
Delay-Bounded Range Queries in DHT-based Peer-to-Peer Systems

Dongsheng Li
1,2
, Jiannong Cao

2
, Xicheng Lu

1
, Keith C. C. Chan

2
, Baosheng Wang

1
, Jinshu Su

1
,

Hong-va Leong
2
, Alvin T. S. Chan

2

1School of Computer, National University of Defense Technology, Changsha, China
1{dsli,xclu,bswang,sjs}@nudt.edu.cn

2Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong
2{csdsli,csjcao,cskcchan,cshleong,cstschan}@comp.polyu.edu.hk

Abstract

Many general range query schemes for DHT-based
peer-to-peer (P2P) systems have been proposed, which
do not need to modify the underlying DHTs. However,
most existing works have the query delay depending on
both the scale of the system and the size of the query
space or the specific query, and thus cannot guarantee
to return the query results in a bounded delay. In this
paper, we propose Armada, an efficient general range
query scheme to support single-attribute and multiple-
attribute range queries. Armada is the first delay-
bounded range query scheme over constant-degree
DHTs, and can return the results for any range query
within 2logN hops in a P2P system with N peers.
Results of analysis and simulations show that the
average delay of Armada is less than logN, and the
average message cost of single-attribute range queries
is about logN+2n 2 (n is the number of peers that
intersect with the query). These results are very close
to the lower bounds on delay and message cost of
range queries over constant-degree DHTs.

1. Introduction

Distributed hash table (DHT) [1] based peer-to-peer

(P2P) systems such as Chord [2], CAN [3], Tapestry
[4], and FISSIONE [5] use a hash table-like interface

to publish and lookup objects on distributed peers.

Given a query for a specific key, DHTs can efficiently
locate the peer which owns the object with the keyword
key. DHT-based P2P systems have proven to be

scalable, robust, efficient and generally applicable. As

a result, the DHT has become a general infrastructure

for building many P2P applications, such as distributed
storage systems, naming services, data management

systems, and large-scale online games.

The basic functionality supported by the DHT

infrastructure is exact-match query, which is enough

for many applications. For example, a P2P storage
system can use the exact-match query interface with the

filename as the keyword to publish and lookup files.

However, the ever wider use of DHT infrastructures

has found applications that require support for range
queries [6-20]. Examples of range query include the
query “70 score 80” in P2P data management

systems and the query “1GB Memory 4GB and

50GB disk 200GB” in grid information services.
A number of range query schemes [6-20] have been

proposed for DHT-based P2P systems. An approach to

build the range query support is the general range
query scheme [9-10], which is built entirely over
existing DHT infrastructures and does not need to

modify the topology or behavior of the underlying

DHTs. This way of using DHTs as a shared general

infrastructure allows different applications to be built
on the same DHT infrastructure [10,21], providing the

range query functionality without the cost of

specifically tuning the underlying DHT. However,

because such schemes do not adapt the behavior of the
underlying DHT to the requirement of range queries,

often they are not very efficient. In most existing

general range query schemes, the query delay depends

on both the total number of peers in the systems (N)
and the size of the query space or the specific query. As
a result, these schemes cannot guarantee to return all

query results in a bounded delay that is related only to

N. When the query space or the queried range is large,
the query execution can be very slow.
In this paper, we present Armada, an efficient,

delay-bounded general range query scheme. Armada

operates over FISSIONE [5], a high-performance

constant-degree DHT scheme previously proposed by
the authors [5], and does not need to modify the

underlying FISSIONE infrastructure. Armada provides

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61006261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

support for efficient single-attribute and multiple-

attribute range query and can return all query results in
a bounded delay, independent of the size of the query

space or the queried range. Results of our analysis and

simulation studies show that Armada can achieve high

efficiency in range query processing. Armada can
return all query results within 2logN hops (in this paper
logN represents log2N), and its average query delay is
less than logN, which reaches the delay lower bound
O(logN) for range queries on constant-degree DHTs.
The average message cost of single-attribute range

queries in Armada is logN+2n 2 (n is the number of
peers that intersect with the query), which is very close

to its asymptotic lower bound O(logN)+n 1. To our
knowledge, Armada is the first delay-bounded range

query scheme over constant-degree DHTs.

The remainder of the paper is organized as follows.

