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Abstract 
 

Gossiping has been widely used for disseminating 
data in large scale networks. Existing works have 
mainly focused on the design of gossip-based protocols 
but few have been reported on developing models for 
analyzing the fault tolerance property of these 
protocols. In this paper, we propose a general 
gossiping algorithm and develop a mathematical 
model based on generalized random graphs for 
evaluating the reliability of gossiping, i.e., to what 
extent gossip-based protocols can tolerate node 
failures, yet guarantee the specified message delivery. 
We analytically derive the maximum ratio of failed 
nodes that can be tolerated without reducing the 
required degree of reliability. We also investigate the 
impact of the parameters, namely the fanout 
distribution and the nonfailed member ratio, on the 
protocol reliability. Simulations have been carried out 
to validate the effectiveness of our analytic model in 
terms of the reliability of gossiping and the success of 
gossiping. The results obtained can be used to guide 
the design of fault tolerant gossip-based protocols. 
 
1. Introduction 
 

Reliable group communication protocols are 
essential for designing distributed systems and 
applications such as publish/subscribe systems [1], 
distributed databases [2], consistency management [3], 
and distributed failure detection [4]. In recent years 
reliable multicast protocols for the large-scale 
networks have been the focus of research in group 
communication. Traditional solutions applicable in 
small-scale settings are not scalable and reliable in 
large distributed systems. How to design multicast 
protocols guaranteeing specified reliability in large-
scale systems has become a challenging problem for 
researchers.  

Existing multicast protocols guarantee one of the 
three types of reliability: strong reliability, best-effort 

reliability and probabilistic reliability [5]. Compared 
with strong reliability and best-effort reliability, 
probabilistic reliability does not always guarantee 
atomicity but can provide message delivery guarantee 
with some required probability. For example, Bimodal 
Multicast [5] provides a bimodal delivery guarantee 
which changes the traditional “all or nothing” 
guarantee to the “almost all or almost none” guarantee. 

Gossiping is one of the most important techniques to 
provide probabilistic reliability in reliable multicast. 
Gossip-based multicast protocols rely on a peer-to-peer 
interaction model for multicasting a message, and they 
are scalable since the load is distributed among all 
participating nodes. Redundant messages are used to 
achieve reliability and fault tolerance. A few 
pioneering works on gossiping have been done for both 
wired and wireless networks. In wired networks, work 
can be found on data dissemination [6], consistency 
management in replicated databases [2], and failure 
detection [4]. In wireless networks, gossip-based 
protocols have been proposed for multicast in mobile 
ad hoc networks (MANETs). A seminal approach is 
the Anonymous Gossip (AG) protocol [7], which is a 
descendant of the pbcast [5] protocol. The Route 
Driven Gossip (RDG) [8] protocol uses a pure gossip 
scheme, by which messages, negative 
acknowledgments, and membership information are 
gossiped uniformly without requiring an underlying 
multicast primitive. 

In this paper, we are interested in analyzing the 
impact of the fanout distribution and node failures on 
the performance of gossiping protocols. Existing works 
have mainly focused on the design of gossip-based 
protocols, but not many works can be found on 
developing mathematic models for analyzing the 
properties of the protocols. In some existing works, the 
process of gossiping is modeled as a Markov Chain, as 
proposed in pbcast [5] and RDG [8]. These models 
need to be simplified due to their intractability, but the 
simplification will affect the accuracy of the reliability 
analysis. Actually, only upper bounds or lower bounds 
on the reliability can be obtained. Another modeling 
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technique is originated from the observation on the 
similarity between gossiping and the epidemic 
spreading of disease. Authors of [9] propose an 
epidemic model for analyzing the Local 
Retransmission-based Gossip (LRG) protocol. 
However, the model cannot explain how to obtain the 
optimal value of the probability with which a node 
gossips to other nodes, and does not consider node 
failures. Recently, random graphs [10] have been used 
as a promising technique to model gossiping. The work 
reported in [6] by Microsoft proposes to model the 
success of gossiping as the existence of a directed path 
from the source node to every other node in a random 
graph. However, the model only consider the success 
of gossiping, i.e., all of the members receive the 
message, but not the probability that one node receives 
the message during gossiping. We think the latter is 
also important for analyzing the performance of 
gossiping and consider both of cases in our model. 

