
ANALYSIS OF BIFURCATION IN SWITCHED DYNAMICAL SYSTEMS WITH
PERIODICALLY MOVING BORDERS: APPLICATION TO POWER CONVERTERS

Yue Ma and Hiroshi Kawakami

Dept. of Electrical & Electronic Engineering
The University of Tokushima, Japan

Chi K. Tse

Dept. of Electronic & Information Engineering
Hong Kong Polytechnic University, Hong Kong

ABSTRACT

This paper describes a global method for analyzing the bi-

furcation phenomena in switched dynamical systems whose

switching borders are varying periodically with time. The

type of systems under study covers most of power electron-

ics circuits. In particular, the complex bifurcation behavior

of a voltage feedback buck converter is studied in detail.

The analytical method developed in this paper allows bifur-

cation scenarios to be clearly revealed in any chosen param-

eter space.

1. INTRODUCTION

In a previous study by Kousaka et al. [1], switched dynam-

ical systems with fixed borders are analyzed. Switchings in

such systems are determined only by the states of the system

and are not affected by external signals. In many engineer-

ing applications, however, switchings are determined by the

interaction of the states of the system with some external

periodic driving signal. Such an operation is found in most

of power electronics circuits [2, 3]. In this paper, we ex-

tend the previous work to the analysis of switched dynami-

cal systems with their switching borders moving as periodic

functions of time. Instead of local theory so far, we consider

the switched system from a global viewpoint.

We will first present a system description and a gen-

eral procedure for analyzing the bifurcation behavior. To

illustrate the practicality of the method, we apply the analy-

sis procedure to a popular voltage feedback buck converter
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Fig. 1. A voltage feedback buck converter.

[4]. We will systematically describe the bifurcation phe-

nomena in the buck converter, covering the standard period-

doubling, tangent bifurcation as well as border collision bi-

furcation [5, 6]. In particular, the method we develop in

this paper permits the types of bifurcations to be clearly and

conveniently identified under different choices of parame-

ter values. Hence, the results from the analysis can be used

by engineers to develop practically useful design rules for

avoiding certain types of bifurcation scenarios.

2. ANALYTICAL METHOD

2.1. Periodic solution

From an analytical viewpoint, we may look at a switched

dynamical system as a set of two or more dynamical sys-

tems, each of which defines the system in a finite interval

of time. For a voltage buck converter shown in Fig. 1, there

are two systems and one border. Switching between two

systems is controlled by the switch S, i.e., the output of volt-

age comparator which compares a control signal vcon with

a ramp signal Vramp. Therefore, a border function can be

defined by β(x, t) = vcon − Vramp = 0. It is a periodic

function with period T .

As illustrated in Fig. 2(a), the border divides the state

space into two parts. We suppose the solutions in M1 and

M2 are given by ϕ(t,x0) and ψ(t,x0), respectively. These

two solutions are governed by the state equations of the two

respective dynamical systems. Whenever the flow intersects

the border B transversally, the system switches. The cross-

ing point can then be regarded as the initial point of the
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Fig. 2. Periodically moving border and a typical periodic-1

solution of buck converter.
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Fig. 3. Classification of border collision in buck converter.

Table 1. System of abbreviations of bifurcation. Each type

of bifurcation is abbreviated as �n�.

D Period-doubling bifurcation

�
T Tangent bifurcation

Bc C-type border collision

Bd D-type border collision

n 1,2,· · · Period of solution happening bifurcation

� a,b,· · · Index

successive flow. Thus, we can describe any trajectory of

a switched dynamical system. If we consider a solution

shown in Fig. 2(b), we can write the following equations.

x1 = ϕ(τ1,x0) starting at x0, crossing at x1 (1)

x2 = ψ(T − τ1,x1) ending at x2 in one period (2)

β(τ1,x1) = 0 border crossing condition (3)

If x2 = x0, it is obviously a period-1 solution. Then we can

solve the above equations to obtain the fixed point using an

appropriate numerical method.

2.2. Bifurcation

Apart from standard bifurcations, a special type of bifurca-

tion, known as border collision, is often observed in switched

dynamical systems.

