IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005 811

WEBGOP: Collaborative Web Services Based on
Graph-Oriented Programming

Alvin T. S. Chan, Member, IEEE, Jiannong Cao, Member, IEEE, and C. K. Chan

Abstract—WEBGOP is a programming architecture for col-
laborative Web services using graph-oriented programming. The
motivation for the project comes from the realization that the
integration of collaborative Web services lacks support. The aim
of WEBGOP is to extend the Web from a client—server system to a
structured multipoint system. A graph abstraction of the network
provides the structure for the integration of Web services and
facilitates their configuration and programming. Using WEBGOP,
a logical graph representing a virtual-overlay network over the
Internet is created to link up collaborative Web services. Web
services are individually or jointly invoked through either unicast
or multicast messages within the overlay network. All messages
are based on the simple-object access protocol (SOAP). This forms
an extension of the hypertext transfer protocol (HTTP) to support
the distributed invocation of Web services. The Web services on
different servers work collaboratively for a multipoint network
application. This project provides a structured integration of Web
services by extending the support of intermediary processing in a
multipoint service. It also provides a rich network-programming
interface for a new class of integrated Web applications while
retaining the use of the Internet protocol and HTTP.

Index Terms—Collaborative, graph-oriented programming,
simple-object access protocol (SOAP), Web services.

I. INTRODUCTION

N today’s infrastructure, the Web is based on the simple

client—server model. It supports only simple and direct end-
to-end request-reply cycles between a client and a server. There
is no provision for a client or a network service to mediate the
routing of a request, nor for any mechanism to coordinate differ-
ent Web entities on behalf of a distributed application. Without
additional architectural support for collaborative services, the
Web remains a collection of communicating computer pairs
without much collaborative effort at involving more than end-
to-end computing. Web services are loosely-coupled computing
tasks communicating over the Internet using hypertext trans-
fer protocol (HTTP) and extensible markup language (XML).
The concept of Web services opens up a new front in service-
oriented architecture for the design of Web-based Internet ap-
plications. The popularity and wide acceptance of HTTP and
XML have greatly driven the concept of Web service as an

Manuscript received March 11, 2002; revised January 18, 2004, and March
10, 2005. This work was supported by the Hong Kong Polytechnic University’s
Central Research Grant G-T877 and Internal Competitive Research Grant
A-PF82. This paper was recommended by Associate Editor N. Cassaigne.

The authors are with the Department of Computing, Hong Kong Polytechnic
University, Kowloon, Hong Kong (e-mail: cstschan@comp.polyu.edu.hk).

Digital Object Identifier 10.1109/TSMCA.2005.851342

Web
Services

Logical
Graph

Internet

Fig. 1.
Internet.

WEBGOP integrates Web services through a logical graph over the

effective service model for the creation of ubiquitous business-
to-business e-business over the Internet. The challenge of how
different Web services can be integrated together to achieve
seamless operation remains to be addressed.

The collaboration of Web services is the key to achieving
larger goals. Traditional business relies on the collaboration of
companies. Companies build on the collaboration of people.
Even human bodies work on the collaboration of organs. Natu-
rally, if there is good architectural support for the collaboration
of Web services that extends beyond the simple serving of
localized services, this would be much more effective.

This paper proposes a programming architecture, WEBGOP,
for collaborative Web services using graph-oriented program-
ming (GOP). A logical graph representing a virtual overlay
network over the Internet is created to link up the collaborative
Web services (see Fig. 1). It is like a stage upon which different
players perform different roles. WEBGOP is the stage and the
various Web services are the players, and they work together
for a collaborative application in the Web environment.

Our work is focused on the integration of Web services and
GOP for the proposed programming platform. GOP was intro-
duced by Cao et al. [5] as a programming model for configuring
distributed systems and programming interacting distributed
processes described in a graph-oriented manner. A distributed
program is configured using a logical graph for defining and
coordinating the interactions amongst the components of the
distributed program. Each component is represented as a node
in the logical graph. The graph is the unifying element for
collating various distributed processes.

1083-4427/$20.00 © 2005 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

812 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

In WEBGOP, a similar graph is created to link up Web-
server nodes preloaded with local programs (LPs) to provide
collaborative Web services. Procedures in the LPs are invoked
through either unicast or multicast messages within the overlay
network. All of the messages are in the firewall-friendly simple-
object access protocol (SOAP) format. The LPs executing in
different server nodes work collaboratively to implement a
multipoint network application. Each of the nodes may execute
autonomously within the local execution environment, while
using SOAP to perform remote invocations of LPs installed
on linked nodes. The project also provides a rich network-
programming interface for a new class of Web applications
while retaining the simple Internet protocol (IP) and HTTP.

The remainder of this paper is organized as follows.
Section II presents a brief review of related work. Section III
explains the proposed architecture and the design of the
WEBGOP system. Section IV describes the implementation of
the system. Section V presents the results of the experiments
done on the prototype. Section VI gives some examples of ap-
plications that use the system. Section VII discusses possible
future work. Section VIII concludes the paper.

II. RELATED WORK

The slow evolution of network protocols, such as trans-
mission control protocol (TCP) and IP, has led to researchers
to advocate the building of active networks that are highly
programmable and that allow protocol innovations to be rapidly
developed and deployed [14]. While some research into this
area has had promising initial results, the feasibility of de-
ploying such an approach on a large-scale and wide-area in-
frastructure, such as the Internet, is questionable. The issue
of deployment arises from the complexity of introducing pro-
grammability into routing nodes and the need to address the
heterogeneity of the Internet. This can be seen from the limited
success of MBONE, which is the backbone virtual network for
multicast in the Internet environment [8], [11]. It is layered on
top of the existing IP infrastructure to support the routing of
IP multicast packets. The nodes in the MBONE are connected
by IP tunnels, in which a meshed network is overlaid across
the existing IP infrastructure. The endpoints of the tunnel are
typically workstation-class machines that have an operating
system that supports IP multicast and that run the “mrouted”
multicast routing daemon.

A Web proxy is an application-specific service interposed
between clients and browsers. It typically functions as a gate-
way for Web traffic transiting between the endpoints. In its
present form, a Web proxy represents an excellent example
of how an intermediary node can be incorporated as part of a
web service to enhance the web-browsing experience. It is
equipped with a hierarchical-caching scheme that reduces the
latencies experienced by individual users and aggregate band-
width consumption.

Programming inside the Web is leveraged by many re-
searchers to address the issues of mobility and nomadic com-
puting. Kleinrock [12] suggested the interposition of “nomadic
routers” between end systems and the network. Similarly,
“nomadic agents” and “gateways” might be placed near dis-

continuities in the available bandwidth, e.g., at wireless base
stations. Services performed at these gateways would include
file caching and image transcoding. Researchers have inves-
tigated the use of mobility support routers and indirect TCP
[2] to transform fixed-network datagrams for efficient wireless
transmission. In the absence of architectural support, these
users have adopted a variety of ad hoc services, which perform
some application-specific functions. One wonders whether the
techniques developed in distributed computing could be ap-
plied to the Web to provide a unified programming framework
encompassing the abstraction of various Web entities and their
interactions.

GOP is a distributed programming framework. It was pro-
posed by Cao et al. [3], [4] to provide high-level, structured
abstractions of distributed programming. With GOP, a distrib-
uted program is built using a user-specified logical graph to
define and program the communication and synchronization
among those components of the program called LPs. The ver-
tices of the graph are associated with the LPs of the distributed
program and the edges of the graph represent interrelationships
among the LPs. The vertices of the graph are mapped to the
underlying network of physical processors. With GOP, users
can concentrate on the structure and the logic of the distributed
program while low-level programming for message passing
between physical processors, task mapping and graph opera-
tions are handled by the system. GOP enables the transpar-
ent configuration and programming of interacting distributed
processes.

Cao et al. [3] extended GOP into DyGOP and applied it to the
programming of a hierarchical group of Web servers. DyGOP
provides for the dynamic reconfiguration of the logical graph.
With DyGOP, nodes can be removed from the graph and new
vertices can be added, while LPs can be unbound or rebound to
anode. Located in different places, Web servers in a group may
contain overlapping information and may cache and/or replicate
the data provided at other server sites. They can work together
to balance the overall workload of the system and cooperate
to provide high-performance Web services. The configuration
of a Web server group is dynamic: servers can be created and
added to the group at any time; existing servers in a group may
be broken down, or may leave the group, and so forth. In their
paper, Cao and Chan used DyGOP to dynamically reconfigure
a Web-server group and produced a central server-based proto-
typical implementation of a dynamic reconfiguration manager
on a local area network of workstations.

Chan and Cao [6] also proposed the concept of using GOP
to model the dynamic reconfiguration of programmable net-
works in the programmable active-network transport architec-
ture (PANTA). Programmable networks are a class of evolving
network architecture aimed at overcoming the slow evolution
of existing network protocols by augmenting networking nodes
and associating software drivers with programmability [14].
PANTA is based on a transport-splicing technique, in which two
end-to-end communication paths are linked via an intermediate
splice-point router at the transport level. Programmability is
provided at the communication ends and the splicing points.
With GOP, an active network configuration is built using a log-
ical graph as the underlying abstraction for expressing and

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

CHAN et al.: WEBGOP: COLLABORATIVE WEB SERVICES BASED ON GRAPH-ORIENTED PROGRAMMING 813

defining the communication and synchronization among the
programmable nodes. When applied, new services can be de-
ployed and implemented rapidly to enable customization of
network properties for domain-specific applications.