In this paper, we first describe a general gossiping 
algorithm which differs from existing algorithm, 
allows each node to generate a random number of 
gossiping targets by following a specified probability 
distribution. In traditional gossiping algorithms, each 
node normally has a fixed number of gossiping targets. 
Targeted at this proposed algorithm, we develop a 
mathematical model to analyze its fault tolerance 
property using the generalized random graph theory 
[11]. Observing that the process of generating a 
random graph is similar to the process of gossiping a 
message in a multicast group, we use the size of the 
giant component in a random graph to represent the 
probabilistic reliability of gossiping, in the sense that 
nodes in the giant component can be reached by the 
source node with a high probability. Taking node 
failures into consideration, we analyze the performance 
of gossiping in terms of the reliability and the success 
of gossiping.  

Our generalized random graph model has two 
advantages. First, using generalized random graphs 
enables us to study various fanout distributions, 
including the Poisson fanout distribution, which has 
been adopted in most of the previous works. We match 
our mathematic model to our proposed algorithm 
harmoniously. The varieties of gossiping are also 
enriched by the algorithm. Second, our mathematical 
model allows us to derive the critical point of 
gossiping at which the maximum ratio of failed nodes 
can be tolerated yet the required reliability can still be 
guaranteed. Analytically, we study the impact of the 
fanout distribution and the nonfailed member ratio on 
the performance of gossiping. We have validated the 
analytical results by using simulations.  

The rest of the paper is organized as follows: 
Section 2 discusses the related work. Section 3 

provides the network model, the general gossiping 
algorithm, and the preliminaries for the theory of 
generalized random graphs. In Section 4, we present a 
mathematical model for analyzing fault tolerance of 
our gossiping algorithm. Simulation results are 
reported in Section 5. Finally, Section 6 concludes this 
paper. 
 
2. Related Work  
 

In this section, we briefly review the previous work 
on developing mathematic models of gossiping. Three 
different modeling approaches have been used: the 
recurrence model, the epidemic model, and the random 
graph model.  

In pbcast [5], the analysis shows how to calculate 
the bimodal delivery distribution for a given 
networking setting. The authors derive a recurrence 
relationship between successive gossiping rounds of 
the protocol. However, due to its complexity, the 
model cannot give the accurate value of the reliability 
of gossiping. Analysis based on this model only 
calculates an upper bound on the probability in round t 
that st+1 nodes will receive the gossip message in the 
next round t+1. It does not show how to find a proper 
number of rounds required in gossiping. 

The second approach is based on the epidemic 
model [9]. Two mechanisms, Local Retransmission 
and Gossiping (LRG), are combined to provide the 
high reliability of data delivery. Since the gossiping 
process is similar to the spreading of epidemic 
diseases, the authors use the so-called SI model in 
epidemiology to analyze LRG. In this model, the 
balance equations are developed to describe the 
process of spreading messages among GCHs (Group 
Cluster Heads). However, the model did not take 
message losses and node failures into consideration.  

More recently, the random graph theory [10] has 
been used to model gossiping. The seminal work is the 
model by Microsoft [6], which aims at establishing the 
relationship between the success of the gossiping 
protocols and the key gossips parameters, including 
fanout and failure rate. The model considers the 
presence of arc {x, y} in a random graph ( , )nn pς  as 
saying that x gossips message to y. The success of 
gossiping means the existence of a directed path from 
the source node s to every other node in the random 
graph. The probability of the success of gossiping is 
denoted by ( , )np nπ . It is proved that the limit of 

( , )np nπ is
cee

−− if pn is equal to [log (1)] /n c o n+ + , 
where c is a constant. If the proportion of the failed 
nodes is ε , that is, (1 )n nε′ = − , gossiping succeeds 
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with the probability
cee

−− if [log (1)] /np n c o n′ ′= + + . 
Although the success of gossiping, i.e., all of the group 
members receive the message, is important, we still 
need to know the probability that one node receives the 
message during gossiping if we cannot guarantee such 
a strong status as the success of gossiping practically. 
Both of them are discussed in detail by our mathematic 
model.  

Compared with Microsoft’s work [6], our model 
proposed in this paper have three advantages. First, it 
proposes a novel way to represent the reliability of 
gossiping by the size of the giant component [11] in a 
generalized random graph, which provides a simpler 
way to describe the reliability of gossiping. Second, we 
discuss not only the success of gossiping, but also the 
reliability of gossiping, i.e., the percentage of nonfailed 
nodes that receive the message. Third, analysis using 
our model can be performed for various fanout 
distributions, rather than only the Poisson distribution. 
Gossiping tailored for different applications over 
various types of overlays or physical topologies may 
need to use different fanout distributions in order to 
improve the performance of gossip-based protocols.  
 
