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Abstract 

 
Checkpointing is a fault tolerance technique widely 

used in various types of computer systems. In 
checkpointing, an important issue is how to achieve a 
good trade-off between the recovery cost and the 
system performance. Excessive checkpointing would 
result in the performance degradation due to the high 
costly I/O operations during checkpointing. Equidis-
tant and equicost are two well-known checkpointing 
strategies for addressing this issue. However, there is 
no study on these strategies catering for a mobile 
agent (MA) system, which has different characteristics 
with conventional systems. In this paper, based on an 
analysis of the behaviours of an MA system, we find 
that it can be modelled as a homogeneous discrete-
parameter Markov chain, which is different from the 
models used in conventional systems. Therefore, the 
analytic methods and corresponding results for 
conventional systems cannot be adopted directly for an 
MA system. Based on our proposed model, we study 
the equidistant and equicost checkpointing strategies 
and propose checkpoint placement algorithms for MA 
systems. Through simulations we evaluate the 
performance of our proposed algorithms and the result 
shows that the equicost strategy based algorithm is 
most suitable for an MA system.  
 
1. Introduction 
 

A mobile agent (MA) is a program that can migrate 
from host to host in a network of heterogeneous 
computer systems to execute the tasks specified by its 
owner. Characteristics of MAs include mobility, 
autonomy, asynchrony, encapsulation of protocols, 
adaptability, support for mobile computing 
(disconnected operations), etc. Among these 
characteristics, autonomy is an attractive feature which 
allows an MA to determine its itinerary dynamically. 
As a result, an MA can have a self-initiated itinerary 

which is more flexible than pre-defined itinerary. 
Combining the characteristics of distributed computing 
and mobile computing, MA has been used for 
structuring and coordinating distributed applications [1, 
2, 3]. Many of these applications require high degree of 
reliability, such as electronic commerce, network 
management, and information collection and fusion. 
Therefore, fault tolerance is a key issue in designing an 
MA system.  

Checkpointing is a technique to achieve fault 
tolerance and has been widely used in various kinds of 
computer systems. It is also proposed for MA systems, 
where a checkpoint is the copy of an MA’s state, 
including the partial result obtained and the execution 
status, which can be used during recovery to resume 
the execution of the MA. Normally, an MA system 
periodically saves checkpoints of the MAs and stores 
them on stable storage. When the failure of an MA is 
detected by the system, it will recover the MA by 
rolling back to its last checkpoint. Checkpointing can 
be naturally done in an MA system: serializing an MA 
for the migration to the next host effectively constructs 
a checkpoint. This is especially true for most MA 
systems developed in Java. Various kinds of 
checkpointing techniques have been developed [4], 
including independent (or uncoordinated), coordinated, 
or communication-induced schemes. Independent 
checkpointing is the simplest scheme, which allows an 
MA to take checkpoints periodically without any 
coordination with other MAs. Independent 
checkpointing has been used to store the persistent 
state of a single MA and guarantee the reliable 
migration of MAs [9, 12, 18].  

Checkpointing involves high costly I/O operations, 
so how to achieve a good trade-off between the 
checkpointing cost and system performance is a critical 
issue. Excessive checkpointing would result in the 
performance degradation during normal operation. On 
the contrary, deficient checkpointing would incur 
expensive recovery cost upon a failure. There has been 
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much research on how to determine the optimal 
checkpointing interval, which is referred to as the 
checkpoint placement problem if the optimal 
checkpointing interval cannot be achieved. Equidistant 
and equicost are the two well-known checkpointing 
strategies. The equidistant strategy considers a 
deterministic productive time between two neighboring 
checkpoints, while the equicost strategy allows a 
checkpoint to be made when the expected re-execution 
cost is equal to the checkpointing cost. With the 
occurrence of failures following a Poisson process, 
these strategies become identical and will result in the 
optimal checkpointing interval [16] in conventional 
systems.  

