
Checkpoint Placement Algorithms for Mobile Agent System

Jin Yang, Jiannong Cao, Weigang Wu
Internet and Mobile Computing Lab

Department of Computing, Hong Kong Polytechnic University
Hung Hom, Kowloon Hong Kong

{csyangj, csjcao, cswgwu}@comp.polyu.edu.hk

Abstract

Checkpointing is a fault tolerance technique widely

used in various types of computer systems. In
checkpointing, an important issue is how to achieve a
good trade-off between the recovery cost and the
system performance. Excessive checkpointing would
result in the performance degradation due to the high
costly I/O operations during checkpointing. Equidis-
tant and equicost are two well-known checkpointing
strategies for addressing this issue. However, there is
no study on these strategies catering for a mobile
agent (MA) system, which has different characteristics
with conventional systems. In this paper, based on an
analysis of the behaviours of an MA system, we find
that it can be modelled as a homogeneous discrete-
parameter Markov chain, which is different from the
models used in conventional systems. Therefore, the
analytic methods and corresponding results for
conventional systems cannot be adopted directly for an
MA system. Based on our proposed model, we study
the equidistant and equicost checkpointing strategies
and propose checkpoint placement algorithms for MA
systems. Through simulations we evaluate the
performance of our proposed algorithms and the result
shows that the equicost strategy based algorithm is
most suitable for an MA system.

1. Introduction

A mobile agent (MA) is a program that can migrate
from host to host in a network of heterogeneous
computer systems to execute the tasks specified by its
owner. Characteristics of MAs include mobility,
autonomy, asynchrony, encapsulation of protocols,
adaptability, support for mobile computing
(disconnected operations), etc. Among these
characteristics, autonomy is an attractive feature which
allows an MA to determine its itinerary dynamically.
As a result, an MA can have a self-initiated itinerary

which is more flexible than pre-defined itinerary.
Combining the characteristics of distributed computing
and mobile computing, MA has been used for
structuring and coordinating distributed applications [1,
2, 3]. Many of these applications require high degree of
reliability, such as electronic commerce, network
management, and information collection and fusion.
Therefore, fault tolerance is a key issue in designing an
MA system.

Checkpointing is a technique to achieve fault
tolerance and has been widely used in various kinds of
computer systems. It is also proposed for MA systems,
where a checkpoint is the copy of an MA’s state,
including the partial result obtained and the execution
status, which can be used during recovery to resume
the execution of the MA. Normally, an MA system
periodically saves checkpoints of the MAs and stores
them on stable storage. When the failure of an MA is
detected by the system, it will recover the MA by
rolling back to its last checkpoint. Checkpointing can
be naturally done in an MA system: serializing an MA
for the migration to the next host effectively constructs
a checkpoint. This is especially true for most MA
systems developed in Java. Various kinds of
checkpointing techniques have been developed [4],
including independent (or uncoordinated), coordinated,
or communication-induced schemes. Independent
checkpointing is the simplest scheme, which allows an
MA to take checkpoints periodically without any
coordination with other MAs. Independent
checkpointing has been used to store the persistent
state of a single MA and guarantee the reliable
migration of MAs [9, 12, 18].

Checkpointing involves high costly I/O operations,
so how to achieve a good trade-off between the
checkpointing cost and system performance is a critical
issue. Excessive checkpointing would result in the
performance degradation during normal operation. On
the contrary, deficient checkpointing would incur
expensive recovery cost upon a failure. There has been

Proceedings of the Fifth International Conference on Grid and Cooperative Computing (GCC'06)
0-7695-2694-2/06 $20.00 © 2006

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 8, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

much research on how to determine the optimal
checkpointing interval, which is referred to as the
checkpoint placement problem if the optimal
checkpointing interval cannot be achieved. Equidistant
and equicost are the two well-known checkpointing
strategies. The equidistant strategy considers a
deterministic productive time between two neighboring
checkpoints, while the equicost strategy allows a
checkpoint to be made when the expected re-execution
cost is equal to the checkpointing cost. With the
occurrence of failures following a Poisson process,
these strategies become identical and will result in the
optimal checkpointing interval [16] in conventional
systems.