Section 2 introduces the related work. Section 3 briefly

describes FissionE as the background of this paper.
Sections 4 and 5 present the design of the single-

attribute and multiple-attribute range query schemes in

Armada, respectively. Section 6 concludes the paper

with future work.

2. Related work

Range query schemes for DHT-based systems can

be categorized as either general or customized schemes.

General range query schemes [7-13] are entirely
layered over existing DHTs and do not modify the

underlying DHT. Customized schemes [14-20] either

make use of custom-designed DHTs or add specific

modifications to the behavior of the underlying DHTs.
In this paper, we focus on general range query schemes.

Gupta et al. [7] proposes a probability scheme that
uses locality sensitive hashing to support single-

attribute range queries on Chord. However, it can only
return approximate results.

Schmidt et al. proposes Squid [8] to provide

multiple-attribute range query functionality on Chord.

Squid uses a space-filling curve (SFC) to map objects
with multiple attributes to peers and performs range

queries by searching SFC clusters recursively. Each

search step in Squid, however, invokes one DHT

routing of Chord, which needs to travel O(logN) hops
in the system. This results in a relatively large delay

and message cost. The query delay of Squid is about

O(h*logN) (where h is related to the depth of SFC
clusters and the specific query), much larger than logN.
Skip Graph [11] and SkipNet [12] are DHT

schemes that can directly support single-attribute range

queries, but have query delays of O(logN+n), which
depends on the sizes of specific queries. SCRAP [13]

uses the space-filling curve to support multiple-

attribute range queries on Skip Graph, but its query
delay remains to be O(logN+n).
All the schemes described above are based on DHTs

with O(logN) degree. Among the existing general range
query schemes, only Armada and the works reported in
[9, 10] are range query schemes that can run over

constant-degree DHTs. Among the three schemes, only

Armada is delay-bounded and, given the same degree

of the underlying DHTs, the average query delay of
Armada is less than logN, much less than that of the
other two.

Andrzejak and Xu [9] propose a single-attribute

range query scheme based on CAN. For any range
query, the scheme first routes the query to the peer in

charge of the median value of the query, and then

floods the query to its neighbors until all related peers

are visited. The scheme compares three flooding

mechanisms, among which, the directed controlled
flooding (DCF) mechanism (hereafter called DCF-CAN)
can achieve a good overall performance, but it has a

query delay of more than O(N1/d), with an increasing
rate almost proportional to the increase in the size of
range queries. DCF-CAN can support only single-

attribute range query.

Chawathe et al. [10] designs PHT to support both
single-attribute and multiple-attribute range queries on
any DHT (including constant-degree DHTs). PHT

builds a prefix hash tree in which leaf nodes are keys

and every internal node corresponds to a distinct key

prefix. Range query in PHT is performed by parallel
search in the prefix hash tree, but each search step

along the tree must invoke one DHT routing. PHT is a

good general scheme that can run on any DHT, but its

delay and message cost are related to the query space
and overly large. When the underlying DHT is of

constant-degree, its query delay is about O(b*logN)
where b is the height of the prefix tree.
Table 1 shows the comparisons of the general range

query schemes described above.

Many customized range query schemes have also

been proposed in recent years. Mercury [16] and

SWORD [17] provide multiple-attribute range queries

by indexing the data set along each individual attribute.
Liu et al. [18] proposes NR-tree, which support range
queries and k-nearest neighbor queries in super-peer
P2P systems. MURK [13] and P-tree [19] build

specific P2P networks to support range queries,
respectively based on KD-tree and B+-tree. Brushwood

[14] provides the multiple-attribute range query

functionality on Skip Graph. Aspnes et al. [15] and
Ganesan et al. [20] respectively propose some
mechanisms to improve the load balance of Skip Graph.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

However, these schemes design specific P2P networks

or need to make specific modifications to the

underlying DHTs.

Table 1. Comparisons of some general range query schemes

&This row shows the performance of PHT with only constant-degree DHT
+h and b are two parameters related to the size of the query space and the specific query

3. Overview of FISSIONE

In this section, we give an introduction to
FISSIONE on which Armada is built. FISSIONE [5] is

a constant DHT scheme based on Kautz graph K(2,k)
[5], which is a static topology with many desirable

properties, such as optimal diameter and optimal fault

tolerance.
AKautz string of length k and base d is defined as

a string a1a2...akwhere aj {0,1,2,...,d} (1 j k) and
ai ai+1 (1 i k-1), i.e., neighboring symbols in a
Kautz string should be different. The Kautz namespace
KautzSpace(d,k) is the set containing all Kautz strings
of length k and base d. The Kautz graph K(d,k) is a
directed graph in which each node is labeled with a

Kautz string in KautzSpace(d,k) and has d outgoing
edges: for each {0,1,2,...,d} and uk, node
U=u1u2...uk has one out-edge to node V=u2u3...uk
(denoted by U V). Figure 1 shows a Kautz graph
K(2,3).

