
A Scalable Mutual Exclusion Algorithm for Mobile Ad Hoc Networks
Weigang Wu, Jiannong Cao, Jin Yang

Department of Computing
The Hong Kong Polytechnic University

Kowloon, Hong Kong
{cswgwu,csjcao,csyangj}@comp.polyu.edu.hk

Abstract—Mobile ad hoc networks (MANETs) introduce new

challenges to designing algorithms for solving the distributed
mutual exclusion (MUTEX) problem. In this paper we propose
the first permission-based MUTEX algorithm for MANETs. In
order to reduce the messages cost, the algorithm uses the so
called "look-ahead" technique, which enforces MUTEX only
among the hosts currently competing for the critical section (CS).
We propose mechanisms to handle the "doze" mode and
"disconnection" of mobile hosts. The constraint of FIFO channel,
which is not feasible in MANETs, is also relaxed. Using timeout, a
fault tolerance mechanism is introduced to tolerate transient link
and host failures. The simulation results show that the proposed
algorithm works well under various mobility levels, load levels
and system scales, especially when the mobility is high or load
level is low. It is also shown that the algorithm has good
scalability, especially when most of the requests come from a few
active hosts.

Keywords— Algorithm; Distributed Computing; Mobile Ad
Hoc Network; Mobile Computing; Mutual Exclusion

I. INTRODUCTION
The characteristics of mobile computing system, in the

aspects of communication, mobility and resource constraints
[1][2], make the development of algorithms for solving
distributed control problems much more difficult than
traditional distributed systems. Mutual exclusion (MUTEX) is
one of such problems, where a group of hosts intermittently
require to enter the Critical Section (CS) in order to gain
exclusive access to the shared resource. A solution to the
MUTEX problem must satisfy the following three correctness
properties:
• Mutual Exclusion (safety): At most one host is allowed to

enter the CS at any moment;
• Deadlock Free (liveness): If any host is waiting for the

CS, then in a finite time some host enters the CS;
• Starvation Free (Fairness): If a host is waiting for the CS,

then in a finite time the host enters the CS.
Much work has been done on the MUTEX problem in

distributed systems and many solutions have been presented
[3]. These solutions can be categorized into two classes: token-
based and permission-based. In token-based algorithms, a
unique token is shared among the hosts. A host is allowed to
enter the CS only if it possesses the token. While in a
permission-based algorithm, the host that wants to enter the
CS must first obtain the permissions from other hosts by
exchanging messages.

During the past several years, efforts have been made to
solve the MUTEX problem in mobile computing systems,
including both infrastructured mobile networks, which consist
of a large number of mobile hosts (MHs) and relatively fewer,

but more powerful, mobile support stations (MSSs) [4][6][8]
and mobile ad hoc networks (MANETs), which consist of
MHs only [5][7][9][12]. In infrastructured mobile networks,
the MSSs can act on behalf of the MHs. However, there is no
MSS in a MANET, which makes the problem more difficult to
solve. All of the proposed algorithms for MANETs are token-
based algorithms. Although token-based algorithms have some
desirable features, such as that the hosts only need to keep
information about their neighbours and few messages are
needed to pass the privilege to enter the CS, the fatal problem
of token loss makes these algorithms not robust. What is
worse, in the MANETs, the mobility and frequent
disconnections of MHs make token loss a more serious
problem and the maintenance of a tree or ring topology more
difficult.

In this paper, we consider another approach—the
permission-based approach. We propose the first permission-
based MUTEX algorithm for MANETs. Compared with the
token-based approach, permission-based algorithms have the
following advantages: 1) there is no need to maintain the
logical topology to pass the token, and 2) there is no need to
propagate any message if no host requests to enter CS. These
advantages make the permission-based approach well suitable
for MANETs where all the resources, e.g. the network
bandwidth and the battery power of the MHs, are limited. A
problem of the permission-based approach is the large number
of messages to be exchanged between the MHs. Therefore, to
design a permission-based algorithm for MANETs, the main
objective is to reduce the number of messages. In the proposed
message-efficient algorithm, we use the so called “look-
ahead” technique [4], which reduces the number of messages
exchanged by keeping the hosts’ competing status for CS.

Another important problem is to tolerate the link failures
(e.g. signal shielded) and host failures (e.g. battery exhausted)
which occur very frequently in MANETs. Furthermore, MHs
may enter the "doze" mode to save power. These issues have
not been adequately addressed by existing algorithms. By
using timeout and retransmitting request messages, the effect
of intermittent and transient link failures and host failures can
be removed. By exchanging messages and adjusting the
Info_set and the Status_set doze mode and disconnection can
be handled.