Currently, for mobile agent systems, there is no 
work done on how to determine a proper checkpointing 
interval for an MA and no study on how the above two 
strategies can be applied. In this paper, we firstly 
analyze the behaviours of an MA system.  Based on 
the analysis, we find that it can be modeled as a 
homogeneous discrete-parameter Markov chain, which 
is different from the models used in conventional 
systems. Therefore, the analytic methods and 
corresponding results for conventional systems cannot 
be adopted directly for an MA system. Based on our 
proposed model, we study the equidistant and equicost 
checkpointing strategies and propose three checkpoint 
placement algorithms for MA systems. Through 
simulations we evaluate the performance of our 
proposed algorithms and the result shows that the 
equicost strategy based algorithm is most suitable for 
an MA system. 

The rest of the paper is organized as follows. 
Section II briefly describes previous works. Section III 
defines our system model. A scheme to determining 
the optimal checkpointing interval for an MA under 
ideal condition and algorithms for checkpoint 
placement for an MA under general condition are 
proposed in Section IV. Simulation results are 
presented in Section V. We conclude this paper in 
Section VI. 
 
2. Related works 
 

Determining the optimal checkpointing interval has 
been studied for a long time. Most works focus on the 
uniprocessor systems [6, 7, 8, 10, 15, 16, 19]. They use 
execution time as the basic metric to evaluate the 
optimal checkpointing interval, and adopt the 
equidistant or equicost checkpointing strategies. A 
common assumption is that the execution time of the 
target program is known in advance. 

[19] proposed a first-order approximation to the 
optimum checkpoint interval. The author assumes a 

system in which a failure is detected as soon as it 
occurs, the checkpointing interval is fixed, the 
checkpointing time is constant, and no failures occur 
during error recovery. In addition to these assumptions, 
the author adopted the equidistant strategy and 
assumed that the occurrence of failures are essentially 
random (a Poisson process), with the failure rate λ. 
Then the mean time Tf between failures is Tf = 1/λ, 
and the density function P(x) for the time interval of 
length x between failures is given by P(x) =λe-λx. 
This failure assumption has been used by most of the 
papers [5, 6, 7, 17, 20]. 

In [16], the authors relax the above assumptions in 
three ways: by considering general failure 
distributions, by allowing checkpointing intervals to 
depend on the reprocessing time and the failure 
distribution, and by allowing failures to occur during 
checkpointing and error recovery. They first discussed 
the equidistant checkpointing strategy and found that 
the system availability resulting from using the 
strategy depended only on the mean of the failure 
distribution. Then, the equicost strategy was introduced 
which is a failure-dependent and reprocessing-
independent checkpointing strategy. For Weibull 
failure distributions, the authors showed that the 
equicost strategy achieved higher system availability 
than the equidistant strategy. 

Instead of using the execution time as a metric, in 
[20], the authors presented an online algorithm for the 
placement of checkpoints. This algorithm keeps track 
of the size of the state of a program and a checkpoint is 
made when it is small. 

Solutions have also been developed for parallel and 
distributed systems [13, 17] and mobile computing 
systems [5]. In [13, 17], the optimal checkpointing 
interval in synchronous checkpointing for multiple 
processes is considered based on a mean failure time. 
In [5], the authors derived an approximation to the 
optimal message number interval between checkpoints. 
In mobile computing environments, as part of the total 
application execution time, messages passing time is 
affected by link bandwidth, making it difficult to 
predict the execution time of a program. Therefore, to 
determine the checkpoint placement the authors 
utilized the received computational message number. It 
is assumed that the inter-failure time is exponentially 
distributed. 

A common characteristic of all of these works is 
that, in the system model, the execution of the 
programs to be checkpointed is continuous and has a 
long execution period, and a uniform failure rate 
during the entire execution of the program is known in 
advance. In our study of MA systems, however, the 
execution of an MA is discrete in time because the MA 
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executes for a while at a host, and then stops execution 
to migrate to another host. This results in a quite 
different system model which required new solutions. 

 
3. System model 
 

As mentioned above, algorithms for checkpoint 
placement in conventional computer systems cannot be 
ported directly to MA systems because the system 
model of MA system is different from that of 
conventional systems. In an MA system, the MA 
carries out its assigned tasks on the hosts along its 
itinerary. The tasks are separated by the migration 
operations.  