012

101 121

210

010 212
021102

201
020

120
202

012

10

121

210

010 212
021

201
020

120
202

202

Figure 1. Kautz
graph K(2,3)

Figure 2. An example of
FISSIONE topology

In FISSIONE, the identifiers (i.e., PeerIDs) of peers

are Kautz strings with base 2. The lengths of PeerIDs

may be different. The maximum length of PeerIDs is

less than 2logN and the average length is less than logN.
Peers are organized into an approximate Kautz graph

according to their PeerIDs. FISSIONE maintains a

topology rule called neighborhood invariant which
requires that the difference between the lengths of
PeerIDs of neighboring peers is always no more than

one. Therefore, PeerIDs of out-neighbors of peer

U=u1u2...uk are in the style of u2u3 ...ukq1...qmwith 0 m
2. Figure 2 shows an example of the P2P network

topology in FISSIONE.

Each object in FISSIONE is assigned an ObjectID

by a naming algorithm Kautz_hash, which are Kautz
strings with fixed length k (generally k=100). Each
object is published on a unique peer whose PeerID is a

prefix of its ObjectID. FISSIONE adopts effective self-

stabilization and fault-tolerant mechanisms to deal with

the joining or departing of peers. Analysis and
simulations show that FISSIONE is a constant-degree

and high-efficiency DHT scheme. The average degree

of FISSIONE is 4, its diameter is less than 2logN, and
its average routing delay is less than logN.

4. SINGLE-ATTRIBUTE RANGE QUERIES

Like many other DHTs, FISSIONE provides

support for scalable and efficient exact-match query of

distributed objects on peers. However, it can not
support range queries for numeric attribute values.

Therefore, we have designed Armada to support single-

attribute and multiple-attribute range queries over

FISSIONE.
The basic components of Armada include two parts:

object naming and range query processing. Armada
first uses an order-preserving naming algorithm to

assign to objects with close attribute values the

ObjectIDs adjoining in the Kautz namespace so as to
publish them on related peers. Then, Armada provides

efficient query processing algorithms to forward range

Query functionality

Schemes

Underlying

DHT

Degree of

underlying
DHT

Singe

attribute

Multiple

attribute

Average delay Delay

bounded?

Squid [8] Chord O(logN) O(h*logN) + No

Skip Graph, SkipNet [11,12] --- O(logN) O(logN+n) No

SCRAP [13] Skip Graph O(logN) O(logN+n) No

DCF-CAN [9] CAN d > O(N1/d) No

PHT [10] & Any DHT d O(b*logN) + No

Armada [this paper] FissionE 4 < logN Yes

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

queries to appropriate peers and returns query results

within a bounded delay.
In this section we will introduce the design of the

single-attribute range query scheme in Armada.

4.1 Single-attribute naming

In this subsection, we propose an order-preserving

naming algorithm Single_hash to assign to objects with
close attribute values the ObjectIDs adjoining in the

Kautz namespace. According to the properties of
FISSIONE, objects with adjoining ObjectIDs are

published on the same or related peers.

In the paper, we assume that the entire interval of

attribute values of objects is a real-number interval [L,
H] and use symbol to denote the relation “no more

than” between Kautz strings in the lexicographical

order. Below we give some definitions of order-
preserving naming.

Definition 1. The Kautz region , is defined as:

, = { s | s KautzSpace(2,k) and s and
s }. For example, Kautz region 010, 021 = {010,

012, 020, 021}.

Definition 2. Assume F is an surjection function
from a real-number interval D to Kautz namespace V. F
is an interval-preserving function, if and only if for any
subinterval [a, b] of D, the corresponding range of [a,
b] by functionF is Kautz region F(a), F(b) .