3. Preliminaries  
 

In this section, we first introduce our system model 
and describe a general gossiping algorithm. Then we 
provide the preliminaries on the theory of generalized 
random graphs.  

In our system model, a multicast group G is 
composed of n members, which have the interest to 
share the same message m. Each member has a unique 
ID. We consider a fail-stop failure model where failed 
members will not gossip messages they receive and 
they fail only by crashes. Moreover, we assume the 
source node never fails. In real applications, we 
assume that a scalable membership protocol is 
available, such as [12], [13], which can be applied to 
gossip-based reliable multicast protocols in large-scale 
systems. Membership is beyond the scope of this paper 
and will not be discussed further.  

We use a general gossiping algorithm as shown in 
Figure 1, which allows for various distributions of the 
fanout of the nodes. When a member receives the 
message m for the first time, it generates a random 
number fi by following a specified probability 
distribution P. Then the node chooses fi gossip targets 
from its own membership view and sends the message 
out. If a member receives the message again, it 
discards it immediately.  

The reliability of gossiping is defined as the ratio of 
the number of nonfailed members that received the 
message m to the total number of nonfailed members 

in the group G. We denote the reliability of gossiping 
as R(q, P), the probability that a nonfailed member can 
receive the message m after one execution of our 
algorithm. The success of gossiping is defined as all of 
the nonfailed members received the message m at least 
once after t executions of our gossiping algorithm, 
denoted by S(q, P, t). In this paper, we focus on the 
relationship between the parameters of the gossiping 
algorithm and the reliability of gossip-based multicast 
protocols. The key parameters in gossiping are listed as 
follows:  
 P: Fanout Distribution, the probability distribution 

of the fanout of members 
 q: Nonfailed Member Ratio, the ratio of the number 

of the nonfailed members to the number of the total 
members. 

Fig. 1 The gossiping algorithm 
Compared with the traditional Poisson random graph 

model, generalized random graph [11] [14], which has 
been previously applied in Physics, is a more general 
model for random graphs. It is applicable to arbitrary 
degree distribution in a random graph. Before we 
introduce our mathematical model for gossiping, we 
briefly introduce some fundamental concepts of 
generalized random graphs: Degree Distribution, 
Component, Phase Transition, and Giant Component.  

Degree Distribution denotes the probability 
distribution of the degrees of nodes in a generalized 
random graph. A Component is a set of nodes that can 
reach each other along the paths on the graph. A Phase 
Transition refers to the phenomenon that, while a 
random graph with n nodes and a certain number of 
edges is unlikely to have one special property, a 
random graph just with a few more edges is very likely 
to have this property. A good example of a phase 
transition is of the critical point of the connectivity of a 
random graph. The critical point means the point at 
which the connectivity of a random graph grows 
dramatically. The Giant Component is the biggest 
component formed after a phase transition happens. It 

Algorithm for each node in multicast group G 
 
Upon member i receiving the message m for the 
first time  
{ 

Member i generates a random number fi by 
following a specified probability distribution P 

Member i selects fi nodes uniformly at 
random from its membership view  

Member i sends the message m to the 
selected fi nodes 
} 
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has a size of order at least n2/3, while the sizes of other 
components are of order at most n2/3/2.  

In our gossip algorithm, the number of each 
member’s gossip targets is a random variable and these 
random variables are independent and identically-
distributed random variables. In fact, it is similar to the 
case that we draw samples from the total population 
but without replacing any of them, because each 
nonfailed member only gossips once. The execution of 
the gossiping algorithm dies out when the nonfailed 
members that received the message m are in the same 
connected component. Therefore, the distribution of 
the fanout has the most important impact on the 
reliability of gossiping and the success of gossiping. 
 
4. A Fault-Tolerant Gossip Model  
 

In this section, we first propose an analytical model 
for fault tolerant gossiping by using the theory of 
generalized random graphs. Here the term of “fault-
tolerant” means that if a proposed gossiping algorithm 
aims to achieve a required reliability, it should take 
node failures into consideration. Then we show how to 
use this model to analyze the performance of the 
gossiping algorithm by taking the Poisson fanout 
distribution as an example. 
 
