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Study of Low-Frequency Bifurcation Phenomena
of a Parallel-Connected Boost Converter System

Via Simple Averaged Models

H. H. C. Iu and C. K. Tse

Abstract—This brief attempts to study the low-frequency bifurcation
phenomena of a system of parallel-connected dc/dc boost converters. Anal-
ysis of the averaged state equations shows that the system loses stability via
a Hopf bifurcation. The loci of eigenvalues and the local trajectories are
studied. Computer simulations and experiments are performed to capture
the effects of variation of some chosen parameters on the qualitative be-
havior of the system. In particular, it is shown that simple averaged models
can be used to predict the occurrence of Hopf bifurcation in such systems.

Index Terms—Averaged models, Hopf bifurcation, parallel-connected
dc/dc converters.

I. INTRODUCTION

Recently, paralleling converters has become a popular technique in
power supply design for improving power processing capability, reli-
ability, and flexibility. Being a nonlinear system, a parallel-connected
system of converters can behave in many ways that are not predictable
by conventional linear design and analysis methods. Bifurcations, for
instance, are particularly relevant problems to engineers since they di-
rectly affect reliability and the usable ranges of operation. In this brief,
we study the bifurcation phenomena of a parallel system of boost dc/dc
converters using a simple averaged modeling approach [1]. Our objec-
tive is to show how “low-frequency” bifurcations can be systematically
analyzed using simple averaged models. By “low-frequency” bifurca-
tions, we mean those characterized by the birth of low-frequency orbits
and hence capturable by averaged models.

Bifurcation behavior in dc/dc converter systems is usually studied
via a discrete-time approach [2]–[5], which gives almost complete in-
formation about the system’s dynamics. Bifurcation in parallel-con-
nected converters can also be studied by using such an approach [6].
However, the mathematics involved is rather complicated. In this brief,
we use a simple averaged model to study a system of parallel-connected
boost converters.

II. M ASTER–SLAVE CONTROLLED PARALLEL -CONNECTED

DC/DC CONVERTERS

The system under study consists of two dc/dc converters which are
connected in parallel feeding a common load. The current drawn by the
load is shared properly between the two boost converters by the action
of a master–slave control scheme [7]–[10]. Fig. 1 shows the block dia-
gram of this master–slave configuration.

As shown in Fig. 1, two converters are controlled via a simple
pulsewidth modulation (PWM) scheme, in which a control voltage
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Fig. 1. Block diagram of parallel-connected dc/dc converters under a master–
slave control.

Fig. 2. PWM showing relationship between the control voltage and the PWM
output.

vcon is compared with a sawtooth signal to generate a pulsewidth-mod-
ulated signal that drives the switch, as shown in Fig. 2. The sawtooth
signal of the PWM generator is given by

vramp = VL + (VU � VL)
t modT

T
(1)

whereVL andVU are the lower and upper voltage limits of the ramp,
andT is the switching period. The PWM output is “high” when the
control voltage is greater thanvramp and is “low” otherwise. The con-
trol voltage for Converters 1 and 2 are given by

vcon1 =Vo�set �Kv1 (v � Vref) (2)

vcon2 =Vo�set �Kv2 (v � Vref )�Ki (i2 �mi1) (3)

whereVo�set is a dc offset voltage that gives the steady-state duty cycle,
Vref is the reference voltage,Kv1 is the voltage feedback gain for Con-
verter 1,Kv2 is the voltage feedback gain of Converter 2,Ki is the
current feedback gain, andm is a current weighting factor. Under this
scheme, the output current of Converter 2 will follow that of Converter
1 at a ratio ofm to 1, wherem > 0. Whenm = 1, we expect equal cur-
rent sharing. In this brief, we assumem = 1. In much of the literature,
Converter 1 is referred to as the “master” which operates independently
and Converter 2 the “slave” which imitates the master’s current value.

Fig. 3. Two parallel-connected boost converters.

We now consider the special case where both converters are of the
boost-type, as shown in Fig. 3. The presence of four switches (S1, S2,
D1 andD2) allows a total of 16 possible switch states, and in each
switch state, the circuit is a linear third-order circuit.