Within each migration operation, the MA 
terminates its execution on the previous host and 
prepares for the migration. The preparation includes 
releasing the allocated resources (stack, memory) and 
packing the code and data sections of the MA into an 
image. Then the image will be transmitted to the next 
host. When the next host receives the image, it will 
perform system defined checking (i.e., CRC checking) 
to guarantee that the image is not damaged during the 
transmission, and incarnate the image to a new MA if 
the image passes the checking. The new MA will 
continue the execution on this new host. Since the MA 
is executing on a new host, the execution environment 
is totally new and has no any relation with the previous 
host; the stack and memory for this agent is 
reestablished. Therefore, we can claim that the failure 
of the MA on the current host is independent with its 
failure on the previous host. This characteristic 
corresponds exactly to the Markov chain property. 
Consequently, the execution of an MA in an MA 
system can be modelled as a discrete-parameter 
Markov chain. In the following subsections, we first 
define this model, and then propose checkpoint 
placement algorithms for MA systems. 

We consider an MA system model where a single 
MA executes and migrates along a predefined or self-
initiated itinerary. With a predefined itinerary, the 
agent knows all the hosts that it will visit, while with a 
self-initiated itinerary, the agent only knows the first 
host it will visit and the following hosts are determined 
by the execution results on the previous host. The 
itinerary consists of N hosts, Host0, Host1,…, HostN-1, 
and a home node, Home. Home launches the MA to 
Host0 reliably, so we consider that the MA starts its 
execution on Host0.  

We assume that a mobile agent can take an 
independent checkpoint right after it lands on a host 
and before starts its execution. It cannot take a 
checkpoint during its execution on a host. After the 
agent finishes its execution on a host, it will migrate to 

the next host according to the itinerary. This process 
will continue until all the hosts have been visited. 
During the migration, only the code and data 
(computing results) of an MA on previous host will be 
transmitted to the next host. On the new host or during 
the recovery process from a checkpoint, the MA is 
incarnated and its execution environment is 
reconstructed. Based on these observations, we assume 
that all the failures of an MA are independent from 
each other. Accordingly, the execution of an MA is 
modelled as a discrete-parameter Markov Chain.  

For simplicity, we assume that the stationary 
transition probabilities of this Markov Chain are fixed. 
Therefore, it is a homogeneous discrete-parameter 
Markov Chain. Let I be the state space and T be the 
parameter space, both are finite and discrete. 

 
I = {0, 1, 2, …N+1}, N>1;   T = {0, 1, 2, …}. 
 

 
Figure 1 illustrates the state transition graph for an 

MA’s execution. In state space I, state i (0≤i≤N-1) 
denotes the Execution State of an MA on Hosti. Failure 
may happen during the execution and migration of the 
MA with probability Pfi on Hosti. Pfi is independent 
from each other. A failure is detected immediately and 
the agent recovers and starts the re-execution from the 
latest checkpoint with probability 1. Such a failure-
recovery process is called a failure-recovery round, 
which may happen Xi times on Hosti. Xi is a random 
variable and its probability distribution is: 
P(Xi)=(Pfi)Xi. 

The probability of successfully finishing the 
execution on the current host and landing on a new 
host is Psi (Psi =1- Pfi). Psi is independent from each 
other. The last state N+1 is the Returnee State, which 
means that the MA has returned home. In Returnee 
State, we assume that the MA is able to recover under 
the user’s control with probability 1, no matter what 
failure occurs. 

The purpose of a checkpoint placement algorithm is 
to determine the proper (or optimal) checkpointing 
interval so as to reduce (or minimize) the system cost, 
which consists of the cost of making checkpoints and 
the cost of recovery when failures happen. The 

Ps0 

Pf0 

1 20 N ….. 

1 

Returnee 
State 

Execution 
State on  
Host1 Psn-1 

 N-1 

Figure 1 State Transition Graph
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recovery cost includes the cost of incarnating the new 
MAs from the checkpoints and the re-execution cost. 
Table 1 shows the notions for the various types of cost 
in this model. 

