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Abstract- This paper discusses a family of fixed- the current mode control is afterall not fully nonlinear. It
frequency pulse-width-modulation based sliding mode volt- does not fully support converter applications with large-signal
age controllers for basic DC-DC converters operating in disturbances.
continuous conduction mode. An experimental compari- Thus, in this paper, we introduce a family of fixed-frequency
son is offered between the proposed controller and the nonlinear controllers, namely, the PWM based sliding mode
PWM peak current mode controller for the case of the (SM) voltage controllers to supplement the existing types of
boost converter. The performances and properties of the PWM controllers for applications in basic DC-DC converters.
proposed controller, the conventional PWM voltage mode The idea is to facilitate the control support for the class of
controller, and the PWM current mode controllers are also converters operating with wide operating ranges. The method
compared. of deriving these controllers and their preliminary simulation

results have been provided in a previous paper [3]. This
I. INTRODUCTION paper complements [3] with an experimental validation and a

Requiring only the sensing of the output voltage and a detailed discussion of the practical aspects of the controllers.
single stage compensation, linear PWM voltage mode control A comparison of the general aspects of the performances
is by far the most convenient method of controlling DC- and properties between the proposed controller and various
DC converters. However, the effectiveness of this control conventional PWM controllers is also provided.
methodology is often limited to converters operating in discon-
tinuous conduction mode (DCM) and the buck-type convert- II. A FAMILY OF PWM BASED SM CONTROLLERS
ers. Boost-type and buck-boost-type converters operating in SM controllers are well known for their robustness and
continuous conduction mode (CCM), which inherit the right- stability. Particularly in converter applications requiring a wide
half-plane-zero (RPHZ) characteristic in their duty-cycle-to- operating range, SM controllers are understandably better can-
output-voltage transfer functions, typically restrict designers to didates than conventional PWM controllers due to their ability
choosing low gain bandwidth types of compensation network in handling large-signal perturbations in nonlinear systems [4],
for their voltage controllers. This makes the performance of [5]. Among the various proposed systems, the fixed-frequency
the converters sluggish and often unsatisfactory [1]. Moreover, PWM based SM controllers are more suited for practical
the performance will be further deteriorated in applications implementation in power converters [3], [5]-[9]. The main
requiring wide operating conditions, since the compensation operating mechanism of these controllers is a pulse-width
network is only optimized for a fixed operating condition. modulator that employs a control signal derived from SM
A solution to achieving fast dynamical response in RPHZ control technique. Detailed discussion of the control strategy

converter systems is to employ the current mode control can be found in [3], [9].
[2]. This is a two-loop control methodology that uses an Fig. 1 shows the schematic diagrams of the family of
internal current loop in addition to the voltage loop. In a PID PWM based SM voltage controller to be discussed in
certain sense, this introduces a nonlinear state feedback term this paper. Here, C, L, and rL denote the capacitance, in-
which makes the current mode control semi-nonlinear, since ductance, and instantaneous load resistance of the converters
the voltage loop of its control is maintained linear. This respectively; ic, 'L, and ir denote the instantaneous capacitor,
is unlike the PWM voltage mode control which is entirely inductor, and load currents respectively; Vref, vi, and /3vo
linear. Hence, the current mode control supports converter denote the reference, instantaneous input, and instantaneous
applications with a wider range of operating condition than output voltages respectively; Q denotes the feedback network
the linear PWM voltage mode control. Additionally, since the ratio; and u = (0,1) is the state of power switch Sw.
Overall system's stability (phase) margin is increased by the
adoption of a fast inner-current loop compensator, a higher A. Control Equations
gain bandwidth compensator over a comparable voltage mode The control equations required for the implementation of
circuit can be achieved. This leads to fast dynamical response the PWM based SM voltage controllers for the respective basic
in RHPZ systems. However, despite such excellent properties, DC-DC converters were derived in [3], and are illustrated in
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comply wittherespctive ineualities,of the existence condition implies that the system's trajectory
TABLE II will strictly follow the desired sliding surface, the system's

SLIDING MODE CONTROL ExiSTENCE CONDITIONS dynamic response will strictly obey the designed dynamics.
Such stringency is not present in the nonlinear PWM controller

Buck < 3O plic+ Kp (Vrf -,Vo) 3Vi
design approach.

Buck <i31~- Kiic K~2 Vref /317) <~Table III shows a comparison of the general aspects of the
performances and properties between the proposed controller

Boost 0 < Kplic - Kp2 (Vref - /3Vo) <j3(Vo - ¼i) and various conventional PWM controllers.

