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Abstract—Mobile ad hoc networks (MANETs) introduce new 

challenges to designing algorithms for solving the distributed 
mutual exclusion (MUTEX) problem. In this paper we propose 
the first permission-based MUTEX algorithm for MANETs. In 
order to reduce the messages cost, the algorithm uses the so 
called "look-ahead" technique, which enforces MUTEX only 
among the hosts currently competing for the critical section (CS). 
We propose mechanisms to handle the "doze" mode and 
"disconnection" of mobile hosts. The constraint of FIFO channel, 
which is not feasible in MANETs, is also relaxed. Using timeout, a 
fault tolerance mechanism is introduced to tolerate transient link 
and host failures. The simulation results show that the proposed 
algorithm works well under various mobility levels, load levels 
and system scales, especially when the mobility is high or load 
level is low. It is also shown that the algorithm has good 
scalability, especially when most of the requests come from a few 
active hosts. 

Keywords— Algorithm; Distributed Computing; Mobile Ad 
Hoc Network; Mobile Computing; Mutual Exclusion 

I. INTRODUCTION 
The characteristics of mobile computing system, in the 

aspects of communication, mobility and resource constraints 
[1][2], make the development of algorithms for solving 
distributed control problems much more difficult than 
traditional distributed systems. Mutual exclusion (MUTEX) is 
one of such problems, where a group of hosts intermittently 
require to enter the Critical Section (CS) in order to gain 
exclusive access to the shared resource. A solution to the 
MUTEX problem must satisfy the following three correctness 
properties: 
• Mutual Exclusion (safety): At most one host is allowed to 

enter the CS at any moment; 
• Deadlock Free (liveness): If any host is waiting for the 

CS, then in a finite time some host enters the CS;  
• Starvation Free (Fairness): If a host is waiting for the CS, 

then in a finite time the host enters the CS. 
Much work has been done on the MUTEX problem in 

distributed systems and many solutions have been presented 
[3]. These solutions can be categorized into two classes: token-
based and permission-based. In token-based algorithms, a 
unique token is shared among the hosts. A host is allowed to 
enter the CS only if it possesses the token.  While in a 
permission-based algorithm, the host that wants to enter the 
CS must first obtain the permissions from other hosts by 
exchanging messages.  

During the past several years, efforts have been made to 
solve the MUTEX problem in mobile computing systems, 
including both infrastructured mobile networks, which consist 
of a large number of mobile hosts (MHs) and relatively fewer, 

but more powerful, mobile support stations (MSSs) [4][6][8] 
and mobile ad hoc networks (MANETs), which consist of 
MHs only [5][7][9][12]. In infrastructured mobile networks, 
the MSSs can act on behalf of the MHs.  However, there is no 
MSS in a MANET, which makes the problem more difficult to 
solve. All of the proposed algorithms for MANETs are token-
based algorithms. Although token-based algorithms have some 
desirable features, such as that the hosts only need to keep 
information about their neighbours and few messages are 
needed to pass the privilege to enter the CS, the fatal problem 
of token loss makes these algorithms not robust. What is 
worse, in the MANETs, the mobility and frequent 
disconnections of MHs make token loss a more serious 
problem and the maintenance of a tree or ring topology more 
difficult.  

In this paper, we consider another approach—the 
permission-based approach. We propose the first permission-
based MUTEX algorithm for MANETs. Compared with the 
token-based approach, permission-based algorithms have the 
following advantages: 1) there is no need to maintain the 
logical topology to pass the token, and 2) there is no need to 
propagate any message if no host requests to enter CS. These 
advantages make the permission-based approach well suitable 
for MANETs where all the resources, e.g. the network 
bandwidth and the battery power of the MHs, are limited. A 
problem of the permission-based approach is the large number 
of messages to be exchanged between the MHs. Therefore, to 
design a permission-based algorithm for MANETs, the main 
objective is to reduce the number of messages. In the proposed 
message-efficient algorithm, we use the so called “look-
ahead” technique [4], which reduces the number of messages 
exchanged by keeping the hosts’ competing status for CS. 