Currently, for mobile agent systems, there is no
work done on how to determine a proper checkpointing
interval for an MA and no study on how the above two
strategies can be applied. In this paper, we firstly
analyze the behaviours of an MA system. Based on
the analysis, we find that it can be modeled as a
homogeneous discrete-parameter Markov chain, which
is different from the models used in conventional
systems. Therefore, the analytic methods and
corresponding results for conventional systems cannot
be adopted directly for an MA system. Based on our
proposed model, we study the equidistant and equicost
checkpointing strategies and propose three checkpoint
placement algorithms for MA systems. Through
simulations we evaluate the performance of our
proposed algorithms and the result shows that the
equicost strategy based algorithm is most suitable for
an MA system.

The rest of the paper is organized as follows.
Section II briefly describes previous works. Section III
defines our system model. A scheme to determining
the optimal checkpointing interval for an MA under
ideal condition and algorithms for checkpoint
placement for an MA under general condition are
proposed in Section IV. Simulation results are
presented in Section V. We conclude this paper in
Section VI.

2. Related works

Determining the optimal checkpointing interval has
been studied for a long time. Most works focus on the
uniprocessor systems [6, 7, 8, 10, 15, 16, 19]. They use
execution time as the basic metric to evaluate the
optimal checkpointing interval, and adopt the
equidistant or equicost checkpointing strategies. A
common assumption is that the execution time of the
target program is known in advance.

[19] proposed a first-order approximation to the
optimum checkpoint interval. The author assumes a

system in which a failure is detected as soon as it
occurs, the checkpointing interval is fixed, the
checkpointing time is constant, and no failures occur
during error recovery. In addition to these assumptions,
the author adopted the equidistant strategy and
assumed that the occurrence of failures are essentially
random (a Poisson process), with the failure rate λ.
Then the mean time Tf between failures is Tf = 1/λ,
and the density function P(x) for the time interval of
length x between failures is given by P(x) =λe-λx.
This failure assumption has been used by most of the
papers [5, 6, 7, 17, 20].

In [16], the authors relax the above assumptions in
three ways: by considering general failure
distributions, by allowing checkpointing intervals to
depend on the reprocessing time and the failure
distribution, and by allowing failures to occur during
checkpointing and error recovery. They first discussed
the equidistant checkpointing strategy and found that
the system availability resulting from using the
strategy depended only on the mean of the failure
distribution. Then, the equicost strategy was introduced
which is a failure-dependent and reprocessing-
independent checkpointing strategy. For Weibull
failure distributions, the authors showed that the
equicost strategy achieved higher system availability
than the equidistant strategy.

Instead of using the execution time as a metric, in
[20], the authors presented an online algorithm for the
placement of checkpoints. This algorithm keeps track
of the size of the state of a program and a checkpoint is
made when it is small.

Solutions have also been developed for parallel and
distributed systems [13, 17] and mobile computing
systems [5]. In [13, 17], the optimal checkpointing
interval in synchronous checkpointing for multiple
processes is considered based on a mean failure time.
In [5], the authors derived an approximation to the
optimal message number interval between checkpoints.
In mobile computing environments, as part of the total
application execution time, messages passing time is
affected by link bandwidth, making it difficult to
predict the execution time of a program. Therefore, to
determine the checkpoint placement the authors
utilized the received computational message number. It
is assumed that the inter-failure time is exponentially
distributed.

A common characteristic of all of these works is
that, in the system model, the execution of the
programs to be checkpointed is continuous and has a
long execution period, and a uniform failure rate
during the entire execution of the program is known in
advance. In our study of MA systems, however, the
execution of an MA is discrete in time because the MA

Proceedings of the Fifth International Conference on Grid and Cooperative Computing (GCC'06)
0-7695-2694-2/06 $20.00 © 2006

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 8, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

executes for a while at a host, and then stops execution
to migrate to another host. This results in a quite
different system model which required new solutions.

3. System model

As mentioned above, algorithms for checkpoint
placement in conventional computer systems cannot be
ported directly to MA systems because the system
model of MA system is different from that of
conventional systems. In an MA system, the MA
carries out its assigned tasks on the hosts along its
itinerary. The tasks are separated by the migration
operations.

