
A Middleware Support for Agent-Based Application
Mobility in Pervasive Environments

Yu Zhou1,2, Jiannong Cao1, Vaskar Raychoudhury1, Joanna Siebert1, Jian Lu2
{csyuzhou, csjcao, csvray, csjsiebert}@comp.polyu.edu.hk, lj@nju.edu.cn

1Internet and Mobile Computing Lab
Hong Kong Polytechnic University, Hong Kong

2State Key Laboratory for Novel Software Technology
Nanjing University, Nanjing, China

Abstract—Application mobility is an efficient way to mask uneven
conditioning and reduce users’ distractions in pervasive
environments. However, since mobility brings more dynamism and
uncertainty, it also raises new research issues in developing
pervasive applications, including underlying application models,
adaptive resource rebinding mechanisms, synchronization and fault
tolerance techniques, etc. In this paper, we approach these problems
from the middleware perspective. Inspired by software agent’s
inherent capability of autonomy and mobility, we investigate its
potential use in application mobility and propose an agent-based
architecture called MDAgent. Three salient features are emphasized:
1) Reduced mobility overhead. Flexible bindings of application
components avoid migrating whole application. 2) Simplified
mobility management. Mobile agent takes over the responsibility of
mobility and synchronization, so user intervention is reduced. 3)
Enhanced customizability and adaptability. Context information can
be updated dynamically, and ontology-based reasoning ability
embedded in autonomous agents can direct the application to adapt
to the changes accordingly. On top of MDAgent, we have developed
several applications, and evaluated the performance.

Keywords: Pervasive computing; application mobility;software
agent

1. INTRODUCTION
Recent years have witnessed the daunting progress in the

integration of cyber space and its physical counterpart since
Mark Weiser envisioned the computer for the twenty-first
century [1]. Computers with higher processing ability are
diversified into common consumer electronics connected by
various kinds of networks. In this computation-pervasive
environment, how to coordinate various kinds of smart devices
and make them serve people in a more natural and less
annoying manner becomes one of the main research concerns
in both the academia and the industry community. Users have
specific operation habits and preferences, and when they move
from one place to another, it may cause some inconvenience in
the new environment. For example, if one person is left-
handed, he will certainly feel uneasy to work in right-handed
application environments where he moves to. If the
application can migrate with the user or be customized
according to his preferences, and adapt to new environments

proactively, it will become personalized and thus naturally
reduce users’ distraction [2].

However, making the application mobile, personalized
and adaptable faces several challenges. The most fundamental
two problems are when and how to migrate and adapt the
application. Different devices usually have different
properties, such as screen size, resolution ratio, and
computation capability. Thus one application running well on
one device can not be taken for granted that it would work
well without any adaptation on another device. Meanwhile, in
some cases, not only the cut-paste kind of application
mobility, but also the copy-paste kind of mobility is needed.
By cut-paste like application mobility, we mean that,
applications (or parts of applications) save the states and
migrate to the destination. By copy-paste like application
mobility, we mean the application clone first and migrate. We
use a metaphor to express this, as it is very like the everyday
text editing operation. In the latter case, some synchronization
channels need to be established between or among the
involved applications.

An executing application generally consists of user
interfaces, logic, computation states, and resource bindings,
etc. We need to investigate the management of mobility,
application architecture, and resource matching mechanisms.
Besides, to capture users’ movement and intention also
requires the attention on context modeling and reasoning
capability. The issues stretch from the application layer to the
context layer, while current system software offers limited
support for mobility and context management. Putting all
these concerns in the application layer would be too much for
application developers. The above observations motivate us to
approach it from the middleware perspective, offering a
middleware-level support for application mobility.

Inspired by the coincidence of software agent’s inherent
features and pervasive environments’ requirements, we
investigate and exploit agents’ potential use in application
mobility to support the vision of pervasive computing.
Software agents generally contain two complementary
semantics. The first is on mobility, and the second is on
autonomy. Mobile agents (MAs) are programs that can
migrate in a network at times and to places of their own

27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07)
0-7695-2838-4/07 $20.00 © 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61006304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

choosing [3]; while autonomous agent is a system situated
within and a part of an environment that senses and acts on it
[4]. Various kinds of agent-based solutions have been
proposed and proved to be feasible and efficient in a
considerable amount of applications, ranging from software
engineering to knowledge engineering [5].