 
Table 1 Various Types of Cost 

Csys Overall system cost 
Ci Recovery cost in one fail-recovery on Hosti 
Ccp Cost of making a checkpoint 
CI Cost of incarnating an MA from a checkpoint 
Ei Cost of the execution on Hosti 
CXi Re-execution cost on Hosti 

 
Ccp is the cost to store a checkpoint on disk while CI 

is the cost to read a checkpoint from the disk. Although 
the direction of the data flow is different, the cost is 
similar: both of them can be evaluated by the cost of 
I/O operations and have no relation with specific 
applications. However, Ei is related with the specific 
application on Hosti because different application has 
different execution cost. Therefore, we assume that Ccp 
and CI are known in advance. Ei is provided by the MA 
platform of Hosti. Pfi is also maintained by the MA 
platform of Hosti. An MA does not know Ei and Pfi 
before it retrieves them from the MA platform of Hosti. 
 
4. Checkpoint placement algorithms 
 

The algorithms proposed in the next section are 
based on the equidistant and equicost checkpointing 
strategies. The principle of these checkpointing 
strategies is to seek a better balance between the 
expected recovery cost and the checkpointing cost. An 
optimal checkpointing interval can be achieved in 
conventional systems if the failure rate is the same 
during the entire execution duration of a program. 

Similarly, we can also get the optimal checkpointing 
interval for an MA if all the failure rates Pfi are the 
same. Otherwise we cannot get the optimal 
checkpointing interval. In our model, checkpointing 
cost Ccp is known in advance, so we just need to derive 
the expected recovery cost within a checkpointing 
interval to seek the balance between Ccp and recovery 
cost. In following, we firstly determine the optimal 
checkpointing interval for an MA under an ideal 
condition (all the Pfi are the same), and then using the 
result to derive heuristics for designing checkpoint 
placement algorithms in a realistic MA system, where 
Pfi are independent in nature. 

 
4.1 Recovery cost in a checkpointing interval 

 
With the reference to Figure 2, suppose an agent 

takes a checkpoint on Hosti before it initiates its 
execution, and the agent takes its next checkpoint on 
Hosti+n+1. The checkpoint interval is defined as the 
number of hosts between Hosti and Hosti+n (including 
Hosti and Hosti+n). The probability of the MA failure 
on Hosti is Pfi, and the number of failure-recovery 
rounds is Xi with P(Xi)=(Pfi)Xi. The expected number of 
failure-recovery rounds (Ri) is given by Equation 1: 

Ri = E(Xi) =
r

r
fiPr )(

1
∑

∞

=
∗ = Pfi/(1-Pfi)2  (0≤i≤N-1)  (1) 

The recovery cost Ci on Hosti consists of the 
incarnation cost CI and the re-execution cost Cxi, which 
refers to the cost of the execution starting from the 
checkpointing point to the failure point. Since the 
failure point is evenly distributed in the duration of an 
MA’s execution on a host (as shown in Figure 2), the 
expected re-execution cost in one failure-recovery 
round is given by Equation 2. 

Ps 

0 i  N ….. 

Figure 2 The Calculation of System Cost in a Checkpointing Interval 
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E(CXi) = ∫ =iE

iEdxx
0

)/( ∫ =
iE

i xdxE
0

)/1( Ei/2     (2) 

Accordingly, the expected recovery cost on Hosti is:  

E(Ci) = Ri*(CI+ Ei/2)     (3) 

For a failure-recovery round on Hosti+1, since the 
recovery should start from Hosti, the expected recovery 
cost on Hosti+1 is: E(Ci+1)= Ri+1*(CI+Ei+Ei+1/2) and 
the expected recovery cost on Hosti+n is: E(Ci+n) = 
Ri+n*(CI+Ei+…+Ei+n/2).  