The reminder of the paper is organized as follows. In
section 2 we present a brief overview on the related work,
describing algorithms for distributed MUTEX for MANETs.
Section 3 first defines the system model and the assumptions,
and then presents the design of the algorithm proposed in this
paper. In section 4, we present the proof of the correctness of
the proposed algorithm. The results of the performance

1650-7803-9428-3/05/$20.00 ©2005 IEEE.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:27 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61006366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

evaluation are described and discussed in section 5. Finally,
section 6 concludes the paper with the description of our
future work.

II. RELATED WORKS
During the past several years, algorithms for solving the

MUTEX problem in MANETs have been proposed. All the
algorithms make use of a token circulated along a logical ring
or passed in a logical tree consisting of all the MHs.

Baldoni et al [7] presented an algorithm which aims at
reducing the meaningless control messages when no host
requests to access the CS. Different from general token-
circulating algorithms, in the algorithm, the structure of the
logical ring is computed on-the-fly, and there is a coordinator
for each round. A host needs to send out a request message to
the coordinator when it wants to access the CS. Thus, the
token needs not to be circulated if there is no request for CS.
Under low load conditions, this algorithm can greatly reduce
the messages exchanged.

A token-asking algorithm is proposed in [9], which is
derived from Raymond’s tree-based algorithm [11] with the
improvement to handle broken links caused by host mobility.
This algorithm defines a structure mapped to the real topology
of the network which is represented by a Direct Acyclic Graph
(DAG) of token-oriented pointers, maintaining multiple paths
leading to the host holding the token. Like in [11], requests are
forwarded to the token holder along a path in the DAG. The
token is delivered along the reverse path to the requesting
host. When a host cannot find a path to reach the token holder
because of host movements, it will initiate the update
procedure to find a new path to the token holder. When a
reverse path is broken, the token holder need to search the
requesting host first. The advantage of this algorithm is that it
requires hosts to keep information only about their immediate
neighbors. In [10] a variation of the algorithm in [9] is
presented to eliminate the overhead introduced by the process
for searching the requesting host. Instead of that the token
holder searches the hosts, when a host detects that there is a
failure of an outgoing link, it resends its request.

Malpani et al [12] proposed a parametric token token-
based algorithm with many variations. In the algorithm, a
dynamic logical ring is imposed on the MHs. The successor of
a host in the ring is computed on-the-fly. By applying different
polices to determine the successor, the authors presented
different variations. Based on the Local-Recency(LR)
variation, Chen et al [13] proposed a self-stabilizing MUTEX
algorithm for MANETs. The algorithm uses dynamic virtual
rings formed by circulating tokens to reflect the changing
topology. It requires that the topology be static while the
algorithm is converging.

As mentioned before, token-based algorithms have some
desirable features, such as that the hosts only need to keep
information about their neighbours and few messages are
needed to pass the privilege to enter the CS. However, the
fatal problem of token loss makes these algorithms not robust.
What is worse, in MANETs, the mobility and disconnections
of MHs make token loss a more serious problem and the
maintenance of a tree or ring topology more difficult.

III. DESIGN OF THE PROPOSED ALGORITHM
Before we describe the proposed algorithm, we first briefly

introduce the “look-ahead” technique for distributed MUTEX
and discuss the issues in applying the technique to MANETs.

The "look-ahead" technique was first introduced in [4] to
solve the MUTEX problem in infrastructured mobile
networks. The algorithm is based on the well-known Ricart-
Agrawala algorithm [14], in which, when a host wants to enter
CS, it sends a request to all the other hosts to collect
permissions. Requests for CS are assigned globally unique
priorities using Lamport-like timestamps. When a host Si
receives a request, it sends a reply if it is not requesting or if
its priority is lower than that of the incoming request;
otherwise, it defers the reply. A host enters CS only after it has
received a reply from every other host. The algorithm in [4]
made a modification to the Ricart-Agrawala algorithm so that,
instead of involving all the hosts in the system, MUTEX is
enforced only among the hosts which are currently competing
for CS. On each host Si, there are two sets. The Info_seti
includes the IDs of those hosts which Si needs to inform when
it requests to enter CS, and the Status_seti includes the IDs of
the hosts which would inform Si when they request to enter
CS. If a host wants to enter CS, it just sends request to the
hosts in its Info_set. When a host wants to disconnect from the
network, it offloads the current values of its data structures to
its serving MSS which would then act on be half of the host in
the execution of the algorithm.