Based on our preliminary work on agent-enabled
application mobility [6, 7], we extend the research into the
development of the underlying application model,
synchronized mechanism and adaptation techniques. Our
previous work proves the feasibility of agent enabled
application mobility; however it doesn’t further investigate the
component-level migration, the clone-dispatch application
mobility, and resource description and reasoning mechanisms.
Compared with other works on application mobility in
pervasive environments [8-10], our approach highlights the
following characteristics:

i) Agent-enabled loosely coupled application
architecture and flexible resource binding
mechanisms support light-weight transmission.

ii) Agent-based coordination mechanism supports not
only follow-me kind of mobility, but also clone-
dispatch kind.

iii) Embedded logic-based reasoning utilities in
autonomous agents support adaptive migration
behaviors.

Besides the above features, employing agents can also
leverage the existing methodology and architecture, thus
getting the advantage of simpler persistence and mobility
management as well as stronger resilience capability [3].

The rest of this paper is organized as follows. In Section
2, we review the related work to our research. In Section 3, we
discuss architectural requirements. Based on these
requirements and previous analysis, we present the design of
our architectural framework in Section 4. Implementation of
the applications in our proposed framework and their
performance evaluations are described in Section 5. Finally,
Section 6 gives the concluding remarks.

2.RELATED WORK
The idea of application mobility results from the

requirements of personalized and adaptive services in
pervasive environments. Several other research projects have
worked on this aspect. For example, there are Gaia, Aura,
BEACH, one.world, to name a few. Comprehensive surveys of
research in application mobility are impractical in this paper,
thus we select and highlight some representative examples in
the literature.

Gaia [8, 11] models the pervasive environment as an
active space where the application framework uses reflection
to explicitly separate the application base-level from meta-
level. Applications are decomposed into five parts, namely,
model, presentation, adapter, controller and coordinator.
Computational reflection manages the complexity in the
development of applications, allowing developers to
concentrate on the base-level and providing mechanisms to
automate meta-level configuration dynamically. The

coordinator manages the component registration, application’s
life cycle and mobility. However placing all these
responsibilities into a single static coordinator module will
unavoidably increase its complexity and cause the problem of
single point of failure. Besides, Gaia lacks a unified resource
definition framework.

Project Aura [12] aims to offer a framework for user
mobility in pervasive environments. Applications are
organized into services. User tasks become first class entities
represented as coalitions of abstract services. The task
manager will coordinate these services and transmit them
accordingly through a file transfer system after they sense
users’ mobility. However, Aura didn’t address much about
adaptation issues after the migration. Besides, inter-space
application transmission as well as multi-application
synchronization issues have not been further investigated.

BEACH [13] is a software infrastructure providing
functionality for synchronous cooperation and interaction with
room-ware components. It uses an event dispatching
mechanism to support multiple persons using the same devices
concurrently. The synchronization is realized through shared
objects. When the state of these shared objects changes, the
updates are triggered automatically. This is somehow similar
to the update mechanism used in our system. But the emphasis
of BEACH is to support synchronized multiple devices
collaboration, while our research mainly addresses application
mobility.

Previously, we also designed an agent-enabled platform
supporting application-level mobility [7]. We further the
investigation from the aspects of the underlying application
model, the mobility management and the separation of
concerns in agents. The original framework uses a static
binding between agents and applications while the current one
adopts an adaptive binding mechanism, in which only parts of
application need to be wrapped to migrate. It can help reduce
the migration cost significantly which can be shown in the
performance study. Our original framework supports only
follow-me kind of mobility, we extend this and also supports
clone-dispatch mobility. Also, the reasoning functionalities are
separated and incorporated into specific autonomous agents;
while these functionalities were formerly mixed together in
mobile agents. This separation of concerns also facilitates the
agents design because different agents just need to concentrate
on their specific roles.