We proposes a partition tree P(2,k) model to help
design of the Single_hash algorithm. The structure of
the partition tree P(2,k) is similar to that of a complete
binary tree, but different in labels of edges and

branches of the root. The partition tree P(2,k) has k+1
levels with the root node at the 0th level. The root node
has three child nodes, while other intermediate nodes

have only two children. Labels of edges from a father

node to its children can be 0 or 1 or 2, increasing from

left to right, but they should be different from in-edge’s
label of the father node. The label of the root node is

null and the label of any other node is the

concatenation of the labels of the edges on the path

from it to the root. Figure 3 shows an example of the
partition tree P(2,4). It is easy to see that the labels of
the leaf nodes in P(2,k) contain all Kautz strings in
KautzSpace(2,k) and they increase from left to right in
the order of .

We partition the entire interval of attribute values [L,
H] onto the partition tree P(2,k). The root node
represents the entire interval [L, H] and other nodes
represent subintervals of [L, H]. Each child node
evenly partitions the subinterval represented by its

father node. In the example shown in Figure 3, the

entire interval of attribute values is [0, 1]. Nodes A, B
and C are children of the root and evenly partition the
interval [0, 1]. And node U with label 0101 represents
the subinterval [0, 1/24].

Figure 3. Partition tree P(2,4) for attribute value interval [0, 1]

In the partition tree P(2,k), nodes at the same level
represent subintervals with the same size, whose union

is the entire interval [L, H]. Since leaf nodes in P(2,k)
and Kautz strings in KautzSpace(2,k) are biunique, the
interval [L, H] can be partitioned into some

subintervals, each of which is represented by a unique
Kautz string. Thus, we can design the naming

algorithm Single_hash based on the partition tree. It
works as follows: Suppose the attribute value of object

O is c (c [L, H]), c surely lies in a subinterval

represented by a Kautz string S. Then S is assigned as
the ObjectID of object O, i.e., Single_hash(c,L,H,k) =
S. In the example shown in Figure 3, the attribute value
0.1 is in the subinterval represented by the leaf node P
with label 0120, thus the Kautz string 0120 is assigned

as the ObjectID of the object whose attribute value is
0.1. Due to the limit in space, the pseudocode of

Single_hash [23] is omitted here.
It can be proved that [23] the Single_hash algorithm

is an interval-preserving function from [L, H] to

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

KautzSpace(2,k). In the example shown in Figure 3, the
range of [0.1, 0.24] by the Single_hash algorithm is the
Kautz region 0120, 0202 , which contains the four

adjoining leaf nodes P, R, W and S.

4.2 Single-attribute range query processing

When a peer P invokes a range query [LowV,
HighV], it first acquires Kautz strings LowT and HighT:
LowT = Single_hash(LowV,L,H ,k), HighT =

Single_hash(HighV,L,H,k). Because the Single_hash
algorithm is interval-preserving, objects with attribute

values in the range [LowV , HighV] are published
exactly on peers that are in charge of the Kautz region

LowT, HighT . Now we discuss the search algorithm

for these destination peers.

In FISSIONE, PeerIDs of out-neighbors of peer

P=u1u2...ub are u2...ubv1...vq (0 q 2). Based on the

topology properties of FISSIONE, we can design a
forward routing tree (FRT) for any peer P. The
forward routing tree of peer P=u1u2...ub is formed by
using the following four rules: (1) The root is peer P;
(2) Each node in the FRT is a peer in FISSIONE; (3)
For each node in the tree, its child nodes at the next

level are its out-neighbors in FISSIONE and they are

sorted from left to right in the increasing order of

defined over PeerIDs; (4) The FRT has (b+1) levels
with the root node at the 0th level. Therefore, the ith
level (0 i b 1) of the FRT contains all the peers
whose PeerIDs have a prefix ui+1...ub and the last level
(bth level) contains all the peers whose PeerIDs do not
have ub as the first symbol. Figure 4 shows the FRT of
peer 212 for the FISSIONE topology shown in Figure 2.
The FRT of peer 212 has four levels, and nodes at the

first and second levels respectively have a common

prefix 12 and 2, which are suffixes of 212.