Another important problem is to tolerate the link failures 
(e.g. signal shielded) and host failures (e.g. battery exhausted) 
which occur very frequently in MANETs. Furthermore, MHs 
may enter the "doze" mode to save power. These issues have 
not been adequately addressed by existing algorithms. By 
using timeout and retransmitting request messages, the effect 
of intermittent and transient link failures and host failures can 
be removed. By exchanging messages and adjusting the 
Info_set and the Status_set doze mode and disconnection can 
be handled.  

The reminder of the paper is organized as follows. In 
section 2 we present a brief overview on the related work, 
describing algorithms for distributed MUTEX for MANETs. 
Section 3 first defines the system model and the assumptions, 
and then presents the design of the algorithm proposed in this 
paper. In section 4, we present the proof of the correctness of 
the proposed algorithm. The results of the performance 
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evaluation are described and discussed in section 5. Finally, 
section 6 concludes the paper with the description of our 
future work. 

II. RELATED WORKS 
During the past several years, algorithms for solving the 

MUTEX problem in MANETs have been proposed. All the 
algorithms make use of a token circulated along a logical ring 
or passed in a logical tree consisting of all the MHs. 

Baldoni et al [7] presented an algorithm which aims at 
reducing the meaningless control messages when no host 
requests to access the CS. Different from general token-
circulating algorithms, in the algorithm, the structure of the 
logical ring is computed on-the-fly, and there is a coordinator 
for each round. A host needs to send out a request message to 
the coordinator when it wants to access the CS. Thus, the 
token needs not to be circulated if there is no request for CS. 
Under low load conditions, this algorithm can greatly reduce 
the messages exchanged.  

A token-asking algorithm is proposed in [9], which is 
derived from Raymond’s tree-based algorithm [11] with the 
improvement to handle broken links caused by host mobility. 
This algorithm defines a structure mapped to the real topology 
of the network which is represented by a Direct Acyclic Graph 
(DAG) of token-oriented pointers, maintaining multiple paths 
leading to the host holding the token. Like in [11], requests are 
forwarded to the token holder along a path in the DAG. The 
token is delivered along the reverse path to the requesting 
host. When a host cannot find a path to reach the token holder 
because of host movements, it will initiate the update 
procedure to find a new path to the token holder. When a 
reverse path is broken, the token holder need to search the 
requesting host first. The advantage of this algorithm is that it 
requires hosts to keep information only about their immediate 
neighbors. In [10] a variation of the algorithm in [9] is 
presented to eliminate the overhead introduced by the process 
for searching the requesting host. Instead of that the token 
holder searches the hosts, when a host detects that there is a 
failure of an outgoing link, it resends its request. 

Malpani et al [12] proposed a parametric token token-
based algorithm with many variations. In the algorithm, a 
dynamic logical ring is imposed on the MHs. The successor of 
a host in the ring is computed on-the-fly. By applying different 
polices to determine the successor, the authors presented 
different variations. Based on the Local-Recency(LR) 
variation, Chen et al [13] proposed a self-stabilizing MUTEX 
algorithm for MANETs. The algorithm uses dynamic virtual 
rings formed by circulating tokens to reflect the changing 
topology. It requires that the topology be static while the 
algorithm is converging.  

As mentioned before, token-based algorithms have some 
desirable features, such as that the hosts only need to keep 
information about their neighbours and few messages are 
needed to pass the privilege to enter the CS. However, the 
fatal problem of token loss makes these algorithms not robust. 
What is worse, in MANETs, the mobility and disconnections 
of MHs make token loss a more serious problem and the 
maintenance of a tree or ring topology more difficult.  

III. DESIGN OF THE  PROPOSED ALGORITHM   
Before we describe the proposed algorithm, we first briefly 

introduce the “look-ahead” technique for distributed MUTEX 
and discuss the issues in applying the technique to MANETs.  

