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Abstract— This paper considers the problem of constructing data
gathering trees in a wireless sensor network for a group of sensor
nodes to send collected information to a single sink node. Sensors
form application-directed groups and the sink node
communicates with the group members, called source nodes, to
gather the desired data using a multicast tree rooted at the sink
node [7]. The data gathering tree contains the sink node, all the
source nodes, and some other non-source nodes. Our goal of
constructing such a data gathering tree is to minimize the
number of non-source nodes to be included in the tree so as to
save energies of as many non-source nodes as possible. It can be
shown that the optimization problem is NP-hard. We first
propose an approximation algorithm with a performance ratio of
four, and then give a distributed algorithm corresponding to the
approximation algorithm. Extensive simulations are performed
to study the performance of the proposed algorithm. The results
show that the proposed algorithm can find a tree of a good
approximation to the optimal tree and has a high degree of
scalability.

Keywords-wireless sensor networks; data collection and
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. INTRODUCTION

The advances in wireless networking and microelectronics
leads to the emergence of wireless sensor networks (WSNs),
which consists of a large number of low-cost sensor devices
[1]. The sensor nodes are capable of sensing, data processing,
and wireless communicating with each other. They coordinate
to establish a multi-hop ad hoc network, monitor specified
tasks, and cooperatively transmit sensory data to the sink node,
which is also called the base station. WSNs can be easily
deployed in physical environments to collect information from
an area of interest in a robust and autonomous manner. A wide
range of civil and military applications has been proposed for
WSNs [2, 3].

A WSN have certain characteristics that distinguish it from
other types of wireless networks. Among these propertics,
energy efficiency is an overriding factor in designing protocols
for WSNS because, in many applications (¢.g. environment
monitoring and battlefield surveillance), after deployment,
recharging or replacing a large number of sensor batteries
would be unaffordable expensive and time consuming.
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Usually, the sensor node is capable of operating in an active
mode or in a low-power stand-by mode. So, to increase the
lifetime of a sensor network, we should put redundant sensors
to sleep and awaken them when they are needed.

This paper considers the problem of constructing data
aggregation trees in a wireless sensor network for a group of
source nodes to send sensory data to a single sink node. It has
been noticed that bout 75% of energy consumption of a sensor
node is on communication [4]. A significant portion of the
communication in WSNs is for query dissemination and
sensory data transmission. Given an application, a sct of sensor
nodes, called source nodes, are defined to sense the
environment. Systematic dissemination of queries to and
collection of the sensory data from the source nodes are two
important functions of the sink node. Generally speaking, the
optimal sets of paths for sending information from the source
nodes to the sink node do not necessarily form a tree. However,
if we consider data aggregation, there exists an optimal set of
paths that form a tree [5]. In data aggregation, instead of
sending every message to the sink node, intermediate nodes
combine their data with those received from the children nodes
to compute an aggregated value, and then send only a single
message with the aggregated value to the sink node. Therefore,
data aggregation is usually performed along a tree, called
aggregation tree or convergecast tree [6]. One of the main
objectives in designing such a data gathering tree is to conserve
the sensor energies so as to maximize their lifetime.

In this paper, sensors form data collection groups and the
sink node communicates with the group members, which are
the source nodes, to gather the desired data using a multicast
tree rooted at the sink node [7]. The data-aggregation tree
contains the sink node, all the source nodes, and some other
non-source nodes. The non-source nodes in the tree simply
forward the received data without the function of aggregation.
Our goal is to minimize the number of non-source nodes in the
tree to save energies of as many non-source nodes as possible.
We formulate the optimization problem which can be shown to
be NP-complete. Then, we first propose an approximation
algorithm with 4 performance ratio, and then give a distributed
algorithm corresponding to the approximation algorithm.
Simulation results show that the proposed algorithm can find a
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tree of a good approximation to the optimal tree and has a high
degree of scalability.

The rest of paper is organized as follows. Section II
presents some related work. Section IIT specifies the system
model and model the problem which can be shown to be NP-
complete. Section V describes a greedy algorithm and Section
VI gives a 4-approximation algorithm. Section VII proposes a
distributed algorithm corresponding to the approximation
algorithm. Section VIII presents the simulation results. Section
IX concludes the paper.