3.ARCHITECTURAL REQUIREMENTS
In this section, we identify some key requirements that

should be addressed in the architecture design for application
level mobility in pervasive environments.

3.1 Application Model
Component level migration is more desirable compared

with migrating the whole application. This requires the
applications to support flexible component binding and
composition. Pervasive environments offer various kinds of
network connections. By leveraging this infrastructure,
applications can be designed as a collection of reusable

27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07)
0-7695-2838-4/07 $20.00 © 2007

distributed objects. The requirements of the application model
can be summarized as follows:

i) Applications should be decomposed into separate
parts, such as logics, presentations, resources, data,
etc.;

ii) To coordinate these components, Synchronization
mechanisms need to be provided;

iii) Before and after migration, application states should
be consistent and continual, so a state manager
component should be provided;

iv) Various kinds of devices and network conditions
exist, so the adaptation mechanisms are also required.

Application models that take the above requirements into
consideration can significantly ease this process to achieve
environment-adapted and user-customized application level
mobility.

3.2 Mobility Management
What distinguishes application mobility from other kinds,

such as data mobility, etc. is that application is a proactive and
executable entity. After migrating to the destination, it can
continue its execution in the new environment. Basically, there
are three aspects to consider. First, which components should
be migrated? Second, where is the destination, in the same
virtual space or across the space? Third, what kind of migration
is needed, cut-paste like or copy-paste like?

Migrat
ed

 Compo
nents

Intra-space
Copy-Paste Like
(Clone-Dispatch)

Intra-space
Cut-Paste Like
(Follow-Me)

Inter-space
(Gateway Required)

Copy-Paste Like
(Clone-Dispatch)

Inter-space
(Gateway Required)

Cut-Paste Like
(Follow-Me)

M
od

es

Mobility Domain

Presentation Migration

States Migration

… …

States Migration

Presentation Migration

… …

States Migration States Migration

Presentation Migration Presentation Migration

… … … …

Fig. 1 Mobility classification

Figure 1 gives a mobility classification illustration. In the
dimension of mobility modes, there are two categories, one is
following the user’s location and the other is cloning itself and
dispatching to the destination. Application-level clone and
dispatch modes are intuitively similar to copy-paste and cut-
paste operations respectively, but involve many more concerns.
In some cases, we need cut-paste like mobility, for example,
when a person is listening to a piece of music, but he has to go
to other places for some reason and he doesn’t want the music
to be interrupted. Now, the best way is, the music player can
stop when he moves out (cut) and continue when he enters the
new place (paste). While in other cases, we need copy-paste

like mobility. For example, in conference scenarios, we often
face the following embarrassments, one or several of the
members cannot come due to various kinds of reasons and in
this way, the meeting applications might clone themselves
(copy), and move the copy to the destination (paste). The
application would start automatically and synchronize with the
source application at the destination. Along with the voice
transmission, a remote meeting would be possible. In the
dimension of mobility domain in Fig.1, due to the current
technology limits of coverage, generally one smart space only
covers a specific area. Migration across the space boundary
requires additional gateway support. Also, applications should
be aware of which parts of the components can be migrated,
data, presentation, logics or other components. The mobility
management design should take these into consideration.

3.3 Resource Binding & Service Customization
As discussed in the Section 1, after the migration of

applications’ components, for various reasons, the original
resource bindings may be lost. For example, if the network is
busy and destination machine has the required resources, then
the local resource can be used without the need to transfer
resources from the remote source host. This requires a
resource rebinding mechanism. As different hosts often have
the same resources but with different names, simple syntax-
based matching puts much strict unnecessary constraints, and
semantics-based resource matching is much preferred.

Service customization has two categories. The first is for
different devices, while the second is for different users. This
requires explicit specifications for these two cases, and an
introspection ability of applications to adapt to different
scenarios.