In this paper, we apply the “look-ahead” technique to
design the first permission-based MUTEX algorithm for
MANETs. The following issues need to be considered. First
and most importantly, there is no MSS for MHs in a MANET,
so some additional steps should be taken to ensure that the
algorithm can continue execution after a host is disconnected.
Second, the algorithm in [4] did not provide methods for some
important functions. There is no method for initializing the
two key data structures -- the Info_set and Status_set. Third,
the assumption made about a FIFO channel becomes not
feasible in MANET because the route between two MHs
changes from time to time due to the movements of the MHs.
Implementing a FIFO channel in MANET is very costly. Last
but not the least, there is no fault tolerance mechanism for
handling host failures or link failures.

We propose an efficient method to initialize the Info_set
and Status_set. We also propose algorithms to handle the
disconnections and the "doze" mode. When a host wants to
disconnect from the network or enters the "doze" mode, it
sends message to other hosts. Both the sending and receiving
hosts will modify the information maintained in their two sets
accordingly. When a host wakes up from the "doze" mode, it
can resume the execution immediately without performing any
special action. When a host reconnects to the network, it
informs other hosts and resumes the execution. To relax the
constraint of FIFO channel, we added a variable Qreq. In [4], if
a host with higher priority receives the REPLY after the
REQUEST from one host with a lower priority, the host with
lower priority would be put into Status_set, and can not get a
REPLY forever. With the help of Qreq, such request is
recorded and the host with lower priority would not be put into

166

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:27 from IEEE Xplore. Restrictions apply.

Status_set after the reception of the REPLY. In this way, the
problem is fixed. Using timeout, a fault tolerant mechanism is
developed to tolerate both link and host failures. A timeout
value is set for each request message sent out. Intermittent
and transient link failures and host failures are handled by
resending request messages when the timeout expires.

A. System Model and Assumptions
A MANET consists of a collection of n autonomous MHs,

S = {S1, S2, …, Sn}, communicating with each other through
wireless channels. Whether two hosts are connected is
determined by the signal coverage range and the distance
between the hosts. Each host is a router and the
communication between two hosts can be multiple hops. Both
link failures and host failures can occur. The topology of the
MANET interconnection network can change dynamically due
to mobility of hosts and failures of links and hosts.

At any moment of time, each MH is in one of three
different states: normal, doze, and disconnection. For the
disconnection mode, two different cases are considered:
voluntary disconnection and accidental disconnection. An
"accidental disconnection" refers to disconnection aroused by
the network failure. Such disconnection occurs more
frequently and unpredictably than that in wired networks
because wireless communication is highly susceptible to
network failure. A MH may sometimes disconnect voluntarily
from the network, e.g. to save the battery power. Since the
MH knows the disconnection in prior, it can execute a
predefined protocol for the distributed algorithm it currently
participates in.

Since a distributed system built on a MANET is an
asynchronous system, there are no bounds on the processing
and message passing time. To provide support for tolerating
transient link and host failures, we use the timeout mechanism
and message retransmission. We assume that the duration of
the link failure and host failure is short and the failure is
recovered within the predefined time period for retrying.

B. Data Structures
Each host Si maintains two sets which are defined below:
Info_seti: an array of the IDs of the hosts to which Si needs

to send the request messages when it wants to enter CS.
Status_seti: an array of the IDs of the hosts which, upon

requesting to access CS, would send the request messages to
Si.

To ensure the correctness of the algorithm, the following
requirements must be satisfied:

1) ;__:: SiSetStatusiSetInfoiS =∀
φ=∀ SetStatus iSetInfo iS i __::

2) iSetStatusjSjSetInfoiSjSiS __:: ∈⇒∈∀∀
Obviously, the requirement 1) guarantees that host Si

knows the request status of all the other hosts and there is no
redundancy information. The requirement 2) guarantees the
consistency among the sets of all MHs.

In addition, each host maintains following data structures:
tsreq: the timestamp for the request of Si. It is used as the

priority of the request of Si. It is set to NULL initially. If Si is
not requesting for CS, it is also set to NULL.

Qreq: the array of the IDs of the hosts which have sent
requests to Si.

TOreq: the array of timers each associated with the
REQUEST message sent to a different host. The timeout
values of all the timers are the same.

Trec: the timestamp of the last reconnection. It is set to “0”
initially.