Within each migration operation, the MA
terminates its execution on the previous host and
prepares for the migration. The preparation includes
releasing the allocated resources (stack, memory) and
packing the code and data sections of the MA into an
image. Then the image will be transmitted to the next
host. When the next host receives the image, it will
perform system defined checking (i.e., CRC checking)
to guarantee that the image is not damaged during the
transmission, and incarnate the image to a new MA if
the image passes the checking. The new MA will
continue the execution on this new host. Since the MA
is executing on a new host, the execution environment
is totally new and has no any relation with the previous
host; the stack and memory for this agent is
reestablished. Therefore, we can claim that the failure
of the MA on the current host is independent with its
failure on the previous host. This characteristic
corresponds exactly to the Markov chain property.
Consequently, the execution of an MA in an MA
system can be modelled as a discrete-parameter
Markov chain. In the following subsections, we first
define this model, and then propose checkpoint
placement algorithms for MA systems.

We consider an MA system model where a single
MA executes and migrates along a predefined or self-
initiated itinerary. With a predefined itinerary, the
agent knows all the hosts that it will visit, while with a
self-initiated itinerary, the agent only knows the first
host it will visit and the following hosts are determined
by the execution results on the previous host. The
itinerary consists of N hosts, Host0, Host1,…, HostN-1,
and a home node, Home. Home launches the MA to
Host0 reliably, so we consider that the MA starts its
execution on Host0.

We assume that a mobile agent can take an
independent checkpoint right after it lands on a host
and before starts its execution. It cannot take a
checkpoint during its execution on a host. After the
agent finishes its execution on a host, it will migrate to

the next host according to the itinerary. This process
will continue until all the hosts have been visited.
During the migration, only the code and data
(computing results) of an MA on previous host will be
transmitted to the next host. On the new host or during
the recovery process from a checkpoint, the MA is
incarnated and its execution environment is
reconstructed. Based on these observations, we assume
that all the failures of an MA are independent from
each other. Accordingly, the execution of an MA is
modelled as a discrete-parameter Markov Chain.

For simplicity, we assume that the stationary
transition probabilities of this Markov Chain are fixed.
Therefore, it is a homogeneous discrete-parameter
Markov Chain. Let I be the state space and T be the
parameter space, both are finite and discrete.

I = {0, 1, 2, …N+1}, N>1; T = {0, 1, 2, …}.

Figure 1 illustrates the state transition graph for an

MA’s execution. In state space I, state i (0≤i≤N-1)
denotes the Execution State of an MA on Hosti. Failure
may happen during the execution and migration of the
MA with probability Pfi on Hosti. Pfi is independent
from each other. A failure is detected immediately and
the agent recovers and starts the re-execution from the
latest checkpoint with probability 1. Such a failure-
recovery process is called a failure-recovery round,
which may happen Xi times on Hosti. Xi is a random
variable and its probability distribution is:
P(Xi)=(Pfi)Xi.

The probability of successfully finishing the
execution on the current host and landing on a new
host is Psi (Psi =1- Pfi). Psi is independent from each
other. The last state N+1 is the Returnee State, which
means that the MA has returned home. In Returnee
State, we assume that the MA is able to recover under
the user’s control with probability 1, no matter what
failure occurs.

The purpose of a checkpoint placement algorithm is
to determine the proper (or optimal) checkpointing
interval so as to reduce (or minimize) the system cost,
which consists of the cost of making checkpoints and
the cost of recovery when failures happen. The

Ps0

Pf0

1 20 N …..

1

Returnee
State

Execution
State on
Host1 Psn-1

 N-1

Figure 1 State Transition Graph

Proceedings of the Fifth International Conference on Grid and Cooperative Computing (GCC'06)
0-7695-2694-2/06 $20.00 © 2006

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 8, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

recovery cost includes the cost of incarnating the new
MAs from the checkpoints and the re-execution cost.
Table 1 shows the notions for the various types of cost
in this model.

Table 1 Various Types of Cost

Csys Overall system cost
Ci Recovery cost in one fail-recovery on Hosti
Ccp Cost of making a checkpoint
CI Cost of incarnating an MA from a checkpoint
Ei Cost of the execution on Hosti
CXi Re-execution cost on Hosti

Ccp is the cost to store a checkpoint on disk while CI

is the cost to read a checkpoint from the disk. Although
the direction of the data flow is different, the cost is
similar: both of them can be evaluated by the cost of
I/O operations and have no relation with specific
applications. However, Ei is related with the specific
application on Hosti because different application has
different execution cost. Therefore, we assume that Ccp
and CI are known in advance. Ei is provided by the MA
platform of Hosti. Pfi is also maintained by the MA
platform of Hosti. An MA does not know Ei and Pfi
before it retrieves them from the MA platform of Hosti.