Standard bifurcations, such as tangent bifurcation and

period-doubling bifurcation, happen if the stability of a fixed

point changes. For instance, to determine the stability for

the period-1 solution introduced above, the problem is to

find ∂x2/∂x0. From (1) and (3), we can get ∂x1/∂x0 and

∂τ1/∂x0 separately. Then, substituting them into the partial

derivative of (2) and using appropriate numerical method,

we can calculate ∂x2/∂x0. Thus the standard bifurcation

behavior can be analyzed. Note that the above procedure is

completely general and system independent.

Unlike standard bifurcations, border collision is a re-

sult of operational change [2], which is system dependent.

For the buck converter under study, at the point where vcon

“grazes” at the upper or lower tip of the ramp signal Vramp,

border collision occurs. According to the actual situation of

circuit operation, we classify border collision in this system

into “C-type” and “D-type”, as depicted in Fig. 3. For any

periodic solution running into border collision, except for

the earlier set of equations describing the solution, we can

write a new equation for the “grazing”, which allows us to

solve the parameter condition under which a specific border

collision occurs.

3. BIFURCATION OF BUCK CONVERTER

In this section, we will investigate the complicated bifur-

cation behavior exhibited by the buck converter. With the

notations in Fig. 1, we fix some of the parameters as fol-

lows.

L = 20 mH, C = 47 µF, a = 8.4, Vref = 11.3 V,

VL = 3.8 V, VU = 8.2 V, T = 400 µs

3.1. Bifurcation diagram

Using the analysis methods developed in the foregoing sec-

tion, together with appropriate numerical calculations, we

can obtain a bifurcation diagram in the E–R plane and a

blow-up view in Fig. 4. For the sake of clarity and to avoid

confusion, we adopt a system for denoting the bifurcation

curves, as explained in Table 1. Moveover, we name peri-

odic solutions as Pn(k1, k2, · · · , kn), where n is the period

of the solution and k1, k2, · · · , kn indicates the number of

times the solution crosses the border in each period. Then,

from these diagrams, in conjunction with Fig. 5, we are able

to explain the bifurcation behavior of period-1 and period-2

solutions in the voltage feedback buck converter.

In the dark-grey region (shown as in Fig. 4(a)), the

stable solution is P1(1) for which only period-doubling D1

is observed. Period-2 solution P2(1,1) appears on the right-

hand side of D1. For P2(1,1), a period-doubling D2a and

border collision are possible.

Some interesting bifurcation behavior can be observed

around point I on the bifurcation diagram. Crossing the bi-

furcation curve of Bc2a (see Fig. 5(a)) from left to right,

P2(1,1) becomes P2(0,1). However, inspecting the eigen-

values of P2(0,1), we find that P2(0,1) is unstable. Above

point I, we see that D2a takes place ahead of Bc2a. For clar-

ity, Bc2a occurring on unstable solution P2(1,1) is shown as

a dashed curve in Fig. 4(a). This point will be discussed in

the next subsection.

From the blow-up view of Fig. 4(b), we observe that

another border collision Bd2a occurs below point J. This

bifurcation, corresponding to Fig. 5(b), transmutes P2(1,1)

into P2(1,2). Note that P2(1,2) is a stable period-2 solution.

Also, P2(1,2) can undergo period-doubling and tangent bi-

furcation, denoted as D2b and T2 respectively. For ease of

reference, the region in which P2(1,1) exists is shown as the
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Fig. 5. Conditions of various border collision bifurcations. � indicates grazing point.
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Fig. 4. (a) Bifurcation diagram with C = 47 µF. (b) An en-

larged view. In the figure, , , and denote the regions

where P1(1), P2(1,1) and P2(2,1) exist respectively.

hatched area , and the region in which P2(1,2) exists is

shown as the back-hatched area .

Since P2(0,1) is unstable, the Bc2a discussed earlier ac-

tually leads to P4(0,1,1,1) and chaos in succession. That

is, P2(0,1) is never manifested. This unstable P2(0,1) can

undergoe another border collision Bd2b to become P2(0,2),

which is stable and only exists in a narrow region between

Bd2b and Bc2b. Bc2b, corresponding to Fig. 5(c), trans-

mutes P2(0,2) into P2(1,2). Thus, in the light-gray region in

Fig. 4(b)), we actually find a stable period-2 solution coex-

isting with possible longer periodic solutions or chaos.