Fig. 1 Algorithm for initialization

C. The Proposed Algorithm
1) Initialization of the Info_set and Status_set

As shown in Fig. 1, we provide an algorithm to initialize
the Info_set and Status_set for all the hosts. We use an n ×n
matrix M, where n is the number of hosts in the network, to
represent the relationships among the hosts. The value of each
element of M, Mij, represents the relationship between the pair
of hosts Si and Sj. If Mij = 0, the ID of Sj is in the Info_set of
Si. If Mij = 1, the ID of Sj is in the Status_set of Si. To ensure
that the sets of all the hosts satisfy the conditions specified in
section III-B, an arbitrary host, say S0, is selected as initiator
of the algorithm. The initial value of each element of M is
determined by the initiator.

S0 generates the upper triangular matrix Mu randomly and
broadcasts Mu to all the other hosts. Then, all the hosts,
including S0, set value of each element of the lower triangular
matrix Ml to the 2’s complement of corresponding element in
the upper triangle. Finally, according to the corresponding row
in M, each host initializes its Info_set and Status_set. It is easy
to verify that the proposed initialization algorithm can
guarantee the specified requirements while the messages to be
exchanged are very few.

2) Normal Execution (without Disconnection or Doze)
The pseudo code of the proposed distributed MUTEX

algorithm is shown in Fig. 2. All the hosts execute the
algorithm.

When a host wants to enter the CS, it first sets tsreq to the
current time and sends the "REQUEST" messages to all the
hosts in its Info_set. To tolerate link failure and host failure, a
timeout is set in TOreq for each request message. The host then
waits for the "REPLY" messages from all the hosts in its
TOreq. If the Info_set of the host is empty, it enters the CS
immediately.

When a host Si receives a "REQUEST" message from
another host Sj, it records the request in its Qreq. If it is not
requesting for CS or its priority is lower, Si sends a "REPLY"
message to Sj and removes the record for Sj from Qreq. If Sj is in
Status_seti, Si moves Sj into Info_seti and sends a "REQUEST"
message to Sj if Si is requesting for CS but has a lower priority.

Upon the receiving of a "REPLY" message from host Sj, Si
removes timeout in TOreq associated with the original request

--Executed by all the hosts: -----
//Step 1: Generate the Lower Triangular Matrix Ml
for{ i = 0 to |S|-1}
for{j= 0 to i-1} mij =1-mji; endfor
endfor
//Step 2: Initialize the Info_set and Status_set
// for host Si//
for { j= 0 to |S|-1and j !=i}

if {mij==0} put Sj into Info_Seti;
else put Sj into Status_seti;

endfor

--Executed by the initiator: --
//Generate the Upper Triangular Matrix
Mu
for{ i = 0 to |S|-1}

for{j= i+1 to |S|-1}
mij = random(0,1);
endfor

endfor
broadcast Mu to all other hosts;

167

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:27 from IEEE Xplore. Restrictions apply.

message sent to Sj. If Si finds no request from Sj in its Qreq, the
ID of Sj is moved into Status_seti. Then, Si checks whether
TOreq is empty. If yes, i.e. all its "REQUEST" messages have
been replied, Si enters CS.

Fig. 2 The distributed MUTEX algorithm
When the timeout for a "REQUEST" message sent to a

remote host expires, the requesting host sends the
"REQUEST" again. When all the replies for the "REQUEST"
message have been received, the requesting host enters CS.

On exiting the CS, a host sends a "REPLY" message to all
the hosts in its Info_set.

It is worth to notice that if the data structure Qreq is not
used to record the REQUEST of Sj, Sj may never get a REPLY
from Si. Because the channel may not be FIFO, the REQUEST
from Sj may arrive at Si before the REPLY. When the REPLY
arrives, Si will move Sj to Status_seti. So, Si will not send a
REPLY to Sj after Si exits from CS.

3) Handling Doze Mode and Disconnection
When a host Si wants to enter the "doze" mode, it

broadcasts a "DOZE" message to all the other hosts and moves
all the hosts in its Status_set to its Info_set. All the other hosts
move Si into their Status_set. No "REQUEST" message needs
to be sent to a dozing host. This ensures that the dozing host
would not be disturbed. When a dozing host wakes up, it can
resume the algorithm without the need to perform any special
operation.