Since the failures are independent, the total 
expected recovery cost for the checkpoint interval 
illustrated in Figure 2 is given by Equation 4 below 
(Ci,i+n denotes the total expected recovery cost from 
Hosti to Hosti+n): 

E(Ci,i+n) = E(∑
=

+

n

k
kiC

0
)=∑

=
+

n

k
kiCE

0

)(    (4) 

Together with the cost for the checkpointing and 
execution cost within this interval, the overall system 
cost can be calculated by Equation 5: 

Csys=Ccp+E(Ci,i+n)+(n+1)Ei   (5) 
 
4.2 The Optimal Checkpointing Interval under 
an Ideal Condition 
 

If the cost of checkpointing and the failure rate are 
fixed during the execution of a program, the optimal 
placement strategy would be to place the checkpoints 
in fixed equidistant intervals [16, 20]. In our model, 
Ccp is fixed, but Pfi are different from each other (the 
same to Ei). To derive the heuristic rules for checkpoint 
placement algorithms in a realistic MA system where 
Pfi are independent in nature, we first consider an ideal 
condition: all the Pfi and Ei are the same.  

Fixing Pfi makes the MA system to have a fixed 
failure rate. Having Ei with the same value on all the 
hosts makes the intervals equidistant if each interval 
contains the same number of hosts. Since we do not 

consider checkpointing in the middle of an MA’s 
execution on a host, as shown in Figure 3, the 
granularity of the checkpointing interval is one host. 
To determine the optimal interval, we assume that an 
interval contains x hosts. Then the expected total 
system cost is calculated as follows:  
 
Csys = (H/x)[x*CI +(RE+(x-1)RE)(x-1)/2+xER/2+Ccp] 
+H*E  =(H/x)[x*CI+x2RE/2+Ccp]+H*E= 
H*CI+xHRE/2+HCcp/x+H*E     (x=1,2,3,…N)      (6) 
 

To get x that produces minimal value for Equation 
(6), we consider that x is continuous and then we can 
get x by derivative. 

Csys’= REH/2 - CcpH/x2 
       (7) 

Csys’’= 2 CcpH/x2                     
  (8) 

Since Csys’’>0, Csys has the minimal value. Let 
Csys’=0, we can get the value of x to make Csys 
minimal.  

Csys’= REH/2 - CcpH/x2=0     
      x= RECcp /2           (10) 

With the optimal x derived from Equation 10, the 
cost of the expected total re-execution cost in an 
interval (Figure 3) can be calculated using Equation 11 
below. 

 ∑
=

x

i
XiC

1
= (RE+(x-1)RE)(x-1)/2+xER/2= Ccp    (11) 

Equation 10 implies that the optimal checkpointing 
interval is only related with Ccp , R and E, and has 
nothing to do with CI. Equation 11 tells us that within 
an optimal checkpointing interval, the expected total 
re-execution cost (variable part in Figure 3) equals 
exactly to Ccp. The implications can be used as 
heuristic rules in designing checkpoint placement 
algorithm based on the equicost strategy. However, 
notice that Equation 11 is gotten under the assumption 
that x is continuous, but x is actually discrete. 

Constant part:  

Figure 3. The cost in a Checkpointing Interval  

Interval = x 

Number of Hosts = H 

Variable part 

CI n

x

n
n CR ∗∑

=1

 

R2*(E1+E2/2) 

R3*(E1+E2+E3/2) 

R4*(E1+E2+E3+E4/2) 

E1 E2 E3 E4 

R1*(E1/2) 

R1CI R2CI R3CI R4CI 

Proceedings of the Fifth International Conference on Grid and Cooperative Computing (GCC'06)
0-7695-2694-2/06 $20.00  © 2006

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 8, 2009 at 23:11 from IEEE Xplore.  Restrictions apply.



Therefore, the optimal value should be the integer that 
is neighboring x. In Figure 4, the optimal interval 
should be “3” or “4”. We must determine the optimal 
interval by checking which value leads to a smaller 
result of Equation 6. 
 
4.3 Checkpoint Placement Algorithms  
 

In a real MA system, the failure rates cannot be the 
same on all the hosts and links, so we need to design 
algorithms working in general conditions. From the 
analysis in Section 4.2, we propose three checkpoint 
placement algorithms.  

Algorithm 1: Equidistant with failure rate 
estimation: before an MA starts its travelling, it 
estimates a uniform failure rate for the MA system and 
decides the checkpointing interval by using Equation 
10 in Section 4.2. The estimation can be made by using 
all the Pfi collected from the MA platforms on each 
host. 