The recently emerged concept of Web services has intro-
cduced a new service-oriented architecture in the building
of robust Internet applications [9]. Web services are loosely
coupled computing tasks that communicate over the Internet
using HTTP and XML. The challenge of seamlessly integrating
collaborative Web services motivated the development of Web-
services flow language (WSFL) [17]. WSFL is an XML lan-
guage used to describe the composition of web services for
business processes. While WSFL and WEBGOP both attempt
to address the issue of the composition of web services, they
differ in a number of important aspects. In WSFL, the focus is
on the composition and orchestration of web services for busi-
ness processes and, in particular, workflows. Being a declar-
ative language, WSFL uses Web-service definition language
(WSDL) to describe service interfaces, while the relationship
between the services is externally bound. WEBGOP architec-
ture applies a programmable framework for developing struc-
tured graph-oriented multipoint web services. The composition
and the relationship between services are captured in well-
defined and structured WEBGOP application programming
interfaces (APIs) that use rich graph semantics. Unlike WSFL,
which is layered on top of WSDL within the computing stack,
WEBGOP uses WSDL to describe WEBGOP graph-oriented
interfaces.

Our work bears some similarity to the work of Francis
[10] on “Yoid.” Yoid is a suite of protocols that allows all of
the replications and forwarding required to distribute a given
application to be done in the endhosts that are running the
application themselves. In other words, yoid works in the case
where the only replicators/forwarders (distributors) of content
are themselves the consumers of the content. Yoid does not
force the consumers of the content to do all the distribution—it
can also be done by “servers’” in the infrastructure. The similar-
ity between yoid and WEBGORP lies in the use of peer-to-peer
edge servers to act as intermediary computation nodes and to
be integrated as part of the network-service application. While
yoid is designed specifically for use with multicast services over
the Internet, WEBGOP acts as a general programming archi-
tecture for web services that uses the graph-oriented approach
as the abstraction that defines distributed relationships amongst
collaborative nodes.

Our work also bears some similarity to the “active-service”
approach used by McCanne ef al. [13] in their system that
enables scalable multipoint collaboration (also known as the
MASH system). One of their earlier studies was on Chawathe’s
reliable multicast proxy (RMX) model [7]. The RMX model
consists of an RM agent that serves as the interface to a
main multicast session and transformation engines to convert
data from the format of the main session to the proxied ses-
sion. User-defined computations are placed within the net-
work as they are in active networks, but all of the routing
and forwarding semantics of the current Internet architecture
are retained. Their system works on the TCP layer. Because
active services do not require any change to the Internet

architecture, in today’s Internet, they can be deployed incre-
mentally.

III. WEBGOP ARCHITECTURE AND DESIGN
A. Existing Web Architecture

The Web is an architectural framework for accessing hyper-
linked documents distributed across the Internet environment.
The initial proposal for the Web came from Tim Berners-
Lee in 1989. It started off as a one-way system for retrieving
static documents, in which a client initiated a request and the
server responded by returning the requested document. With the
advent of common gateway interface scripts, programmability
became available at the server side and it is now possible to have
dynamism in the generation of server documents. The introduc-
tion of Java Applet extended such programmability to the client
side as well. The latest servlet based on Java technology added
greater programming flexibility to the interactions between the
client and the server.

The concept of Web services recently emerged and intro-
duced a new service-oriented architecture in building robust
Internet applications. Web services are loosely-coupled com-
puting tasks that communicate over the Internet using HTTP
and XML. Given the immense popularity of HTTP and XML
and their wide acceptance as standard Web protocols, the Web
service concept is a very promising one for effective ubiquitous
e-business over the Internet. The challenge is to seamlessly in-
tegrate these different Web services with the ultimate objective
of rendering highly coordinated Web services that are robust,
sharable, and extensible.

Despite the desire to achieve collaborative Web services, the
Web is still basically a client—server system. There is no archi-
tectural support for collaborative services involving intermedi-
ate parties other than the client and the server. The Web remains
a collection of computer pairs without much collaborative effort
involving more than two end-to-end computers.

B. Proposed WEBGOP Architecture

The WEBGOP architecture is a programmable framework
that employs a graph-oriented programming approach for
developing structured multipoint Web services. The aim of
WEBGOP is to extend the Web from a client-server system
to a structured multipoint system. A logical graph is defined
to provide the structure of collaboration. It represents a virtual
overlay network over the Internet linking up collaborative Web
services.

Fig. 2 shows a more detailed view of a graph in WEBGOP
with nodes and connections. Each node is a Web entity installed
with the WEBGOP runtime and is associated with one or more
Web services. The edge represents logical connections that
form the virtual network. Web services communicate with the
others through the WEBGOP systems installed on the nodes.
Each WEBGOP node is composed of a server unit, a client unit,
and a GOP unit. The server and client units provide commu-
nication functionalities. The GOP unit performs basic graph-
oriented configuration, data transfer, the invocation of Web

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

814

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

Web Service 1
Application Interface GOP Unit Web Service 3
; Server Client ;
i unit unit g
GOP Unit GOP Unit
Web Server Node
Server Client Server Client
unit unit unit unit
Web Proxy Node We;b service 2 Web Proxy Node
GOP Unit
Server Client
unit unit

Web Browser Node

Fig. 2. Connections between nodes in WEBGOP.

services within the GOP context, and so forth. Details of the
graph operations are described in Section III-C. As is shown,
the context of a programmable framework can exist at different
levels of Web entities, including Web servers, Web proxies,
and even Web clients. It is not absolutely necessary for all of
these entities to be GOP-enabled to leverage on the benefits
of dynamically configurable Web services. However, maximum
programmability and robustness in creating graph-oriented ser-
vices can only be achieved with the GOP-enabling of all levels
of entities. Each entity comprises a GOP runtime kernel, which
performs basic graph-oriented configuration and data transfer,
executes LP within the GOP kernel context, and so on.

C. Invocation and Collaboration of Web Services

The messaging system is the key element that controls the
selective and/or cooperative invocations of individual Web ser-
vices in WEBGOP. To support open interaction between en-
tities, the invocation and collaboration of Web services are
designed to be independent of specific programming languages
or operating systems. Instead, they rely on an open and portable
messaging technology, SOAP for remote procedure calls (RPC)
[16], to pass commands and parameters to control their actions.
They also need GOP to control the collaboration of Web
services.

1) Invocation of Web Services: SOAP is an object-oriented,
Internet-based protocol for exchanging information between
applications in a distributed environment. SOAP is independent
of the programming language, platform, or transport mech-
anism used for the exchange. SOAP’s interoperability arises
from a simple syntax based on XML. HTTP is the most widely
used transfer protocol for SOAP messages, which are formatted
as XML documents. Other protocols such as simple mail trans-
fer protocol (SMTP) or the file transfer protocol (FTP) can also
be used. The SOAP message-exchange model consists of one-
way transmissions from the sender to the receiver and also of

two-way communications in a request/response pattern. SOAP
messages rely on XML namespaces and on the XML schema-
definition language.

RPCs in SOAP are essentially client—server interactions over
HTTP. Requests and responses comply with the encoding rules
of SOAP. SOAP for RPC defines a mechanism to pass com-
mands and parameters between an HTTP client and an HTTP
server. The request-universal resource identifier (URI) in HTTP
is typically used at the server end to map to a class or an object,
but this is not mandated by SOAP. In addition, the HTTP header
SOAPAction specifies the interface name (a URI) and the name
of the method to be called on the server. The SOAP message is
an XML document whose root element, the Envelope, specifies
the overall structure, the intended recipient, and other attributes
of the message. SOAP specifies an RPC convention, which
includes the representation and format to be used for calls
and responses. A method call is modeled as a compound data
element consisting of a sequence of fields named accessors,
one for each parameter. A return structure consists of the return
value as well as the out and in/out parameters. SOAP encoding
rules specify the serialization for primitive and application-
defined data types.

SOAP for RPC alone provides the functionalities for the
invocation of Web services. Extension is however needed to
provide facilities for the collaboration of Web services.

2) Collaboration of Web Services: GOP is proposed for
controlling the distribution of messages and the collaboration
of Web services. With GOP, a distributed program is built using
a user-specified logical graph to define and program the com-
munication and synchronization of those program components
called LPs. The vertices of the graph are associated with the LPs
of the distributed program and the edges of the graph represent
interrelationships among LPs. The vertices of the graph are
mapped to the underlying network of physical processors. With
GOP, users can concentrate on the structure and the logic
of the distributed program while low-level programming for

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

CHAN et al.: WEBGOP: COLLABORATIVE WEB SERVICES BASED ON GRAPH-ORIENTED PROGRAMMING 815

SOAP Envelope

SOAP Body
HTTP SOAP
GOPCall
Header Header
LPCall
GOP
Method MeLtEod LP Parameters

Fig. 3. Structure of a WEBGOP request message.

messages passing between physical processors, task mapping
and graph operations are handled by the system. GOP enables
the transparent configuration and programming of interacting
distributed processes.

For each application, a graph with a unique graph iden-
tity must first be defined and made known to all concerned
processors. Subsequent collaborative actions of the distributed
programs can make quick references to the graph identity only.

A Web application involving a number of collaborating Web
services is in fact a distributed program. The Web services
are the LPs. The servers that provide the Web services are
the nodes. The underlying logical structure of the relationship
of collaboration can be modeled using a logical graph. By
controlling the distribution of invocation calls to Web services
through GOP, the collaboration of Web services can be achieved
and controlled.