The "look-ahead" technique was first introduced in [4] to 
solve the MUTEX problem in infrastructured mobile 
networks. The algorithm is based on the well-known Ricart-
Agrawala algorithm [14], in which, when a host wants to enter 
CS, it sends a request to all the other hosts to collect 
permissions. Requests for CS are assigned globally unique 
priorities using Lamport-like timestamps. When a host Si 
receives a request, it sends a reply if it is not requesting or if 
its priority is lower than that of the incoming request; 
otherwise, it defers the reply. A host enters CS only after it has 
received a reply from every other host. The algorithm in [4] 
made a modification to the Ricart-Agrawala algorithm so that, 
instead of involving all the hosts in the system, MUTEX is 
enforced only among the hosts which are currently competing 
for CS.  On each host Si, there are two sets. The Info_seti 
includes the IDs of those hosts which Si needs to inform when 
it requests to enter CS, and the Status_seti includes the IDs of 
the hosts which would inform Si when they request to enter 
CS. If a host wants to enter CS, it just sends request to the 
hosts in its Info_set. When a host wants to disconnect from the 
network, it offloads the current values of its data structures to 
its serving MSS which would then act on be half of the host in 
the execution of the algorithm.  

In this paper, we apply the “look-ahead” technique to 
design the first permission-based MUTEX algorithm for 
MANETs.  The following issues need to be considered. First 
and most importantly, there is no MSS for MHs in a MANET, 
so some additional steps should be taken to ensure that the 
algorithm can continue execution after a host is disconnected. 
Second, the algorithm in [4] did not provide methods for some 
important functions. There is no method for initializing the 
two key data structures -- the Info_set and Status_set. Third, 
the assumption made about a FIFO channel becomes not 
feasible in MANET because the route between two MHs 
changes from time to time due to the movements of the MHs. 
Implementing a FIFO channel in MANET is very costly. Last 
but not the least, there is no fault tolerance mechanism for 
handling host failures or link failures. 

We propose an efficient method to initialize the Info_set 
and Status_set. We also propose algorithms to handle the 
disconnections and the "doze" mode. When a host wants to 
disconnect from the network or enters the "doze" mode, it 
sends message to other hosts. Both the sending and receiving 
hosts will modify the information maintained in their two sets 
accordingly. When a host wakes up from the "doze" mode, it 
can resume the execution immediately without performing any 
special action. When a host reconnects to the network, it 
informs other hosts and resumes the execution. To relax the 
constraint of FIFO channel, we added a variable Qreq. In [4], if 
a host with higher priority receives the REPLY after the 
REQUEST from one host with a lower priority, the host with 
lower priority would be put into Status_set, and can not get a 
REPLY forever. With the help of Qreq, such request is 
recorded and the host with lower priority would not be put into 
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Status_set after the reception of the REPLY. In this way, the 
problem is fixed. Using timeout, a fault tolerant mechanism is 
developed to tolerate both link and host failures. A timeout 
value is set for each request message sent out.  Intermittent 
and transient link failures and host failures are handled by 
resending request messages when the timeout expires.  

A. System Model and Assumptions 
A MANET consists of a collection of n autonomous MHs, 

S = {S1, S2, …, Sn}, communicating with each other through 
wireless channels. Whether two hosts are connected is 
determined by the signal coverage range and the distance 
between the hosts. Each host is a router and the 
communication between two hosts can be multiple hops. Both 
link failures and host failures can occur. The topology of the 
MANET interconnection network can change dynamically due 
to mobility of hosts and failures of links and hosts.  