4.1 Model Definition 
 

A gossiping model Gossip(n, P, q) consists of n 
members to participate in gossiping with the fanout 
distribution P. Only a ratio q of all of the members can 
work correctly and other nodes may fail by crashes 
during gossiping. We consider two cases of failures 
which are treated the same. Members may crash either 
before receiving the message or after receiving the 
message but not yet forwarding it to others. P is the 
fanout distribution of nonfailed members that 
participate in gossiping. As mentioned before, we 
assume that the source node that initiates gossiping 
never fails. We use the terms “source member” and 
“source node” interchangeably.  

Let ( ,P)nς be the space of generalized random 
graphs generated by gossiping, containing n nodes in 
the group G, and each node chooses its gossiping 
targets from its own membership view. Let pk be the 
probability that a randomly chosen node from one 
element in ( ,P)nς has the degree k, and qk be the 
probability that a node with the degree k is also a 
nonfailed node. The degree distribution in the random 
graph ( ,P)nς can be generated by the following 
generating function [15]:  

0
0

( ) k
k k

k
F x p q x

∞

=

=∑    (1) 

In the above model, pk can be any probability 
distribution. But we investigate the special case of 
uniform probability for qk because we assume the 
setting for each member gossiping is the same one. We 
set qk=q for all k, i.e. all of the nodes fail with the same 
probability (1-q). It is trivial that the number of 
nonfailed nodes equals to n*q. 
 
4.2 Analysis of Gossiping  
 

The methodology is to investigate the properties of 
generalized random graphs to analyze the performance 
of the gossiping algorithm. We consider two of the 
most important problems: how to evaluate the 
reliability of gossiping and how to guarantee the 
success of gossiping. There are n members in the group 
G and the number of the nonfailed members is denoted 
by nnonfailed = [n*q]. We define nrece as the number of 
nonfailed members that receive the message m after 
one execution of the algorithm. The reliability of 
gossiping R(q, P) can be defined as follows:  

R(q, P)= nrece/ nnonfailed. 
The number of nonfailed members that receive the 
message m at least one time after t executions of the 
algorithm is referred to as t

recen . The success of 
gossiping S( q, P, t) can be defined as follows:  

Pr(S( q, P, t)) = Pr( t
rece nonfailedn n= ), 

where all of the nonfailed members receive the 
message m at least one time after t executions of the 
algorithm.  
(1) Reliability of Gossiping: R(q, P) 

Since the giant component changes the connectivity 
of random graph, the probability that a randomly 
chosen node belongs to this component is increased 
dramatically. With the size of the giant component 
growing, the probability that nodes receive the 
message is increased, which means more and more 
members can receive the message m sent from the 
source node in gossiping.  

Firstly, the condition for the appearance of the giant 
component can be obtained in the following steps. 
According to the generalized random graph theory, the 
mean size <s> of the components in the random graph 

( ,P)nς  is  

0

1

(1)
1

1 (1)
qG

s q
qG

′⎡ ⎤
= +⎢ ⎥′−⎣ ⎦

   (2) 

where 0
0

( ) k
k

k
G x p x

∞

=

=∑ is defined as the generating 

function for the probability distribution of nodes 
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degree k, and 0
1

0

( )
( )

(1)
G x

G x
G

′
=

′
is the generating function 

of the probability distribution of number of outgoing 
edges. Eq. (2) diverges where the equation 

11 (1) 0qG′− = is satisfied, which is also the critical 
point at which a random graph achieves the giant 
component. According to the result above, the 
nonfailed member ratio at the critical point is  

1

1
(1)cq

G
=

′
   (3) 

qc is the critical point at which the random graph 
begins to improve its connectivity dramatically.  

Secondly, we refer to S as the size of the giant 
component, which means the ratio of the number of the 
nonfailed nodes in the giant component to the total 
number of nonfailed nodes in the random graph. S can 
be calculated by the following equation: 

0 0(1) ( )S F F u= −    (4) 
where u is the solution of the self-consistency 
condition u=1-F1(1)-F1(u), and F1(x) is defined as 

0 0( ) / (1)F x G′  [15].  
(2) Probability of Success of Gossiping: Pr(S(q, P, t)) 

The success of gossiping is the result that all of the 
nonfailed group members receive the message m. In 
one execution of our gossiping algorithm, we can 
increase the probability of gossiping success by 
increasing the fanout of members. But this method is 
not a pragmatic one in the implementation of real 
applications. For example, one node only has one 
physical neighbor but it still needs to send the message 
m to all of the other nodes at one execution. Therefore, 
we consider another means to increase the probability 
of the success of gossiping by increasing the number of 
executions of our gossiping algorithm, in order to 
guarantee the required probability of the success of 
gossiping.  