3.4.Context Awareness
To capture users’ mobility or intention, the application

should be aware of users’ current context which involves any
information that can be used to characterize the situation of an
entity relevant to the interaction between a user and an
application [14]. Since application’s mobility and
customizability are strongly connected with users’ locations
and personal preferences, in system design, this kind of
context should be specifically paid attention to.

Different context information often has different
properties. For example, users’ location information usually
changes frequently as people often move from one place to
another, while users’ preferences or operational habits are
generally more stable. Modeling different context information
also requires taking their temporal characteristics into
consideration.

Usually, the underlying sensors can only collect raw data
such as distance, badge (listener) identity, etc. To map these
data to useful information such as location, user identity, etc.
requires context fusion mechanisms. Besides, some context
reasoning and prediction functionalities should also be
provided to improve the performance.

27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07)
0-7695-2838-4/07 $20.00 © 2007

 Fig. 2 Framework Overview. Fig. 3. Application Model

4. ARCHITECTURAL FRAMEWORK
In this section, we introduce our architectural framework

addressing the issues discussed above.

4.1 Framework Overview
Figure 2 gives the general view of our architecture design.

The architecture is comprised of four layers, i.e., Sensor
Layer, Context Layer, Agent Layer, and Application Layer.

Sensor layer will collect data from these physically or
logically deployed sensors detecting users’ mobility, network
connectivity, latency, etc. Due to the variety and frequent
inaccuracy of these data sources, they cannot be used directly
in the upper level.

In context layer, first, a classifier component will store the
data into different databases according to their temporal
characteristics. A context monitor will observe this process. If
some predefined conditions occur, the autonomous agents will
be triggered and these agents will continue the following
process.

Agent layer is the key to connect the context layer and the
application layer. It consists of two kinds of agent managers,
one is the mobile agent manager, and the other is autonomous
agent manager. Autonomous agent (AA) is responsible for
reasoning and decision-making according to the data received
from context layer. Mobile agent (MA) is responsible for the
wrap of application components. They communicate through
message passing. When autonomous agent finds user’s
movement or user’s indication to move an application to a
remote host (cut-paste kind or copy paste kind), it first notifies

the MA to prepare to migrate, and record the application state.
After getting the destination, MA retrieves complied resource
and application information (maybe owl-enabled as can match
in a semantic way) from the registry center. Then according to
the result and the application-specific rules, AA decides
whether to transfer the states only or the interface only or
other possible component combinations in application layer.
Mobile agents will take over the next transmission and
synchronization work according to the application-specific
requirements.

4.2 Application Management
To support highly customizable and adaptable applications,

we proposed a loosely-coupled application model based on the
Observer Design Pattern [15].

4.2.1 Application architecture
Our application architecture has two levels as shown in

Fig. 3. Upper level mainly consists of some application
components, such as logics, presentations, resources, etc.,
together with some description files, such as user profiles,
device profiles, resource profiles and interface descriptions.
Logic controller handles the processing of data and resources
and controls the presentation components. As this level
directly interacts with users, it is visible to them.

In base level, the main modules are coordinator, snapshot
manager, mobile agent, and adaptor. The coordinator
establishes the synchronization link between different
presentations and interacts with snapshot management and
mobile agent. Basically, different presentations register
themselves to the coordinator. When the states change, these

DataResources Interface
Description

Coordinator Adaptor
Snapshot

Management

ProfilesPresentation

MA

Logic
Controller

27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07)
0-7695-2838-4/07 $20.00 © 2007

Fig. 4 Interaction Diagram

presentations can get notified automatically. In this way, not
only we get a loosely-coupled architectural model but also
simplified consistence control and higher component
reusability. The snapshot management is responsible for
persistence process control of running applications, while
mobile agent is for application wrapping and migration to the
destination. Due to the high dynamism and variety in the
environments, the adaptor comes to bridge the mismatch. As
this layer mainly deals with underlying supporting work, it is
transient to end users.

