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ABSTRACT 
Waveforms arising from power electronics circuits often contain 
slowly changing segments with high-frequency details concentrat- 
ed near the switching instants. Such a feature is consistent with 
the localization property of wavelets which are known in the sig- 
nal processing literature to be highly suitable for describing fast 
changing edges embedded in slowly varying backgrounds. This 
paper considers the application of wavelet approximation to the 
steady-state analysis of power electronics circuits. A procedure 
that involves mixing wavelets of different levels is described. When 
applied to power electronics circuits, the method yields efficient 
solutions involving a relatively small number of wavelets and sim- 
ple matrix operations. 

1. INTRODUCTION 

When describing waveforms arising from power electronics cir- 
cuits, a frequently encountered problem is the fast variations near 
the switching instants [I] .  This usually appears as waveform'ring- 
ings during the switching transitions and is caused by the pres-, 
ence of high-frequency resonant loops formed by small parasitic 
capacitances and inductances. Thus, the resulting waveforms con- 
tain largely low-frequency components with high-frequency de- 
tails concentrated near the switching instants. Such a feature is 
consistent with the localization property of wavelets which are 
known in the signal processing literature to be highly suitable for 
describing fast changing edges embedded in slowly varying back- 
grounds 121. Thus, power electronics waveforms can be efficiently 
approximated by an appropriate set of wavelets. In this paper we 
examine the use of wavelets for constructing steady-state wave- 
forms, and our aim is to show that wavelets'are suitable for ap- 
proximating waveforms which are characterized by localization of 
high-frequency details. 

2. REVIEW OF CHEBYSHEV POLYNOMIALS 

We consider the following polynomial function of degree n ,  which 
is definedonthecloseinterval [ - l , + l ] :  

T,(z) = cosn(arccos%) (1) 

where n is a non-negative integer and 0 5 arccos z 5 n. The se- 
quence of polynomials [Tn(x)} for n = 0,. . . ,cu. definesthe so- 
called Chebyshevpolynomials of thefirst kind [3]. Moreover. from 
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{Tn(z)}, we generate polynomials of degree n - 1, Un-l(z), 
known as  Chebyshevpolynomials of the second kind: 

Un-1(z) = - %(z) - - sin n(arccos I) 
(2) n sin(arccosx) 

for z E [ - l , + l ] .  It can be readily shown that U,_l(z) has 
( n  - 1) zeros in [-1,+1]. Let these zeros be denoted by q!,) 
f o r i  = 1 , .  . . , n  - 1, i.e., q!,) = cos(i?r/n). Note that the  ems 
of Un-1(z) are actually the extrema of T,(z). In addition, we 
define the end points as q c )  = 1 and q?' = -1. 

One important property of Chebyshev polynomials is that they 
are orthogonal in the sense that their inner product, defined by 

has the following property: 

0 i f m # n  
(Tm,Tn) = ?r i f m = n = O  (4) { r r / Z  i f m  = n #O. 

3. WAVELET CONSTRUCTION 

Wavelet construction involves two basic functions, namely the scd- 
ing function and the wavelet function. For the Chebyshev-polyno- 
mial-based wavelet construction [4, 51, the scaling and wavelet 
functions are 

where 1 is the position index (I  = 0 , 1 , .  . . ,23 for +bj,, and 1 = 
0,1 ,  . . . ,21 - 1 for &,d. j is the wavelet level 0 = 0,1, . . .), 
defined in Section 2, q21+1 IS the zero defined in Section 2, and 
wj(z)andt j , taregivenby 

(zj+') . 

Wj(.) = (1  - 2 ) u 2 ~ L l ( X ) ,  (7) 
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It can be shown that the Chebyshev-polynomial-basedscaling and 
wavelet functions can be expressed alternatively as 

23+1 

1 (2'+') 
h ( 5 )  = 2j-1 C Tr(z)G(q2,+, ) c j + ~ . r  (10) 

r=23+1 

Obviously, the position index 1 N n S  from 0 to 2'. Thus, there 
are 2' + 1 scaling functions and 2' wavelet functions for a given 
wavelet level j. Let Vj and W, be the space of scaling functions 
and that of wavelet functions, i.e., 

Vj = spant4j.r : 1 = 0,1 , .  . . , Z 1 }  (11) 

wj = span{+j,l : 1 = 0,1,. . . ,2J - 1) (12) 

Duetoorthogonality, wehavedim(Vj) = 21+1,dim(Wj) = 21, 
andVj+> = V j @ W , .  Thu~,forany1=0,1,...,2~andk= 
0 , 1 , .  . . ,2 '  - 1, weget 

(&,I, $j.k) = 0. (13) 

Now, defining W-1 as VO, we conclude that W-I  eB WO et WI 0.3 
. . . et W, is a basis of P,j+l. Thus, a combination of polynomial 
waveletsWk,with k = -l,O,..;,n,canbeusedtorepresentany 
polynomial function of degree 2'+'. 