In the repeated executions, each execution can be 
viewed as one independent Bernoulli trial. So t times 
of executions can be considered as a t times Bernoulli 
trials. We define X as the number of executions in 
which a nonfailed member receives the message m 
during t executions. We do not consider how many 
times for each nonfailed member to receive the 
message m in one execution. We use pr to denote the 
requirement of the reliability R(q, P), and it is obvious 
that X follows a Binomial distribution B(t, pr). The 
distribution of X is in the following:  

( ) ( ) (1 )k k t k
t r rP X k C p p −= = − , k = 0, 1, 2, …, t 

The probability of the success of gossiping S(q, P, t) 
can be calculated by the following: 

Pr( ( , , )) ( 1) 1 (1 )t
rS q P t P X p= ≥ = − −    (5). 

If the requirement for the success of gossiping is 
denoted by the probability ps, we can obtain the 
requirement of t as follows: 

lg(1 ) / lg(1 )s rt p p t N≥ − − ∈    (6). 
 
4.3 Case Study: Poisson Fanout Distribution  
 

In this section, we take the Poisson distribution as an 
example of fanout distribution to show how to apply 
our mathematical model in the performance analysis of 
gossiping.  

The fanout distribution is specified by a Poisson 
distribution Po(z), where z is the mean of Poisson 
distribution Po(z), and is also the average fanout. Then, 
the gossiping model can be defined as Gossip(n, Po(z), 
q). This gossiping model can be modelled by a random 
graph model ( , ( ))n Po zς . Let pk be the probability that 
a randomly chosen node from ( , ( ))n Po zς has the 
degree k, and q be the nonfailed node ratio. It is 
important to notice that, although the distribution of 
node degree may be changed by node failures, it is 
always a Poisson distribution but with a smaller mean 
fanout q*z [15].  

We can obtain the following generating functions 
for ( , ( ))n Po zς : 

( 1)
0

0
( ) k zq x

k
k

F x p qx e
∞

−

=

= =∑               (7) 

( 1)
0

0
( ) k z x

k
k

G x p x e
∞

−

=

= =∑                 (8) 

( 1)0
1

0

( )
( )

(1)
z xG x

G x e
G

−′
= =

′
                   (9) 

According to Eq. 3, the critical point qc can be obtained 
by 

1

1 1
(1)cq

G z
= =

′
. 

This means that, to the guarantee on the reliability of 
gossiping, the nonfailed member ratio q should be 
greater than 1/z, i.e.:  

1/q z>                   (10). 
It is trivial that ( 1)

0 1( ) ( ) z xG x G x e −= = in case of the 
Poisson distribution. Following Eq. (4), we can obtain 
the size of the giant component by  

1 zqSS e−= −    (11). 
Eq. (11) shows that the reliability of gossiping R(q, 
Po(z)) can be improved if we increase the fanout z or q. 

Then, given the reliability of gossiping (represented 
by S) and the nonfailed node ratio q, the mean fanout z 
of the Poisson distribution can be obtained as follows: 

ln(1 ) /( )z S qS= − −    (12) 
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Fig. 2 shows the numerical results of z against S under 
various q. With these results, we can determine the 
proper mean fanout for the Poisson distribution. But 
remember that Eq. (10) should still be held. The 
reliability of gossiping ranges from 0.1111 to 0.9999.  
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Fig. 2 Mean fanout vs. Reliability of 
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Fig. 3 Minimum times of executions for the 

required probability of gossiping success 
Since the reliability of gossiping can be evaluated by 

the size of the giant component S, the condition for the 
success of gossiping S(q, Po(z), t) in Eq. (6) can be 
revised as follows: 

lg(1 ) / lg(1 )st p S t N≥ − − ∈ . 
Fig. 3 depicts the analytical results of the minimum 
number of executions with a specified probability of 
the success of gossiping. 
 