4.2.2 Dynamic interaction
Applications first register themselves to the application

and resource registry centers with their interface descriptions
and other parameters such as specific device requirements,
user preferences, etc, in a WSDL-like format. When the
mobile agent gets the message of migration, it firstly parses
the scripts. If the migration is follow-me alike, it contacts the
registry centers first to find whether the destination has the
corresponding components and resources. Then it suspends
the current execution of application, collects and wraps the
snapshots together with corresponding components, migrates
to destination hosts and resumes application execution there.
If the migration is clone-dispatch alike, it also looks up in the
registry center first to find whether the destination host has
required resources and components.

After migration, the application needs to be adapted in the
new environments, the mobile agent will contact adaptor to
conduct necessary adaptations according to some customizable
parameters to adjust some sizes, resolutions, etc.

4.3 Agent Management
Figure 2 shows some key components of agent

management. In this section, we will elaborate on them and
other agent-related components.

In our model, the agents function like a thread weaving
the applications and the context management. Specifically, we
distinguish two kinds of agents according to their different
roles. They are autonomous agent and mobile agent
respectively. These agents collaborate together and interact
closely with both the application layer and the context layer.

The Autonomous agent manager mainly has the
communication and coordination utilities and serves as a rule
manager for autonomous agents. These agents will logically
exist in the context layer and listen to the context events. The
context observer continually monitors and broadcasts the
context information. Not all of this information is useful.
Some are duplicates and some are irrelevant. Agents will filter
and find their interested subjects and interpret them
accordingly. For example, when the context observer finds
user’s location being changed and announces this event,
autonomous agents will capture this information and interpret
it as the user will leave the room and inform the coordinator.
The coordinator will subsequently call for snapshot manager
to record the current application states if necessary, and then
suspended the application. When the user’s new location is
announced, autonomous agents will firstly check application
related profiles including resources, preferences, and device
properties. Then the autonomous agents will contact the

27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07)
0-7695-2838-4/07 $20.00 © 2007

registry center about destination environment information,
such as, whether the devices are compatible, if the application
components exist there, whether the network situation allows
the local data to be copied. Based on the above considerations
and user defined rules, the autonomous agent will decide
whether and what parts of application will be shipped to the
new environments through a message to the mobile agent
manager.

Mobile agent will wrap the corresponding components,
check out from the current site, check in at the destination,
inform the coordinator to establish the synchronization link if
necessary and resume the execution. The interaction is
pictorially described as a sequence diagram in Fig. 4. In this
way, mobile agent is not bounded to a specific component of
applications; instead it can wrap any serializable part and
migrate to the destination.

4.4 Resource Description & Agent Reasoning
Mechanism

In pervasive environments, various kinds of resources
with different properties exist. Some are transferable, others
are not; some can be easily substituted, others can not. For
example, a printer is not transferable but can be substituted
while database is neither transferable nor easily substituted,
and a PDA is transferable but not easily to be substituted as
users’ profiles and preferred software are installed. In order to
share and utilize these resources, a representation framework
is in need. We use ontology to model the resources and their
inter-relations, as it not only supports resource matching
semantically, but also facilitates the reasoning process.

In the domain of knowledge-based systems, ontology
means a specification of a representational vocabulary for a
shared domain of discourse -- definitions of classes, relations,
functions and other objects, as in software literatures, what
“exists” is exactly what can be represented [16].
To support ontology, one description mechanism must be
selected. We choose Web Ontology Language (OWL) for its
generality. OWL [17] is a semantic markup language for
publishing and sharing ontology proposed by W3C’s Web
Ontology Working Group. It is developed as a vocabulary
extension of Resource Description Framework (RDF). OWL
follows the XML syntax and has the advantage of platform-
independence. For example, we can define a specific printer
in this way:

Fig. 5 Owl Description Illustration

By abstracting and specifying some key properties in
OWL format, we can check the resource compatibility
semantically and customize the application accord to the
checking results and other context information. First, an

autonomous agent will retrieve the resources available in the
destination host from the registry center in the standard OWL
Query Language (OWL-QL) and then carry out the
compatibility checking using predefined rules which can be
encoded in a RDF format as the following script shows. The
example script in Fig.8 means predicate ‘locatedIn’ is a
transitive property; if the resources in the source and
destination are both the ‘printer’ types, then they are
compatible; and if the resources in sources and destinations are
compatible and network condition is good (response time is
less than 1000 ms), then the autonomous agent will issue a
move command which will be transformed to a concrete
action.