Figure 4. An example of the FRT tree

Based on the FRT, Armada uses PrunIng Routing
Algorithm (PIRA) to perform a pruning search in the

FRT for all the destination peers that are in charge of

Kautz region LowT, HighT . Suppose the Kautz

strings LowT and HighT have a common prefix (if they
have no common prefix, we can divide LowT,
HighT into several (at most three) sub-regions with

common prefixes and deal with each sub-region

respectively), then all the destination peers are at the

same level of the FRT. Let ComT denote the longest
common prefix of LowT and HighT, and ComS the
longest Kautz string which is both the prefix of ComT
and the suffix of the root peer P’s PeerID. Suppose the
length of ComS is f, then all the destination peers are
adjoining nodes at the (b f)th level of the FRT.
When a peer B at the ith (0 i b 1) level of the

FRT receives the search message, the PeerID of B is
ui+1...ub fX . Consider any out-neighbor C=ui+2...ub fXY
of peer B, peer C is at the (i+1)th level of the FRT. By
the properties of the FRT, PeerIDs of C’s descendants
at the (b f)th level of the FRT have a prefix XY. If the
Kautz region LowT, HighT includes a Kautz string

S that has a prefix XY, descendants of C in the FRT
contains part of the destination peers and peer B should
forward the search message to peer C. The pseudocode
of the PIRA algorithm is omitted here and can be found
in [23]. From the above discussion, it is easy to see that

the PIRA Algorithm can forward any single-attribute
range query exactly to all the destination peers that

intersect with the query.

The dashed lines with arrows in Figure 4 show an

example of search paths of the PIRA algorithm. In the
example, peer 212 issues a range query [0.1, 0.24].

Since k=4, we have LowT=0120 and HighT=0202. All
the destination peers are at the 3rd level of the FRT.

4.3 Performance evaluation

4.3.1 Lower bounds analysis. We derive the lower

bounds on query delay and message cost for range

queries over constant-degree DHTs without requiring

modifications of the underlying DHTs. It has been
shown [22] that the lower bound on delay for routing in

constant-degree DHTs is O(logN). Because a range
query should reach no less than one destination peer, its

query delay is no less than the delay lower bound of
one DHT routing. Thus the delay lower bound of range

queries over constant-degree DHTs is O(logN).
Let n be the number of destination peers that

intersect with the specific range query. The range query
should reach n peers, and thus its message cost is no
less than the sum of the message cost of one DHT

routing to reach the first destination peer and the

message cost to reach the other n 1 destination peers.
Therefore, the lower bound on message cost for range
queries over constant-degree DHTs is O(logN)+n 1.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

4.3.2 Analysis on PIRA . First, we analyze the query
delay of the PIRA algorithm. The query delay of
Armada is no more than the height of the forward

routing tree (FRT), which is equal to the length of the

root’s PeerID. By the properties of FISSIONE, the

maximum length of PeerIDs is less than 2logN and the
average length is less than logN. Thus the maximum
query delay of PIRA is less than 2logN hops and the
average delay is less than logN hops, i.e., PIRA can
return all query results within 2logN hops, regardless of
the size of the query space or the specific query.
Therefore, PIRA is delay-bounded and its delay

reaches the delay lower bound O(logN).
Next, we analyze the message cost of the PIRA

algorithm. The average message cost of PIRA is about
logN+2n 2, which is close to the message cost lower
bound O(logN)+n 1 for range queries on constant-

degree DHTs. The detail of the analysis is omitted

here due to the limit in space and can be found in [23].

4.3.3 Simulations. We have implemented the single-

attribute range query scheme of Armada in the

FISSIONE simulator [5]. Among the well-known

general range query schemes, only DCF-CAN [9], PHT
[10] and Armada can support single-attribute range

queries over constant-degree DHTs. Since the delay

and message cost of PHT is much larger than that of

Armada (see Section 2), we only compared the PIRA
algorithm in Armada with DCF-CAN [9] (the average
degree of the underlying DHT is 4) in this subsection.

Besides the delay and message cost, we also

evaluated the following metrics.
(a) Destpeers: the number of destination peers that

intersect with the query. These peers need to query

their local information to return query results.

(b) MesgRatio: defined as Messages/Destpeers,
where Messages is the total number of messages
produced by the query. MesgRatio is used to evaluate
the average message cost per destination peer.

(c) IncreRatio: defined as (Messages logN) /
(Destpeers 1). Similar to MesgRatio, IncreRatio is
used to evaluate the increasing rate of message cost

when the number of destination peers increases,

excluding the impact of the first destination peer

(whose message cost is about logN). IncreRatio can
also be used to evaluate the analysis results in Section

4.3.2.

