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ABSTRACT

A new detector configuration is proposed for the detection
of FM-DCSK signals with improved noise performance.
Since the new detector configuration is developed directly
from the chaotic GML decision rule, it offers the best noise
performance in AWGN channel in the category of nonco-
herent detection if the reception of a single isolated symbol
and memoryless modulation scheme is considered. The pa-
per shows how the a priori information on chaotic signals
may be exploited in waveform communication to maximize
the noise performance.

1. INTRODUCTION

A lot of chaos-based communication schemes have been
proposed recently [1]. Among them the frequency
modulated-differential chaos shift keying (FM-DCSK)
modulation scheme assures the best potential noise perfor-
mance if the reception of a single isolated symbol and mem-
oryless modulation schemes are considered, because the
FM-DCSK is the only chaotic modulation scheme which
has orthonormal basis functions [2].

The noise performance of a modulation scheme depends
on two factors: on the separation of elements of signal
set and the detector configuration. The separation of ele-
ments of signal set gives the performance bound on attain-
able noise performance. The better the separation, the better
the attainable noise performance.

The detector observes the received signals in the obser-
vation space. A well designed detector exploits all the avail-
able a priori information on the elements of signal set to
separate the signal to be detected from channel noise, that
is, to suppress the noise. As a rule of thumb we may say,
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the more a priori information is exploited, the better noise
performance is achieved. In this respect the key issue is the
decision rule: the application of maximum likelihood (ML)
decision rule assumes that all elements of signal set are ex-
actly known at the receiver, while in case of the generalized
maximum likelihood (GML) decision rule [3] only certain
parameters of elements of signal set must be known.

In chaotic waveform communication, the elements of
signal set are not fixed waveforms. The chaotic basis func-
tions are different for each transmitted symbol even if the
same symbol is transmitted repeatedly. The continuously
varying waveforms make it very hard to find a mathemati-
cal model for the detection problem that is simple enough.

This problem has been solved in [4], where the Fourier
analyzer concept was introduced to define the observation
space of the detector. Section 2 surveys the Fourier analyzer
concept and introduces the chaotic GML decision rule. The
importance of chaotic GML decision rule is that it shows
what is the main theoretical difference between chaotic and
conventional waveform communication and how the max-
imum amount of a priori information may be exploited in
chaotic communication by the detector.

The new detector configuration is developed in Sec. 3
from the chaotic GML decision rule. Since the application
of GML decision rule results in optimum noise performance
in additive white Gaussian noise (AWGN) channel, this de-
tector configuration gives the theoretical limit on bit error
rate (BER) that may be achieved with chaotic modulation
schemes if chaotic basis functions may not be recovered
at the receiver from the modulated, distorted and noisy re-
ceived signal.

Section 4 shows the noise performance of the optimum
noncoherent FM-DCSK detector that has been determined
by computer simulation. The results are compared with the
noise performance of classical FM-DCSK and conventional
FSK detectors, conclusions are drawn and the limit on at-
tainable performance improvement is discussed.
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2. GENERALIZED MODEL OF WAVEFORM
COMMUNICATIONS

Each digital receiver must contain at least a channel filter,
whose bandwidth is equal to the bandwidth of modulated
signal, and a decision circuit. Consequently, the minimum
amount of a priori information that is always available at a
receiver is the RF bandwidth 2B of channel filter and sym-
bol duration T .

Let rm(t) = sm(t) + n(t) denote the received signal,
where s(t) denotes the transmitted element of signal set and
n(t) represents the channel noise. This signal is fed into
the channel filter, the output of channel filter is denoted by
r̃m(t). This signal is observed by the detector.

2.1. The Fourier Analyzer Concept

Each element sm(t) of signal set is expressed as a linear
combination of N orthonormal basis functions gj(t), j =
1, 2, . . . , N [2]. The Fourier analyzer concept [4] has been
derived from the recognition that a detector observes the re-
ceived signal only on the interval 0 ≤ t ≤ T to perform
the detection. Consequently, the signal may have any value
outside this interval. Let us exploit this property and let a
periodic basis function be defined as

gT,j(t) =

{
gj(t), for 0 ≤ t ≤ T
gj(t − CT ), otherwise

where C is an arbitrarily nonzero integer. Then the basis
functions may be represented over the interval 0 ≤ t ≤ T
by a Fourier series

gT,j(t) =

K2∑
k=K1

[
αj,k cos(k

2π

T
t) + βj,k sin(k

2π

T
t)

]
(1)

where αj,k and βj,k denote the coefficients of Fourier series
expansion. The constants K1 and K2 are determined by the
frequency band covered by the spectrum of basis functions
gj(t), for a band-pass system K2 − K1 + 1= 2BT .