Also, the interpolatory property gives 

(14) 
(2'+') 

4 j , t (qY) )  6r.i I t h ( q z k + i  1 = 6r.i 

where 6r.r is the Kronecker delta function, i.e.. 6 k . I  equals 1 if 
k = 1, and 0 otherwise. Clearly, the scaling and wavelet functions 
assume the maximum value 1 at qp' and q2k+l respectively. 
These poinu are called interpolation points. 

4. EXPRESSING TIME DERIVATIVES OF WAVELETS - 

p+') 

KEY TO SOLVING DIFFERENTIAL EQUATIONS 

In order to use wavelets for solving differential equations, we need 
to map the differential operators to the wavelet basis [6] .  For this 
purpose, polynomial wavelets are convenient 141. Now consider 
the first derivative of the Chebyshev polynomial: 

T O  for n = I 

dT, 
dx 
- =  

4 2 - 1  

Tz,+I for n > 2 and n even 
m=0 

( n - w a  
n T 0 + 2 n  1 Tz, f o r n 2 3 a n d n c d d  

- 
In matrix form, the above relation is T ,  = D(")T("), where 
- n) . D( IS an ( n  + 1) x (n  + 1) matrix and T(") is the vector of 
Chebychev polynomials given by T (n) = [To TI . . . T,IT. De- 
fine %'(") as the basis of wavelets, as shown in (16) which appears 
on the top of next page. 

Note that %'(nJ is a (2"" + 1)-dim vector and is given by 
-4'(n) = C(")T(2"+'),  where C(") is a square matrix of size 
(2"" + 1). Here, all elements in C(") are readily found from 

(9) and (10). Let us now define a transform matrix: D(") = 
C ( " ) 3 = )  (C("))-'.  Obviously, this matrix maps the wavelets 
to their derivatives, i.e., 

(17) &(") - - D(")I (" ) ,  

5. STEADY-STATE SOLUTIONS OF POWER 
ELECTRONICS CIRCUITS 

5.1. Basic Approach 

Most power electronics circuits are composedof linear circuits that 
switch periodically among two or more circuit topologies, We may 
therefore describe power electronics circuits as 

5 = Az + U ( t )  (18) 

where x is the m-dim state vector, A is an m x m time-varying 
matrix, and U is the input function. Specifically we write 

A(t)  = [ j j j ] (19) 

all(t) R I l ( t )  " '  R i m ( t )  

aml(t)  amz( t )  " '  R m m ( t )  

and U ( t )  = [ul(t) ':. um(t ) lT .  (20) 
In the steady state, the solution satisfies x(t)  = x( t  + T )  for 
0 < t 5 T, where T is the period. Thus, we need only to ap- 
proximate the solution in the closed interval 10, Ti. Mapping the 
closed interval to [-1,1] by appropriate translation and scaling, 
we can write the boundary condition as 

=(+I) = x(-1) (21) 

The basic problem now is to find the steady-state solution of 
(18) subject to the boundarycondifion (21). Specifically, we wish 
to ap roximate the solution by a weighted sum of some wavelets 
in &), i.e.. wavelets of level n or less. 

For brevity, we will omit the superscripts wherever the mean- 
ings are unambiguous. The basic approximation equation is 

x ; ( t )=KT%' ( t ) ,  for - l < t < l a n d i = l , Z , . . . , m  (22) 

where KT = [ki,o . . . ki,zm+l] is a coefficient vector of dimen- 
sion 2"+', which is to be found. Putting (17) and (21) in (18) 
gives 

KD* = A(t)K%' + U ( t )  (23) 

Thus, (22) can he written generally as 

F(t)R = -U( t )  (25) 

where F ( t )  is a m  x (2"+' + 1 ) m  matrix given by (26) shown on 
the top of next page, and R i s  a (2"" + 1)m-dim vector given 
b y R =  [KT ... KT 

Note that since the unknown T i s  of dimension (2 "+' + l ) m ,  
we need (2"+' + l)m equations. Now, the boundary condition 

-1 ' 
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(21) provides m equations, i.e., [ 9 ( 1 )  - *(-l)]*K, = 0, for 
i = 1 , .  , . , m. Also, we obtain 2"+'m more equations by inter- 
polating at 2"" distinct points in the closedinterval [-l,l]. Let 
these interpolation points be E , ,  €2, . . .,&+I. Then, the approxi- 
mation equation can be written as 

5.2. Impmved Approach 

It should be apparent that wavelets of low levels are suited for the 
low-frequency put of the solution whereas those of high levels 
account for the high-frequency variation. Thus, by appropriately 
combining wavelets of different levels, solutions can be obtained 
more speedily. 

Suppose we have selected the wavelets for approximation. say 
$,. Denoting the unchosenones as q z ,  we partition the wavelet 
basis as follows. 

5.=P.P= [ $ 1  (32) 

where P is the permutation matrix defining the particular choice of 
wavelets. Supposethe dimension of qi is N. Then, the dimension 
of c, is 2"+' + 1 - N .  The matrix D can then be written as 

with F 1 ,  F 2 .  U1 and U a  given by 

By solving (27). we obtain all the coefficients necessary for 
generating an approximate solution for the steady-state system. 
One final step is to choose choice the interpolation points, E t .  