Similar to distributed programs, for each collaborative Web
application, a graph with a unique graph identity must first
be defined and made known to all of the servers concerned.
Subsequent collaborative actions of the Web services can make
quick reference to the graph identity only. Collaboration of
services is defined according to the specified graph. Servers can
also hold multiple graphs so that they can be bound to different
graphs when required.

SOAP is a good protocol candidate for implementing GOP
in the Web environment. It allows for hierarchically structured
queries and responses, and specifies the serialization of prim-
itive string data types, and aggregates like arrays and vectors.
Sparse arrays, and protocols for sending parts of them, are
also supported. In the context of GOP, new types, such as
an edge, graph, and map, may be defined inside a schema
definition.

SOAP has to be extended for the purpose of controlling joint
invocations of collaborative Web services. Two sets of calls
have to be made: one to invoke Web services, which are LPs
in the context of GOP; and another for making a GOP-based
distribution of the Web-service invocation calls. For simplicity,
we refer to the Web-service invocation call as an LP call and
the call for GOP-based distribution as a GOP call. In this
project, we make use of a nested-invocation approach to format
the SOAP calling convention in a GOP-based Web-service
distribution. An LP call is embedded in a GOP call. Each

SOAP request includes a GOP call, which in turn includes a
parameter of the LP call. The GOP call controls the distribution
of the message, while the LP call invokes the required Web
service.

D. WEBGOP Request Message

This section describes the format for a standard WEBGOP
message. A WEBGOP message is basically an SOAP message
composed of an HTTP post header and an SOAP envelope with
an SOAP body. The SOAP body includes a remote method call
for graph-oriented operation, which in turn includes a method
call for the LP as one of its arguments. Each WEBGOP message
is in fact a nested RPC in SOAP. The outer RPC invokes a
GOP module, which controls the distribution of the message.
The inner RPC directly invokes a Web service. Fig. 3 shows the
diagrammatic structure of a WEBGOP request message.

The following is a simple illustrative example that instructs
the recipient server to invoke the method setData of an LP
defined in the graph with Graph ID, local.hello.2; and relay the
message to other descendents in the graph.

1 POST /webgop/servlet/webgop.server.
WebgopServlet HTTP/1.0

Host: localhost:8001

Content-Type: text/xml

Content-Length: 629

SOAPAction: *”

NN bR W

<SOAP-ENV:Envelope xmIns:SOAP-ENV
= “http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi = “http://www.w3.org/1999/
XMLSchema-instance”
xmlns:xsd = “http://www.w3.0rg/1999/
XMLSchema”>
8 <SOAP-ENV:Body>
9 <nsl:relay2Descendents xmlns:ns1
= “urn:webgop:service” SOAP-ENV:encodingStyle
= “http://schemas.xmlsoap.org/soap/encoding/”>
10 <gid xsi:type = “xsd:string”>local.hello.2 </gid>
11 <source xsi:type = “xsd:int”>0</source>
12 <ns2:setData xmlns:ns2

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

816 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

SOAP Envelope

SOAP Body
HTTP SOAP
Response Header RPCResponse
Header
Call
Method Return
+ Parameters
"Response”

Fig. 4. Structure of a WEBGOP response message.

= “urn:webgop:1p” xmlns:ns3
= “urn:gop_encoding” xsi:type
= “ns3:LPCall”>
13 <data xsi:type
= “xsd:string”>Hello Webgop</data>
14 </ns2:setData>
15 </nsl:relay2Descendents>
16 </SOAP-ENV:Body>
17 </SOAP-ENV:Envelope>

Lines 1-5 are the HTTP header. The HTTP header shows
that the message is posted to the /webgop/serviet/webgop.
server.WebgopServlet of the host, localhost:8001. Lines 7-17
are the SOAP envelope. There is no SOAP header in this exam-
ple. Inside the SOAP envelope, lines 8—16 are the SOAP body.
Lines 9-15 are the GOP call that shows that the invocation
object is urn:webgop:service under the namespace, nsi, and
the GOP method to be invoked is relay2Descendents. Line 10
shows the Graph ID, local.hello.2. Line 11 shows that the call
originated from Node O of the graph. Lines 12—14 are the LP
call nested within the GOP call. The LP object to be invoked is
urn:webgop:Ip under the namespace, ns2; and the LP method
to be invoked is setData. Line 13 is the string parameter, Hello
Webgop, to be sent to the LP program.

In this project, HTTP and SOAP are proposed as the base-
line protocols. We extend them to provide the functionalities
required by WEBGOP. The advantages of HTTP and SOAP
are their immense popularity in the Web community. The
ubiquitous support of these protocols makes them the ideal
candidates to offer the transferring of messages across wide-
area Web infrastructures and the invocation of Web services,
in a truly open and highly accessible programming platform.
The conformance to standards opens the possibility of reusing
many of the readily available libraries that have been imple-
mented. Furthermore, there is an added advantage to using the
security and error controls provided by HTTPs and the lower
TCP layers.

E. WEBGOP Response Message

The response to an SOAP for RPC request is defined in
the SOAP specifications. WEBGOP follows the specifications.

Fig. 4 shows the diagrammatic structure of a WEBGOP re-
sponse message.

This project follows the convention of naming the structure
of the return data after the name of the method, with the string
Response appended. For instance, the response to a setData call
to a node is as follows:

1 HTTP/1.0 200 OK

2 Content-Type: text/xml; charset = UTF-8

3 Content-Length: 427

4 Servlet-Engine: Tomcat Web Server/3.2.1
(JSP 1.1; Servlet 2.2;
Java 1.3.1_01; Windows 98 4.10 x86;
java.vendor = Sun Microsystems Inc.)

5

6 <SOAP-ENV:Envelope xmlns:SOAP-ENV
= “http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi = “http://www.w3.0rg/1999/
XMLSchema-instance” xmlns:xsd
= “http://www.w3.0rg/1999/XMLSchema”>

7 <SOAP-ENV:Body>

8 <nsl:setDataResponse xmlns:nsl = “urn:webgop:1p”
SOAP-ENV:encodingStyle = “http://schemas.
xmlsoap.org/soap/encoding/”>

9 <return xsi:type="xsd:string” >
Hello Webgop</return>

10 </nsl:setDataResponse>

11 </SOAP-ENV:Body>

12 </SOAP-ENV:Envelope>

Lines 1-4 are the HTTP header. Lines 6—12 are the SOAP
envelope, and lines 7-11 are the SOAP body. Lines §—10 are
the response to the LP Call that called the invocation object
urn:webgop:lp under the namespace, nsl. The LP method
invoked is setData and a string Response is appended to the
name to show that this is a response. Line 9 shows the return
data, Hello Webgop of the string type.

F. Fault Reporting

Fault reporting is defined in SOAP for RPC. The system is
extended in WEBGOP. In SOAP, exceptions are returned as

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

CHAN et al.: WEBGOP: COLLABORATIVE WEB SERVICES BASED ON GRAPH-ORIENTED PROGRAMMING 817

faults to the client. Extension is provided for GOP errors. The
following is an example of a fault report in which the specified
Graph ID is not available from the server.

HTTP/1.0 500 Internal Server Error
Content-Type: text/xml; charset = UTF-8
Content-Length: 428

Servlet-Engine: Tomcat Web Server/3.2.1
(JSP 1.1; Servlet 2.2; Java 1.3.1_01;
Windows 98 4.10 x86; java.vendor

= Sun Microsystems Inc.)

W N =

6 <SOAP-ENV:Envelope xmlns:SOAP-ENV
= “http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi = “http://www.w3.0rg/1999/
XMLSchema-instance” xmlns:xsd = “http://
www.w3.0rg/1999/XMLSchema” >
<SOAP-ENV:Body >
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode >

0 <faultstring>Graph ID not found </faultstring>

1 <faultactor>/webgop/servlet/webgop.server.
WebgopServlet</faultactor>

12 </SOAP-ENV:Fault>

13 </SOAP-ENV:Body>

14 </SOAP-ENV:Envelope>

— = \O 0

In the above example, lines 8—12 show that a fault oc-
curred. Line 9 is the fault code for automatic machine clas-
sification. Line 10 shows the fault message, Graph ID not
found. Line 11 shows that the fault actor is /webgop/serviet/
webgop.server.WebgopServlet.

IV. PROTOTYPE IMPLEMENTATION
A. Development Environment

This section describes the design and development of the
WEBGOP system, which provides a programming framework
for the rapid development of multipoint collaborative Web
services. The system is developed in JAVA to provide strong
portability using Java Development Kit 1.3.1. It builds on the
following components of development: Jakarta-Tomcat-3.2.1,
Apache SOAP 2.0, and Apache Xerces Java Parser 1.4.3 [1].
The Jakarta-Tomcat-3.2.1 provides the HTTP server commu-
nication functionalities, while Apache SOAP 2.0 provides the
SOAP encoding and decoding functionalities. The Apache
Xerces Java Parser 1.4.3 is needed for the XML parsing of the
SOAP messages.

B. Node Architecture

WEBGOP is implemented as a network of SOAP-enabled
nodes with multiple-incoming and multiple-outgoing links. In
essence, a node in WEBGOP is composed of a server unit,
a GOP/invocation unit, and a client unit. The server unit is
responsible for receiving incoming messages. The GOP/invo-
cation unit is responsible for distributing messages according
to the specified graph and for the invocation of LPs. The client

unit is for outgoing communications. The node architecture is
depicted in Fig. 5.