If a host Si wants to disconnect voluntarily, same steps
would be taken except that a "DISCONNECT" message,
rather than a "DOZE" message, would be broadcasted. When a
host Si reconnects to the network after a disconnection, either a
voluntary one or an accidental one, the host needs to broadcast
a "RECONNECT" message to inform other hosts and move all
the hosts in Status_seti into Info_seti.

When Sj receives a "RECONNECT" message from Si, Sj
compares its Trec with the timestamp of the "RECONNECT"
message. If Trec is less (Si reconnects late indeed), Sj removes
the corresponding timeout in TOreq if it is waiting for a

"REPLY" message from Si and moves Si to Status_seti. The
comparison is necessary if more than one host sends out a
"RECONNECT" message concurrently. For example, if both
Si and Sj send out "RECONNECT" concurrently, both Si and Sj
move the other to Status_set if without comparison the time of
reconnection. This violates the requirements for Status_set and
Info_set in section III-B.

IV. CORRECTNESS OF THE PROPOSED ALGORITHM
In this section we prove the correctness of the proposed

algorithm by showing that the three correctness requirements
for distributed MUTEX algorithms are satisfied.
Lemma 1: Based on the assumptions, the effect of transient
link or host failures can be eliminated.
Argument: Without loss of generality, we assume that the link
between Si and Sj failed and some message is lost. If neither of
the two hosts is waiting for reply from the other, the link
failure does not affect them. Otherwise we assume that Si is
waiting for the reply of Sj. Eventually, the timeout for Sj would
expire and the request is resent. Since we assume that a link
failure is transient and can be recovered within the specified
time period for retrying, the Sj eventually received the request
after the request is resent one or more times.

Similarly, when a host e.g. Si, failed, only the hosts
waiting for the reply from Si are affected. Since Si can recover
within the specified time period for retrying, it can eventually
receive the request after it reconnects to the network.
Lemma 2: if a host Si wants to enter CS, it eventually learns
about all the hosts concurrently requesting CS.
Argument: For a host Sj in Status_seti of host Si, if Sj wants to
enter CS, it will send a "REQUEST" message to Si. Si will
receive this request even there are failures (Lemma 1). For a
host Sk in Info_seti of host Si, Si sends a "REQUEST" message
to Sk. Sk will eventually receive the request (Lemma 1). If Si
receives the reply from Sk, it knows that Sk is not requesting
CS. Otherwise, Si is blocked until Sk send a reply.
Theorem 1: At most one host can be in the CS at any time
(safety).
Argument: We prove the theorem by contradiction. Assume
two hosts Si and Sj are executing the CS simultaneously. From
Lemma 2, each of them has learned the status of the other,
which implies that they had sent reply to each other before
they entered the CS. However, this is impossible because no
two hosts have the same priority. This is a contradiction.
Theorem 2: The algorithm is deadlock free (liveness).
Argument: A deadlock occurs when there is a circular wait
and there is no "REPLY" in transit. This means that each host
in the cycle is waiting for a "REPLY" from its successor host
in the cycle. Since each request has a distinct priority, there is
a host, e.g. Sh who has the highest priority. We denote the
successor of Sh as Sj. We claim that host Sh eventually receives
one "REPLY" from host Sj. If there is no failure or
disconnection, the safety property can be proved in a way
similar to that in [4]. Here we only consider the cases with
failures and disconnections.

Case 1: Sj runs normally. In this case, Sj would receive the
request from Sh and handle it. This can be further divided into

CoBegin
//Send Request//
if(host Si wants to enter CS
{ set tsreq to the current time;
 for(Sj∈Info_Seti) do begin
 Send REQUEST to Sj;
 Set timeout in TOreq for Sj;
 endfor
 goto “Enter CS”;}
//Enter CS//
if(TOreq ==Φ) Enter CS;
//Exit CS//
 Set tsreq to NULL;
 for (Sj∈Info_Seti) do begin
 Send REPLY to Sj;
 Remove Sj from Qreq;
 Endfor
//Enter Doze Mode//
Broadcast “DOZE”;
Set Status_Set= Φ;
Set Info_Set= S;
//Exit Doze Mode//
Set Status_Set= Φ;
Set Info_Set= S;
//Disconnect voluntarily//
Broadcast “DISCONNECT”;
Set Status_Set= Φ;
Set Info_Set= S;
//Reconnect//
Broadcast “RECONNECT”;
Sets Status_Set= Φ;
Info_Set= S;
//Handling timeout//
if(timeout happens for host Sj)
{ Resend REQUEST o Sj;
 Set timeout for Sj in TOreq;}