At any moment of time, each MH is in one of three 
different states: normal, doze, and disconnection. For the 
disconnection mode, two different cases are considered: 
voluntary disconnection and accidental disconnection.  An 
"accidental disconnection" refers to disconnection aroused by 
the network failure. Such disconnection occurs more 
frequently and unpredictably than that in wired networks 
because wireless communication is highly susceptible to 
network failure. A MH may sometimes disconnect voluntarily 
from the network, e.g. to save the battery power. Since the 
MH knows the disconnection in prior, it can execute a 
predefined protocol for the distributed algorithm it currently 
participates in.  

Since a distributed system built on a MANET is an 
asynchronous system, there are no bounds on the processing 
and message passing time. To provide support for tolerating 
transient link and host failures, we use the timeout mechanism 
and message retransmission. We assume that the duration of 
the link failure and host failure is short and the failure is 
recovered within the predefined time period for retrying.  

B. Data Structures 
Each host Si maintains two sets which are defined below: 
Info_seti: an array of the IDs of the hosts to which Si needs 

to send the request messages when it wants to enter CS.  
Status_seti: an array of the IDs of the hosts which, upon 

requesting to access CS, would send the request messages to 
Si. 

To ensure the correctness of the algorithm, the following 
requirements must be satisfied: 

1) ;__:: SiSetStatusiSetInfoiS =∀      
φ=∀ SetStatus iSetInfo iS i __::   

2) iSetStatusjSjSetInfoiSjSiS __:: ∈⇒∈∀∀  
Obviously, the requirement 1) guarantees that host Si 

knows the request status of all the other hosts and there is no 
redundancy information. The requirement 2) guarantees the 
consistency among the sets of all MHs. 

In addition, each host maintains following data structures: 
tsreq: the timestamp for the request of Si. It is used as the 

priority of the request of Si. It is set to NULL initially. If Si is 
not requesting for CS, it is also set to NULL. 

Qreq: the array of the IDs of the hosts which have sent 
requests to Si.  

TOreq: the array of timers each associated with the 
REQUEST message sent to a different host. The timeout 
values of all the timers are the same.  

Trec: the timestamp of the last reconnection. It is set to “0” 
initially. 

Fig. 1 Algorithm for initialization 

C.  The Proposed Algorithm 
1) Initialization of the Info_set and Status_set 

As shown in Fig. 1, we provide an algorithm to initialize 
the Info_set and Status_set for all the hosts. We use an n ×n 
matrix M, where n is the number of hosts in the network, to 
represent the relationships among the hosts. The value of each 
element of M, Mij, represents the relationship between the pair 
of hosts Si and Sj. If  Mij = 0, the ID of Sj is in the Info_set of  
Si. If  Mij = 1, the ID of Sj is in the Status_set of  Si. To ensure 
that the sets of all the hosts satisfy the conditions specified in 
section III-B, an arbitrary host, say S0, is selected as initiator 
of the algorithm. The initial value of each element of M is 
determined by the initiator.  

S0 generates the upper triangular matrix Mu randomly and 
broadcasts Mu to all the other hosts.  Then, all the hosts, 
including S0, set value of each element of the lower triangular 
matrix Ml to the 2’s complement of corresponding element in 
the upper triangle. Finally, according to the corresponding row 
in M, each host initializes its Info_set and Status_set. It is easy 
to verify that the proposed initialization algorithm can 
guarantee the specified requirements while the messages to be 
exchanged are very few. 

2) Normal Execution (without Disconnection or Doze) 
The pseudo code of the proposed distributed MUTEX 

algorithm is shown in Fig. 2. All the hosts execute the 
algorithm. 

When a host wants to enter the CS, it first sets tsreq to the 
current time and sends the "REQUEST" messages to all the 
hosts in its Info_set. To tolerate link failure and host failure, a 
timeout is set in TOreq for each request message. The host then 
waits for the "REPLY" messages from all the hosts in its 
TOreq. If the Info_set of the host is empty, it enters the CS 
immediately.  