II. RELATED WORK

One of the key challenges in data gathering is how to
conserve the sensor energies so as to maximize their lifetime.
To this end, directed diffusion [8] was proposed as one of the
basic paradigms for sensing environmental phenomenon. It
incorporates data-centric routing and application-specific
processing such as data aggregation. The key idea is to
combine data from different sensors to eliminate redundant
transmissions, and provide a rich, multi-dimensional view of
the environment being monitored.

Yu et al [9] studied the problem of scheduling packet
transmissions for data gathering on a given data aggregation
tree. The objective is to minimize the overall energy dissipation
of the sensor nodes in the aggregation tree subject to the
latency constraint. They use a non-monotonic transmission
energy model with the example modulation scaling technique
[10], which is based on the observation in [11] that in many
channel coding schemes, the transmission energy can be
significantly reduced by lowering transmission power and
increasing the duration of transmission.

Intanagonwiwat et o/ [12] studied energy efficiency of
greedy aggregation, which is different from the previous
diffusion approach for the opportunistic aggregation on a
lowest latency tree. Greedy aggregation constructs a Greedy
Incremental Tree (GIT) as follows: a shortest path is
established for only the first source to the sink whereas each of
the other sources is incrementally connected at the closest node
on the existing tree. Simulation showed that the greedy
aggregation saved energy cost considerably over the
opportunistic aggregation without an adverse impact on latency
or robustness.

Kalpakis et al [13] studied the problem of maximum
lifetime data aggregation. Given the locations of sensors and
the sink node, and the available energy at cach sensor, the
problem is how to produce a set of trees for collecting data
from all the sensors and sending them to the sink node such
that the system lifetime is maximized, where the lifetime of the
system is defined as the number of rounds until the first sensor
is drained of its energy. The problem is modeled using integer
programming with linear constraints.

H. Du et al [14] addressed a real-time scenario where the
data aggregation must be performed within a specified latency
constraint. In order to minimize the overall energy cost of the
sensor nodes subject to the latency constraint, an algorithm was
proposed to construct a data aggregation tree with theoretically
upper bounded energy cost under the latency constraint.
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This paper targets at minimizing the number of active
nodes to be included in the aggregation tree, assuming that
each sensor node in the network has the same transmission
power. For a given multicast in a unit-disk graph, we find a
Steiner tree spanning all the nodes in the multicast group such
that the number of Steiner nodes is minimized. To our
knowledge, there is no known result on this problem.

1.  SYSTEM MODEL AND PROBLEM STATEMENT

A WSN is abstracted as a connected undirected graph with
the sink nodes and all other sensor nodes as the set of vertices
and the bi-directional wireless communication links as the set
of edges. This graph can be arbitrary depending on the
deployment of sensor nodes. We assume that there is only one
sink node, and every node has the same transmission range r.
Thus, a WSN can be modeled by a unit disk graph (UDG).
UDG is a well-known model for representing sensor networks
and their underlying Markov chain [15]. A random UDG G =
(V. E) can be constructed as follows. Place N = |I] nodes
uniformly at random in a square area and then connect every
pair of nodes at Euclidean distance less than or equal to . Here,
each vertex in vertex-set V represents a sensor node or the sink
node in the network. The existence of an edge (v, v) € E
between two nodes # and v indicates that the nodes can reach
each other, i.e. the distance between # and v is at most the
transmission range r.

We denote a data collection request by (s, P), where s is the
sink node and Pc}is a set of source nodes from which s wants
to collect the data of its interest. We abstract the underlying
data gathering process as a data aggregation tree T defined for
(s, P). Tisatree of G rooted at s that includes every sensor
node in P and the sensed data packets flow from sensor nodes
towards s in 7. Data aggregation is performed by any non-sink
and non-leaf node of 7 (called an infernal node hereafter). We
assume that each internal node in 7" is able to do data
aggregation which is performed only after all input information
is available, either received from the children or generated by
local sensing. We further assume that the size of aggregated
data, which will be sent to the parent node, remains unchanged.
For simplicity, we do not consider the extra costs in time and
energy for data aggregation. We only consider the energy cost
for sending the data since it is much larger than that for
receiving data [16]. Given a data aggregation tree 7, since
every node, except the sink, will send the data to its parent
node once (and exactly once without collision), the energy cost
of 7 is then defined as the sum of energy costs of all sensor
nodes in 7, or formally as,

CT) =D 115 D).