//Handling messages//
Upon Si receives a message from Sj:
if(REQUEST)
{ Put Sj into Qreq;
 if (Sj ∈Status_Seti)
 { Move Sj into Info_Seti;
 if (Si is with lower priority)
 { Send REQUEST to Sj;
 Set timeout in TOreq for Sj;}
 }
 if (Si is not requesting or
 priority of Si is lower)
 { Send REPLY to Sj;
 Remove the Sj from Qreq;}
 }
}
if(REPLY)
{ if(Sj∉ Qreq)
 { Move Sj to Status_Seti,
 Remove Sj from TOreq ;
 goto “Enter CS”;}
}
if(DISCONNECT or DOZE)
{ Remove Sj from TOreq and Qreq;
 if(Sj∈ Info_Seti)
 Move Sj into Status_Seti;
}
if(RECONNECT)
 if(Trec<timestamp of RECONNECT)
 { Remove Sj from TOreq and Qreq;
 Move Sj into Status_Seti;
 }
CoEnd

168

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:27 from IEEE Xplore. Restrictions apply.

two cases: 1) Sj has no request for CS or its request has a lower
priority (because Sh has highest priority). Then Sj would send
reply to Sh immediately. 2) Sj is in the CS. Qreq is set for Sh,
and Sh should be moved to Info_setj if it is in Status_setj
before. After Sj exits from CS, it can send a reply to Sh.

Case 2: Sj failed. If Sj failed before it sent out reply to Sh, it
will send the reply after it recovers (Lemma 1). Eventually Sh
can receive the reply from Sj.

In all the cases, the circular wait is broken eventually. So
the proposed algorithm is deadlock free.
Theorem 3: The algorithm is starvation free (fairness).
Argument: If there is no failure or disconnection, the safety
property can be proved in a way similar to that in [4]. Here we
only need to consider the situations with failures and
disconnections. If there are link failures or host failures, the
effect would be eventually eliminated by the timeout
mechanism (Lemma 1). If there are disconnected hosts, all the
current requests of those hosts would be deleted after
reconnection or wake. So failures and disconnections do not
affect the fairness of the algorithm. So, the fairness is
guaranteed.

V. PERFORMANCE EVALUATION

A. Simulation Parameters and Setup
We adopted Glomosim[15] as the platform which has

been widely used for simulating algorithm on MANETs.
We set the parameters of the MANET in the simulation

nearly the same values as those used in [7]. All the hosts are
scattered into a rectangular territory. However, we varied the
number of hosts and corresponding territory scale to evaluate
the scalability of the proposed algorithm.

The requests for CS were assumed to arrive at a host
according to a Poisson distribution with mean λ which
represents the number of requests generated by a single host
per second. Our simulation is carried out under three different
load levels, i.e. high (λ=1.00E-2), middle (λ=1.00E-3) and low
(λ=1.00E-4).

The simulation can be divided into three parts. First, there
are only link failures in the network. By simulation, we find
that the packet loss rate in the system is about 2%, so we did
not simulate link failures by ourselves in this part. Second, we
introduced host failures. The arrival of host failures at a host is
also assumed to satisfy the Poisson distribution and the
duration of host failures satisfies the exponential distribution.
To simplify the simulation, we fixed the percentage of host
failure to be 10%, a relative high value.

One feature of the algorithm is that the performance is
better if arrival of CS requests is localized at few hosts, i.e.
some hosts are more active than others, because the Info_set of
such a host is smaller, and fewer messages would be needed
for a request. This feature makes the algorithm scalable to
large system. To validate this, we also carried out simulation
under the condition that the hosts have different request arrival
rates.

To evaluate the effect of mobility, the simulation was
carried out under three different mobility settings, chosen by

adjusting the pause time so that the percentage of the total
simulation time the host does move is 100%, 50% and 10%
respectively.

Table 1 parameters of the simulation

Number of Hosts 4, 8, 12, 16, 20
Territory Scale 313m, 443m,543m,626m, 700m
Average speed of movement 20m/sec
Mobility model Random-waypoint
Transmission radius 200m
Routing-protocol BELLMANFORD
Link bandwidth 2M bits/Sec

B. Simulation Results and Discussion
We adopt the mostly used metric—number of messages

exchanged per CS entry to evaluate the performance of the
proposed algorithm. To understand the results well, the
concepts of message and hop must be distinguished first. In
this paper, "message" means the applications layer message,
i.e. the end-to-end message. While the "hop" means the
network layer message, i.e. the point-to-point message.
Because of the resource constraints of MHs, we are more
concerned about the later in a mobile network. So we used
two measures-- number of messages necessary per CS entry
(MPCS) and number of hops necessary per CS entry (HPCS).