Equation (1) shows that the basis functions have a dis-
crete spectra, the fundamental frequency is determined by
the bit duration, and that the number of harmonically related
frequencies to be considered is determined by 2BT .

The Fourier series expansion defines the observation
space which is a Hilbert space of harmonically related
cos(·) and sin(·) functions with dimension D̂ = 4BT . Note
that the dimension of observation space is determined by
those parameters that are always known at the receiver.

2.2. Chaotic GML Decision Rule

Two orthonormal basis functions are used in FM-DCSK
and each bit is mapped into one basis function. This pa-
per assumes that identical chaotic synchronization may not
be used due to the bad propagation conditions. If so then

the GML decision rule [3] has to be used. The application
of GML decision rule is summarized in the following.

Consider the observation space constructed by the
Fourier analyzer concept. Each basis function defines a sub-
space in the observation space. The received signal is pro-
jected into the subspaces of each basis function and the en-
ergies measured in the different subspaces are determined.
The decision is made in favor of the subspace and, conse-
quently, in favor of the bit, that receives the greatest energy.

But the GML decision rule known from the theory of
conventional communication systems may not be applied
directly to chaotic communication, since in the latter the
basis functions vary from symbol to symbol. Consequently,
only the mean values of the Fourier coefficients may be de-
termined in (1).

Let a weight be defined for each harmonic frequency in
(1) as

Wj,k =

E

[√
α2

j,k + β2
j,k

]

E

[√
α2

j,k0
+ β2

j,k0

]

where k0 = (K1 + K2)/2 assigns the center frequency of
FM-DCSK signal and E denotes the expectation operator.
Then the weighted energy received in the subspace of gj(t)
is obtained as

Ej,m =
2

T

K2∑
k=K1

( [
Wj,k

∫ T

0

r̃m(t) cos(k
2π

T
t)dt

]2

+

[
Wj,k

∫ T

0

r̃m(t) sin(k
2π

T
t)dt

]2
)

.

(2)

Due to channel noise, Ej,m is a random variable. Since
the spectra of basis functions are not uniform, the signal-
to-noise-ratio (SNR) differs for each terms in (2). The duty
of the weights Wj,k is to maximize the SNR for each ba-
sis function represented by Fourier series in the observation
space. As a result, the overall SNR is maximized and the
best noise performance is achieved. This decision proce-
dure is called chaotic GML decision rule.

The weights 0 ≤ Wj,k ≤ 1 are determined from the
averaged spectrum of the jth basis function.

3. DEVELOPMENT OF NEW FM-DCSK
DETECTOR CONFIGURATION

This section develops the block diagram of an optimum
noncoherent FM-DCSK detector from (2). To do that, first
the weights Wj,k have to be determined.

3.1. Determination of Weights

Equation (1) gives the Fourier series expansion of basis
functions. Recall that bits “1” and “0” are mapped into the
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first and second basis functions, respectively. It has been
shown in [5] that the spectra of first and second basis func-
tions have only even and odd, respectively, harmonics. To
illustrate this, Fig. 1 shows this separation of basis functions
in the frequency domain. In the figure, the power spectrum
of a pure bit “1” sequence is shown for T=2 µs and center
frequency of 2.4 GHz. Note, only even harmonics appear.
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Fig. 1. Power spectrum of an FM-DCSK signal for a pure
bit “1” sequence.

The first conclusion is that for bit “1” the weights Wj,k

in (2) are equal to zero for each odd harmonics since there
is no signal energy at those frequencies. The zero weights
suppresses the noise components at odd harmonics. Sim-
ilarly, for bit “0” the weights Wj,k are zero for each even
harmonics.

To get the exact values of weights, the voltage spec-
trum of an FM-DCSK signal was determined for a very long
FM-DCSK signal carrying an equiprobable random bit se-
quence. Since an FM-DCSK receiver with the parameters
of 2B=30.5 MHz and T=2 µs is considered in our simu-
lations, only 61 weights may differ from zero as shown in
Fig. 2. As examples, the first four values of Wj,k are given
in Table 1.
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Fig. 2. Voltage spectrum of FM-DCSK signal carrying a
random bit sequence.

Table 1. The first four values of the weights Wj,k.