When the converters are operating in continuous conduction mode,
diodeDi is always in complementary state to switchSi, for i = 1,
2. That is, whenSi is on,Di is off, and vice versa. Hence, only four
switch states are possible during a switching cycle, namely (i)S1 and
S2 are on; (ii)S1 is on andS2 is off; (iii) S1 is off andS2 is on; (iv)
S1 andS2 are off. The state equations corresponding to these switch
states are given by

_x =A1x +B1E; for S1 andS2 on

_x =A2x+B2E; for S1 on andS2 off

_x =A3x+B3E; for S1 off andS2 on

_x =A4x+B4E; for S1 andS2 off (4)

whereE is the input voltage,x is the state vector defined as

x = [ i1 i2 v ]T (5)

and theA’s andB’s are given by

A1 =

�

r

L
0 0

0 �

r

L
0

0 0 �

1
C(R+r )

(6)

A2 =

�

r

L
0 0

0 �

1
L

r R

R+r
+ rL2 �

R

L (R+r )

0 R

C(R+r )
�

1
C(R+r )

(7)

A3 =

�

1
L

r R

R+r
+ rL1 0 �

R

L (R+r )

0 �

r

L
0

R

C(R+r )
0 �

1
C(R+r )

(8)

and by (9), shown at the bottom of the next page, and

B1 = B2 = B3 = B4 =

1
L

1
L

0

: (10)

It is worth noting that the sequence of switch states, in general, takes
the order as written in (4), i.e., starting with “S1 andS2 on” and ending
with “S1 andS2 off” in a switching cycle. However, either “S1 onS2
off” or “ S1 off S2 on” (not both) goes in the middle, depending upon
the duty cycles ofS1 andS2. In the case whereS1 has a larger duty
cycle, we should omit the third equation in (4) and likewise for the case
whereS2 has a larger duty cycle. This should be taken care of in the
simulation and analysis.
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Fig. 4. Averaged model of parallel-connected boost converters.

III. A VERAGED MODEL FORTWO PARALLEL BOOSTCONVERTERS

A. Derivation of Autonomous State Equations

The averaged model for the parallel-connected boost converters is
shown in Fig. 4. The system can be represented by the averaged equa-
tions

di1
dt

=
� (1� d1) v

L1
+

E

L1

di2
dt

=
� (1� d2) v

L2
+

E

L2

dv

dt
=
(1� d1) i1

C
+

(1� d2) i2
C

�

v

RC
(11)

whered1 andd2 are the duty cycles of Converters 1 and 2, respectively.
We assume thatrL1, rL2 andrC are zero in order to simplify the sub-
sequent analysis. The duty cyclesd1 andd2 can also be represented by

d1 =D � kv1 (v � Vref) (12)

d2 =D � kv2 (v � Vref )� ki (i2 � i1) (13)

whereD is the steady-state duty cyclekv1 = Kv1=(VU � VL), kv2 =
Kv2=(VU � VL), andki = Ki=(VU � VL). It should be noted that
0 < d1 < 1 and0 < d2 < 1 should be satisfied. Putting (12) and (13)
into (11), we get the following autonomous equations that describe the
dynamics of the system:

di1
dt

=
� (1�D + kv1 (v � Vref )) v

L1
+

E

L1

di2
dt

=
� (1�D + kv2 (v � Vref ) + ki (i2 � i1)) v

L2
+

E

L2

dv

dt
=
(1�D + kv1 (v � Vref )) i1

C

+
(1�D + kv2 (v � Vref ) + ki (i2 � i1)) i2

C
�

v

RC
: (14)

The autonomous equations are valid only when0 < d1 < 1 and0 <
d2 < 1. Such conditions are satisfied when the system is operating in

the stable equilibrium state or in the neighborhood of the equilibrium
state.

B. Dimensionless Equations

The afore-derived state equations can be put in a dimensionless form.
We define the dimensionless state variables as follows:

x1 =
i1R

Vref
; x2 =

i2R

Vref
; x3 =

v

Vref
: (15)

We also define the dimensionless time and parameters as follows:

� =
t

T
; �1 =

L1

RT
; �2 =

L2

RT
; � =

CR

T

�v1 =kv1Vref ; �v2 = kv2Vref ; �i =
kiVref
R

e =
E

Vref
: (16)

Direct substitution of these new dimensionless variables, time and pa-
rameters in the autonomous (14) yields the dimensionless autonomous
equations (17), shown at the bottom of the page. Now, (12) and (13)
can be written as

d1 =D � �v1 (x3 � 1) (18)

d2 =D � �v2 (x3 � 1)� �i (x2 � x1) : (19)

To complete the model, saturation must be included. Whend1 < 0
or/andd2 < 0, we putd1 = 0 or/andd2 = 0 in (11) and perform
dimensionless substitution. Similarly, whend1 > dmax or/andd2 >
dmax, we putd1 = dmax or/andd2 = dmax in (11) and perform
dimensionless substitution.