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 50 80 100
Mobility(%)

H
op

s/
M

sg

Uniform vs not-Uniform

0

10

20

30

40

50

60

70

2.50E-05 5.00E-05 1.00E-04 1.00E-03 2.50E-03 5.00E-03 1.00E-02
Load level

H
op

s/
C

S

uniformload

not uniformload

Fig. 4 No. of Hops per message Fig. 5 Effect of host activeness

The number of hops per message is affected by the
topology of the network, which had been validated in [7]. In
the MANET, the topology is dynamic because of the
movement of hosts. So the number of hops per message is
affected by the mobility of the hosts seriously. Fig. 4 shows
the average number of hops needed for each application level
message with 20 hosts. From the figure we can see, with the
increase of mobility, the hops decreases. In a MANET, the
distance between any two hosts is changed from time to time.
The higher the mobility is, the higher the probability with
which the distance between any two hosts is short. So under
high mobility, the number of hops is little.

The simulation results are discussed as follows. From Fig.
6 and Fig. 7, we can see the effect of the system scale, i.e. the
number of hosts. The MPCS or HPCS increases nearly linearly
while the system scale increases. This is very easy to
understand. More hosts means larger Info_set and more
concurrent competitors and consequently more request
message need to be sent when a host wants to enter CS. The
cost does not increase sharply when the system scale
increases. So the algorithm is scalable to the system scale.
Moreover, when the activeness of hosts is not uniform, the
scalability is much better as shown in Fig. 5, where the dashed
indicates the performance with uniform load level among all
20 hosts while the real line shows the HPCS when 20% of 20
hosts generate 80% of all requests.

169

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:27 from IEEE Xplore. Restrictions apply.

The effect of mobility is shown in Fig. 6. It is interesting
to notice that the MPCS/HPCS under low mobility is higher
than that under higher mobility. This can be explained using
the effect of mobility on the distance between two hosts. Just
as discussed before, the higher the mobility is, the shorter the
average distance between any two hosts is. So, the connections
to send messages can be established more quickly and a host
needs to wait for shorter time before entering CS. Short wait
period means fewer concurrent competitors, and consequently
fewer messages needed. Short distance also induces fewer
hops per message.

No. of Msgs under Low Load Level

0

5

10

15

20

25

4 8 12 16 20
(a) No. of Hosts

M
sg

s/
C

S

Mobility-no

Mobility-low

Mobility-mid

No. of Hops under Low Load Level

0
5

10
15
20
25
30
35
40

4 8 12 16 20
(d) No. of Hosts

H
op

s/
C

S

Mobility-low

Mobiltiy-mid

Mobility-high

No. of Msgs under Middle Load Level

0

10

20

30

40

50

4 8 12 16 20
(b) No. of Hosts

M
sg

s/
C

S

Mobility-low

mobility-mid

mobility-high

No. of Hops under Middle Load Level

0
10
20
30
40
50
60
70
80

4 8 12 16 20
(e) No. of Hosts

H
op

s/
C

S

Mobility-low

Mobility-mid

Mobility-high

No. of Msgs under High Load Level

0

10

20

30

40

50

60

70

4 8 12 16 20
(c) No. of Hosts

M
sg

s/
C

S

Mobility-low

Mobility-mid

Mobility-high

No. of Hops under High Load Level

0

20

40

60

80

100

120

4 8 12 16 20
(f) No. of Hosts

H
op

s/
C

S

Mobility-low

Mobility-mid

Mobility-high

Fig. 6 MPCS/HPCS vs Number of hosts—effect of mobility

Fig. 7 shows the effect of load level and host failures. The
MPCS increases with the increase of load level in principle.
This can be understood easily. Higher load level means more
concurrent competitors, and consequently more messages need
to be exchanged. In Fig. 7 the curves named with suffix “-
Fail” shows the MPCS with host failure rate 10%. Under
different load levels and system scales the increase of MPCS
caused by host failures fluctuate dramatically. Under some
cases the messages are doubled, but for most cases about 40%
more messages needed. Considering the high failure rate
(10%), this is acceptable.