C. Node Operation

A node can operate as a requester, in which case WEBGOP
request messages are first initiated; or as an intermediate or
end receiver, in which case WEBGOP messages are received,
processed, and forwarded to other nodes, as appropriate.

When an application wants to initiate a WEBGOP request,
it specifies a graph identity for distribution destinations and
calls the appropriate method in the webgop.invocation.Service
class in the invocation unit. Based on the graph identity, the
GOP unit is consulted for detailed information on destinations.
A WEBGOP message consisting of an LP call nested within
a GOP call is formed. The request is then encoded into the
HTTP-SOAP format and sent out through the client unit. Upon
receipt of the corresponding responses, the WEBGOP system is
responsible for decoding and routing the message to the appli-
cation program.

On the receiver side, a WEBGOP request is received at
the server unit and decoded. The system extracts a GOP call,
which invokes an appropriate method in the webgop.invocation.
Service class in the GOP/invocation unit. The graph registry is
consulted for any detailed forwarding destinations based on the
graph identity. If necessary, a forwarding WEBGOP message
is formed, encoded into the HTTP-SOAP format, and sent out
through the client unit. Meanwhile, an LP call is extracted from
the GOP call and the appropriate method in the LP is invoked.
Finally, a WEBGOP response is prepared based on the results
of the execution and passed back to the requester through the
server unit.

D. Issues of Implementation

1) Basic Data Types: In implementing the WEBGOP
framework, three basic types of data are defined: Graphs,
Edges, and Maps. Graphs are the underlying abstraction behind
collaboration in the architecture. A Graph refers to a logical
graph that shows the connections of the computers involved
in a collaborative Web service application. It consists of a
set of Maps representing the computers and a set of Edges
representing the connections. The key parameters of the Graph
type are the identity of the graph, the number of nodes, the
number of edges, the set of Maps, and the set of Edges. These
new types are not included in Apache SOAP. They are added to
the SOAP mapping registry so that the WEBGOP system can
encode such data in an SOAP format and decode them when
required.

2) Graph Definition: The setting up of a graph amongst
Web services is an important step in defining the channels of
communication and relationships for subsequent collaboration.
In the implementation of the prototype, when a programmer
defines a graph, the WEBGOP system distributes the graph to
all of the nodes concerned along the edges of the graph. If a
fault occurs in any step of the distribution and graph-definition
process, the whole graph set-up process is regarded as a failure,
and a fault is reported. Responses to the results of the graph

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

818 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005
Local Program/Web Service Application Interface
LP input LP output Graph ID
data data + LPCall RPCResponse
Graph Registl GOP/ I tion Unit
ph Registry nvocation Uni &RPCRGSDOHSG
Graph ID RPCResponse | |
+ LPCall GOPCall Respoxse Buffer
{F RPCResponse
SOAP
Server Unit Mapping Client Unit
Registry
ServletRequest a 4; ServletResponse AN
Jakarta HTTP HTTP
Tomcat WEBGOP WEBGOP
Web server Request Response
HTTP HTTP g P
WEBGOP WEBGOP
Request Response
To H To
Client Server Nodes
Nodes _
Fig. 5. Internal architecture of a WEBGOP node.

set-up on each server are therefore required, but none of them
need to relay to the originator. To reduce the number and size
of responses, a node with multiple children does not relay all
of the responses from its children to its parent, but instead only
provides a consolidated response.

Once the unifying graph is established amongst WEBGOP
servers with a graph identity, subsequent GOP operations can
be performed by making a reference to the graph identity. Mul-
tiple logical graphs can be defined for a server node to link up
to a number of different networks. The different graph identities
provide the differentiation in graphs. Each graph identity must
be unique. The graph information is stored in a Graph Registry
maintained by each server participating in the logical graph.
Fig. 6 shows an example of a server, host4, participating in two
virtual networks through two logical graphs, namely, polyu.ring
and polyu.tree.

3) Spanning Tree: When a server defines a graph or sends a
message to all nodes of a graph, there is a possibility that the
graph is closed. As a result, the messaging process will enter
an endless loop. A spanning tree is employed to overcome this
problem. When a message is sent to all nodes starting from a
node, a spanning tree is first created starting from that node.
Any edge in the graph that ends with a node that has already
been visited is discarded in the formation of the spanning tree.

Graph 2:
polyu.tree

|
|
|
|
|
i
i
|
|
|
I
J i

Fig. 6. A host can hold multiple logical graphs.

The spanning tree so formed thus includes all of the necessary
and sufficient edges for the proper distribution of messages to
all of the nodes.

4) Graph Modification: The prototype implementation al-
lows changes to be made to the configuration of a graph after
it is defined amongst servers. We cater to changes in edge

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

CHAN et al.: WEBGOP: COLLABORATIVE WEB SERVICES BASED ON GRAPH-ORIENTED PROGRAMMING 819

configuration as well as in node configuration. The changes
are expressed in terms of obsolete edges, new edges, obsolete
nodes, and new nodes.

If no additional hosts are involved, the changes are broadcast
to all of the hosts, and their graph information is updated. If
new hosts are involved, the graph information is first dispatched
to the new hosts. The changes alone are meaningless to the
new hosts because they do not hold any previous information
about the graph. Subsequently, the changes are broadcast to the
remaining hosts of the graph. The prototype implementation
provides separate methods, namely, addHost() and modify-
Graph(), for users to use in modifying graph configurations
with and without adding new hosts, respectively.

5) Local Program: In this prototype implementation, an LP
method is invoked through reflection. Basically, this provides
a one-way transfer of data from the GOP/invocation unit to
the LP. To ensure that the LP can send back data to the GOP
unit, each LP must implement a method called setGopService().
When an LP is instantiated, the GOP unit automatically invokes
this method to relay its own Object ID to the LP. Once instan-
tiated, the object ID of the LP is stored together with the Graph
ID in the Graph Registry. This facilitates continued communi-
cations with other Web services on other nodes. To completely
end an LP, the method end() of an LP shall be called. The
method should include all of the cleanup procedures for ending
the LP. Each LP must follow a standard interface that imple-
ments both the setGopService() method and the end() method.

6) RPC and Responses: The response mechanism of
WEBGOP requires special consideration. In WEBGOP, many
servers are involved. With a single request from a client, it is
possible to invoke LPs residing on a number of child servers.
There may also be further invocations of LPs residing on
descendent servers down the graph. As a result, a multitude of
outputs are generated and the cumulative execution time can
be quite long. A simple request-response mechanism is not
suitable.

In the prototype implementation, the return of responses
is generally limited to one-level calls. Responses are col-
lected only from children not from descendents because of
the response-implosion problem. Intermediate nodes do not
relay responses from distant nodes back to the originator. The
originator would be overloaded if it has to handle all of the
responses from its descendents.

When multicasting to all levels of descendents, the sender
does not wait for full responses requiring only simple ac-
knowledgments from its children one level below. The simple
acknowledgment system works between adjacent levels. Each
server keeps track of the distribution to its children. Acknowl-
edgments are provided only for the purpose of monitoring
the multicast operation. The unidirectional multicast approach
offers a realistic framework for the distribution of invocations
while minimizing the potential drain in computing resources.

One problem with this one-way multicast approach is that the
sender has little control over the distribution of data and the in-
vocation of programs. For mission-critical messages, program-
mers may consider more complicated control mechanisms, such
as those based on a consolidated response. Consider the exam-
ple of a graph-definition process. The originator is concerned if

a fault occurs in the distribution and graph-definition processes
of all of the participants. Responses are required, but not all of
them need be relayed to the originator. To reduce the number
and size of the responses, a node with multiple children does
not relay all of the responses from its children to its parent,
instead providing only a consolidated response.

7) Response Buffer: The WEBGOP system may generate
many responses to a host. This is different from normal pro-
gramming for a single client—server communication, in which
a process can stop and wait for the response. A method must
be devised to receive multiple responses. To overcome this
problem, a response buffer is provided. The responses are
passively stored in the buffer and must be actively retrieved.

When a host sends a call to multiple recipients, it sets up a
communication thread and a response buffer for each recipient.
Retrieval access to the buffers is blocked until the buffers
are filled up by responses returned by the recipients. When
a response arrives, it is stored in the buffer. The blocking of
retrieval access to the buffer is removed and all awaiting threads
are notified.

E. Application Programming Interface

WEBGOP provides a rich application-programming inter-
face for collaborative Web-services applications. The methods
in Table I are the main APIs defined in webgop.invocation.
Service, the class providing the runtime service of WEBGOP.
They are the WEBGOP primitives to be invoked by application
servlets and LPs/Web services.

The APIs can be broadly classified as follows:

¢ Graph Operations: defineGraph, deleteGraph,
modifyGraph, addHost;
e Graph Information: listGraph, getGraphlnfo,

getCurrentNode, getNodewhere, isSTLeaf, isSRTRoot;

e Web Service Invocation: invokeLP, call2Node,
call2Children, call2TreeChildren, call2Parents,
call2TreeParents, send2Descendents.

A typical WEBGOP application operates as follows. The
starting point of execution is usually an application servlet.
First, it invokes the defineGraph method to link up all of
the relevant servers. The WEBGOP system will automatically
pass the graph to the relevant nodes along the edges in the
graph. The application servlet then invokes Web-service in-
vocation primitives, such as call2Children, call2Parents, and
send2Descendents, to selectively or jointly invoke the Web
service/LPs located on the other servers. The WEBGOP system
will automatically generate and distribute invocation messages
to the destination nodes.