Now, we can formally define the problem studied in this
paper as follows: given a UDG G=(V, E) and a data gathering
request (s, P), construct a data aggregation tree 7T for (s, P)
such that the energy cost C(7) is minimized. In fact, the
problem can be formulated as finding a Steiner tree of a UDG
with the minimum number of Steiner nodes. We define this
problem, called ST-MSN, as follows:

Problem (ST-MSN): Given a unit-disk graph G=(V, E),
where V7 is a sct of nodes in Euclidean plane, and a subset
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M ={s}UP of V', where s is a sink node and P is a set of

source nodes, find a Steiner tree interconnecting nodes in A
with the minimum number of Steiner nodes.

It can be shown that Problem (ST-MSN) is NP-hard. Due to
limit in space, here we omit the proof.

IV. ANGREEDY ALGORITHM

Since the ST-MSN problem is NP-complete, we need to
find a good polynomial time approximation algorithm. In this
section, we propose a greedy algorithm for ST-MSN.

Suppose {s} U P isa multicast group in G=(V, E), where s
is the sink node. The greedy algorithm constructs a multicast
tree by iteratively adding source nodes to the existing tree till
the tree includes all the source nodes and the sink node.
Initially, the tree includes only the sink node. Each time the
algorithm finds a source node among the remaining source
nodes which is closest to the existing tree, and then adds the
shortest path between that source node and the existing tree to
the tree. This process continues until all the source nodes have
been included in the tree. Before giving a formal algorithm, we
first define some notations.

Definition: Suppose G=(V, E) is graph, u is a node in V,
T is a subgraph of G not including u, the distance between u
and 7, d(u, T), is defined as

d(u,T)=min, ., {d(u,v)}

The shortest path between # and 7 is the shortest path
between « and v where ve T' and d(u, T)=d(u, v).

The greedy algorithm is formally presented as follows:
Algorithm: Greedy Algorithm

Input: G=(V,F) and {s} U P (s = sink node and Pcl)
QOutput: Multicast tree spanning on {s} P
Set 7={s}, Q=P
While QO #®
Find ue Q such that d(u,7') = min o {d (. 7)}
T =T v {the shortest path between# and 7'}
Q=0-{u;
The above greedy algorithm takes O(n") time. Because
finding the shortest path takes O(7’) time, each loop takes time

OG@7). There are |P| loops, where |P| is at most 7, therefore the
algorithm takes a total time of O(1").

V. AN APPROXIMATION ALGORITHM

In order to further reduce the computational complexity
and improve the quality of output solution, we design another
heuristic here. We propose an approximation algorithm based
on minimum spanning tree to construct the data aggregation
tree, called the AT algorithm.

The AT algorithm includes three steps: (1) Construct an
auxiliary graph which is a weighted complete graph on P; (2)
Compute a minimum spanning tree on the auxiliary graph; (3)
Replace each edge in the minimum spanning tree by the
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corresponding shortest path in the original graph. The AT
algorithm is formally described as follows.

Algorithm: AT Algorithm
Input: a UDG G=(V, F) and a multicast group {s}uw P
Output: A Steiner tree spanning on M={s} U P

Stepl: Construct an auxiliary graph which is a complete
weighted graph I/ = (P, E(P)), where P is the set of nodes, and
Yue P,ve P, there is an edge (v, v) € E(P) with a weight
equal to the number of edges in the shortest path between # and
v in the original unit-disk graph G.

Step2: Compute a minimum spanning tree 7' in f1.

Step3: Replace each edge of 7" with a corresponding path in
G. Then delete cycles to get an aggregation tree.