C. Equilibrium Point Calculation

The equilibrium point can be calculated by setting all time-deriva-
tives in (17) to zero and solving forx1, x2 andx3. This gives

X =

X1

X2

X3

=

1
2e
1
2e

1

(20)

wheree = 1 � D.

IV. STABILITY OF EQUILIBRIUM POINT AND HOPFBIFURCATION

The JacobianJ(X) for the dimensionless system evaluated at the
equilibrium point is given by

J(X) =

0 0 �(� +1�D)
�

�

�

��

�

�(� +1�D)
�

2e(1�D)��
2e�

2e(1�D)+�
2e�

� +� �2e
2e�

: (21)

We attempt to study the stability of the equilibrium point and the tra-
jectory in the neighborhood of the equilibrium point by deriving the

A4 =

�

1
L

r R

R+r
+ rL1 0 �

R

L (R+r )

0 �

1
L

r R

R+r
+ rL2 �

R

L (R+r )

R

C(R+r )
R

C(R+r )
�

1
C(R+r )

(9)

dx1
d�

=
e� (1�D + �v1 (x3 � 1))x3

�1
dx2
d�

=
e� (1�D + �v2 (x3 � 1) + �i (x2 � x1))x3

�2
dx3
d�

=
(1�D + �v1 (x3 � 1))x1 + (1�D + �v2 (x3 � 1) + �i (x2 � x1))x2 � x3

�
(17)
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TABLE I
EIGENVALUES FORINCREASINGVALUE OF � (� = 0:48 AND � = 0:40)

eigenvalues of the system at the equilibrium point. The usual proce-
dure is to solve the following equation for�:

det[�1� J(X)] = 0: (22)

Upon expanding, we get

�
3 +

�i

�2
�

�v1 + �v2 � 2e

2e�
�
2

+
�v2 + 1�D

�2

2e(1�D) + �i

2e�

+
2e(1�D)� �i

2e�

�v1 + 1�D

�1

�

�i

�2

�v1 + �v2 � 2e

2e�
�

+
�i

�2

�v1 + 1�D

�1

2(1�D)

�
= 0: (23)

Using the above equation, the following conditions are easily verified:

lim
�!�1

det[�1� J(X)]!�1 (24)

det[�J(X)] >0: (25)

Hence, there exists at least one� 2 (�1; 0) such thatdet[�1 �
J(X)] = 0, i.e., the system has at least one negative real eigenvalue.
Also, numerical calculations of eigenvalues for the practical range of
parameters (�1 = �2 = 10, � = 2:5, e = 0:5 andD = 0:5) reveal
that the other two eigenvalues are a complex conjugate pair which have
either a positive or negative real part depending upon values of�v1 and
�v2. In particular, the following observations are made.

1) For small values of�v1 and�v2, the pair of eigenvalues has a
negative real part.

2) As�v1 or/and�v2 increases, the real part of the complex eigen-
values get less negative and at a critical value of�v1 or/and�v2,
the real part changes from negative to positive. Table I shows a
typical scenario of the variation of the eigenvalues. The loci is
plotted in Fig. 5 for ease of reference.

3) The critical value of�v1 or/and�v2 depends on the values of
�1, �2, �, e, D and�i. As we increase�v1 or/and�v2, the sign
of the real part of the complex eigenvalues changes, the system
loses stability via aHopf bifurcation[11].

V. LOCAL TRAJECTORIESFROM THE AVERAGED EQUATIONS

In this section, we re-examine the stability in terms of the local tra-
jectories near the equilibrium point. Since the use of an averaged model
for predicting nonlinear phenomena will become inadequate when sta-
bility is lost, our aim in this section is to observe, by plotting the local
trajectories, the behavior of the system as it goes from a stable region
to an unstable region. For further investigation beyond the bifurcation
point predicted by the averaged model, we need to resort to the exact
piecewise switched model, as will be reported in Section VI.