There are two parameters involved in range queries:

the number of peers in the system (i.e., network size)
and the size of queried range. We varied these

parameters, one at a time, and measured the query

delay and message cost. In the simulations, the entire

interval of each attribute value is set to [0, 1000]. For

each measurement, the result is averaged over 1000

range queries that are randomly selected from the
interval [0, 1000] and invoked by a random peer.

Figures 5 and Figure 6 show the evaluation results

about the impact of range size on range queries. In the

simulations, the number of peers is set to 2000 and the
size of range query varies from 2 to 300. From Figure 5,

it can be observed that the query delay of DCF-CAN is
much larger than that of PIRA. When the size of range
query increases, the average delay of DCF-CAN
increases remarkably, while PIRA is delay-bounded: its
average delay is almost unchanged and always less than

logN no matter the size of range query.

0

10

20

30

40

50

2 10 50 100 150 200 250 300
Range Size

D
e
la
y PIRA

DCF-CAN
logN

Figure 5. Query delay at different range size

0

400

800

1200

1600

2 10 50 100 150 200 250 300

Range Size

M
e
s
sa
g
e
s

PIRA
DCF-CAN
Destpeers

0

1

2

3

4

2 10 50 100 150 200 250 300

Range Size

M esgRatio

IncreRatio

(a) Number of messages (b) Related parameters
Figure 6. Messages at different range size

Figure 6 shows the message cost and related

parameters of PIRA when the range size varies. From
Figure 6(a), it can be observed that the message cost of

PIRA and DCF-CAN are close and PIRA is slightly
better. Therefore, PIRA can achieve delay-bounded

property without imposing overly large message cost.
Figure 6(a) also shows Destpeers of PIRA, which is
about one half of the number of messages. From Figure

6(b), it can be inferred that MesgRatio and IncreRatio
are close to 2 and IncreRatio is almost always no more
than 2. By the definition of these two parameters, we
can see that the increase ratio of messages is about

twice that of destination peers. Thus it validates our

analytical result about the message cost in Section 4.3.2.

Figure 7 and Figure 8 show the evaluation results
about the impact of network size on range query. In the

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

simulations, the network size varies from 1000 to 8000

and the range query size is always set to 20. From
Figure 7, it can be inferred that the delay of PIRA is
less than that of DCF-CAN and the advantage of PIRA
over DCF-CAN becomes more remarkable as the

network size increases. Figure 7 also shows that the
average delay of PIRA is always less than logN with
different values of the network sizeN.

0

20

40

60

80

1000 2000 3000 4000 5000 6000 7000 8000

Network Size

D
e
la
y

PIRA
DCF-CAN
logN

Figure 7. Query delay at different network size

Figure 8 shows the message cost and related

parameters of PIRA when the network size varies.
From Figure 8(a), it can be observed that the message

cost of PIRA and DCF-CAN are close and PIRA is
slightly better than DCF-CAN. From Figure 8(b), we

can observe thatMesgRatio and IncreRatio are close to
2. Thus it again validates our analytical result about

PIRA described in Section 4.3.2.

0

100

200

300

400

1000 2000 3000 4000 5000 6000 7000 8000

Network Size

M
e
ss
a
g
e
s

PIRA

DCF-CAN
Destpeers

1

1.5

2

2.5

3

1000 2000 3000 4000 5000 6000 7000 8000

Network Size

M esgRatio

IncreRatio

(a) Number of messages (b) Related parameters
Figure 8. Messages at different network size

5. Multiple-attribute range queries

Due to the limit in space, here we only sketch the

multiple-attribute range query scheme in Armada.

Interested reader can find the details in [23]. Assume
that there are m attributes A0, A1, ..., and Am-1 and the
entire value interval of attribute Ai is [Li, Hi]. We define
partial-order relation between multiple-attribute

values as follows.

