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Return-Map-Based Approaches for Noncoherent Detection
in Chaotic Digital Communications

C. K. Tse, F. C. M. Lau, K. Y. Cheong, and S. F. Hau

Abstract—In this brief, simple noncoherent detection methods for chaos-
shift-keying (CSK) modulation are proposed. By exploiting some determin-
istic property of the two chaotic maps, the proposed methods recover the
digital message through simple decision algorithms. Specifically, the pro-
posed methods exploit the difference in the return maps of the signals repre-
senting the digital symbols. Two specific algorithms are discussed, namely
a regression-based algorithm and a probability-based algorithm. Simple
tent maps are used for illustration. The bit-error-rate under additive white
Gaussian noise is studied by computer simulations.

Index Terms—Chaos-based communication, digital communication,
error probability, least-squares regression, noncoherent detection, return
maps.

I. INTRODUCTION

In a chaos-shift-keying (CSK) communication system,M digital
symbols are represented by chaotic signals generated fromM dynam-
ical systems or from one system withM different parameter values
[1], [2]. In the binary case, i.e.,M = 2, the transmitted signal essen-
tially switches between two chaotic signals, which are generated from
two dynamical systems or from one dynamical system having a param-
eter switched between two values, according to the digital symbol to
be represented. Detection can take either a coherent form or a nonco-
herent form. In coherent detection, the receiver is required to repro-
duce the same chaotic signals sent by the transmitter, often through a
“chaos synchronization” process which is unfortunately not easily im-
plemented with sufficient robustness [3]. Once reproduced, the digital
symbols can be recovered by standard correlation detection [4]–[7].
In noncoherent detection of CSK, however, the receiver does not have
to reproduce the chaotic signals. Rather, it makes use of some distin-
guishable property of the chaotic signals to determine the identity of the
digital symbol being transmitted. The most commonly exploited distin-
guishable property has been the bit energy [8], [9]. However, when bit
energy is chosen as the distinguishable property, detection can be ac-
complished easily by intruders, jeopardizing the security of the system.

For a differential CSK system, it has been shown that suitable ex-
ploitation of the determinism of the chaotic signals can lead to im-
proved performance [10]. In this brief, we consider noncoherent detec-
tion of CSK, and in particular, we make use of thebuilt-in determinism
of the chaotic signals for demodulation. In particular, the return map is
used to distinguish the digital symbols. Specific algorithms are devel-
oped, based on simple regression and probability calculation. Illustra-
tive examples are given using the tent maps as the chaos generator, and
computer simulations are used to evaluate the bit-error rate (BER) of
the proposed detection methods.

II. THE CSK SYSTEM

We consider a simple CSK system, in which the transmitter sends a
signal consisting of chaotic signals extracted from two chaos genera-
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Fig. 1. Block diagram of the CSK system.m is the digital message and̂m
is the restored message.� and� are the means of the chaotic signalsa and
b . � denotes white Gaussian noise.

tors. Essentially, the signal being transmitted toggles itself between the
two sequences,fang andfbng, depending upon the value of the dig-
ital message to be sent, wheren is the integer index for the sequence
of values generated by the chaos generators, as shown in Fig. 1. In
general, the two chaotic sequences are generated by two chaotic maps,
f : S ! S andg: S ! S for S � <, s.t.

an+1 = f(an)

bn+1 = g(bn):
(1)

Now, consider the modulation process. Letmk denote thekth bit,
which is either “0” or “1.” Also letN be the spreading factor, which is
defined as the number of chaotic samples sent in one bit duration. The
modulation proceeds as follows. In each bit duration,N consecutive
values of eitherfang or fbng are sent, depending upon the value of
mk. The output of the transmitter,xn, during thekth bit duration, i.e.,
for n = (k � 1)N + 1; (k � 1)N + 2; . . . ; kN , is given by

xn =
an � �a; if mk = 0

bn � �b; if mk = 1
(2)

where�a and�b are the average values of the two chaotic sequences
fang andfbng, respectively. Thus, the transmitter output,xn, has a
zero average. Further, assuming that the channel is subject to additive
white Gaussian noise, the signal at the input to the receiver,yn, is given
by

yn = xn + �n (3)