Fig. 6 RDF Rule Illustration

When MA gets to the destination and resumes the
application there, it will also check with the coordinator and
make some adjustments according to the environment
configurations.

5.IMPLEMENTATION & PERFORMANCE
EVALUATIONS

In this section, we describe the implementation of a
prototype of the proposed architecture for application mobility
and some sample applications built upon the framework. The
prototype is written in Java 1.4, and the agent server is JADE
3.4 [18]. We use several open source packages (in Jar file).
Dozens of Cricket Sensors are deployed to collect user’s
location and identity data. The prototype consists of a running
kernel of context management, MA manager, AA manager,
and abstract application interfaces. Context kernel employs a
publish/subscribe design pattern. When the subscribed events
occur, the information will be multicast to the registered
listeners. Both autonomous agents and mobile agents are
implemented as specific agents inheriting JADE’s Agent
class. Jena [19] is used as the reasoning engine embedded in
autonomous agents.

We built six demo applications based on this
infrastructure, namely smart media player, follow-me editor,
ubiquitous slide show, handheld editor, handheld music
player, and follow-me instant messenger. Among these
applications, we will introduce two of them as they
demonstrate different kinds of application mobility. The first
is a follow-me kind of music player. It can stop music when
listener is out of the room and continue playing when the
listener enters the room within the same space. In this demo,
application is divided into several functional components,
codec logic, interface, and data files. When the context

<owl:Class rdf:ID = ”hpLaserJet”>
<rdfs:comment>hp color printer</rfds:comment>

<rdfs:subClassOf rdf:resource=
”#Printer;Substitutable;UnTransferable”/>
<owl:ObjectProperty rdf:ID=”locatedIn”>

<rdfs:range rdf:resource=”#Office821”/>
<rdfs:type rdf:resource=”TransitiveProperty”/>

</owl:ObjectProperty>
…

</owl:Class>

[Rule1: (?p imcl:locatedIn ?q), (?q imcl:locatedIn ?t) ->
 (?p imcl:locatedIn ?t)]
[Rule2: (?ptr imcl:printerObj ‘printer’), (?srcRsc rdf:type ?ptr), (?destRsc
imcl:printerObj ?ptr) ->
(?srcRsc imcl:compatible ?destRsc)]
[Rule3: (?addr1 imcl:address ?value1), (?addr2 imcl:address ?value2), (?srcRsc
imcl:compatible ?destRsc), (?n imcl:responseTime ?t),lessThan(?t,
'1000'^^xsd:double) ->
(?action imcl:actName "move"),(?action imcl:srcAddress ?add1),(?action
imcl:destAddress ?add2)]
……

27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07)
0-7695-2838-4/07 $20.00 © 2007

manager senses the change of user’s location, it notifies
autonomous agents, autonomous agents think the user is going
to leave the room and issue a command to the coordinator
suspending the current music, as this is a stateful application,
coordinator will call snapshot to record the current states.
When user enters a new place, context manager notifies
autonomous agents, which first contact the destination hosts
and check whether the required resource or application exists
or not. In this case, the resource is the music files in the
playlist. If these files don’t exist in the destination, they will
be played remotely through URL in the original host. We use
Juddi and MySQL as the backend application and resource
registry center. Autonomous agent first check whether the
application exists or not in the destination. If it exists, mobile
agent just wraps the state and migrates. Otherwise, it will also
carry the logics and user interface as well as the states.