When a host Si receives a "REQUEST" message from 
another host Sj, it records the request in its Qreq. If it is not 
requesting for CS or its priority is lower, Si sends a "REPLY" 
message to Sj and removes the record for Sj from Qreq. If Sj is in 
Status_seti, Si moves Sj into Info_seti and sends a "REQUEST" 
message to Sj if Si is requesting for CS but has a lower priority.   

Upon the receiving of a "REPLY" message from host Sj, Si 
removes timeout in TOreq associated with the original request 

--Executed by all the hosts: -----
//Step 1: Generate the Lower Triangular Matrix Ml 
for{ i = 0 to |S|-1}  
for{j= 0 to i-1} mij =1-mji;  endfor 
endfor 
//Step 2: Initialize the Info_set and Status_set 
// for host Si// 
for { j= 0 to |S|-1and j !=i}  

if {mij==0} put Sj into Info_Seti; 
else  put Sj into Status_seti; 

endfor 

--Executed by the initiator: -- 
//Generate the Upper Triangular Matrix 
Mu 
for{ i = 0 to |S|-1} 

for{j= i+1 to |S|-1}  
mij = random(0,1); 
endfor 

endfor 
broadcast Mu to all other hosts; 
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message sent to Sj. If Si finds no request from Sj in its Qreq, the 
ID of Sj is moved into Status_seti. Then, Si checks whether 
TOreq is empty. If yes, i.e. all its "REQUEST" messages have 
been replied, Si enters CS. 

Fig. 2 The distributed MUTEX algorithm 
When the timeout for a "REQUEST" message sent to a 

remote host expires, the requesting host sends the 
"REQUEST" again. When all the replies for the "REQUEST" 
message have been received, the requesting host enters CS.  

On exiting the CS, a host sends a "REPLY" message to all 
the hosts in its Info_set. 

It is worth to notice that if the data structure Qreq is not 
used to record the REQUEST of Sj, Sj may never get a REPLY 
from Si. Because the channel may not be FIFO, the REQUEST 
from Sj may arrive at Si before the REPLY. When the REPLY 
arrives, Si will move Sj to Status_seti. So, Si will not send a 
REPLY to Sj after Si exits from CS.   

3) Handling Doze Mode and Disconnection 
When a host Si wants to enter the "doze" mode, it 

broadcasts a "DOZE" message to all the other hosts and moves 
all the hosts in its Status_set to its Info_set. All the other hosts 
move Si into their Status_set. No "REQUEST" message needs 
to be sent to a dozing host. This ensures that the dozing host 
would not be disturbed. When a dozing host wakes up, it can 
resume the algorithm without the need to perform any special 
operation.  

If a host Si wants to disconnect voluntarily, same steps 
would be taken except that a "DISCONNECT" message, 
rather than a "DOZE" message, would be broadcasted. When a 
host Si reconnects to the network after a disconnection, either a 
voluntary one or an accidental one, the host needs to broadcast 
a "RECONNECT" message to inform other hosts and move all 
the hosts in Status_seti into Info_seti.  

When Sj receives a "RECONNECT" message from Si, Sj 
compares its Trec with the timestamp of the "RECONNECT" 
message. If Trec is less (Si reconnects late indeed), Sj removes 
the corresponding timeout in TOreq if it is waiting for a 

"REPLY" message from Si and moves Si to Status_seti. The 
comparison is necessary if more than one host sends out a 
"RECONNECT" message concurrently. For example, if both 
Si and Sj send out "RECONNECT" concurrently, both Si and Sj 
move the other to Status_set if without comparison the time of 
reconnection. This violates the requirements for Status_set and 
Info_set in section III-B. 

IV. CORRECTNESS OF THE PROPOSED ALGORITHM  
In this section we prove the correctness of the proposed 

algorithm by showing that the three correctness requirements 
for distributed MUTEX algorithms are satisfied. 
Lemma 1: Based on the assumptions, the effect of transient 
link or host failures can be eliminated.  
Argument:  Without loss of generality, we assume that the link 
between Si and Sj failed and some message is lost. If neither of 
the two hosts is waiting for reply from the other, the link 
failure does not affect them. Otherwise we assume that Si is 
waiting for the reply of Sj. Eventually, the timeout for Sj would 
expire and the request is resent. Since we assume that a link 
failure is transient and can be recovered within the specified 
time period for retrying, the Sj eventually received the request 
after the request is resent one or more times.  