5. Simulations  
 

To examine the effectiveness of our analytic model, 
we have carried out extensive simulations. We evaluate 
the performance of our gossiping algorithm according 
to the following metrics: 

 The reliability of gossiping 
 The success of gossiping 

We use MATLAB 7.0 to implement and execute our 
gossiping algorithm. We evaluate the performance of 
the algorithm with two different group sizes of the 
groups 1000 and 5000 members. The key parameters, 
i.e., the fanout distribution and the nonfailed member 
ratio, are varied to evaluate their impact. In our 
simulation, we take Poisson distribution as an example 
for both the simulations and our analysis. Compared 
with the analytical results obtained by our 
mathematical model, the simulation results are well 
consistent.  
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Fig. 4b Reliability in a 1000 nodes group 

We set the nonfailed member ratio q to be 0.1, 0.2, 
0.3, … , 1.0 respectively. The mean fanout f for the 
fanout distribution is varied from 1.10 to 6.7 with an 
incremental step 0.4. The reason why we select this 
range is the value of the reliability is almost covered 
from 0 to 1. For each pair of {f, q}, we run our 
gossiping algorithm 20 times and report the average 
results of the reliability of gossiping. In addition, we 
calculate the size of giant component for each case. 
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Fig. 5a Reliability in a 5000 nodes group 
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Fig. 5b Reliability in a 5000 nodes group 

Figs. 4 and 5 depict the results in simulation and 
analysis for configurations with 1000 and 5000 nodes 
respectively. To see the results clearly, we divide each 
figure into two plots by a group of different q. In each 
plot, each dotted line denotes the simulations, while the 
continuous line represents the size of giant components 
using our mathematical model solved by Eq. (11). 

We first observe that all of the critical points for 
each fanout are held under the condition that the 
nonfailed member ratio q should be greater than the 
reciprocal of the mean fanout f. For each fanout in our 
simulation, the reliability of gossiping can be 
guaranteed under the above condition. Fig. 4 also 
shows that the results of simulations tally with the 
analytical results except very few points. The curves in 
Fig. 5 are very similar to those in Fig. 4. However, the 
simulation results tally with the analytical results better 
than in Fig. 4, which indicates that our modeling works 
better in larger scale systems.  
 
5.2 Success of Gossiping 
 

Besides reliability, we also measure the success of 
gossiping. We select two pairs of key parameters {f, q} 
as follows: {4.0, 0.9}, and {6.0, 0.6}. The requirement 
for the success of gossiping is set to 0.999, the same 
value as in our analysis. For each pair of parameters, 

we run our gossiping algorithm for 20 times in one 
simulation, and each simulation is repeated for 100 
times. Then we report the distribution of the number X, 
i.e. the number of gossiping succeeds among 20 
executions. If X is approximately follows a binomial 
distribution B(20, R(q, Po(z))), this means the 
calculation in Eq. (6) is valid.  
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Fig. 6 The distribution of Gossiping Success 

with f=4.0, q=0.9 
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Fig. 7 The distribution of Gossiping Success 

with f=6.0, q=0.6 
Figs. 6 and 7 plot the results of simulations and 

analysis in a group with 2000 nodes. In the figure, each 
bar represents the simulation result of the probability 
Pr(X=k) where k ranges from 0 to 20, while the 
continuous line represents the value of Pr(X=k) from 
X~B(20, R(q, Po(z))). According to Eq. (6), we can 
obtain the required number of executions as follows:  

lg(1 0.999) / lg(1 0.967)t t N≥ − − ∈  
t should be greater than three. Figs. 6 and 7 show the 
simulation results tally with our analytic results well.  

It is interesting to notice that the gossiping with 
{4.0, 0.9} and {6.0, 0.6} can obtain the same reliability 
of gossiping in one execution as 0.967 because the 
product of f*q are the same one. However, their 
corresponding distributions of gossiping success are 
not exactly identical. This is because the mean fanout 
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and the nonfailed node ratio have different impact 
factors on the probability of the success of gossiping.  
 
6. Conclusions  
 

Based on the generalized random graph theory, we 
develop a mathematical model analyzing the 
performance of the gossiping algorithm in terms of the 
reliability of gossiping, and the success of gossiping. 
We focus on the fault tolerance of gossiping by taking 
node failures into consideration. We propose to 
represent the reliability of gossiping by using the size 
of the giant component in a random graph for the first 
time. Our model can be resolved by the generalized 
random graph theory and derive the relationship 
between the parameters of gossiping, and the reliability 
of gossiping and the success of gossiping. Our model 
shows that there exists a threshold value of the number 
of the nonfailed nodes ratio for guaranteeing a specific 
reliability in gossiping. We have carried out extensive 
simulations to validate our proposed model. The 
simulation results tally with our analytic results very 
well. Therefore, our analytic model is effective and 
accurate. 
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