 
Algorithm 2: Equidistant by enumeration: before an 

MA start its travelling, it collects all the Pfi maintained 
by the MA platforms on the hosts, and enumerate the 
results of Equation 6 with the value of x from 1 to H to 
get the x that leads to the smallest result.  

Algorithm 3: Equicost: MA calculates the variable 
part (Cvar) of the re-execution cost before its execution 
on each host. A checkpoint is made when Cvar is equal 
to Ccp or greater than Ccp (according to the heuristic 
rules described in Section 4.2).  

The pseudo-code of these algorithms is shown in 
Appendix.In Algorithm 1, to collect Pfi from all the 
hosts along the itinerary, a predefined itinerary is 
needed. Since we require only an estimated average 
failure rate, the interval obtained here is only an 
approximate optimal interval. In Algorithm 2, a 

Algorithm 1: 

itinerary= MA.GetItinerary(); // predefined Itinerary is needed;  
Pf[ ] = MA.GetFailureProbability(itinerary); //Collect Pf; 
AvrPf = MA.AveragePf(Pf[ ]);    // Eastimat average failure rate; 
R= AvrPf /Power(1- AvrPf);      //Get R according Equation 1; 
 
OptInterval_float = Sqrt(Ccp/R*E); //get interval (Equation 10); 
OptInterval_Ceiling=Ceiling(OptInterval_float); 
OptInterval_Floor=Floor(OptInterval_float); 
//(Calculate the system cost according to Equation 6); 
OptC=OptInterval_Ceiling*H*R*E/2+H*Ccp/OptInterval_Ceiling
OptF=OptInterval_Floor*H*R*E/2+H*Ccp/OptInterval_Floor; 
//the integer leads to smaller cost becomes the checkpoint interval; 
if (OptC< OptF) 
  OptInterval= OptInterval_Ceiling; 
else 
  OptInterval= OptInterval_Floor; 
MA.Context.CpInterval= OptInterval; 
 MA.Migration(itinerary);    // every “OptInterval” hosts. 

Algorithm 2:  

itinerary= MA.GetItinerary(); // predefined Itinerary is needed;  
Pf[ ] = MA.GetFailureProbability(itinerary); //Collect Pf; 
 
for i=1 to itinerary.NumberOfHosts //Calculate R (Equation 1) 
    R[i]=Pf[i]/Power(1- Pf[i]); 
    RC[i]=E* R[i];  //RC[i]: the re-exe cost on single host i; 
end 
 
for interval=1 to itinerary.NumberOfHosts //Enumerate cost; 
    TC=Ccp; // Initiate the total cost; 
    accumulateC=0; // Temp var: record re-exe cost; 
    currentC=0;  //Temp var: count current cost; 
    index=1; //Temp var: record how many host has passed; 
  
    for host=1 to itinerary.NumberOfHosts 
        for i=1 to index  //count the re-exe cost if fail; 
           accumulateC=accumulateC+RC[host-i+1]; 
       end 
        currentC = currentC + accumulateC; 
        if (index==interval) //Pass_hosts= interval, cp is made; 
            TC=TC+Ccp+currentC; //count the system cost; 
            accumulateC=0;  //Restore the temp variable; 
            currentC=0;   //Restore the temp variable; 
            index=1;    //Restore the temp variable; 
        else 
            index=index+1; //Still not reach the interval boarder 
        end 
    end 
    if (index<interval)   //reach the tail of the itinerary; 
       TC =TC+currentC; 
    end 
    allresults[interval]=TC;  
end  
OptInterval = MiniIndex(allresults[]);  
MA.Context.CpInterval= OptInterval; //MA will carry the interval 
MA.Migration(itinerary);          
--------------------------------------------------------------------------------- 
Algorithm 3:  

//MA initiation at home node; 
MA.context={Ccp, E, FirstHost=TRUE, TC=0,  
accumulateC=0, currentC=0, index=1};  
MA.Launch(firsthost); // launched to the first host 
 