III. EXPERIMENTAL RESULTS AND DiscusSIONS
Buck-boost 0 < Kplic - Kp2 (Vref -/317o) <L3Vo The proposed PWM based SM voltage controllers have
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TABLE III
A COMPARISON OF THE VARIOUS FIXED-FREQUENCY PWM CONTROL SCHEMES

Category of Comparison PWM Voltage Mode PWM Current Mode/Average Current Mode PWM Based SM Voltage Mode

type of control linear some nonlinearity nonlinear
compensation design difficult moderate/difficult easy

steady-state line and load regulation average good average
large-signal dynamic response consistency poor average good

gain bandwidth in RHPZ converter low relatively higher low
requirement for current sensing no yes yes

noise-to-signal ratio low high/moderate moderate
current protection external circuit inherent external circuit

audiosusceptibility protection external scheme inherent existing

TABLE IV
SPECIFIC TIONOFBOOST CONVERTER it changes from RL 240 Q and RL = 24 Q. This is

expected since the peak current mode controller is designed
Description Parameter Nominal Value under a linearized small signal model that is only optimal for a
Input voltage vi 24 V specific operating condition. Thus, when a different operating
Capacitance C 2000 ,uF condition is engaged, the responses varies.
Capacitor ESR Cr 69 mQ
Inductance L 300,H On the other hand, with the PWM based SM voltage
Inductor resistance ir 0.14 Q controller, the dynamic behavior of the output voltage ripple
Switching frequency fs 200 kHz is basically similar (i.e. critically damped) for all operating
Minimum load resistance (full load) rL(min) 24 Q
Maximum load resistance (10 % load) rL(max) 240 Q input and load conditions. Moreover, the transient setting time,
Desired output voltage Vod 48 V which is around 3.4 ms, is also independent of the direction

of the step load change. This coincides with our design, which
being a 1.5 krad/s bandwidth controller, is expected to have

of wo, = 1.5 krad/s, i.e., T = 0.66 ms. The sliding coefficients a settling time of 5T = 5 3.33 ms. This demonstrates
al13 ~~~~~~~~~~~~~~~~~~~~~~~~~~1.5are = 3000 and 0 2250000 (full-load condition the strength of the SM controller in terms of robustness in

design) according to the design equations in [9]; the reference the dynamic behavior under different operating conditions and
voltage is Vref 8 V, Q = 6; and control parameters uncertainties. Additionally, the example also illustrates a major

Kpl = 13L - 0.149 and Kp2 = '3LC = 1.35. difference between a large-signal controlled system (SM) and
a small-signal controlled system (PWM), that is, the former

A. Regulation Performance complies to the design with a similar response for all operating

A tabulation of the data in terms of the load and line conditions, while the response of the latter will only comply
regulation properties is also given in Tables V and VI respec- to the design at a specific operating condition.
tively. According to Table V, the maximum load-regulation IV. CONCLUSION
error occurs at vi = 20 V, with a deviation of 1.75 %
from Vo(nominal condition)- Similarly, it can be found from We provide a detailed discussion on a newly proposed fam-
Table VI that the maximum line-regulation error occurs at ily of fixed-frequency pulse-width-modulation based sliding
minimum load rL = 240 Q, with a deviation of 1.42 % from mode voltage controllers for basic DC-DC converters. An
Vo(nominal condition) experimental comparison between the proposed controller and

the PWM peak current mode controller is performed on the
B. Proposed Controller Versus Peak Current Mode Controller boost converter. The general differences in terms of control

The dynamic behavior of the proposed PWM controller performances and properties between the proposed controller
is compared to that of a UC3843 PWM peak current mode and the conventional PWM controllers are highlighted. It
controller that is optimally tuned to operate a boost converter at can be concluded that the PWM based sliding mode voltage
step load change from RL = 24 Q to RL = 240 Q for the input controllers possible control alternatives for DC-DC conversion
condition Vi = 24 V. Figs. 2(a)-2(f) show the experimental applications requiring wide operating conditions.
waveforms of the boost converter under these control schemes.
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TABLE V
LOAD REGULATION PROPERTY: OUTPUT VOLTAGE AT NOMINAL OPERATING CONDITION Vi 24 V AND rL =24 Q is vo(nominal condition) =47.95 V.

Input Voltage Voltage Deviation: Avo 020~ -V(4~ Percentage Change: x 100 %= Vo(240 Q)Vo(24 Q) Vo~~(nomninal condition)
vi= 20 V 0.84 V 1.75 % of vo(nominal condition)
vi= 24 V 0.61 V 1.27 % of Vo(norninal condition)
vi= 28 V 0.56 V 1.16 % of vo(nominal condition)

TABLE VI
LINE REGULATION PROPERTY: OUTPUT VOLTAGE AT NOMINAL OPERATING CONDITION vi 24 V AND rL =24 Q is vo(nominal condition) =47.95 V.

Loading Codition Volage Deviaton: Av0 vov. -20 V)- Vo(v.i-28 V) Percentage Change: Ax 100 %
Loadin CondiionVotage Dviatio: AVO Vo(vi20_V)Vo(norninal condition)

Minimum load (240 Q) 0.68 V 1.42 % of vo(nominal condition)
Half load (48 Q) 0.58 V 1.21 % of vo(nominal condition)
Full load (24 Q) 0.40 V 0.83 % of vo(nominal condition)
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