A possible choice of the interpolation points are q? for i = 
1 , .  . . , 2"", which are the interpolation p i n t s  of the wavelets. 

" + I )  

where Dl and D, are ofsize N x (2"+' + 1) and (2"+' + 1 - 
N )  x (2"+' + l ) ,  respectively. Now let us retain in the solution 
onlythepartinvolving \ir,anddiscardtherest,i.e.,thesolutionis 
to be approximated as K 91. Then, (23) becomes 

K, T ^  D1q = [a,l(t) ' . '  a;,(t)] [ KF ] *I +U$) (34) 

K: 
for i = 1 , .  . . , m. Thus, the size of K is N x m is substantially 
reduced. Comparing (34) with (25), the main difference is that the 
matrix F ( t )  is much simpler. As before, the solution can be found 
by imposing the boundary conditions and interpolating at N - 1 
points along thc interval [-1,11. We denote these interpolation 
p o i n t s a s t l , . . . ,  EN-,. Thus,weneedtosolve 

P X = U  (35) _ _  
where K ,  F and U are as defined earlier, but are much smaller. 

6. SIMULATIONS AND EVALUATIONS 

In this section we apply the aforedescribed method to a simple 
flyback converter. We will evaluate the results using the mean ab- 
solure error (MAE) defined by MAE = $ J:l Ii(t) - z(t)l d t .  
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Fig. 1 : (a) Flyback converter model with transformer leakage and 
device parasitic capacitance; (b) on-time circuit model; (c) off- 
time circuit model. 

4 + + 
R, C, Y. c, ", 

- - 

MAE Number of wavelets Number of Fourier terms 
used to approximate v s  

0.0500 333 516 
0.0300 652 1638 
0.0270 1025 1806 

used to approximate U, 

Table I: Comparison of wavelet approximation and Fourier ap- 
proximation for vr  in the flyback converter. 

In discrete form, it is simply given by MAE = A E:=, li$ - 5.1. 

where n is the total number of points sampled along the interval 
1-1, 11 for error calculation. In the following, we use uniform 
sampling (i.e., equal spacing) with n = 1001, including boundary 
points. 

Figure 1 (a) shows a flyback converter, where the parasitic 
capacitance across the switch and the leakage inductance of the 
transformer are deliberately included. When the switch is turned 
on, current flows through the magnetizing inductance L ,  and the 
leakage inductance L L ,  with the transformer secondary openedand 
the diode not conducting. When the switch is turned off, the trans- 
former secondary conducts through the diode, clamping the pri- 
mary voltage (i.e., voltage across L,) to the output network (as- 
suming a 1:1 turns ratio). Thus, L, discharges through the trans- 
former primary, while the leakage LI and the parasitic capacitance 
C, form a damped resonant loop around the input voltage source. 
Figs. 1 (b) and (c), show the detailed circuit models for the on- 
time and off-time. Again, the basic system equation can be readily 
found in the form i: = A( t ) z  + U ( t ) .  

The main purpose,of this example is to highlight the advan- 
tage gained by using wavelet approximation for waveforms con- 
taining high-frequency details around the switching instants, In 
order to show this, we compare the number of terms required for 
approximation using wavelets and conventional Fourier series. It 

U, 

-I 4.8 4.6 4.4 4.2 0 02 0.1 Oh 0.8 I 

........ 

i 1 ................ I 
................... J 

-1 43 4.6 4 A  4 . 1  0 0.2 0 4  0.6 0.8 I 

Fig. 2 Waveforms of wavelet and Fourier approximations of the 
switch voltage in the flybackconverter. 

should be noted that U, is rich in high-frequency details due to res- 
onant ringings. The parameters for simulation are: magnetizing 
(storage) inductance L ,  = 0.4mH. leakage inductance LI= 1 pH, 
equivalent parallel resistance of transformer primary R, = 1 MO, 
output capacitance C = 0.1 mF, load resistance R = 12.5 0, input 
voltage E = 16V. diode forward drop V, = 0.8 V, switchingperiod 
T = lOOps, on-time TD = 45ps. equivalent loop resistance R I  = 
0.4R, switch on-resistance R s  = 0.001 R, switch capacitance Cs 
= 200nF, diode on-resistance R D  = 0.001 O. 

In particular, we compare the number of wavelets with that of 
Fourier terms used to achieve the same MAE. Results art shown 
in Table I .  The wavelet approach is found to be advantageous 
as it requires fewer terms for approximation. The approximated 
waveforms are shown in Fig. 2. 

7. CONCLUSION 

A procedure has been developed for finding wavelet expansions 
for power electronic converters. We have shown that wavelet ap- 
proximation provides an efficient means for steady-state analysis 
if appropriate (influential) wavelets are chosen to form the basis. 
Further study is necessary to establish a systematic selection pro- 
cedure for forming the suitable waveldt basis for approximation, 
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