//Landing Procedure; 
if (MA.FirstHost== TRUE) 
  TC=Ccp; //A checkpoint is made at the first host in an interval; 
  MA.FirstHost== FALSE; 
end 
Pf=MAP.getPf();  //Pf is maintained by the MA platform on a host; 
R=Pf/Power(1- Pf);  //Calculate R according Equation 1 
RC[index]=E*R;  //RC[i]: re-execution cost on a single host i; 
 
for i=1 to index  // re-exe cost if failure happen on this host; 
  accumulateC=accumulateC+RC[i]; 
end  
currentC = currentC + accumulateC; //re-exe cost for past hosts; 
if (currentC>=Ccp) // re-exe cost >=Ccp, a checkpoint is made; 

TC=TC+Ccp+currentC; //record the system cost 
  accumulateC=0; //Restore the temporary variable; 
  currentC=0; //Restore the temporary variable; 
  index=1; //Restore the temporary variable; 
else 
  index=index+1;  //Still not reach the interval boarder 
  if (ReturnedHome=TRUE)  //reach the tail of the itinerary; 
    TC=TC+currentC; 
end 
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predefined itinerary also is necessary for the Pfi 
collection. All the possible intervals will be tried to get 
the best equidistant interval. Obviously, Algorithm 1 
cannot give a better equidistant interval than Algorithm 
2, but the time complexity of Algorithm 1 (O(1)) is 
much lower then that of Algorithm 2 (O(H2)). Compare 
with Algorithms 1 and 2, the big advantage of 
Algorithm 3 is that it does not require a pre-defined 
itinerary. The decision on checkpointing is made 
during the execution of an MA. As mentioned in 
Section 1, a most prevailing characteristic of MA is the 
autonomy, which allows an MA to determine its 
itinerary dynamically. Algorithm 3 has no constraint 
for MA to maintain this characteristic. 
 
5. Performance Evaluation 
 

We need to evaluate the performance of the three 
proposed algorithms to find out which algorithm is the 
best in the sense that achieves the lowest system cost. 
Since we do not assume any distribution for the 
occurrences of failures on the hosts, there is no suitable 
way to make an analytic analysis. Therefore, we have 

carried out simulations to simulate the three algorithms 
using the Markov model shown in Figure 2. 

In our simulations, we consider an MA system with 
100 hosts. On host i, we consider two ranges of failure 
probabilities: Pfif<0.01 and Pfif<0.001. We adopt a 
uniform unit for the system cost, which can be the 
execution time or some other metrics. We assume 
Ccp≥1, E≥1 and CI= Ccp. The execution cost E can be 
less than Ccp if MA’s tasks on hosts are short and have 
no I/O operations; otherwise E is larger than Ccp. Since 
the cost of the constant part (Figure 3) is the same for 
all the three algorithms, we only compare their 
differences on the variable part Cvar. The results shown 
in the following Figure 4 are obtained with Ccp set to 2 
and the execution cost E ranging from 1 to 20. For 
each cost metric, the same simulation is performed 100 
times to get an average value for the checkpointing 
interval and the variable part Cvar. 

Figures 4 illustrate the average checkpointing 
interval and corresponding variable part cost for the 
three algorithms under different failure probability 
ranges. A general tendency observed is that, with the 
failure probability decreasing, the checkpointing 
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interval will become bigger. In terms of the system 
cost, Algorithm 2 (equidistant by enumeration) gives 
the best performance, while Algorithm 1 (equidistant 
with failure rate estimation) is always the worst. 
Algorithm 3 (equicost) leads to similar system cost 
with Algorithm 2, but it is much more flexible and 
suitable for an MA system as we discussed at the end 
of the last section. 
 
6. Conclusions and Future Works 
 

MA system has a different system model from 
conventional computer systems in solving the 
checkpoint placement problem. In this paper, we have 
proposed to model the problem for MA systems using 
the homogeneous discrete-parameter Markov chain. 
Based on this model and two widely adopted 
checkpointing strategies, we designed three checkpoint 
placement algorithms for MA system. Through 
simulations we found out that the algorithm based on 
equicost checkpointing strategy achieved the best 
trade-off between checkpointing cost, system 
performance, and flexibility.  

In this paper, we only considered the singe MA’s 
independent checkpointing. However, coordinated 
checkpointing is needed for a group of mobile agents. 
How to determine the optimal checkpoint placement in 
an MA group is our future work. 
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