If modifications to a defined graph are necessary, the
methods, addHost, modifyGraph, and deleteGraph should be
called. The WEBGOP system will pass graph-modification
messages to the relevant nodes and update the graph copies
stored in them. ListGraph, getGraphlnfo, getCurrentNode, and
getNodewhere are the methods provided for checking the graph
information stored in a server.

By using these WEBGOP primitives, programmers are re-
lieved of the burden of coding low-level system functions such

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

820 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

TABLE 1
MAIN APIS DEFINED IN webgop.invocation.Service

RPCResponse addHos t(java.lang.String gid, Edge[] obEdge, Edge[] nwEdge,

Map[] obMap, Map|[] nwMap)

The addHost method distributes a graph to all new hosts and modifies graph copies in other
hosts. Valid only at the root of an old spanning tree.

ResponseBuffer call2Children(java.lang.String gid, LPCall IpCall)
The call2Children method makes a remote-procedure call to the local programs residing on the

children of a graph.

ResponseBuffer call2Node(java.lang.String gid, int destination, LPCall IpCall)
The call2Node method makes a remote-procedure call to the local program residing on a node of

a graph.

ResponseBuffer call2Parents(java.lang.String gid, LPCall IpCall)
The call2Parents method makes a remote-procedure call to the local programs residing on the

parents of a graph.

ResponseBuffer call2TreeChildren(java.lang.String gid, int source, LPCall IpCall)
The call2TreeChildren method makes a remote-procedure call to the local programs residing on
the children of a spanning tree derived from the graph.

ResponseBuffer call2TreeParents(java.lang.String gid, int source, LPCall IpCall)
The call2TreeParents method makes a remote-procedure call to the local programs residing on
the parents of a reverse spanning tree derived from the graph.

RPCResponse defineGraph(Graph graph, int source, int currentNode)
The defineGraph method distributes a graph to all of its nodes according to the spanning tree,

starting at the source.

RPCResponse deleteGraph(java.lang. String gid, int source)
The deleteGraph method distributes a graph-deletion message to all nodes according to the
spanning tree, starting at the source and deleting all graph copies.

int getCurrentNode(java.lang.String gid)

getCurrentNode gets the current node ID for a given graph.

Graphlnfo getGraphInfo(java.lang String gid)
getGraphlnfo gets the current node ID for a given graph.

gid getNodewhere(java.lang.String gid)

getNodewhere gets the location of the current node for a given graph.

RPCResponse invokeLP(GraphInfo graphinfo, LPCall IpCall)
The invokeL P method invokes the local program residing on the current server.

boolean isRTRoot(java.lang. String gid, int source)
isSRTRoot checks whether the current server is a root on a reverse spanning tree, starting from a

given source node.

boolean isSTLeaf(java.lang String gid, int source)
isSTLeaf checks whether the current server is a leaf on a spanning tree, starting from a given

source node.

Graphlist 1istGraph()

listGraph gets all of the entries in the Graphinfo registry.

RPCResponse modi fyGraph(java.lang.String gid, int source, Edge[] obEdge,

Edge[] nwEdge, Map[] obMap, Map[] nwMap)

The modifyGraph method distributes a graph-modification message to all nodes according to the

old spanning tree, starting at the source.

ResponseBuffer send2Descendents(java.lang.String gid, LPCall IpCall)
The send2Descendents method casts a remote-procedure call to the local programs residing on

the descendents of a graph.

as the passing of messages and can concentrate on the logic of
their programs.

V. EXPERIMENTS AND EVALUATION

This section presents the experiments performed on the pro-
totype implementation of the WEBGOP system. The purpose
is to characterize and evaluate the performance of the proposed
system.

A. Test Setup

Tests were conducted on a network of UNIX machines
connected via a local area network. All of the machines were

installed with the prototype implementation of WEBGOP run-
ning on top of TOMCAT Web servers. Tests were conducted on
a number of logical-graph configurations. The detailed setup
configurations of the experiments are shown in Table II.

A series of parallel- and serial-graph configurations was
tested. Fig. 7 shows the serial-graph configurations and Fig. 8
shows the parallel-graph configurations. Each circle in the
figures represents a UNIX machine. Each one has a unique
IP address. The graphs represent the virtual networks in which
the machines interact under WEBGOP.

The outgoing message is timestamped by the originator.
On receiving the message, the LP, CheckTime, compares its
own local time and the timestamp to compute the unadjusted

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

CHAN et al.: WEBGOP: COLLABORATIVE WEB SERVICES BASED ON GRAPH-ORIENTED PROGRAMMING

TABLE 1I
SETUP OF EXPERIMENTS
Graph ID No. of UNIX No. of Children No. of Levels of |Graph Configuration
Machines Involved Connected to Descendents
Originator
polyu.time.1 2 1 1 parallel/serial
polyu.time.s2 3 1 2 serial
polyu.time.s4 5 1 4 serial
polyu.time.s6 7 1 6 serial
polyu.time.s8 9 1 8 serial
polyu.time.s10 11 1 10 serial
polyu.time.p2 3 2 1 parallel
polyu.time.p4 5 4 1 parallel
polyu.time.p6 7 6 1 parallel
polyu.time.p8 9 8 1 parallel
polyu.time.pl0 11 10 1 parallel
(©) O O © and the mean time of the receipt of the message as recorded
by the descendent. Fig. 9 diagrammatically shows the proposed
(1) (2) (4) (6) clock adjustment.
© © © B. Setting Up Graphs Amongst Servers
© @ Before any application can run normally, a graph has to
be set up among the relevant servers to initialize the system.
(1) ® Experiments were conducted using the WEBGOP primitive,
@) defineGraph. In setting up a graph among servers, the origi-
nator distributes the graph to all other servers. In return, they
o acknowledge the receipt of the graph. Fig. 10 summarizes the
graph setup times for serial graph configurations and Fig. 11
polyu.time. 1 polyu.time.s2 polyu.time.s4 polyu.time s6 summarizes the graph setup times for parallel-graph configu-
rations. The processes were repeated ten times for each graph.
Fig. 7. Tested serial-graph configurations. The first cycle of graph definition generally took a longer time

invocation latency. The following is the listing of the method
invokeTime.

public long invokeTime(long clientTime, String data){
long serverTime = System.currentTimeMillis();
long invokeTime = serverTime-clientTime;
System.out.println(serverTime +
“>>[P:CheckTime>>Unadjusted

invocation time(ms): ”’
+ invokeTime);
System.out.println(‘“Data: ” + data);
return invokeTime;

}

O R N O R

O 0 3 N

Therefore, the invocation time that is computed must be ad-
justed for the discrepancies between the clock of the originator
and that of the recipient. To do so, the originator sends a sep-
arate message using a WEBGOP primitive, call2Node, directly
to each descendent to check the required clock adjustment. The
adjustment is taken to be the difference between the mean time
of the dispatching of the message as recorded by the originator

due to the initialization of the servlets on each of the servers.
Subsequent cycles generally remained steady, but there were
fluctuations because of the other workloads of the servers. In
a serial configuration, the processes happened sequentially and
therefore more time was required to define a graph with more
levels of descendents. The setup times for parallel configura-
tions were generally shorter than those for serial configurations.
This was because the graphs in the descendents were set up in
parallel rather than in sequence.

C. RPCs by call2Children

In the second stage of the experiments, tests were made on
the WEBGOP primitive, call2Children. The objective of this set
of tests was to check the time required to get returns from LPs
installed on the children nodes. Upon receipt of a request for
call to the children, the originator server looks up the specified
graph in its graph registry, sends call2Children messages to the
children of the graph, and waits for returns. On receiving the
RPC, the children look up their own graph registries and invoke
the LP specified in the graph. Returns are then provided for the
originator to pick up.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

822 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

polyu.time.p2 polyu.time.p4 polyu.time.p6

Fig. 8. Tested parallel-graph configurations.

start meantimeto ...
dispatch
message
originator j | [» time
call2Node ‘ response
descendent | » time

mean time to
receive message

Fig. 9. Clock adjustment between the originator and a descendent.

16000 X

E 14000 —8— polyu.time. 1

§ 12000 o \ polyu.time.s2
E 10 000 \ \ polyu.time.s4
‘é 8000 J\\\ - - . —¥— polyu.time.s6
= 6000 T TR e —@&— polyu.time.s8
5 ;828 1T —— polyu.time.s10
R R

1 2 3 4 5 6 7 8 9 10
Iteration Number

Fig. 10. Tests on setting up serial graphs among servers.