4. Checkpoint placement algorithms

The algorithms proposed in the next section are
based on the equidistant and equicost checkpointing
strategies. The principle of these checkpointing
strategies is to seek a better balance between the
expected recovery cost and the checkpointing cost. An
optimal checkpointing interval can be achieved in
conventional systems if the failure rate is the same
during the entire execution duration of a program.

Similarly, we can also get the optimal checkpointing
interval for an MA if all the failure rates Pfi are the
same. Otherwise we cannot get the optimal
checkpointing interval. In our model, checkpointing
cost Ccp is known in advance, so we just need to derive
the expected recovery cost within a checkpointing
interval to seek the balance between Ccp and recovery
cost. In following, we firstly determine the optimal
checkpointing interval for an MA under an ideal
condition (all the Pfi are the same), and then using the
result to derive heuristics for designing checkpoint
placement algorithms in a realistic MA system, where
Pfi are independent in nature.

4.1 Recovery cost in a checkpointing interval

With the reference to Figure 2, suppose an agent

takes a checkpoint on Hosti before it initiates its
execution, and the agent takes its next checkpoint on
Hosti+n+1. The checkpoint interval is defined as the
number of hosts between Hosti and Hosti+n (including
Hosti and Hosti+n). The probability of the MA failure
on Hosti is Pfi, and the number of failure-recovery
rounds is Xi with P(Xi)=(Pfi)Xi. The expected number of
failure-recovery rounds (Ri) is given by Equation 1:

Ri = E(Xi) =
r

r
fiPr)(

1
∑

∞

=
∗ = Pfi/(1-Pfi)2 (0≤i≤N-1) (1)

The recovery cost Ci on Hosti consists of the
incarnation cost CI and the re-execution cost Cxi, which
refers to the cost of the execution starting from the
checkpointing point to the failure point. Since the
failure point is evenly distributed in the duration of an
MA’s execution on a host (as shown in Figure 2), the
expected re-execution cost in one failure-recovery
round is given by Equation 2.

Ps

0 i N …..

Figure 2 The Calculation of System Cost in a Checkpointing Interval

1

Home

Checkpointing
interval

Checkpoint

Ps

i+n+1 ….. ….. i+1 i+n i+n+2

Pf0

State Transition

MA execution Failure point

Proceedings of the Fifth International Conference on Grid and Cooperative Computing (GCC'06)
0-7695-2694-2/06 $20.00 © 2006

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 8, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

E(CXi) = ∫ =iE

iEdxx
0

)/(∫ =
iE

i xdxE
0

)/1(Ei/2 (2)

Accordingly, the expected recovery cost on Hosti is:

E(Ci) = Ri*(CI+ Ei/2) (3)

For a failure-recovery round on Hosti+1, since the
recovery should start from Hosti, the expected recovery
cost on Hosti+1 is: E(Ci+1)= Ri+1*(CI+Ei+Ei+1/2) and
the expected recovery cost on Hosti+n is: E(Ci+n) =
Ri+n*(CI+Ei+…+Ei+n/2).

Since the failures are independent, the total
expected recovery cost for the checkpoint interval
illustrated in Figure 2 is given by Equation 4 below
(Ci,i+n denotes the total expected recovery cost from
Hosti to Hosti+n):

E(Ci,i+n) = E(∑
=

+

n

k
kiC

0
)=∑

=
+

n

k
kiCE

0

)((4)

Together with the cost for the checkpointing and
execution cost within this interval, the overall system
cost can be calculated by Equation 5:

Csys=Ccp+E(Ci,i+n)+(n+1)Ei (5)

4.2 The Optimal Checkpointing Interval under
an Ideal Condition

If the cost of checkpointing and the failure rate are
fixed during the execution of a program, the optimal
placement strategy would be to place the checkpoints
in fixed equidistant intervals [16, 20]. In our model,
Ccp is fixed, but Pfi are different from each other (the
same to Ei). To derive the heuristic rules for checkpoint
placement algorithms in a realistic MA system where
Pfi are independent in nature, we first consider an ideal
condition: all the Pfi and Ei are the same.