Fig. 5. Loci of the complex eigenvalue pair moving from left to right asK

increases.

The trajectory of the system near the equilibrium point can be easily
derived from the corresponding eigenvalues and eigenvectors. Suppose
the eigenvalues and their corresponding eigenvectors are

�r; � � j! and �vr; �v1 � j �v2: (26)

The solution in general is given by

x(t) = cre
� t �vr + 2cce

�t [cos (!t+ �c) �v1 � sin (!t+ �c) �v2]
(27)

wherecr , cc, and�c are determined by initial conditions. The geometry
of the trajectory is best described in terms of the eigenlineLr, which is
parallel to �vr , and the eigenplaneEc, which is spanned by�v1 and �v2,
the intersection ofLr andEc being the equilibrium point. Essentially,
since the real eigenvalue is negative, the system moves initially in the
direction ofLr going towardEc. At the same time it moves in a helical
motion converging toward or diverging away fromLr, depending upon
the sign of the real part of the complex eigenvalues. As it lands on
Ec, it keeps spiraling alongEc toward or away from the equilibrium
point. The following examples illustrate two typical local trajectories,
corresponding to a stable and an unstable equilibrium point.

We first examine the stable system with�v1 = 0:48, �v2 = 0:45
and�i = 0:40. The Jacobian evaluated at the equilibrium point is

J(X) =

0 0 �0:098

0:04 �0:04 �0:095

0:04 0:36 �0:028

: (28)

The eigenvalues� and their corresponding eigenvectors�v, are found as

� =� 0:041;�0:013� j0:195 (29)

�v =

0:916

�0:116

0:384

;

0:028� j0:410

0:030� j0:398

0:820

: (30)

A three-dimensional (3-D) view of the trajectory is shown in Fig. 6.
We next examine the unstable system with�v1 = 0:48,�v2 = 0:55,

and�i = 0:40. The system loses stability. The Jacobian evaluated at
the equilibrium point is

J(X) =

0 0 �0:098

0:04 �0:04 �0:105

0:04 0:36 0:012

: (31)

The eigenvalues� and their corresponding eigenvectors�v are found as

� =� 0:038; 0:00484� j0:204 (32)

�v =

0:923

�0:151

0:355

;

0:00933� j0:393

0:015� j0:420

0:818

: (33)
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Fig. 6. View of the stable (spiralling inward) local trajectory from the averaged
model (� = 0:48, � = 0:45, and� = 0:40).

Fig. 7. View of the unstable (spiralling outward) local trajectory from the
averaged model (� = 0:48, � = 0:55 and� = 0:40).

Fig. 8. Limit cycle from the averaged model (� = 0:48, � = 0:55, and
� = 0:40).

A 3-D view of the trajectory is shown in Fig. 7. In Fig. 8, we also ob-
serve that the trajectory settles down into a limit cycle after the transient
period.

From the above examples, we clearly observe that the system loses
stability via a Hopf bifurcation. Before the bifurcation, the local trajec-
tory spirals into the equilibrium point. After the bifurcation, the local
trajectory spirals away from the equilibrium point and settles down into
a limit cycle.

VI. COMPUTERSIMULATION STUDY

Since the foregoing analysis is based on a set of nonlinear state equa-
tions which is derived from an averaged continuous model, it falls short
of predicting the details after the bifurcation. In this section, we ex-
amine the system using computer simulation which employs an exact
piecewise switched model. Essentially, using the state equations in Sec-
tion II, cycle-by-cycle simulations are performed to emulate the exact
original system. In our simulations, we include suitable algorithms to
take into account possible of the circuit into discontinuous conduction
mode (DCM). Thus the simulation results represent viable verification
of the behavior of the real circuit.

Since we are primarily concerned with system stability in conjunc-
tion with the feedback design, we will focus our attention on the effects
of varying the various gains on the bifurcation behavior of the system.

TABLE II
COMPONENTVALUES AND STEADY-STATE VOLTAGES USED IN SIMULATION .

(ESR STANDS FOREQUIVALENT SERIESRESISTANCE)

Fig. 9. View of the stable (spiralling inward) local trajectory from the exact
piecewise switched model.