Definition 3. For two multiple-attribute values 1 =
< u0, u1, ..., um- 1 > and 2 = < v0, v1, ..., vm-1 > in multiple-

attribute space, 1 2 if and only if, for each 0

i<m 1, ui vi.
Definition 4. Assume that F is a surjection function

from multiple-dimensional space D to Kautz

namespace V. F is a multiple-attribute partial-order
preserving function if and only if, for any 1 and 2 in D ,
if 1 2, then F(1) F(1).
We again use the partition tree to design a multiple-

attribute partial-order preserving algorithm, called
Multiple_hash. We partition the entire multiple-

attribute space < [L0, H0], ..., [Li, Hi], ..., [Lm-1, Hm-1] >
onto the partition tree along attributes A0, A1, ... , and
Am-1 in a round-robin style. Each node in the partition
tree represents a multiple-attribute subspace and the

root node represents the entire multiple-attribute space

< [L0, H0], ..., [Li, Hi], ..., [Lm-1, Hm-1]. For any node B
at the jth level of the partition tree that has f child
nodes, let i denote the value of j mod m. Then, the
subspace represented by node B is evenly divided
into f pieces along the ith attribute (i.e., attribute Ai),
and each of its f child nodes represents one such a piece.
Based on the partition tree for multiple-attribute

space, the Multiple_hash algorithm works as follows.

For any object O with the multiple-attribute value V=
<v0, v1, ..., vm 1>, V is surely in a subspace represented
by a leaf node in the partition tree. Suppose the label of
the leaf node is S, then the Kautz string S is assigned as
O’s ObjectID. It is easy to see [23] that the

Multiple_hash algorithm is a multiple-attribute partial-
order preserving function from < [L0, H0], ..., [Li,
Hi], ..., [Lm-1, Hm-1] > to theKautzSpace(2,k).
Suppose a peer P=u1u2...ub issues a multiple-

attribute range query = < [x0, y0], ..., [xi, yi], ..., [xm-1,
ym-1] >. Let 1 denote <x0, x1, ..., xm-1> and 2 denote <y0,
y1, ..., ym-1>, and let LowT = Multiple_hash(1) and
HighT = Multiple_hash(2). Multiple_hash does not
have the interval-preserving property that Single_hash
has, thus the range of a range query by
Multiple_hash may be only a proper subset of LowT,
HighT . Therefore, we propose a new algorithm,

called MIRA, to process multiple-attribute range

queries. MIRA follows the basic idea of PIRA to

perform pruning search on the forward routing tree

(FRT) of peer P=u1u2...ub. However, when forwarding
the query to a node in the FRT, PIRA only needs to
determine the relation between its PeerID and Kautz

region LowT, HighT , while MIRA needs to

determine whether some descendants of the node in the

FRT intersect with the real query .

Similar to PIRA, the delay of MIRA is no less than
the height of the FRT, which is equal to the length of
the root’s PeerID. Therefore, MIRA is also delay-

bounded because its average delay is less than logN

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

and the maximum delay is less than 2logN, regardless
of the size of the query space or the specific query.

6. Conclusions and future work

In this paper, we have proposed a delay-bounded

general range query scheme, called Armada. Built over

FISSIONE, a high-performance constant-degree DHT
scheme, Armada supports efficient single-attribute and

multiple-attribute range queries. Analysis and

simulations are carried out to evaluate the performance

of Armada and the results show that Armada can
achieve high efficiency.

For future work, we plan to extend Armada to

support other complex queries, such as top-k query.

Acknowledgement

This work is supported in part by the National Basic

Research Program of China (973) under Grant

2005CB321801, the National Natural Science

Foundation of China under Grants 90412011 and
90104001, the Hong Kong Polytechnic Universities

under the research grant 4-4961, and the University

Grant Council of Hong Kong under the CERG grant

PolyU5183/04E.

References

[1] Hari Balakrishnan, M. Frans Kaashoek, David Karger,

Robert Morris, Ion Stoica, "Looking Up Data in P2P
Systems," Communications of the ACM, Vol. 46, No. 2,
pp. 43-48, 2003.

[2] Ion Stoica, Robert Morris, David Liben-Nowell, et al.,

"Chord: A Scalable Peer-to-peer Lookup Protocol for
Internet Applications," IEEE/ACM Transactions on
Networking, Vol. 11, No. 1, pp. 17-32, February 2003.

[3] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, Scott Shenker, "A Scalable Content-Addressable

Network," Proc. ACM SIGCOMM 2001, New York,
USA, pp. 149–160, 2001.

[4] Ben Y. Zhao, Ling Huang, Jeremy Stribling et al.,
"Tapestry: A Resilient Global-scale Overlay for Service

Deployment," IEEE JSAC, Vol. 22, No. 1, pp. 41-53,
2004.