Note that all of four border collision curves meet at the

same point J on the bifurcation diagram. The coordinate of

J is (40.781 V, 3.946 Ω). At this set of parameters, both C

and D types of border collision occur at the same time. This

situation is illustrated in Fig. 5(e). For higher periodic so-

lutions, many joint points (like J) of border collision curves

can be expected. Finding the position of these points may

gives us convenience to determine the complicated higher

codimension bifurcation phenomena.

3.2. Discussion

By fixing R at 3 Ω and 5.4 Ω, we obtain the one parameter

bifurcation diagrams shown in Fig. 6. These figures are able

to reveal further details of the bifurcation behavior.

From Fig. 6(c), we can see clearly the coexisting solu-

tions. Furthermore, we observe an important difference be-

tween C-type and D-type border collision. The C-type bor-

der collision manifests itself as a leap, whereas the D-type

manifests as an inflection. This difference can be attributed

to the kind of operational change associated with the spe-

cific type of border collision. Specifically, in the C-type

border collision, the switching sequence is disrupted, giv-

ing rise to “skipped” cycles. Moreover, for the D-type, the

relative durations of the on and off intervals are disturbed

while the same switching sequence is maintained.

Finally, we discuss an interesting interplay between per-

iod-doubling bifurcation and border collision. In the nor-

mal period-doubling cascade, period-doubling bifurcation

continues to generate solutions of doubled periods and to

chaos. However, border collision comes into play for the

switched dynamical systems. For the buck converter, when-

ever vC hits a boundary, border collision occurs, and in-

terrupts the normal period-doubling cascade, as depicted in

Fig. 7(a), where dashed curves indicate unstable solutions.

We see that the border collision B8 of stable period-8 so-

lution must happen before the border collision B4 of the

unstable period-4 solution and after the period-doubling D4

of the stable period-4 solution. If R is reduced, the entire

period-doubling cascade will move upward. Thus, as R de-

creases, B8 and D4 will soon be displaced from the top (dis-

appear) while B4 will occur for the stable period-4 solution.
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Fig. 6. Bifurcation diagrams for fixed R, with E serving as the bifurcation parameter.
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Fig. 7. Interplay between border collision and period-

doubling cascade.

From the above description, we may conceive a general

bifurcation pattern, as shown in Fig. 7(b). We now look at

the bifurcation sequence with E serving as the parameter

and increasing. The first border collision must be located

between a period-doubling of a stable solution and a border

collision of an unstable solution. Moreover, the first bor-

der collisions often represent overtures to prelude the oc-

currence of chaos. Thus we can intuitively explain (and es-

timate) the location of the onset of chaos. Referring to the

bifurcation diagram of Fig. 4(a) again, we can conclude that

chaos occurs between dashed Bc2a and D2a. Here, point

I can be interpreted as a critical point where the bifurca-

tion sequence jumps from the second row to the first row in

Fig. 7(b). However, we should stress that this simple rule,

though helpful in making prediction of the onset of chaos,

has assumed the validity of an ideal period-doubling cas-

cade.

4. CONCLUSION

In this paper, we have introduced a method for analyzing the

bifurcation behavior of switched dynamical systems with

periodically moving borders. By constructing the periodic

solutions according to the switching sequences, we can find

periodic orbits, evaluate their stability, and study the bifur-

cation behavior. The method developed in this paper leads

to the plotting of detailed bifurcation diagrams on the pa-

rameter space that can provide useful practical information

for engineers to determine the complex bifurcation behavior

of any given switched dynamical system. In particular, we

have provided specific bifurcation diagrams for the voltage

feedback buck converter and discussed the key features of

the bifurcation behavior. In this paper we have shown the

rich variety of possible border collision scenarios and their

interplay with the main period-doubling cascade. The same

method of analysis can be extended to solutions of longer

periods, with higher complexity of the numerical solution

being the price to pay.
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