Similarly, when a host e.g. Si, failed, only the hosts 
waiting for the reply from Si are affected. Since Si can recover 
within the specified time period for retrying, it can eventually 
receive the request after it reconnects to the network.              
Lemma 2: if a host Si wants to enter CS, it eventually learns 
about all the hosts concurrently requesting CS. 
Argument:  For a host Sj in Status_seti of host Si, if Sj wants to 
enter CS, it will send a "REQUEST" message to Si. Si will 
receive this request even there are failures (Lemma 1). For a 
host Sk in Info_seti of host Si, Si sends a "REQUEST" message 
to Sk. Sk will eventually receive the request (Lemma 1). If Si 
receives the reply from Sk, it knows that Sk is not requesting 
CS. Otherwise, Si is blocked until Sk send a reply.                    
Theorem 1: At most one host can be in the CS at any time 
(safety). 
Argument: We prove the theorem by contradiction. Assume 
two hosts Si and Sj are executing the CS simultaneously. From 
Lemma 2, each of them has learned the status of the other, 
which implies that they had sent reply to each other before 
they entered the CS. However, this is impossible because no 
two hosts have the same priority. This is a contradiction.         
Theorem 2: The algorithm is deadlock free (liveness).  
Argument:  A deadlock occurs when there is a circular wait 
and there is no "REPLY" in transit. This means that each host 
in the cycle is waiting for a "REPLY" from its successor host 
in the cycle.  Since each request has a distinct priority, there is 
a host, e.g. Sh who has the highest priority. We denote the 
successor of Sh as Sj. We claim that host Sh eventually receives 
one "REPLY" from host Sj. If there is no failure or 
disconnection, the safety property can be proved in a way 
similar to that in [4]. Here we only consider the cases with 
failures and disconnections.  

Case 1: Sj runs normally. In this case, Sj would receive the 
request from Sh and handle it. This can be further divided into 

CoBegin 
//Send Request// 
if(host Si wants to enter CS  
{   set tsreq to the current time; 
    for(Sj∈Info_Seti ) do begin 
        Send REQUEST to Sj; 
        Set timeout in TOreq for Sj;  
   endfor 
   goto “Enter CS”;} 
//Enter CS// 
if(TOreq ==Φ) Enter CS; 
//Exit CS// 
    Set tsreq to NULL; 
    for (Sj∈Info_Seti) do begin 
         Send REPLY to Sj; 
         Remove Sj from Qreq; 
    Endfor 
//Enter Doze Mode// 
Broadcast “DOZE”; 
Set Status_Set= Φ; 
Set Info_Set= S;  
//Exit Doze Mode// 
Set Status_Set= Φ; 
Set Info_Set= S;  
//Disconnect voluntarily// 
Broadcast “DISCONNECT”; 
Set Status_Set= Φ; 
Set Info_Set= S;  
//Reconnect// 
Broadcast “RECONNECT”; 
Sets Status_Set= Φ; 
Info_Set= S; 
//Handling timeout// 
if(timeout happens for host Sj )  
{     Resend REQUEST o Sj; 
       Set timeout for Sj in TOreq;} 