where�n is the added channel noise. At the receiving end, the gen-
eral aim is to recovermk with a minimum probability of error. Typical
waveforms of transmitted signals are shown in Fig. 2. To avoid ob-
scuring the essentials, we assume that the channel has sufficient band-
width to permit the chaotic samples to be recovered in the receiving
end. For instance, in the case of pulse-amplitude modulation (PAM),
the required bandwidth should be at least half the sampling rate of the
chaotic samples.
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Fig. 2. Waveforms of (a) transmitted signal; (b) channel noise atE =N = 15
dB. Message is “01 010 101…” and spreading factor is 60. Signals are generated
from the tent maps, i.e.,f(x) = 1� 2jx� (1=2)j andg(x) = 2jx� (1=2)j.

III. N ON-COHERENTDETECTION BASED ONRETURN MAPS

In this section, we discuss specific detection approaches that make
use of some deterministic property of the chaotic signals. Specifically,
the return map will be exploited for detection, and two particular al-
gorithms will be expounded. The first one is based on regression, and
the second on maximizing thea posterioriprobability. Fig. 3 shows a
block diagram of the return-map-based detector.

A. Regression Approach

As mentioned previously, the CSK system involves two chaotic
maps. In our proposed system, the chaotic maps are assumed to be
written in a common formh(:), with one distinguishing parameterp,
i.e.

~an+1 = h(p; ~an)

~bn+1 = h �p; ~bn
(4)

where(~an; ~an+1) and(an; an+1) are related by a simple transforma-
tion T : S2 ! S02, and so are(~bn; ~bn+1) and(bn; bn+1). That is

(~an; ~an+1) =T (an; an+1) (5)

~bn; ~bn+1 =T (bn; bn+1): (6)

As will become apparent, this requirement permits a simple regression
procedure to be applied to the return map for effective detection. In

particular, we consider the simple case where the parameterp appears
explicitly as a multiplier to a common functionH(:), i.e.

~an+1 = pH(~an)

~bn+1 = �pH ~bn :
(7)

As an example, consider the chaotic maps employing the tent maps
f(x) = 1 � 2jx � (1=2)j andg(x) = 2jx � (1=2)j for all x 2 S =
(0; 1). The corresponding common form is given by

H(x) = 1

2
� j2xj (8)

and p = 1. Here, the transformed domain and range are
S0 = (�(1=2); 1=2). See Fig. 4(a).

Likewise, for the logistic mapsf(x) = 4x(1 � x) and g(x) =
1 � 4x(1 � x), with S = (0; 1), the corresponding common form,
with S0 = (�(1=2); 1=2), is

H(x) = x�
p
2

4
x+

p
2

4
(9)

andp = 4 in this case. See Fig. 4(b).
The detection approach involves first collecting the points

(yn; yn+1) for each bit. Then, theT transformation mentioned in the
previous section is performed on these points, such that the resulting
return map resembles either the curvey = pH(x) or y = �pH(x)
under noise-free transmission, depending upon the transmitted bit
mk being “0” or “1.” It should be noted that since the transmitter (as
defined above) already removes the dc offset, the transformation may
need to be adjusted to take into account the dc offset. For the two
examples given above, no transformation is needed in the receiver
because it is automatically done with the removal of the dc offset.

Under noisy conditions, the points on the collected and transformed
return map appear scattered, but to a certain extent (depending upon
the noise level) remain close to the curvesy = �pH(x). A typical
reconstructed return map is shown in Fig. 5. Our detection is formulated
on the basis of a regression algorithm which aims to find the best fit of
the curve

y = qkH(x) (10)

to the points of the return map for thekth bit. The regression here is
to estimate the parameterqk such that the set of points is closest to
the above curve in a least-square sense (see the Appendix). Onceqk is
found, the decision rule can be as simple as

m̂k =
0; if qk > 0

1; otherwise.
(11)

Remarks: The essence of the transformationT is to allow the two
chaotic maps to be written withonly oneparameter which “strongly”
characterizes the map. If the map is written in terms of two or more pa-
rameters, then these parameters will jointly characterize the map. Thus,
the estimated value of any one parameter may not provide sufficient
characterization of the particular chaotic map in order to allow accu-
rate decision to be made as to which map has been sent. Hence, with
only one parameter characterizing the map, the detection can be more
accurately done.