To evaluate the platform performance and without the
loss of generality, we assume the destination host contains the
application user interface but no music data nor application
logic. We calculate the time consumption in three phases:
suspension, migration takes and resumption. Time
consumptions of suspension and resumption are easy to
calculate, as they occur in the same place. But migration
involves two places whose clocks are not synchronized. In
this case, we calculate the round trip time cost. According to
stable physical properties of crystal frequency, the difference
of time values of clocks at the same time is nearly a constant
value. In this way, adding up the round trip migration time
cost can just eliminate the error introduced by
asynchronization in different hosts, i.e.,

T2@H2 – T1@H1 + T4@H1 – T3@H2 =
 T2@H2 – T1@H2 + T4@H1 – T3@H1

Note: Ti@Hj means time value at the moment of ‘i’, in Host (Place) j

Fig. 7 Time Cost Illustration

In our previous work, for specific applications, we use a
static binding between mobile agents and applications. In this
way, application components including the data, logic, and
user interfaces all migrate with users. It will decrease the
performance when the applications’ size grows up

In the experiment conducted, we use different sizes of
music files. The evaluation result is shown in Fig.8. The

experiment is done on 2 computers with P4 1.7GHz, 256M
memory and PM1.6GHz, 512M memory respectively
connected by 10Mbps Ethernet. The evaluation results hint
that as the file size increases, only resumption takes more
time, suspension and migration are not affected much.
Although resumption takes more time, the total increased
scale is acceptable, about less than 200 milliseconds when the
file size increases from 2.0MB to 7.5MB.

Fig. 8 Performance with adaptive component binding
In order to give a comparative view of the efficiency of

the adaptive component migration, we also measured the time
consumption in the original design [7]. The corresponding
performance evaluation and comparison are given in Fig.9
and Fig.10.

Evaluation for Static Component Binding

0

2000

4000

6000

8000

10000

2.0M 3.0M 4.3M 5.6M 6.5M 7.5M

File Size

Ti
me
 (
ms
)

suspend

migrate

resume

Fig. 9 Performance with static component binding

Comparative Cost

0
2000
4000
6000
8000

10000
12000
14000
16000

2.0M 3.0M 4.3M 5.6M 6.5M 7.5M

File Size

T
i
m
e

(
m
s
)

Adaptive
Component
Binding
Static
Binding

Fig. 10. Comparative time cost

The second application is to demonstrate clone-dispatch
kind of migration. It needs to cross different spaces in our

Total Cost

900
950

1000
1050
1100
1150
1200
1250

2.0M 3.0M 4.3M 5.6M 6.5M 7.5M

File Size

T
i
m
e

Sum

Experiment Evaluation

0
100
200
300
400
500
600
700
800

2.0M 3.0M 4.3M 5.6M 6.5M 7.5M

File Size

T
i
m
e

(
m
s
)

suspend

migrate

resume

27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07)
0-7695-2838-4/07 $20.00 © 2007

case. One lecture is going to be given, but so many listeners
that one room is not big enough to sit all of them. Parts of
attendees are arranged in other meeting rooms. Traditionally,
besides the audio transmitted to these rooms, separate
assistants are needed to open the slides and synchronize
manually with the main room (where the speaker is). Our
demo simplifies this process and lets agent clone the
application and migrate to the separate rooms and establish
the synchronization links with the main room automatically.
AAs get the context information from user indication and get
the list of destinations, after resource retrieving and matching,
it will notify MAs to migrate the components to the
destination. In this case, each meeting room is equipped with
a presentation application, a projector, what lacks is the slides.
So MAs just need to carry to slides to the destination,
collaborate with the MA manager and synchronize the slides
with the speaker’s presentation controls. Meantime, separate
channels broadcast the speaker’s voice. In this way, attendees
can listen to the same lecture in different rooms. In our
scenario, different rooms belong to different cyber domains,
gateways are provided to connect them. In implementation,
we import part of Open Office Impress as the slide show
presenter and Open Office SDKs to get the controller handle.
We refactored the program according to the structure model
introduced previously and added the coordination components
to synchronize the different presentations.

6. CONCLUSIONS
In this paper, we mainly exploit the potential use of

software agents to support application-level mobility in
pervasive environments.

We investigate the problem of application mobility from
the aspects of the underlying application model, mobility
management, collaboration of different kinds of software
agents, resource matching and service customization
mechanisms. By application migration, users can interact with
environments in a more natural and comfortable way, and our
experiments and experience have indicated that software
agent technology is a promising approach to support
application mobility.