Fixing Pfi makes the MA system to have a fixed
failure rate. Having Ei with the same value on all the
hosts makes the intervals equidistant if each interval
contains the same number of hosts. Since we do not

consider checkpointing in the middle of an MA’s
execution on a host, as shown in Figure 3, the
granularity of the checkpointing interval is one host.
To determine the optimal interval, we assume that an
interval contains x hosts. Then the expected total
system cost is calculated as follows:

Csys = (H/x)[x*CI +(RE+(x-1)RE)(x-1)/2+xER/2+Ccp]
+H*E =(H/x)[x*CI+x2RE/2+Ccp]+H*E=
H*CI+xHRE/2+HCcp/x+H*E (x=1,2,3,…N) (6)

To get x that produces minimal value for Equation
(6), we consider that x is continuous and then we can
get x by derivative.

Csys’= REH/2 - CcpH/x2
 (7)

Csys’’= 2 CcpH/x2
 (8)

Since Csys’’>0, Csys has the minimal value. Let
Csys’=0, we can get the value of x to make Csys
minimal.

Csys’= REH/2 - CcpH/x2=0
 x= RECcp /2 (10)

With the optimal x derived from Equation 10, the
cost of the expected total re-execution cost in an
interval (Figure 3) can be calculated using Equation 11
below.

 ∑
=

x

i
XiC

1
= (RE+(x-1)RE)(x-1)/2+xER/2= Ccp (11)

Equation 10 implies that the optimal checkpointing
interval is only related with Ccp , R and E, and has
nothing to do with CI. Equation 11 tells us that within
an optimal checkpointing interval, the expected total
re-execution cost (variable part in Figure 3) equals
exactly to Ccp. The implications can be used as
heuristic rules in designing checkpoint placement
algorithm based on the equicost strategy. However,
notice that Equation 11 is gotten under the assumption
that x is continuous, but x is actually discrete.

Constant part:

Figure 3. The cost in a Checkpointing Interval

Interval = x

Number of Hosts = H

Variable part

CI n

x

n
n CR ∗∑

=1

R2*(E1+E2/2)

R3*(E1+E2+E3/2)

R4*(E1+E2+E3+E4/2)

E1 E2 E3 E4

R1*(E1/2)

R1CI R2CI R3CI R4CI

Proceedings of the Fifth International Conference on Grid and Cooperative Computing (GCC'06)
0-7695-2694-2/06 $20.00 © 2006

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 8, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

Therefore, the optimal value should be the integer that
is neighboring x. In Figure 4, the optimal interval
should be “3” or “4”. We must determine the optimal
interval by checking which value leads to a smaller
result of Equation 6.

4.3 Checkpoint Placement Algorithms

In a real MA system, the failure rates cannot be the
same on all the hosts and links, so we need to design
algorithms working in general conditions. From the
analysis in Section 4.2, we propose three checkpoint
placement algorithms.

Algorithm 1: Equidistant with failure rate
estimation: before an MA starts its travelling, it
estimates a uniform failure rate for the MA system and
decides the checkpointing interval by using Equation
10 in Section 4.2. The estimation can be made by using
all the Pfi collected from the MA platforms on each
host.

Algorithm 2: Equidistant by enumeration: before an

MA start its travelling, it collects all the Pfi maintained
by the MA platforms on the hosts, and enumerate the
results of Equation 6 with the value of x from 1 to H to
get the x that leads to the smallest result.

Algorithm 3: Equicost: MA calculates the variable
part (Cvar) of the re-execution cost before its execution
on each host. A checkpoint is made when Cvar is equal
to Ccp or greater than Ccp (according to the heuristic
rules described in Section 4.2).

The pseudo-code of these algorithms is shown in
Appendix.In Algorithm 1, to collect Pfi from all the
hosts along the itinerary, a predefined itinerary is
needed. Since we require only an estimated average
failure rate, the interval obtained here is only an
approximate optimal interval. In Algorithm 2, a

Algorithm 1:

itinerary= MA.GetItinerary(); // predefined Itinerary is needed;
Pf[] = MA.GetFailureProbability(itinerary); //Collect Pf;
AvrPf = MA.AveragePf(Pf[]); // Eastimat average failure rate;
R= AvrPf /Power(1- AvrPf); //Get R according Equation 1;

OptInterval_float = Sqrt(Ccp/R*E); //get interval (Equation 10);
OptInterval_Ceiling=Ceiling(OptInterval_float);
OptInterval_Floor=Floor(OptInterval_float);
//(Calculate the system cost according to Equation 6);
OptC=OptInterval_Ceiling*H*R*E/2+H*Ccp/OptInterval_Ceiling
OptF=OptInterval_Floor*H*R*E/2+H*Ccp/OptInterval_Floor;
//the integer leads to smaller cost becomes the checkpoint interval;
if (OptC< OptF)
 OptInterval= OptInterval_Ceiling;
else
 OptInterval= OptInterval_Floor;
MA.Context.CpInterval= OptInterval;
 MA.Migration(itinerary); // every “OptInterval” hosts.