Bit “1” Bit “0”

Frequencies [MHz] W1,k W2,k

2,400.0 1.00 0.00

2,399.5 2,400.5 0.00 0.9983

2,399.0 2,401.0 0.9896 0.00

2,398.5 2,401.5 0.00 0.9748

3.2. Block Diagram of the New FM-DCSK Detector
Consider the reception of bit “1” first. The subspace
of g1(t) contains only the even harmonics of the clock
frequency 1/T . Substituting j=1 into (2) we obtain for
g1(t)

TCE1,m =

K2∑
k=K1

( [
W1,k

∫ T

0

r̃m(t) cos(k
2π

T
t)dt

]2

+

[
W1,k

∫ T

0

r̃m(t) sin(k
2π

T
t)dt

]2
) (3)

where TC = T/2, k is an even number and the weights
W1,k may be determined from Fig. 2 and Table 1.

In a similar fashion, substituting j=2 into (2) we obtain
the product of TCE2,m for bit “0”. In the case of g2(t), k is
an odd number and the values of W2,k may be determined
from Fig. 2 and Table 1.

The decision is done in favor of bit “1” if

TCE1,m − TCE2,m > 0 . (4)

From (3) and (4), the new FM-DCSK detector may be
constructed as shown in Fig. 3. Like the conventional co-
herent receivers, theoretically there is no need for channel
filter in this receiver since the bandlimiting of input signal
is performed by the appropriate choice of weights.

4. LIMIT ON BER IMPROVEMENT

The noise performance of optimum noncoherent FM-DCSK
detector is shown by dotted curve in Fig. 4. For comparison,
the noise performance of frequency domain FM-DCSK [5]
(dash-dot curve), differentially coherent FM-DCSK (solid
curve) and noncoherent FSK detectors (dashed curve) are
also shown.

The frequency domain FM-DCSK and differentially co-
herent FM-DCSK detectors have the same noise perfor-
mance. Recall that in the frequency domain FM-DCSK
detector the weights in (2) have only two values, 0 and 1,
while in the optimum noncoherent FM-DCSK detector the
the weights are matched to the spectrum of FM-DCSK sig-
nal.

From Fig. 4, the following conclusions are drawn. The
application of chaotic GML decision rule improves the
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Fig. 3. Block diagram of optimum noncoherent FM-DCSK detector.
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Fig. 4. Noise performance of optimum noncoherent FM-
DCSK (dotted curve), frequency domain FM-DCSK (dash-
dot curve) and differentially coherent FM-DCSK (solid
curve) detector. BER of noncoherent FSK, upper bound on
noise performance improvement, is shown by dashed curve.

noise performance since it minimizes the variance of ob-
servation signal by matching the weights Wj,k to the spec-
trum of FM-DCSK signal. The noise performance may be
improved by reducing the bandwidth of FM-DCSK signal,
the lower the bandwidth, the better the noise performance.
In the limit, optimum noncoherent FM-DCSK achieves the
noise performance of noncoherent FSK.

However, if the signal bandwidth is reduced then FM-
DCSK signal becomes a narrow-band signal and the excel-
lent multipath performance of FM-DCSK is lost. The signal
bandwidth is one of the most important design parameter,
the small bandwidth gives a better noise but worse multi-
path performance, while increasing the bandwidth results in
worse noise but improved multipath performance.

5. REFERENCES

[1] M. Hasler, G. Mazzini, M. Ogorzalek, R. Rovatti, and G. Setti,
“Special issue on applications of nonlinear dynamics to elec-
tronic and information engineering,” Proceedings of the IEEE,
vol. 90, no. 5, May 2002.

[2] G. Kolumbán, M. P. Kennedy, Z. Jákó, and G. Kis, “Chaotic
communications with correlator receiver: Theory and perfor-
mance limit,” Proceedings of the IEEE, vol. 90, no. 5, pp.
711–732, May 2002.

[3] L. M. Fink, Discrete Message Transmission Theory, Soviet-
skaya Radio, Moscow, 2nd edition, 1970, In Russian.

[4] G. Kolumbán, F. C. M. Lau, and M. Small, “A new description
of chaotic waveform communications: The Fourier analyzer
approach,” in Proc. ECCTD’03, Cracow, Poland, Septem-
ber 1-4 2003, vol. III, pp. 241–244.

[5] G. Kolumbán, “A new frequency-domain FM-DCSK detec-
tor,” in Proc. ECCTD’03, Cracow, Poland, September 1-4
2003, vol. III, pp. 253–256.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on December 15, 2008 at 02:14 from IEEE Xplore.  Restrictions apply.