MDAgent has some unique features which distinguish
from other frameworks. It supports flexible, multiple kinds of
application mobility. Semantics-based resource matching and
reasoning mechanisms enable richer information process. The
collaboration of autonomous agents and mobile agents
achieves a higher level of migration capability and lower level
of migration costs which are demonstrated by the
experiments.

ACKNOWLEDGMENTS
This work is partially supported by the University Grant

Council of Hong Kong under the CERG PolyU 5183/04E,
China National 973 Program with Grant Number:
2002CB312002, NSF of China with Grant Number: 60403014,
863 Program of China with Grant Number: 2006AA01Z159.

References
[1] Weiser, M., The Computer for the Twenty-First Century, in

Scientific American. 1991. p. 94-101.
[2] Satyanarayanan, M., Pervasive Computing: Vision and

Challenges. IEEE Personal Communications, 2001: p. 10-
17.

[3] Lange, D.B. and Oshima, M., Seven Good Reasons for
Mobile Agents, in Communications of the ACM. 1999. p.
88-89.

[4] Franklin, S. and Graesser, A. Is it an Agent, or just a
Program?: A Taxonomy for Autonomous Agents. in
Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages. 1996.

[5] Iglesias, C.A., Garijo, M., and Gonzalez, J.C. A Survey of
Agent-Oriented Methodologies. in Procedings of the Fifth
Workshop on Intelligent Agents V. Agent Theories,
Architectures, and Languages. 2000.

[6] Cao, J.N., Tse, C.K., and Chan, T.S. PDAgent: a Platform
for Developing and Deploying Mobile Agent Enabled
Applications for Wireless Devices. in Proceedings of the
2004 Internationsl Conference on Parallel Processing.
2004. Montreal, Canada.

[7] Yu, P., Cao, J.N., Wen, W.D., et al. Mobile Agent Enabled
Application Mobility for Pervasive Computing. in UIC.
2006.

[8] Ranganathan, A., Chetan, S., and Campbell, R. Mobile
Polymorphic Applications in Ubiquitous Computing
Environments. in Proceedings of the First Annual
International Conference on Mobile and Ubiquitous
Systems: Networking and Services. 2004.

[9] Grimm, R., System Support for Pervasive Applications.
December, 2002, University of Washington.

[10] Ponnekanti, S.R., Lee, B., Fox, A., et al. ICrafter: A
Service Framework for Ubiquitous Computing
Environments. in Proceedings of Ubicomp 2001:
Ubiquitous Computing: Third Internaltional Confernece.
2001.

[11] Roman, M., Hess, C., Cerqueira, R., et al., A Middleware
Infrastructure for Active Spaces, in Pervasive Computing,
IEEE. Oct-Dec, 2002. p. 74-83.

[12] Garlan, D., Siewiorek, D., Smailagic, A., et al., Project
Aura: Toward Distraction-Free Pervasive Computing, in
IEEE Pervasive Computing. April-June 2002. p. 22-31.

[13] Tandler, P., The BEACH Application Model and Software
Framework for Synchronous Collaboration in Ubiquitous
Computing Environments. Journal of Systems and
Software, 2004. 69(3): p. 267-296.

[14] Dey, A.K. and Abowd, G.D., Towards a better
understanding of context and context-awareness. June
1999, Georgia Institute of Technology.

[15] Gamma, E., Helm, R., Johnson, R., et al., Design Patterns:
Elements of Reusable Object-Oriented Software. 1995,
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc.

[16] Gruber, T.R., A translation approach to portable ontology
specifications, in Knowledge Acquisition. 1993. p. 199-
220.

[17] Antoniou, G. and Harmelen, F., Web Ontology Language:
OWL, in International Handbooks on Information Systems.
2004, Springer Verlag. p. 67-92.

[18] Bellifemine, F., Caire, G., TTrcco, T., et al., JADE
Programmer's Guide. 2006.

[19] Reynolds, D., Jena 2 Inference Support. August, 2003.

27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07)
0-7695-2838-4/07 $20.00 © 2007