Algorithm 2:

itinerary= MA.GetItinerary(); // predefined Itinerary is needed;
Pf[] = MA.GetFailureProbability(itinerary); //Collect Pf;

for i=1 to itinerary.NumberOfHosts //Calculate R (Equation 1)
 R[i]=Pf[i]/Power(1- Pf[i]);
 RC[i]=E* R[i]; //RC[i]: the re-exe cost on single host i;
end

for interval=1 to itinerary.NumberOfHosts //Enumerate cost;
 TC=Ccp; // Initiate the total cost;
 accumulateC=0; // Temp var: record re-exe cost;
 currentC=0; //Temp var: count current cost;
 index=1; //Temp var: record how many host has passed;

 for host=1 to itinerary.NumberOfHosts
 for i=1 to index //count the re-exe cost if fail;
 accumulateC=accumulateC+RC[host-i+1];
 end
 currentC = currentC + accumulateC;
 if (index==interval) //Pass_hosts= interval, cp is made;
 TC=TC+Ccp+currentC; //count the system cost;
 accumulateC=0; //Restore the temp variable;
 currentC=0; //Restore the temp variable;
 index=1; //Restore the temp variable;
 else
 index=index+1; //Still not reach the interval boarder
 end
 end
 if (index<interval) //reach the tail of the itinerary;
 TC =TC+currentC;
 end
 allresults[interval]=TC;
end
OptInterval = MiniIndex(allresults[]);
MA.Context.CpInterval= OptInterval; //MA will carry the interval
MA.Migration(itinerary);

Algorithm 3:

//MA initiation at home node;
MA.context={Ccp, E, FirstHost=TRUE, TC=0,
accumulateC=0, currentC=0, index=1};
MA.Launch(firsthost); // launched to the first host

//Landing Procedure;
if (MA.FirstHost== TRUE)
 TC=Ccp; //A checkpoint is made at the first host in an interval;
 MA.FirstHost== FALSE;
end
Pf=MAP.getPf(); //Pf is maintained by the MA platform on a host;
R=Pf/Power(1- Pf); //Calculate R according Equation 1
RC[index]=E*R; //RC[i]: re-execution cost on a single host i;

for i=1 to index // re-exe cost if failure happen on this host;
 accumulateC=accumulateC+RC[i];
end
currentC = currentC + accumulateC; //re-exe cost for past hosts;
if (currentC>=Ccp) // re-exe cost >=Ccp, a checkpoint is made;

TC=TC+Ccp+currentC; //record the system cost
 accumulateC=0; //Restore the temporary variable;
 currentC=0; //Restore the temporary variable;
 index=1; //Restore the temporary variable;
else
 index=index+1; //Still not reach the interval boarder
 if (ReturnedHome=TRUE) //reach the tail of the itinerary;
 TC=TC+currentC;
end

Proceedings of the Fifth International Conference on Grid and Cooperative Computing (GCC'06)
0-7695-2694-2/06 $20.00 © 2006

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 8, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

predefined itinerary also is necessary for the Pfi
collection. All the possible intervals will be tried to get
the best equidistant interval. Obviously, Algorithm 1
cannot give a better equidistant interval than Algorithm
2, but the time complexity of Algorithm 1 (O(1)) is
much lower then that of Algorithm 2 (O(H2)). Compare
with Algorithms 1 and 2, the big advantage of
Algorithm 3 is that it does not require a pre-defined
itinerary. The decision on checkpointing is made
during the execution of an MA. As mentioned in
Section 1, a most prevailing characteristic of MA is the
autonomy, which allows an MA to determine its
itinerary dynamically. Algorithm 3 has no constraint
for MA to maintain this characteristic.

5. Performance Evaluation

We need to evaluate the performance of the three
proposed algorithms to find out which algorithm is the
best in the sense that achieves the lowest system cost.
Since we do not assume any distribution for the
occurrences of failures on the hosts, there is no suitable
way to make an analytic analysis. Therefore, we have

carried out simulations to simulate the three algorithms
using the Markov model shown in Figure 2.