No. of Msgs w /t Low Mobility

0

10

20

30

40

50

60

70

80

90

4 8 12 16 20
(a) No. of Hosts

M
sg

s/
C

S

Low load

Low load-Fail

Midload

Midload-Fail

Highload

Highload-Fail

No. of Msgs w /t Middle Mobility

0

10

20

30

40

50

60

70

80

4 8 12 16 20
(b) No. of Hosts

M
sg

s/
C

S

Low load

Low load-Fail

Midload

Midload-Fail

Highload

Highload-Fail

No. of Msgs w /t High Mobility

0

10

20

30

40

50

60

70

80

4 8 12 16 20
(c) No. of Hosts

M
sg

s/
C

S

Low load

Low load-Fail

Midload

Midload-Fail

Highload

Highload-Fail

Fig. 7 MPCS vs number of hosts--effect of host failures

VI. CONCLUSIONS
In this paper, we described an efficient and reliable

permission-based MUTEX algorithm for MANETs. This
algorithm does not depend on any logical topology so as to
eliminate the cost of maintaining logical topology. To reduce
the number of message exchanged, the “look-ahead” technique
is used. We designed a fault tolerance mechanism using
timeout to tolerate intermittent and transient link failures and
host failures which are very frequent in mobile networks. The
algorithm can also handle the "doze" mode and
"disconnections" of hosts. The simulation results show that
the algorithm performs better under low load level and high
mobility. One important feature of the algorithm is the
scalability to large system scale especially when some hosts
are always more active than others, the performance would be
better.

ACKNOWLEDGEMENTS
This work is supported in part by the University Grant

Council of Hong Kong under the CERG grant Polyu 5076/01E
and China National 973 Program Grant 2002CB312002.

REFERENCES
[1] George H. Forman, and John Zahorjan, The Challenges of Mobile

Computing, Computer, 1994.
[2] M. Satyanarayanan, Fundamental Challenges in Mobile Computing,

Proc. of PODC, 1996.
[3] Mukesh Singhal, A Taxonomy of Distributed Mutual Exclusion, Journal

of Parallel and Distributed Computing (18), 1993.
[4] Mukesh Singhal, and D. Manivannan, A Distributed Mutual Exclusion

Algorithm for Mobile Computing Environments, ICIIS’97, Dec. 1997.
[5] M. Benchaïba, A. Bouabdallah, N. Badache, M. Ahmed-Nacer,

Distributed Mutual Exclusion Algorithms in Mobile Ad Hoc
Networks: an Overview, ACM SIGOPS Operating Systems Review,
Volume 38, Issue 1, 2004

[6] B. R. Badrinath, A. Acharya, and T. Imielinski, Designing Distributed
Algorithms for Mobile Computing Networks, Computer
Communications, Vol. 19, No. 4, April 1996.

[7] Roberto Baldoni, Antonino Virgillito and Roberto Petrassi, A
Distributed Mutual Exclusion Algorithm for Mobile Ad-Hoc Networks,
ISCC, 2002.

[8] L. M. Patnaik, A. K. Ramakrishna, and R. Muralidharan, Distributed
Algorithms for Mobile Hosts, IEE Proc.-Comput. Digit. Tech. Vol. 144,
No. 2, Mar. 1997.

[9] J.E. Walter and S. Kini, Mutual Exclusion on Multihop, Mobile Wireless
Networks, Texas A&M Univ., College Station, TX 77843-3112, TR97-
014, Dec 9, 1997.

[10] J. Walter, J. Welch and N. Vaidya, A Mutual Exclusion Algorithm for
Ad Hoc Mobile Networks, Wireless Networks , Vol. 9, No. 6, Nov. 2001.

[11] K. Raymond, A Tree-based Algorithm for Distributed Mutual Exclusion,
ACM Transactions on Computer Systems, 7(1), 1989.

[12] N. Malpani, N. H. Vaidya and J. L. Welch, Distributed Token
Circulation on Mobile Ad Hoc Networks, Technical report, Intel
Corporation 505 E. Huntland Dr. Suite 550, Austin TX 78752.

[13] Y. Chen and J. Welch, Self-stabilizing Mutual Exclusion Using Tokens
in Ad Hoc Networks, Technical Report 2002-4-2, Dept. of Computer
Science, Texas A&M Univ., April 2002.

[14] G. Ricart and A. K. Agrawala, An Optimal Algorithm for Mutual
Exclusion in Computer Networks, Communication of the ACM, Jan.
1981

[15] UCLA Parallel Computing Laboratory, GloMoSim Manual v1.2,
http://pcl.cs.ucla.edu/

170

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:27 from IEEE Xplore. Restrictions apply.