4000

3500 Ba -
——polyu.time. 1

\ polyu.time.p2

t ; { e polyu.time.p4

2000 K\ —¥— polyu.time.p6
1500+—a— —8—polyu.time.p8
1000 \ | |—+—polyu.time.pl0
500~A¥7-=F.:-7-=.=-‘—:_‘—

0 + + t + + + t t +
1 2 3 4 5 6 7 8 9 10
[teration Number

Cycle Time (millisecond)

Fig. 11. Tests on setting up parallel graphs among servers.
Fig. 12 summarizes the time required to make calls to chil- the response time of the first cycle was not much longer. It was

dren and to get responses. Each call was repeated ten times. observed that more time was required to complete the RPCs for
As the LP was small and did not require much initialization, more children. The delay was mainly due to the handling of

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

CHAN et al.: WEBGOP: COLLABORATIVE WEB SERVICES BASED ON GRAPH-ORIENTED PROGRAMMING

823

1600
1400
)
% 1200 —— polyu.time. 1
'é 1000 —#— polyu.time.p2
% %00 polyu. llime<p4
E polyu.time.p6
': 600 —¥— polyu.time.p8
L’—;; 400 —®— polyu.time.pl0
200
0
1 2 3 - 5 6 7 8 9 10
[teration Number
Fig. 12. Tests on remote-procedure calls to children.
2500
]
]
2000 ®
£ - !
3 1500 - -
= 1 | I i +Originator's cycle time
E | | - mDescendent's invocation time
2 1000 i i .
= i |
500 . g 3 5 3 3
g1 ' ' . '
0 : : : : :
0 2 4 6 8 10 12

Descendent's Level

Fig. 13. Tests on send2Descendents for serial-graph configurations.

responses. Although a multithreaded implementation was used,
the responses all returned to the same node, requiring sequential
decoding of the responses.

D. Web Service Invocations by send2Descendents

In the third stage of the experiments, tests were con-
ducted on the WEBGOP primitive, send2Descendents. The
objective of this set of tests was to check the time re-
quired to invoke LPs installed on the descendents. Contrary to
call2Children, responses were not awaited for messages sent by
the send2Descendents command.

When the server originator receives an instruction of
send2Descendents, it 1ooks up its graph registry for the spec-
ified graph, and sends the message to the intermediate server.
The intermediate server then looks up its own graph registry,
invokes the LP specified in the graph, and relays the message
to its child. Without waiting for further responses from its own
child, the intermediate server immediately returns a response to
its parent. This process is repeated for each descendent in the
graph. In so doing, the message is sent sequentially from one
level of descendent to the next.

Fig. 13 summarizes the invocation times and response return
times for serial-graph configurations, and Fig. 14 summarizes
the invocation times and response return times for parallel-
graph configurations. The delay to the Web service invoca-

tion increased almost linearly with the number of levels of
descendents. The invocation latencies of the Web service on the
descendents were about 100 to 200 ms per level of descendent.
By having multiple children on one node, the amount of delay
experienced in the invocation of Web services on the children
was reduced to insignificance. The dispatches were made al-
most spontaneously because of the multithreaded implementa-
tion. However, the response return times tended to be longer
because of the implosion of the responses from the children
nodes. There is also a limit on the number of connections a node
can handle. For a parallel-graph configuration, the messages are
sent to the other nodes in parallel rather than in sequence. The
operation is similar to that for call2Children in Fig. 14, except
that the children will check whether they have any descendents
of their own and act accordingly.

E. Observations

Based on the tests, the following observations were made.

The time required to establish graphs is much longer than
that required to make calls to children or to send mes-
sages to descendents. After a graph is defined, the efforts
required to invoke collaborative Web services are significantly
smaller than those for reestablishing the graph. This shows that
although there may be overheads in establishing collaborative
links amongst Web services, if repeated use of the linkages is
envisaged, the efforts are well justified.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

824

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

4+ Originator's cycle time

[o)

(=]

<
"»

m Descendent's invocation time

- >

L o4

(3]
[
(=]
B d
| e |

N+ - D

g

6

|
8

Number of Children

Fig. 14. Tests on send2Descendents for parallel-graph configurations.

The parallel-graph configuration generally provides for faster
invocation and responses than the serial-graph configuration.
However, significant computing resources are required to
handle multiple messages and responses. There may also be a
response-implosion problem if too many children are attached
to a node. The serial configuration eases the workloads to
other servers. For each application and hardware configuration,
an optimum combination of a parallel and serial arrangement
of the graph structure should be carefully considered and
deployed. WEBGOP allows the programmer to choose the best
collaboration structure for his/her application.

WEBGOP enables the processing workload to be spread
from a single server to multiple servers. As each participating
server can actively process data, the amount of data transfers
can also be reduced and significant network bandwidth can
be saved. The invocation latencies are of the same order of
magnitude as the general network latencies experienced by Web
users.

Web-services architecture works on an emerging techno-
logical paradigm: interoperability. In this project, we take the
same approach and use the XML-based SOAP for communi-
cation. The main difference between the Web-services archi-
tecture in universal description, discovery, and integration of
business for the Web [15] (UDDI) and the approach adopted
in this project is in the way components are integrated. The
UDDI’s Web-service architecture promotes significant decou-
pling and runtime integration of components. This has the dis-
advantage of incurring large overheads in locating and binding
components with each runtime instance. For an application that
repeatedly uses the same set of components, the overheads
of finding and binding components should be done once. By
adopting GOP, the structure and dependence of components can
be established and described in a simple graph formation. To
reconnect and redeploy the same components, we need only
make reference to a single-graph instance, which significantly
simplifies the programming effort and speeds up the process.
While reconfiguration may incur additional resources, it is not
expected that reconfigurations would be frequent.

VI. DEPLOYING WEBGOP APPLICATIONS

This section presents the development of Web-based appli-
cations that are based on the WEBGOP programming archi-

tecture. The purpose of the experiments is to provide us with
an ideal opportunity to study the complex interactions among
the end-to-end services as well as the data flow among the
entities. The examples demonstrate the benefits of WEBGOP
in providing graphical constructs that allow an intermediary
node program to directly describe its relationship among its
neighbors in the form of various relational axes. In particular,
WEBGOP focuses on the tree relational structure to provide
a way of representing the hierarchical nature of an applica-
tion structure in a graphical form. Importantly, developers of
WEBGOP can easily model the relationships between distrib-
uted nodes as family relations. A typical WEBGOP application
is comprised of three parts.

* A graph specification that describes the graph structure of
the nodes according to the spanning tree starting at the
source.

* Direct annotations of graph primitives within each node
that defines the executable graph statements.

* A runtime WEBGOP execution environment that main-
tains and manages the graph operations. The mapping and
routing of messages are carried out automatically by the
runtime based on the graph definition.

A. Global Sum on a Three-Dimensional (3-D) Hyperpyramid

This application computes the global sum on a 3-D hyper-
pyramid as illustrated in Fig. 15. Each node is a server and
bears a value. The purpose of the application is to produce the
sum of all values on the nodes. It provides a simple application
example of distributed computing and, more importantly, it
demonstrates the ease with which such an application can be
constructed using the WEBGOP approach.

Before the main program is run, a graph named local.sum is
defined and distributed among the servers.

The four nodes are defined as follows.

Node ID Host name Location Local Program

0 host0 localhost : 8080 localprog.Subtotal
1 host1 localhost : 8001 localprog.Subtotal
2 host2 localhost : 8002 localprog.Subtotal
3 host3 localhost : 8003 localprog.Subtotal

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

CHAN et al.: WEBGOP: COLLABORATIVE WEB SERVICES BASED ON GRAPH-ORIENTED PROGRAMMING 825

Fig. 15. 3-D hyperpyramid.

The six edges are defined as follows.

EdgeID Start Node End Node

0 0 1
1 1 2
2 1 3
3 2 3
4 2 0
) 3 0

The graph is established amongst the servers by calling a
graph-related operation servlet, GraphOperation. The servlet
uses the WEBGOP primitives, defineGraph, modifyGraph,
addHost, and deleteGraph to perform graph-related functions.
The graph information stored in a server is recalled by the
WEBGOP primitive servlet, webgop.server.MonitorServlet.

The principal application program is GlobalSum, which is
a servlet operating on Node 0. On every other node, an LP,
localprog.Subtotal, is installed. The principal application pro-
gram collects all of the subtotal sums of its children by calling
the LP installed on them. It makes use of the spanning tree
in WEBGOP to avoid duplication in the summing nodes. The
WEBGORP primitive, isSTLeaf{(), is called to check whether the
node concerned is a leaf node on the spanning tree starting from
Node 0; and the WEBGOP primitive, call2TreeChildren(), is
used to get subtotals from the children of the spanning tree.
The application is run by invoking the servlet, GlobalSum, as
follows:

http://localhost:8080/[installedpath]/servlet/GlobalSum

With WEBGOP, the programmer is concerned with only the
program logic while the system handles the low-level burdens
of passing messages and forming the spanning tree. WEBGOP
enables ease of programming to overcome this problem over
the Web. Without GOP, it would be very difficult for nodes
to know how to sum node values without engaging in double
counting.

B. Stock-News Active Multicast

In this test application, a single piece of stock-news informa-
tion is multicast to the following six servers, which provide dif-
ferent Web services. The first server is an HTML page server of
Company A. It transforms the stock information into an HTML
page bearing the company’s title and stores it for distribution
to desktop-based client browsers. The second server is a

wireless markup language (WML) page server residing in
the same company, which transforms the stock information
into the company’s customized WML page for distribution
to wireless application protocol (WAP)-based users. The third
server is an e-mail server, which generates e-mails from the
stock information and sends them to users via SMTP. The
services are repeated for Company B. The situation is depicted
in Fig. 16.

The nine nodes are defined as that shown in the table at the
bottom of the next page.

The eight edges are defined as follows.

Edge Start Node End Node

0 0 1
1 0 2
2 1 3
3 1 4
4 1)
5 2 6
6 2 7
7 2 8

The application can be executed by calling the principal
servlet, Multicast, on Node 0 as follows:

http://158.132.8.171:8080/[installedpath]/servlet/Multicast

The principal application servlet, Multicast, includes a
graph-definition module and a stock-news message-sending
module. It operates on Node 0. On other nodes, a different
LP is installed based on individual requirements. The local-
prog.HtmlFileA transforms a message into an HTML page
customized for Company A, while the localprog. WmlFileA
transforms the message into a WML page customized for the
company. The local. EmailA is responsible for sending e-mails
to e-mail users of the company. The localprog. HtmlFileB trans-
forms a message into an HTML page customized for Company
B. Similarly, the local. WmliFileB transforms the message into a
WML page customized for company B. All of these LPs have
one thing in common. Their principal methods are all named
setData, which will be remotely invoked.