Fig. 10. View of the unstable (spiralling outward) local trajectory from the
exact piecewise switched model.

Fig. 11. Quasi-periodic orbit from the exact piecewise switched model.

In particular, the gainsKv1, Kv2, andKi present themselves as de-
sign parameters that can be changed at will. We will henceforth focus
on variation of these parameters.

Our simulation is based on the exact state equations derived in
Section II. Essentially, for each set of parameter values, time-domain
cycle-by-cycle waveforms are generated by solving the appropriate
linear equation in any sub-interval of time, according to the states of
the switches which are determined from values of the control voltages
vcon1 andvcon2. Sampled data are then collected att = nT in the
steady state. With sufficient number of sets of steady-state data, we can
construct the bifurcation diagrams as required. Our computer program
automatically organizes bifurcation diagrams from time-domain
waveforms. The circuit parameters used in our simulations are shown
in Table II.
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Fig. 12. (a) Bifurcation diagram withK as bifurcation parameter (K = 0:11 andK = 1). (b) Stable period-1 orbit (K = 0:11, K = 0:11 and
K = 1). (c) Quasi-periodic orbit (K = 0:11, K = 0:13 andK = 1). (d) Stroboscopic map of (c). (e) Limit cycle (K = 0:11, K = 0:15 and
K = 1). (f) Stroboscopic map of (e).

Since we are simulating the actual circuits, the original circuit pa-
rameters will be used instead of the dimensionless ones. In particular,
we will focus on the qualitative change of dynamics asKv1 or/and
Kv2 is varied. To observe the trend, we keepKv1 constant and vary
Kv2 (similar trend is observed when we keepKv2 constant and vary
Kv1). A summary of the observed behavior is as follows.

1) WhenKv2 is small, the trajectory spirals into a fixed period-1
orbit, corresponding to a fixed point in the averaged system.
Fig. 9 shows the simulated trajectory.

2) WhenKv2 is increased beyond a critical value, the period-1 orbit
becomes unstable and the trajectory spirals outward as shown
in Fig. 10, and settles into a quasi-periodic period, as shown in
Fig. 11.

The above observations confirm the prediction we made in Section V
based on the averaged equations.

In order to give a better view of the dynamics of the system after
the Hopf bifurcation, a large number of trajectories and bifurcation di-

agrams have been obtained. In the following, only representative bifur-
cation diagrams and sequence of trajectories are shown, which serve
to exemplify the main findings concerning the bifurcation behavior
of a system of parallel boost converters under a master–slave current
sharing scheme.

We first keepKv1 andKi constant and varyKv2. A bifurcation di-
agram is shown in Fig. 12(a). The sequence of simulated trajectories,
as shown in Fig. 12(b), (c), and (e), reveals a typical Hopf bifurcation
in which a stable equilibrium state breaks down to quasi-periodic or-
bits and limit cycles. The corresponding stroboscopic maps showing a
quasi-periodic orbit and a limit cycle are shown in Fig. 12(d) and (f).
Next, we keepKv2 andKi constant and varyKv1. Similar bifurcation
diagram and trajectories are obtained. For brevity, they are not repeated
here.

Remarks: In studying the bifurcation behavior in respect of current
gain variation, we keepKv1 andKv2 constant and varyKi. It is found
that the system remains in stable period-1 operation irrespective of the
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Fig. 13. Sequence of changes observed experimentally whenK is increased. (a) Stable period-1 orbit. (b) Quasi-periodic orbit. (c) Stroboscopic map of (b).
(d) Limit cycle. (e) Stroboscopic map of (d). Horizontal scale: 5 V/div, vertical scale: 0.04 A/div for (a); Horizontal scale: 10 V/div, vertical scale: 0.4 A/div for
(b)–(e)..

choice ofKi. Basically,Ki only determines how close the slave fol-
lows the master. The largerKi is, the closer the slave’s output current
is to the master’s.

