm”, In Proceedings

 of 16th International Conference on Distributed

 Computing Systems, 1996, Hong Kong, May. 27-30,

 1996, pp. 717 -724.

[4] G. Cao, and M. Singhal, “A Delay-Optimal Quorum-Based

 Mutual Exclusion Algorithm for Distributed Systems”, IEEE

 Transaction on Parallel and Distributed Systems, Vol.

 12(12), Dec. 2001, pp. 1256-1267.

[5] Ye-In Chang, “Notes on Maekawa's O(N) Distributed

 Mutual Exclusion Algorithm”, In Proceedings of the 5th IEEE

 Symposium on Parallel and Distributed Processing, Dallas,

 USA, Dec. 1-4, 1993, pp. 352-355.

[6] M. Choy, “Robust Distributed Mutual Exclusion”, In

Proceedings of the 16th International Conference on

 Distributed Computing Systems, Hong Kong, May. 27-30,

 1996, pp. 760 -767.

[7] L. Lamport, “Time, Clocks and Ordering of Events in

 Distributed Systems”, Communications of the ACM, Vol.

 21(7), Jul. 1978, pp. 558-565.

[8] S. Lodha, and A. Kshemkalyani, “A Fair Distributed Mutual

 Exclusion Algorithm”, IEEE Transactions on Parallel and

 Distributed Systems, Vol. 11(6), June 2000, pp. 537-549.

[9] M. Maekawa, “A N Algorithm for Mutual Exclusion in

 Decentralized Systems”, ACM Transaction on Computer

 Systems, Vol. 3(2), May. 1985, pp. 145-159.

[10] S. Nishio, K. F. Li, and Manning E. G. “A Resilient Mutual

 Exclusion Algorithm for Computer Networks”, IEEE

 Transactions on Parallel Distributed Systems, Vol. 1(3), Jul.

 1990, pp. 344-355.

[11] S. Rangarajan, S. Setia, and S.K. Tripathi, “A Fault-

 Tolerant Algorithm for Replicated Data Management”,

IEEE Transactions on Parallel and Distributed Systems,

 Vol. 6(12), Dec. 1995, pp. 1271-1282.

[12] K. Raymond, “A Tree-based Algorithm for Distributed

 Mutual Exclusion”, ACM Transactions on Computer Systems,

 Vol. 7(1), Feb. 1989, pp. 61-77.

[13] G. Ricart, and A. K. Agrawala, “An Optimal Algorithm for

 Mutual Exclusion in Computer Networks”, Communications

 of the ACM, Vol. 24(1), Jan. 1981, pp. 9-17.

[14] M. Singhal, “A Heuristically-Aided Algorithm for Mutual

 Exclusion in Distributed Systems”, IEEE Transactions on

 Computers, Vol. 38(5), May. 1989, pp. 651-662.

[15] M. Singhal, “A Dynamic Information Structure Mutual

 Exclusion Algorithm for Distributed Systems”, IEEE

 Transactions on Parallel and Distributed Systems, Vol. 3(1),

 Jan. 1992, pp. 121-125.

[16] M. Singhal, “A Taxonomy of Distributed Mutual Exclusion”,

Journal of Parallel and Distributed Computing, Vol. 18,

 1993, pp. 94-101.

[17] I. Suzuki, and T. Kasami “A Distributed Mutual Exclusion

 Algorithm”, ACM Transactions on Computer Systems, Vol.

 3(4), Nov. 1985, pp. 344 - 349.

[18] R. H. Thomas, “A Majority Consensus Approach to

 Concurrency Control for Multiple Copy Databases”, ACM

 Transactions on Database Systems, Vol. 4(2), Jun. 1979,

 pp. 180–209.

[19] T. Tsuchiya, M. Yamaguchi, and T. Kikuno, “Minimizing

 the Maximum Delay for Reaching Consensus in Quorum-

 Based Mutual Exclusion Schemes”, IEEE Transactions on

 Parallel and Distributed Systems, Vol. 10(4), Apr. 1999,

 pp. 337-345.

[20] J. E. Walter, J. L. Welch, and N. H. Vaidya, “A Mutual

 Exclusion Algorithm for Ad Hoc Mobile Networks”,

Wireless Networks, Vol. 7(6), Nov. 2001, pp. 585-600.

17

17.5

18

18.5

19

19.5

20

0 5 10 15 20 25 30

Our Algorithm

Maekawa

NME

Figure 6. Message Message Message Message nnnnumber Vs umber Vs umber Vs umber Vs λλλλ
1/λ

320

340

360

380

400

0 5 10 15 20 25 30

Our Algorithm Maekawa

Broadcast Ricart

Time

Figure 7. Response Response Response Response ttttime Vs ime Vs ime Vs ime Vs λλλλ
1/λ

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 01:31 from IEEE Xplore. Restrictions apply.