In our simulations, we consider an MA system with
100 hosts. On host i, we consider two ranges of failure
probabilities: Pfif<0.01 and Pfif<0.001. We adopt a
uniform unit for the system cost, which can be the
execution time or some other metrics. We assume
Ccp≥1, E≥1 and CI= Ccp. The execution cost E can be
less than Ccp if MA’s tasks on hosts are short and have
no I/O operations; otherwise E is larger than Ccp. Since
the cost of the constant part (Figure 3) is the same for
all the three algorithms, we only compare their
differences on the variable part Cvar. The results shown
in the following Figure 4 are obtained with Ccp set to 2
and the execution cost E ranging from 1 to 20. For
each cost metric, the same simulation is performed 100
times to get an average value for the checkpointing
interval and the variable part Cvar.

Figures 4 illustrate the average checkpointing
interval and corresponding variable part cost for the
three algorithms under different failure probability
ranges. A general tendency observed is that, with the
failure probability decreasing, the checkpointing

0 2 4 6 8 10 12 14 16 18 20
50

100

150

200

250

300
Failrue Probability (Pf) on Each Host: Pf<0.01

T
he

 C
os

t
of

 V
ar

ia
bl

e
P

ar
t

Re-execution Cost on a Host

Alg1: Equidistant-estimation
Alg2: Equidistant-enumeration
Alg3: Equicost

Figure 4 Checkpointing Interval and Corresponding Cost for Variable Part

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45
Failrue Probability (Pf) on Each Host: Pf<0.01

C
he

ck
po

in
tin

g
In

te
rv

al

The cost of re-execution on each host

Alg1: Equidistant-estimation
Alg2: Equidistant-enumeration
Alg3: Equicost

Execution Cost on a Host with Pf<0.01

0 2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

90

100
Failrue Probability (Pf) on Each Host: Pf<0.001

C
he

ck
po

in
tin

g
In

te
rv

al

The cost of re-execution on each host

Alg1: Equidistant-estimation

Alg2: Equidistant-enumeration
Alg3: Equicost

0 2 4 6 8 10 12 14 16 18 20
20

40

60

80

100

120

140

160

180

200
Failrue Probability (Pf) on Each Host: Pf<0.001

T
he

 C
os

t
of

 V
ar

ia
bl

e
P

ar
t

Re-execution Cost on a Host

Alg1: Equidistant-estimation

Alg2: Equidistant-enumeration
Alg3: Equicost

Execution Cost on a Host with Pf<0.01

Execution Cost on a Host with Pf<0.001 Execution Cost on a Host with Pf<0.001

Proceedings of the Fifth International Conference on Grid and Cooperative Computing (GCC'06)
0-7695-2694-2/06 $20.00 © 2006

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 8, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

interval will become bigger. In terms of the system
cost, Algorithm 2 (equidistant by enumeration) gives
the best performance, while Algorithm 1 (equidistant
with failure rate estimation) is always the worst.
Algorithm 3 (equicost) leads to similar system cost
with Algorithm 2, but it is much more flexible and
suitable for an MA system as we discussed at the end
of the last section.

6. Conclusions and Future Works

MA system has a different system model from
conventional computer systems in solving the
checkpoint placement problem. In this paper, we have
proposed to model the problem for MA systems using
the homogeneous discrete-parameter Markov chain.
Based on this model and two widely adopted
checkpointing strategies, we designed three checkpoint
placement algorithms for MA system. Through
simulations we found out that the algorithm based on
equicost checkpointing strategy achieved the best
trade-off between checkpointing cost, system
performance, and flexibility.

In this paper, we only considered the singe MA’s
independent checkpointing. However, coordinated
checkpointing is needed for a group of mobile agents.
How to determine the optimal checkpoint placement in
an MA group is our future work.

Acknowledgement

This work is supported in part by the University
Grant Council of Hong Kong under the CERG Grants
PolyU 5075/02E and PolyU 5183/04E.

References

[1] J. Cao, G.H. Chan, W. Jia, and T. Dillon, "Checkpointing and
Rollback of Wide-Area Distributed Applications Using Mobile
Agents", Proc. IPDPS2001 - IEEE 2001 International Parallel and
Distributed Processing, April 2001, San Francisco, USA.

[2] D. Chess, C. harrison, and A. Kershenbaum, “Mobile Agents:
Are They a Good Idea?”, IBM Research Report, RC 19887 (#88465)
3/16/95.