The graph-definition module makes use of the WEBGOP
primitive, defineGraph, to set up a virtual network amongst
servers. After the graph is defined and set up, a stock message
can be multicast to the servers using the WEBGOP primitive,
send2Descendents. The methods with a common name, set-
Data, are invoked on all the LPs as each distributed program
processes autonomously. Each server will perform different
functions according to different LPs. The localprog. HtmlFileA
is responsible for generating an HTML page customized for
Company A, the localprog. WmlFileA for generating a WML
file for mobile users. The localprog.EmailA serves to send
e-mails to the end users. Similarly, over at Company B, the
corresponding LPs perform the same functions (as Company
A) to serve different outputs. The messages are actively mul-
ticast across the WEBGOP-enabled servers residing in both
companies, with the adaptation of contents carried out by the
respective LPs serving different formats of the web contents.

This example demonstrates WEBGOP in enabling user-
defined computations to be placed within the Web as with active

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

826

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

Main Server

Company A Server

LS

—

Wl

Company A WML Server a

Company A HTML Server

- = . 53

= & CXrs
Desktop computers Laptop computers popile .
phones PDAs e-mail

Fig. 16. Active multicast configuration.

networks, while retaining all of the routing and forwarding
semantics of the current Internet architecture. Because the
service does not require any change to the Internet architecture,
it can be deployed incrementally on today’s Internet. This pro-
vides an incremental approach to developing active networks
using today’s technology in the Web environment. In short,
WEBGOP presents a novel computing model with the support
of graph-oriented semantics in programming distributed web
services.

C. Hierarchical Caching

In this test application, three servers form a hierarchical tree
to provide a Web-caching service. An abstracted fragment of

Company A e-mail Server

Company B Server

I
1L |
Company B WML Server

Company B HTML Server

Company B e-mail Server

e-mail

i

Mobile
phones

Desktop computers Laptop computers
PDAs

code is listed in the Appendix. When a server receives a request
for a Web page, it searches its cache. If the search fails, it
sends a message to its parents using the WEBGOP primitive,
call2TreeParents. The parents repeat the same process with
the grandparents and so on within the hierarchical tree. If the
page is found, its location is returned to the requester and the
servlet is redirected to the page. This program works even for
interconnected servers forming closed rings. WEBGOP auto-
matically generates a reverse spanning tree for searching and
the programmer does not need to worry about the duplication
or endless looping of searches.

In the test application, we make use of a single machine with
different ports to simulate different servers. Therefore different
LPs with different search paths have to be employed.

Node ID Host Name Location Local Program

0 ubx — 171 158.132.8.171 : 8080 localprog.HtmlFile
1 ubx — 172 158.132.8.172: 8080 localprog.HtmlFileA
2 ubx — 173 158.132.8.173 : 8080 localprog.HtmlFileB
3 ubx — 174 158.132.8.174 : 8080 localprog.HtmlFileA
4 ubx — 175 158.132.8.175 : 8080 localprog.WmlFileA
5 ubx — 176 158.132.8.176 : 8080 localprog.EmailA

6 ubx — 177 158.132.8.177 : 8080 localprog.HtmlFileB
7 ubx — 130 158.132.8.130 : 8080 localprog. WmlFileB
8 ubx — 131 158.132.8.131 : 8080 localprog.EmailB

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

CHAN et al.: WEBGOP: COLLABORATIVE WEB SERVICES BASED ON GRAPH-ORIENTED PROGRAMMING 827

The three nodes are defined as that shown in the table at the
bottom of the page.
The two edges are defined as follows.

Edge Start Node End Node

0 0 1
1 1 2

The graph can be defined by calling the graph-definition
servlet, GraphOperation, as follows:

http://localhost:8080/[installedpath]/servlet/GraphOperation

After a graph is defined, the application can be run by calling
the principal servlet, HierarchicalCache, on Node 2, as follows:

http://localhost:8002/[installedpath]/servlet/
HierarchicalCache

The concept of hierarchical caching has been around
for some time but its implementation is complicated. A
hierarchical-caching scheme reduces the latencies experienced
by individual users and the aggregate bandwidth that is con-
sumed. WEBGOP provides an easy means of programming for
this type of application.

VII. FUTURE WORK

This project has demonstrated the benefits of employing a
graph-oriented approach to the development of distributed Web
services. Importantly, the strong semantics of graph grammar
in modeling inherently graph-oriented services have proven to
be very useful in developing distributed Web services. Despite
the successful implementation of the prototype design, there
are challenges and issues that remain to be addressed. It is the
intention of this section to highlight these issues and to make
recommendations for future work.

 Integration with WSDL—The current system allows one
Web service for each graph on a server. WSDL is emerging
as a potential new standard that provides universal naming.
Future work may investigate the standardized naming of
Web services using WSDL to differentiate between Web
services/LPs for each graph.

¢ Incorporation of more types of data in the messaging—
Today, our implementation supports the transfer of strings,
integers, long, Booleans, and arrays. The transfer of more
types of data such as graphic data should be investigated.

* Experimenting with other transport protocols—Currently,
HTTP is used. Future work may explore the possibility of
extending WEBGOP to support SMTP and FTP.

* Attachment—Under WEBGOP, every bit of information
in a message has to be encoded and decoded. The use of

attachments may reduce the workload involved in encod-
ing and decoding the bulk of the information in a message.

» Standardization of graph identity—The graph identity
must be unique in differentiating between different collab-
oration networks. A standard naming convention for graph
identity would be useful.

* Automatic reconfiguration of the collaboration struc-
ture—The prototype implementation allows for program-
mer-defined insertions and deletions of nodes. In future
work, the automatic reconfiguration of the collabora-
tion structure may be investigated, taking into account
network-traffic conditions, characteristics, and so forth.

» Although HTTPs may provide a certain level of security,
security issues should be further investigated because the
consequences of the improper activation of procedures on
servers could be catastrophic.

VIII. CONCLUSION

In this paper, we have presented the design and implementa-
tion of WEBGOP, which represents a programming architecture
for collaborative Web services using GOP. In this architecture,
a logical graph representing a virtual-overlay network over the
Internet is created to link up strategic hosts, which are preloaded
with LPs providing collaborative Web services. Procedures
in the LPs are invoked either through unicast or multicast
messages within the overlay network. All messages are in the
firewall-friendly SOAP format.

The complete WEBGOP framework has been implemented,
tested, and evaluated on a Java execution platform. We
conducted several experiments over a cluster of distributed
workstations to validate the functionality of WEBGOP in
providing collaborative graph-based coordination among par-
ticipating web services. Overall, the time required to set up
the initial graph session among web services incurred higher
overheads than the graph operations. This is not surprising,
since state initializations and host discovery and integration
are required to configure the graph session. To demonstrate
the versatility of WEBGOP in modeling collaborative Web
services, this paper presented implementations of three trial
applications using the prototype system: one for computing the
global sum of the distributed nodes, one for providing active
multicast services, and one for hierarchical caching. The ease
with which these services are described using graph semantics
within the application facilitates rapid development because
the structural relationships among the services are directly
embedded in the programs.

The architecture can be applied to distributed computing on
the Web as well as to the coordination of Web services. The
project provides a structured integration of Web services in

Node ID Host Name Location
0 host0 localhost
1 host1 localhost
2 host2 localhost

Local Program
: 8080 localprog.SearchPage0
: 8001 localprog.SearchPagel
: 8002 localprog.SearchPage2

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

828 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

different servers that work collaboratively for a multipoint net-
work application. It also provides a rich network-programming
interface for a new class of integrated Web applications while
retaining the simple IP and HTTP.

APPENDIX
/%
*
x File: HierarchicalCache.java
+ Creation date: December 2001
*
*/

import javax.servlet.x;

import javax.servlet.http.x;

import java.io.x;

import webgop.invocation.Service;
import webgop.invocation.LPCall;
import webgop.gop.Graph;

import org.apache.soap.rpc.Parameter;
import webgop.invocation.RPCResponse;
import webgop.messaging.ResponseBuffer;
import java.util.StringTokenizer;

import java.util. Vector;

IET:

+ HierarchicalCache is the servlet for getting cached pages
* from a graph-linked hierarchy of servers.

*

*

*/

public class HierarchicalCache extends HttpServlet

{

static Service service;

[%%

x init method is called when servlet is first loaded.
*/

public void init() throws ServletException

{
if (service == null)
{
service = new Service();
}
}
[x%

* doGet method is called in response to any GET request.

* Returns an HTML form that allows the user to choose to
define or modify a graph.