//Handling messages// 
Upon Si receives a message from Sj: 
if(REQUEST) 
{   Put Sj into Qreq;  
     if (Sj ∈Status_Seti) 
    {   Move Sj into Info_Seti; 
         if (Si is with lower priority)  
        {    Send REQUEST to Sj; 
              Set timeout in TOreq for Sj;} 
         }   
         if (Si is not requesting or  
              priority of Si is lower) 
         {     Send REPLY to Sj; 
               Remove the Sj from Qreq;}       
     } 
}      
if(REPLY) 
{  if(Sj∉  Qreq)  
   {   Move Sj to Status_Seti, 
        Remove Sj from TOreq ; 
        goto “Enter CS”;} 
} 
if(DISCONNECT or DOZE) 
{    Remove Sj from TOreq and Qreq; 
       if(Sj∈  Info_Seti) 
           Move Sj into Status_Seti; 
} 
if(RECONNECT) 
    if(Trec<timestamp of RECONNECT)   
    {    Remove Sj from TOreq and Qreq; 
          Move Sj into Status_Seti; 
     } 
CoEnd 
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two cases: 1) Sj has no request for CS or its request has a lower 
priority (because Sh has highest priority). Then Sj would send 
reply to Sh immediately. 2) Sj is in the CS. Qreq is set for Sh, 
and Sh should be moved to Info_setj if it is in Status_setj 
before. After Sj exits from CS, it can send a reply to Sh.  

Case 2: Sj failed. If Sj failed before it sent out reply to Sh, it 
will send the reply after it recovers (Lemma 1). Eventually Sh 
can receive the reply from Sj. 

In all the cases, the circular wait is broken eventually. So 
the proposed algorithm is deadlock free.                                   
Theorem 3: The algorithm is starvation free (fairness).  
Argument: If there is no failure or disconnection, the safety 
property can be proved in a way similar to that in [4]. Here we 
only need to consider the situations with failures and 
disconnections. If there are link failures or host failures, the 
effect would be eventually eliminated by the timeout 
mechanism (Lemma 1). If there are disconnected hosts, all the 
current requests of those hosts would be deleted after 
reconnection or wake. So failures and disconnections do not 
affect the fairness of the algorithm. So, the fairness is 
guaranteed.                                                                                 

V. PERFORMANCE EVALUATION  

A. Simulation Parameters and Setup 
We adopted Glomosim[15] as the platform which has 

been widely used for simulating algorithm on MANETs.  
We set the parameters of the MANET in the simulation 

nearly the same values as those used in [7]. All the hosts are 
scattered into a rectangular territory.  However, we varied the 
number of hosts and corresponding territory scale to evaluate 
the scalability of the proposed algorithm.  

The requests for CS were assumed to arrive at a host 
according to a Poisson distribution with mean λ which 
represents the number of requests generated by a single host 
per second. Our simulation is carried out under three different 
load levels, i.e. high (λ=1.00E-2), middle (λ=1.00E-3) and low 
(λ=1.00E-4). 

The simulation can be divided into three parts. First, there 
are only link failures in the network. By simulation, we find 
that the packet loss rate in the system is about 2%, so we did 
not simulate link failures by ourselves in this part. Second, we 
introduced host failures. The arrival of host failures at a host is 
also assumed to satisfy the Poisson distribution and the 
duration of host failures satisfies the exponential distribution. 
To simplify the simulation, we fixed the percentage of host 
failure to be 10%, a relative high value.  

One feature of the algorithm is that the performance is 
better if arrival of CS requests is localized at few hosts, i.e. 
some hosts are more active than others, because the Info_set of 
such a host is smaller, and fewer messages would be needed 
for a request. This feature makes the algorithm scalable to 
large system. To validate this, we also carried out simulation 
under the condition that the hosts have different request arrival 
rates. 

To evaluate the effect of mobility, the simulation was 
carried out under three different mobility settings, chosen by 

adjusting the pause time so that the percentage of the total 
simulation time the host does move is 100%, 50% and 10% 
respectively. 