To illustrate the steps of the proposed approximation
algorithm, let us consider the example in Figure 1. A unit disk
graph G with 15 nodes is given, where the set of black
nodes, M ={3,8,9,12,13}, is the multicast group of the source

nodes. Figure 2(a) shows the weighted complete graph on the
multicast group, where the weight of an edge (a, b),
Va,be V(G), is the number of edges in the shortest path

between the nodes @ and » on the original graph G. Figure 2(b)
shows a minimum spanning tree corresponding to Figure 2(a).
Figure 3(c) shows the corresponding Steiner tree spanning all
the nodes in M, where the Steiner tree is obtained by changing
every edge on the minimum spanning tree to corresponding
shortest path on G.

1z

(b3 hilinimum Spanning
treeon bl

(e Clorresponding Stein er tree
Figure 2. Steps in the AT algorithm

The proposed AT algorithm can achieve a very good
performance ratio of four and the time complexity of AT
algorithm is O(n’). Again, due to limit in space, the proofs are
omitted here.
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VI. DISTRIBUTED VISION FOR AT ALGORITHM

In the AT algorithm, the global information is assumed to
be known before computing the data-gathering tree. In this
section, we give a distributed vision of the AT algorithm,
which does not require the sensor nodes to know the topology
of the network.

All the nodes have a unique identity, but they do not know
the identity of any other node. Each node knows the links
incident to it. All the nodes in the multicast group {s}w P are

aware of their group membership and the sink node knows
itself as the sink node. For the duration of the algorithm, the
network is assumed to be reliable, i.e., there is no link or node
failure in the network.

The main idea of the distributed AT algorithm can be
summarized in two steps, shown below.

Algorithm: Distributed AT Algorithm:

Step 1: Using the distributed algorithm in [17] to find all-
pairs shortest path in the network.

Step 2: After finishing step 1, the sink node knows all-
pairs shortest paths in the multicast group, which contains all
source nodes. Using the auxiliary graph method mentioned in
section VI, the sink node can find minimum Steiner spanning
tree on the multicast group.

In more details, the distributed AT algorithm consists of
five parts, where parts 1-4 are similar to the algorithm in [17].

Part 1. Find a spanning tree, T, of the un-weighted graph
G. Initially, all the nodes are inactive. Here, we use the
algorithm given by Awerbuch [18] to find a spanning tree, 7,
of the underlying un-weighted graph. This part needs
O(|E+Vlogy| ) time. After the spanning tree is found, the leaf
nodes are marked Active and non-leaf nodes are marked
Available. In addition, the spanning tree algorithm ensures that
every node can identify the links incident on it.

Part 2. Fach node determines the identities of its
neighbors in the graph G. This can be accomplished by letting
all active and available nodes to broadcast their own identities
along each link incident on them. The message complexity of
this step is 2|E].

Part 3. Determine the All-Pairs Shortest-Distance matrix.
Each node constructs a distance matrix which has row and
column labels corresponding to the node and its neighbors.
Distance information is transmitted along the tree edges
starting at cach leaf node. As the algorithm proceeds, new
columns and rows are added to the distance matrix and existing
distance information is updated. At the end of this part, exactly
one or two nodes will contain the Shortest-Distance matrix, D,
of the entire graph G, and each (i) entry of D will hold the
shortest distance between node i and node j. The message
complexity and the time complexity of this part are both O(n).

Part 4. Broadcast the All-Pairs Shortest-Distance matrix
to the sink node. When a non-sink node receives a message
containing the matrix, it simply forwards this message by
broadcast. Only the sink node maintains the all-pairs Shortest-
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Distance matrix. This part has a time complexity of O(]}]) and
message complexity of O(|V]).

Part 5. Sink node multicasts a message to every node of
the multicast tree along the tree edges. The sink node can find
the final Steiner tree based on the information acquired from
Part 4. Finally, the sink node sends a multicast message to each
node of the multicast tree along the tree edges. This part needs
O(|V]) messages and O(|}]) time.

The distributed AT algorithm terminates in O(|}]) time and
has a message complexity of O(|E|+HVlog|}]), where G=(V, E).
The proof is omitted here.