VII. EXPERIMENTAL VERIFICATION

Using the parameter values listed in Table II, we have built a circuit
to verify our simulation results. As we increaseKv2, we get results
which are in good agreement with our simulations. In our experiments,
Hopf bifurcation takes place at approximately the same location (in
terms of the value of the dc gain) as it does in our simulations. Trajec-
tories of stable period-1 orbit, quasi-periodic orbit and limit cycle are
captured, along with stroboscopic maps showing quasi-periodic orbits
and limit cycles. In all the oscilloscope pictures,y-axis corresponds
to i1 andx-axis corresponds tov. Fig. 13(a)–(e) show the sequence
of changes when we increaseKv2. Fig. 13(a) shows a stable period-1
orbit, Fig. 13(b) shows a quasi-periodic orbit, and Fig. 13(c) gives its

stroboscopic map. Fig. 13(d) shows a limit cycle and Fig. 13(e) gives
its stroboscopic map.

VIII. C ONCLUSION

Despite the popularity of parallel converter systems in power elec-
tronics applications, their bifurcation phenomena are rarely studied [5].
This brief attempts to use an averaged model to explain some low-fre-
quency nonlinear phenomena in a parallel system of two boost con-
verters which share current under a master–slave control scheme. The
study of stability is a complex issue in this type of system [8]–[10]. This
brief focuses on the effects of variation of some voltage feedback gains.
It has been found that Hopf bifurcation is possible when the voltage
feedback gains are varied. In engineering design, stable period-1 op-
eration is the only acceptable operation. Thus in practice, instability
often refers to failure of the circuit in maintaining its operation in the
expected stable period-1 regime. In this brief, we have identified the pa-
rameters that cause “instability” and analyzed the detailed bifurcation
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behavior via simple averaged models. The results presented are useful
for practical design of parallel boost converters to ensure operation in
the expected stable region.
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Chaotic Dynamics of an Integrate-and-Fire Circuit With
Periodic Pulse-Train Input

Wei Lin and Jiong Ruan

Abstract—In this brief, we first introduce the working principle of a
pacemaker neuron type integrate-and-fire circuit having two states with
a periodic pulse-train input, which is first proposed by Nakano, Mitsubori,
and Saito. The dynamics of this circuit could be described by a standard
impulsive differential equation and applied to simulate the evolution of the
pulse-coupled neural networks. By applying the Marotto theorem, we the-
oretically prove that the circuit becomes chaotic as the parameters enter
some regions. we find that the circuit does not exhibit chaotic dynamics
with some little period of the pulse-train input but it appears chaotic phe-
nomenon with the increase of the period. The relations between this cir-
cuit and that of symbolic dynamics are further investigated. The following
numerical simulations and corresponding calculation, as illustrative exam-
ples, reinforce our theoretical proof and theory.

Index Terms—Chaos, integrate and fire, snap-back repeller, symbolic dy-
namics.

I. INTRODUCTION

It is a well-established fact that the basic dynamics of a single neuron
model is as follows “If the state reaches a threshold, it fires and is reset
to a base level, instantaneously.” This is so-called integrate and fire.
Researchers, such as Keener [1], Glass [2], and their coworkers, have
given a vast amount of meritorious results concerning the stable dy-
namics of integrate-and-fire neuron with oscillatory input. Given the
integrate-and-fire models, we can easily construct pulse-coupled neural
networks (PCNNs). It could be found that the PCNNs as well as the
simple integrate-and-fire models exhibit a variety of dynamical phe-
nomena such as mutual synchronization, asynchronization, and even
chaos. Because of the great significance of PCNNs’ application to non-
linear science, the neural information processing in brain, and even the
information communication, many researchers, such as Hopfield [3],
Mirollo [4], and their colleagues, in particular, devote their research to
have a clear analysis of PCNNs’ synchronization. Moreover, the dy-
namics of integrate-and-fire circuit could be directly implemented to
simulate the dynamics of corresponding PCNNs. Nakano, Mitsubori,
and Saito presented such an integrate-and-fire circuit with or without
periodic pulse-train input. They investigated its basic dynamics, and
deduced some results about synchronization and bifurcation to chaos
of the pulse-coupling circuit and numerically calculated the Lyapunov
Exponent [5]–[7]. Nakano and Saito [8] also analytically derived sev-
eral conditions for chaos generation by proving the existence of the
positive Lyapunove exponent (PLE). Moreover, Miyachiet al. in [9]
by numerical PLE further investigated the chaotic dynamics in the cir-
cuit with periodic input.

Besides the above background of PCNNs, our work is also inspired
by the research in [10]–[13] about chaotic dynamics in the discrete
neural network systems and anti-control in discrete systems. In their
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