B. Probability Approach

In this subsection, we present an alternative approach for detection.
The basis is still the return map, but the algorithm is based on maxi-
mizing thea posterioriprobability.
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Fig. 3. Block diagram of the return-map-based detector.

(a)

(b)

Fig. 4. Chaotic maps. (a)H(x) = 0:5 � j2xj; p = 1; (b) H(x) = (x �p
2=4)(x +

p
2=4); p = 4.

Fig. 5. Return map of received signal for symbol “0” atE =N = 25 dB.
Spreading factor is 60.

Without loss of generality, we consider the received signal for
the first symbol, i.e.,k = 1. For convenience of the subsequent
description, we denote the received signal block for the first
bit by yyy = (y1 y2 � � � yN ), and define the observation vec-
tors asvvvi = (yi yi+1) for i = 1; 2; . . . ; N � 1. Define also

VVV = (vvv1 vvv2 � � � vvvN�1). Note that this is simply the return map
constructed for the first bit. We decode the incoming chaotic signal
block by selecting the symbol that would maximize thea posteriori
probability givenVVV , i.e.

m̂1 = argmax
m

Prob(m1 is sentjVVV ): (12)

As thea posterioriprobability is not convenient to calculate, the Bayes’
rule is applied toProb(m1 is sentjVVV ) to obtain

Prob(m1 is sentjVVV ) =
p(VVV jm1 is sent)

p(VVV )
� Prob(m1 is sent)

(13)

wherep(:) denotes the probability density function. Hence, (12) can be
re-written as

m̂1 = argmax
m

p(VVV jm1 is sent) (14)

becauseProb(0 is sent) = Prob(1 is sent) = 1=2 andp(VVV ) is inde-
pendent ofm1. In this detection scheme, we assume thatvvvi andvvvj are
independent fori 6= j. Thus,p(VVV jm1 is sent) in (14) can be expressed
as

p(VVV jm1 is sent) =
N�1

i=1

p(vvvijm1 is sent): (15)

It should be pointed out that with this assumption, we effectively ne-
glect the interdependence between the observation vectors, and thus
the probability of an error occurring is expected to be larger than that
of the optimal case studied by Hasler and Schimming [5], [6].

We also assume that in each of the observation vectors
vvvi = (yi yi+1) (i = 1; 2; . . . ; N � 1), the initial condition
of the chaotic signalsi that gives rise toyi is randomly selected
from the chaotic range of the map according to the natural invariant
probability density of the chaotic map. Now, suppose a “0” is sent, i.e.,
m1 = 0, and the corresponding iterative map isf . Hence, we have

p(vvvij0 is sent)

=
1

�1

p(vvvij(0 is sent; si))�f (si)dsi

=
1

�1

1

2��2n

� exp �
(yi � si)

2 + (yi+1 � f(si))
2

2�2n
�f (si)dsi

=
1

2��2n

1

�1

�f (x)

� exp �
(yi � x)2 + (yi+1 � f(x))2

2�2n
dx (16)

where�f (x) and�2n denote the natural invariant probability density of
f and variance of noise (noise power), respectively. Similarly, when a
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Fig. 6. BER (log scale) versusE =N using the proposed regression-based
detection. Spreading factorN = 10, 20, 40, and 100. Thick dash line
corresponds to DCSK withN=2 = 10 which doubles the bandwidth
requirement of ourN = 10 case, and thick dot–dash line corresponds to
DCSK withN=2 = 5 which requires same bandwidth as ourN = 10 case.

“1” is sent and the corresponding iterative map isg, it is readily shown
that

p(vvvij1 is sent) =
1

2��2n

1

�1

�g(x)

� exp �
(yi � x)2 + (yi+1 � g(x))2

2�2n
dx

(17)

where�g(x) represents the probability density ofg. Note that since
the transmitted signal contains no dc bias, the mapsf andg should be
chosen or translated appropriately such that they consistently contain
no dc offset. The decision rule is simply given by

m̂1 =
0; if

N�1

i=1

p(vvvij0 is sent) >
N�1

i=1

p(vvvij1 is sent)

1; otherwise.
(18)

The same detection algorithm applies to all other bits.