VII. PERFORMANCE EVALUATION

We now describe the the performance evaluation of the
proposed approximation algorithm. There are three objectives:
(a) to study the deviation of the results of the AT algorithm
(AT) from the optimal algorithm using exhaustive search (OA);
(b) to study the scalability of the AT algorithm when the
number of sensor nodes increases; (3) to compare the
performance of the AT algorithm with the Greedy
algorithm(GA).

A.  Simulation Setup

The simulation is conducted in a 1000x1000 2-D free-
space by independently and uniformly allocating N nodes into
the area. All nodes have the same transmission range R. For
any pair of nodes, if their distance is no more than R, there
exists an edge between the two nodes. The results presented
here are the averages of 100 separate simulation runs. In each
run, we place N nodes in the square and select M nodes to form
a multicast group, both done randomly. Any topology that is
not connected is discarded. For the first goal, we first run the
AT algorithm and determine all Steiner nodes, and then get the
optimal solution by exhaustive search. For the second goal, in
order to study the scalability of our approximation
algorithm(AT), we run the approximation algorithm(AT) and
determine all Steiner nodes for large values.

B.  Evaluation Resutls

The approximation AT algorithm and the optimal OA
algorithm are simulated and their performances are compared.
Figures 3(a)-(d) show the number of Steiner nodes in the
Steiner tree constructed on the multicast group as a function of
M. The values of N and R are fixed while the value of M varies.
In the four figures, N=50, and R is 80, 100, 125, 130,
respectively. As we can see, the number of Steiner nodes in
Steiner trees increases as Af increases, but when A/ increases
to some value, the number of Steiner nodes decreases with the
growth of A4, This is because when M reaches a certain value,
with the growth of A4, the number of the transmitting nodes in a
multicast group that can connect each other increases, therefore,
the number of Steiner nodes decreases.

We can observe from Figure 3(a)-(d) that the result of the
AT algorithm is close to the optimal solution. This shows that
our approximation algorithm has a very good performance.

The second set of experiments is carried out for measuring
the scalability of the proposed AT algorithm. For given
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transmission range values R = 80, 100, 120, we show the
simulation results with the number of nodes N = 500, 1000,
respectively. Figure 4(a)-(c) show the number of Steiner nodes
as the function of M. We sce that the number of Steiner nodes
when N=500 is very close to the number of Steiner nodes
when N=1000, so the scalability of our AT algorithm is very

good.
16
5 144
£ —— AT
% 2 —&8—o0A
5 % 104
5 2 8
-E E o
£ 4
2 2
=
0
5 10 15 20 25 30 35 40 45

M|

(a) Transmission Range R=80

02N WA N®OD

The mumber of Steiner nodes.

—o— AT
—-— oA
25 30 35 40 45

5 10 15 20
1M

(b) Transmission Range R=100

The mumber of Steiner nodes

o = N @ & o o
ij

? E]

The marber of Steiner nodes

(c) Transmission Range R=125

35

E 3 —— AT
a BB ——0A
b
5 2
&
é 15

1
é 05

0

% 10 15 20 25 30 35 40 45
™M

(d) Transmission Range R=150
Figure 3 Comparing AT with OA

The third set of experiments is carried out for comparing
the AT algorithm with the GA algorithm. For given
transmission range values R = 80, 100, 120, we show the
results with the number of nodes N = 500, 1000, respectively.
Figure 5(a)-(c) show the number of Steiner nodes as a function
of M when N=500, and Fig. 6(a)-(c) show the results when
N=1000. We can sce that the number of Steiner nodes in AT is
very close to the Steiner nodes in GA algorithm. Although the
Greedy algorithm has no bound ratio, its performance is also
very good.
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VIII. CONCLUSIONS

This paper studies how to construct an optimal multicast
tree for data aggregation in WSNs involving minimum number
of non-source nodes. The objective is to save energies of as
many non-source nodes as possible. We first proposed a greedy
algorithm, and then proposed approximation algorithm based
on minimum spanning tree that can construct a data
aggregation tree with the performance ratio of four. We also
give a distributed version of the approximation algorithm.
Extensive simulations have been performed to cvaluate the
performance of the proposed algorithms, and the obtained
results validated that the approximation algorithm can
construct a tree of a good approximation to the optimal tree and
has a high degree of scalability.
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