[3] D.B. Lange and M. Oshima, “Seven Good Reasons for Mobile
Agents”, Communication of the ACM, Vol. 42, No. 3, March 1999.
pp. 88-89.

[4] E. N. Elnozahy, D. B. Johnson, Y. M. Wang. “A Survey of
Rollback-Recovery Protocols in Message Passing Systems”, ACM
Computer Surveys, Volume 34, Number 3, September 2002 pp.
375-408

[5] Xinyu Chen and Michael R. Lyu “Performance and Effectiveness
Analysis of Checkpointing in Mobile Environments” Proceedings of

the 22nd International Symposium on Reliable Distributed Systems
(SRDS’03) Florence, Italy, 131-140

[6] E. Gelenbe and D. Derochette, “Performance of Rollback
Recovery Systems under Intermittent Failures,” CO”. ACM 21(6)
pp. 493-499 (June 1978).

[7] E. Gelenbe, “On the Optimum Checkpoint Interval,” Journal of
the ACM 26(2) pp. 59-270 (Apr. 1979).

[8] K. Mani Chandy, James C. Browne, Charles W. Dissly, and
Werner R. Uhrig, “Analytic Models for Rollback and Recovery
Strategies in Data Base Systems,” IEEE ransactions on Software
Engineering SE-l(1) pp. 100-1 10 (March 1975).

[9] A. Mohindra, A. Purakayastha, and P. Thati, “Exploiting
nondeterminism for reliability of mobile agent systems,” in Proc. Int.
Conf. Dependable Systems Networks, Los Alamitos, CA, 2000, pp.
144–153.

[10] Victor F. Nicola and Johannes M. Van Spanje, “Comparative
Analysis of Different Models of Checkpointing and Recovery,”
IEEE Trans. Software Engineering 16(8) pp. 807-821 (Aug. 1990).

[11] Oliner, A.J.; Sahoo, R.K.; Moreira, J.E.; Gupta, M.;
“Performance Implications of Periodic Checkpointing on Large-
Scale Cluster Systems”. Proceedings. 19th IEEE International
Symposium on Parallel and Distributed Processing, 04-08 April 2005
Page(s):299b - 299b

[12] Taesoon Park; Ilsoo Byun; Hyunjoo Kim; Yeom, H.Y.; “The
performance of checkpointing and replication schemes for fault
tolerant mobile agent systems” 2002. Proceedings. 21st IEEE
Symposium on Reliable Distributed Systems, 13-16 Oct. 2002

[13] J. S. Plank and W. R. Elwasif. “Experimental assessment of
workstation failures and their impact on checkpointing systems”. In
28th International Symposium on Fault-Tolerant Computing, pages
48–57, Munich, June 1998.

[14] Gyung-Leen Park; Hee Yong Youn; Hyun-Seung Choo;
“Optimal checkpoint interval analysis using stochastic Petri net”.
Proceedings. 2001 Pacific Rim International Symposium on
Dependable Computing. 17-19 Dec. 2001 Page(s):57 – 60

[15] Kang G. Shin, Tein-Hsiang Lin, and Yann-Hang Lee, “Optimal
Checkpointing of Real-Time Tasks,” IEEE Transactions on
Computers C-36(11) pp. 1328-1341 (NOV. 1987).

[16] Asser N. Tantawi and Manfred Ruschitzka, “Performance
Analysis of Checkpointing Strategies.” ACM Transactions on
Computer System 2(2) pp. 123-144 (May 1984).

[17] K. F. Wong and M. Franklin. “Checkpointing in distributed
systems”. Journal of Parallel & Distributed Systems, 35(1):67–75,
May 1996.

[18] Chenggang Wu; Shaohui Liu; Bo Wang; Zhongzhi Shi; Hua
Gu; “Configurable mobile agent and its fault-tolerance mechanism”
Proceedings of International Conference on Computer Networks and
Mobile Computing, 16-19 Oct. 2001 Pages: 380-389

[19] John W. Young, “A First Order Approximation to the Optimum
Checkpoint Interval,” Communications of the ACM 17(9) pp. 530-
531 (Sept. 1974).

[20] A. Ziv and J. Bruck. “An on-line algorithm for checkpoint
placement”, IEEE Transactions on Computers, 46(9):976–985,
September 1997.

Proceedings of the Fifth International Conference on Grid and Cooperative Computing (GCC'06)
0-7695-2694-2/06 $20.00 © 2006

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 8, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