IV. SIMULATION RESULTS AND COMPARISONS

The performance of the proposed detection methods is evaluated
by computer simulations. We use the simple tent maps [Fig. 4(a)]
for chaos generation, and we present the BER of the system for a
range of spreading factors. Results for the two cases, corresponding to
the regression-based and probability-based algorithms, are presented
separately. For consistency we adopt the usual definition ofEb=N0

throughout the sequel, i.e.

Eb

N0

=

1

N

N N

n=1

x2n

2

N N

N N

n=1

�2n

=
N

2

�2s
�2n

(19)

whereNb is the number of bits simulated,N is the spreading factor
(number of chips per bit),�2s is the signal power and�2n is the noise
power.

Fig. 7. Dependence of BER upon spreading factorN for the regression-based
detector. The tent maps are used as chaos generators.

Fig. 8. BER (log scale) versusE =N using the proposed probability-based
detection. Spreading factorN = 4, 8, 16, and 32. The performance of the DCSK
system is shown for comparison.

A. Regression Approach

For the regression-based detection, Fig. 6 shows the plots of the BER
versus the usualEb=N0. For comparison we show the performance of
the most widely studied noncoherent DCSK system withN = 10 and
20 [11], [12]. It is fairer to compare the DCSK system forN = 20
with our case forN = 10, since half of the chips in DCSK are used
as reference, though the DCSK withN = 20 doubles the bandwidth
requirement [13].

Next, we study the effect of varying the spreading factorN . From
the simulation results, we may conclude that for constantEb=N0, the
BER reaches a minimum for a certain spreading factor, as shown in
Fig. 7. This behavior occurs typically in noncoherent detection and can
be explained as follows. For smallN , detection accuracy is poor due
to insufficient data points. Thus, detection improves asN increases.
However, asN increases, the noise level increases accordingly for con-
stantEb=N0, causing deterioration of the performance. For smallN ,
the advantage that can be gained from increasing data points is more
significant than the corresponding deterioration due to increased noise
level. However, for largeN , the noise admitted becomes excessive, and
the advantage that can be gained from increasing data points becomes
insignificant, causing overall deterioration of the performance.

B. Probability Approach

The tent maps are again employed to generate the chaotic sequences.
In Fig. 8, the BERs versusEb=N0 are shown. We observe that for
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Fig. 9. Dependence of BER upon spreading factorN for the probability-based
detector. The tent maps are used as chaos generators.

low Eb=N0 values, using smaller spreading factors (e.g., 4 or 8) gives
slightly better BER, whereas larger spreading factors produces com-
paratively lower BER for higherEb=N0. In Fig. 9, we plot the BERs
versus the spreading factor in log scale. As in the regression-based de-
tection method, for constantEb=N0, the BER achieves a minimum for
a certain spreading factor. In this example, the minimum BERs are ob-
tained with a spreading factor of about 10 forEb=N0 = 12, 14, and
16 dB.

It should be noted that the proposed detection methods represent
only two particular possibilities of exploiting the return-map features,
and they may not represent the most effective algorithm for detection.
Nonetheless, our purpose is to demonstrate detection possibilities by
suitably exploiting the chaotic determinism.

V. CONCLUSION

In this brief, we introduce methods for demodulating CSK signals,
exploitating the built-in determinism of chaotic signals. We demon-
strate in this brief, two methods exploiting the return maps for recov-
ering the digital message carried by a CSK signal. The algorithm in-
volves either a simple regression process or probability calculation. We
conclude this brief by reiterating that methods based on detecting de-
terministic properties are still not exhausted and further improvement is
possible for noncoherent detection based on this category of methods.

APPENDIX

LEAST SQUARESESTIMATE OF PARAMETER

The basic problem in the regression approach is to fit a curve of
the formy = qH(x) to a set of data points(x1; y1), (x2; y2), . . .,
(xn; yn). The fitting objective is to minimize the residual sum of
squares, defined as

SS =

n

i=1

[yi � qH(xi)]
2

whereq is the parameter to be estimated. From elementary calculus,
we set the partial derivative of the residual sum of squares with respect
to q to zero [14], i.e.

@SS

@q
= 0:

Expanding this, we get

n

i=1

2H(xi)[yi � (qH(xi))] = 0:

The estimate ofq is thus given by the following formula:

q̂ =

n

i=1

yiH(xi)

n

i=1

H(xi)
2:
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