*

*/

public void doGet(HttpServletRequest request,
HttpServletResponse response) throws IOException

{
//IMIME type to return is HTML
response.setContentType(“text/html”);

}

//get a handle to the output stream
PrintWriter out = response.getWriter();

/lcreate HTML form to allow user to select an operation
out.println(“<HTML>");
out.println(“<HEAD>");
out.println(“<TITLE>Hierarchical
Caching</TITLE>");
out.println(“</HEAD>");
out.println(“<BODY >");
out.println(“<H2>Hierarchical Caching</H2>");
out.println(“

<FORM METHOD=\“POST\”>");
out.println(“<P>GraphID: <INPUT TYPE =
\“TEXT\”"NAME = \“GRAPHID\” ”
+ “size = *“25\"></P>");
out.println(“<P>Request Page: <INPUT TYPE =
\“TEXT\”"NAME = \“PAGE\” ”
+ “size = \“40\”></P>");
out.println(“<P><INPUT TYPE =
\“SUBMIT\” NAME = \“Submit\” ”
+ “VALUE=\“Submit\”>");
out.println(“<INPUT TYPE = \“RESET\”
NAME = \“Reset\””
+ “VALUE = \“Reset\”></P>");
out.println(“</FORM>");
out.println(“<P>Note: search method of the local
programs on parents will be invoked</P>");
out.println(“</BODY ></HTML>");

//close output stream
out.close();

5%

* doPost method is called in response to any POST

* request. This method determines if it was called in

* response to the user selecting to define the distribution
* graph, collect a message or send the message.

*/

public void doPost(HttpServletRequest request,

{

HttpServletResponse response) throws IOException
String gid, page, location;

//get info from HTML form submitted by user
gid = request.getParameter(“GRAPHID”);
page = request.getParameter(“PAGE”);
try
{

location = getPage(gid, page);

if (location!=null){

response.sendRedirect(location);

}

else

{
/Ipage not found

PrintWriter out = response.getWriter();

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

CHAN et al.: WEBGOP: COLLABORATIVE WEB SERVICES BASED ON GRAPH-ORIENTED PROGRAMMING 829

response.setContentType(“text/html”);
//html output

out = response.getWriter(); //get handle to output
stream

out.println(“<HTML>");

out.println(“<HEAD><TITLE>Hierarchical
Caching</TITLE></HEAD>");

out.println(“<BODY >");

out.println(“<P>Page not found in hierarchical
cache</P>");

out.println(“</BODY >");

out.println(“</HTML>");

}

catch (Exception e)

{
/lexception occurred
PrintWriter out = response.getWriter();
response.setContentType(“text/html”); //html output
out = response.getWriter(); //get handle to output

stream

reportError(out,e);
out.close();

[

* getPage identifies the location of cached page in parents.
*

* @param out Client output stream

* @param request HttpServletRequest object

*/

private String getPage(String gid, String page) throws

Exception
{
int source = service.getCurrentNode(gid);
if (service.isRTRoot(gid, source) == true) return null;

Vector IpParams = new Vector();
IpParams.addElement (new Parameter(*“gid”,
String.class, gid, null));
IpParams.addElement(new Parameter(“source”,
int.class, new Integer(source), null));
IpParams.addElement(new Parameter(“requestPage”,
String.class, page, null));
LPCall IpCall = new LPCall(“search”, IpParams);
ResponseBuffer buffer[] = service.call2TreeParents
(gid, source, IpCall);
int cnt = buffer.length;
for (int j = 0; 7 < cnt;j++)
{
RPCResponse res = buffer[j].get();
if (res.generatedFault())
{
System.out.println(“Fault
+res.getFault()+”
");

113

+]+ =

}

else

{

if (res.getReturnValue()!=null)

{

String location = (String)res.
getReturnValue().getValue();
return location;

}

return null;

[

* reportError method returns stack trace to clienton error.
*

* @param out Printwriter output stream

* @param e Exception

*/

private void reportError (PrintWriter out, Exception e)

{

StringWriter errorSW = new StringWriter();
PrintWriter errorPW = new PrintWriter(errorSW);
e.printStackTrace(errorPW);
String stackTrace = errorSW.toString();
out.println(“<H1>WEBGOP Error</H1>

<H4>Error</H4>" + e +

“<H4>Stack Trace</H4>" +

stackTrace + “
");

ACKNOWLEDGMENT

The authors would also like to take this opportunity to thank
the reviewers for their insightful comments and suggestions on
improving the quality of the paper.

REFERENCES

[1] Apache XML Project. [Online]. Available: http://xml.apache.org

[2] A. Bakre and B. Badrinath, “Implementation and performance testing
of indirect TCP,” IEEE Trans. Comput., vol. 46, no. 3, pp. 260-278,
Mar. 1997.

[3] J. Cao, A. Chan, and K. Zhang, “Programming dynamic reconfigurable
web server groups using the DyGOP model,” in Proc. 12th Int. Symp.
Languages Intentional Programming, Jun. 1999, pp. 65-77.

[4] J. Cao, E. Chan, C. H. Lee, and K. W. Yu, “A dynamic reconfiguration
manager for graph-oriented distributed programs,” in Proc. Int. Conf.
Parallel and Distributed Systems (ICPADS). Seoul, Korea: IEEE
Comput. Soc. Press, Dec. 1997, pp. 216-221.

[5] J. Cao, L. Fernando, and K. Zhang, “Programming distributed sys-

tems based on graphs,” in Intentional Programming, M. A. Oregun and

E. A. Ashcroft, Eds. Singapore: World Scientific, 1996, pp. 83-95.

A. Chan and J. Cao, “PANTA: A graph-oriented programmable active

network transport architecture,” in Proc. IEEE Wireless Communica-

tions and Networking Conf., New Orleans, LA, Sep. 1999, vol. 3,

pp. 1293-1297.

[71 Y. Chawathe, S. A. Fink, S. McCanne, and E. A. Brewer, “A proxy
architecture for reliable multicast in heterogeneous environments,” in
Proc. 6th ACM Int. Conf. Multimedia, Bristol, U.K., 1998, pp. 151-159.

[8] Y. H. Chu, S. G. Rao, and H. Zhang, “A case for end system multi-
cast (keynote address),” in Proc. Int. Conf. Measurements and Modeling
Computer Systems, Santa Clara, CA, 2000, pp. 1-12.

[9] DeveloperWorks” Web Services Zone. [Online]. Available: http://www.
ibm.com/developerworks/webservices

[6

[t}

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

830 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 6, NOVEMBER 2005

[10] P. Francis. (2000, Apr.). Yoid: Extending the Internet Multicast Ar-
chitecture. [Online]. Available: http://www.aciri.org/yoid/docs/ycHtmIL/
htmIRoot.html

[11] Frequently Asked Questions (FAQ) on the Multicast Backbone
(MBONE). [Online]. Available: http://www.cs.columbia.edu/~hgs/internet/
mbone-faq.html

[12] L. Kleinrock, “On some principles of nomadic computing and multi-
access communications,” IEEE Commun. Mag., vol. 38, no. 7, pp. 4650,
Jul. 2000.

[13] S. McCanne, E. Brewer, R. Katz, E. Amir, Y. Chawathe, T. Hodes,
K. Mayer-Patel, S. Raman, C. Romer, A. Schuett, A. Swan, T. L. Tung,
T. Wong, and K. Wright, “MASH: Enabling scalable multipoint collabo-
ration,” ACM Comput. Surv., vol. 31, no. 2es, Article 2, Jun. 1999.

[14] D. L. Tennenhouse et al., “A survey of active network research,” IEEE
Commun. Mag., vol. 35, no. 1, pp. 80-86, Jan. 1997.

[15] Universal Description, Discovery, and Integration of Business for the Web
(UDDI) 2.0. [Online]. Available: http://www.uddi.org

[16] W3C Simple Object Access Protocol (SOAP) Version 1.1. [Online].
Available: http://www.w3.0org. TR/SOAP

[17] Web Services Flow Language (WSFL 1.0). (2001, May). Edited by Prof.
Dr. Frank Leymann (Distinguished Engineer; Member IBM Academy of
Technology, IBM Software Group).

Alvin T. S. Chan (M’92) graduated from the Uni-
versity of New South Wales with the Ph.D. degree in
1995.

He was employed, after graduation, as a Research
Scientist by the CSIRO, Australia, and is currently an
Associate Professor at the Hong Kong Polytechnic
University, Hong Hum, Hong Kong. From 1997 to
1998, he was employed by the Center for Wireless
Communications, National University of Singapore,
Singapore, as a Program Manager. He is one of the
founding members of a university spinoff company,
Information Access Technology Ltd. He is an active consultant and has been
providing consultancy services to both local and overseas companies. His
research interests include mobile computing, context-aware computing, and
middleware for adaptive computing.

Dr. Chan is a member of ACM.

Jiannong Cao (M’93) received the B.Sc. degree in
computer science from Nanjing University, Nanjing,
China, in 1982, and the M.Sc. and Ph.D. degrees in
computer science from Washington State University,
Pullman, WA, in 1986 and 1990, respectively.

He is currently an Associate Professor in the De-
partment of Computing at Hong Kong Polytechnic
University, Hung Hom, Hong Kong. He is also the
Director of the Internet and Mobile Computing Lab
in the department. He was on the faculty of computer
science at James Cook University and University of
Adelaide in Australia, and at City University of Hong Kong, Hong Kong.
His research interests include parallel and distributed computing, networking,
mobile computing, fault tolerance, and distributed software architecture and
tools. He has published over 150 technical papers in the above areas. He
has served as a member of editorial boards of several international journals,
a reviewer for international journals/conference proceedings, and also as an
organizing/program committee member for many international conferences.

Dr. Cao is a member of ACM. He is also a member of the Computer
Architecture Professional Committee of the China Computer Federation.

C. K. Chan, photograph and biography not available at the time of publication.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:35 from IEEE Xplore. Restrictions apply.