[5] Dongsheng Li, Xicheng Lu, Jie Wu, "FISSIONE: A

Scalable Constant Degree and Low Congestion DHT
Scheme Based on Kautz Graphs," Proc. IEEE
INFOCOM 2005, Miami, Florida, USA: 1677~1688.

[6] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch,

Boon Thau Loo, Scott Shenker, Ion Stoica, "Complex
Queries in DHT-based Peer-to-Peer Networks," Proc.
IPTPS’02, Cambridge, USA, 2002.

[7] Abhishek Gupta, Divyakant Agrawal, and Amr El
Abbadi, "Approximate Range Selection Queries in Peer-

to-Peer Systems," Proc. CIDR’03, Asilomar, California,

USA, January 2003.
[8] Cristina Schmidt, and Manish Parashar, "Enabling

Flexible Queries with Guarantees in P2P Systems,"

IEEE Internet Computing, Vol. 8, No. 3, pp. 19-26,
May/June 2004.

[9] Artur Andrzejak and Zhichen Xu, "Scalable Efficient
Range Queries for Grid Information Services," Proc.
IEEE P2P’2002, Linköping, Sweden, September 2002.

[10] Yatin Chawathe, Sriram Ramabhadran, et al., "A Case

Study in Building Layered DHT Applications," Proc.
SIGCOMM’05, Philadelphia, Pennsylvania, USA,

August 2005.

[11] J. Aspnes and G. Shah, "Skip graphs," Proc. SODA’03,
Philadelphia, PA, USA, pp. 384-393, 2003.

[12] N. J. A. Harvey, M. B. Jone, S. Saroiu, et al., "Skipnet:
A Scalable Overlay Network with Practical Locality

Properties," Proc. USITS’03, Seattle, WA, USA, March
2003.

[13] Prasanna Ganesan, Beverly Yang, Hector GarciaMolina,

"One Torus to Rule them All: Multidimensional Queries
in P2P Systems," Proc. WebDB’04, June 1718, 2004,
Paris, France,2004.

[14] Chi Zhang, Arvind Krishnamurthy, Randolph Y. Wang,

"Brushwood: Distributed Trees in Peer-to-Peer
Systems," Proc. IPTPS’05, New York, USA, 2005.

[15] James Aspnes, Jonathan Kirsch, and Arvind
Krishnamurthy, "Load balancing and locality in range-

queriable data structures," Proc. PODC’04,
Newfoundland, Canada, July 2004.

[16] Ashwin R. Bharambe, Mukesh Agrawal, Srinivasan

Seshan, "Mercury: Supporting Scalable Multi-attribute
Range Queries," Proc. SIGCOMM’04, Portland, Oregon,
USA, 2004.

[17] D. Oppenheimer, J. Albrecht, D. Patterson, and A.

Vahdat, "Distributed Resource Discovery on Planetlab
with SWORD," Proc. WORLDS’04, Santa Fe, New
Mexico, USA, December 2004.

[18] Bin Liu, Wang-Chien Lee, Dik Lun Lee, "Supporting
Complex Multi-dimensional Queries in P2P Systems,"

Proc. ICDCS'05, Ohio, USA, 2005.
[19] Adina Crainiceanu, Prakash Linga, Johannes Gehrke,

Jayavel Shanmugasundaram, "PTree: A P2P Index for
Resource Discovery Applications," Proc. WWW’04,
New York, USA, May 2004.

[20] P. Ganesan, M. Bawa, and H. Garcia-Molina, "Online
balancing of range-partitioned data with applications to

peer-to-peer systems," Proc. VLDB’2004, Toronto,
Canada, 2004.

[21] Sean Rhea, Brighten Godfrey, Brad Karp, et al.,
"OpenDHT: A Public DHT Service and Its Uses," Proc.
SIGCOMM’05, Philadelphia, Pennsylvania, USA,
August, 2005.

[22] Jun Xu, Abhishek Kumar, Xingxing Yu, "On the

Fundamental Tradeoffs between Routing Table Size and
Network Diameter In peer-to-peer Networks," IEEE
JSAC, Vol. 22, No. 1, January 2004.

[23] Dongsheng Li, Jiannong Cao, Xicheng Lu, et al.,

"Delay-bounded range queries over FISSIONE,"
Technical Report PolyuTech-200503, the Hong Kong

Polytechnic University, March, 2005.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 02:23 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