Table 1 parameters of the simulation 

Number of Hosts 4, 8, 12, 16, 20 
Territory Scale 313m, 443m,543m,626m, 700m 
Average speed of movement 20m/sec 
Mobility model Random-waypoint 
Transmission radius 200m 
Routing-protocol BELLMANFORD 
Link bandwidth 2M bits/Sec 

B. Simulation Results and Discussion  
We adopt the mostly used metric—number of messages 

exchanged per CS entry to evaluate the performance of the 
proposed algorithm. To understand the results well, the 
concepts of message and hop must be distinguished first. In 
this paper, "message" means the applications layer message, 
i.e. the end-to-end message. While the "hop" means the 
network layer message, i.e. the point-to-point message. 
Because of the resource constraints of MHs, we are more 
concerned about the later in a mobile network.  So we used 
two measures-- number of messages necessary per CS entry 
(MPCS) and number of hops necessary per CS entry (HPCS). 
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Fig. 4 No. of Hops per message              Fig. 5 Effect of host activeness 

The number of hops per message is affected by the 
topology of the network, which had been validated in [7]. In 
the MANET, the topology is dynamic because of the 
movement of hosts. So the number of hops per message is 
affected by the mobility of the hosts seriously. Fig. 4 shows 
the average number of hops needed for each application level 
message with 20 hosts.  From the figure we can see, with the 
increase of mobility, the hops decreases. In a MANET, the 
distance between any two hosts is changed from time to time. 
The higher the mobility is, the higher the probability with 
which the distance between any two hosts is short. So under 
high mobility, the number of hops is little.  

The simulation results are discussed as follows. From Fig. 
6 and Fig. 7, we can see the effect of the system scale, i.e. the 
number of hosts. The MPCS or HPCS increases nearly linearly 
while the system scale increases. This is very easy to 
understand. More hosts means larger Info_set and more 
concurrent competitors and consequently more request 
message need to be sent when a host wants to enter CS. The 
cost does not increase sharply when the system scale 
increases. So the algorithm is scalable to the system scale. 
Moreover, when the activeness of hosts is not uniform, the 
scalability is much better as shown in Fig. 5, where the dashed 
indicates the performance with uniform load level among all 
20 hosts while the real line shows the HPCS when 20% of 20 
hosts generate 80% of all requests. 
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The effect of mobility is shown in Fig. 6. It is interesting 
to notice that the MPCS/HPCS under low mobility is higher 
than that under higher mobility. This can be explained using 
the effect of mobility on the distance between two hosts. Just 
as discussed before, the higher the mobility is, the shorter the 
average distance between any two hosts is. So, the connections 
to send messages can be established more quickly and a host 
needs to wait for shorter time before entering CS. Short wait 
period means fewer concurrent competitors, and consequently 
fewer messages needed. Short distance also induces fewer 
hops per message.  
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Fig. 6 MPCS/HPCS vs Number of hosts—effect of mobility 

Fig. 7 shows the effect of load level and host failures. The 
MPCS increases with the increase of load level in principle. 
This can be understood easily. Higher load level means more 
concurrent competitors, and consequently more messages need 
to be exchanged.  In Fig. 7 the curves named with suffix “-
Fail” shows the MPCS with host failure rate 10%. Under 
different load levels and system scales the increase of MPCS 
caused by host failures fluctuate dramatically. Under some 
cases the messages are doubled, but for most cases about 40% 
more messages needed.  Considering the high failure rate 
(10%), this is acceptable. 
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Fig. 7 MPCS vs number of hosts--effect of host failures 

VI. CONCLUSIONS 
In this paper, we described an efficient and reliable 

permission-based MUTEX algorithm for MANETs. This 
algorithm does not depend on any logical topology so as to 
eliminate the cost of maintaining logical topology. To reduce 
the number of message exchanged, the “look-ahead” technique 
is used. We designed a fault tolerance mechanism using 
timeout to tolerate intermittent and transient link failures and 
host failures which are very frequent in mobile networks. The 
algorithm can also handle the "doze" mode and 
"disconnections" of hosts.  The simulation results show that 
the algorithm performs better under low load level and high 
mobility. One important feature of the algorithm is the 
scalability to large system scale especially when some hosts 
are always more active than others, the performance would be 
better. 
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