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Abstract—Chaos-based communication systems represent
a new category of spread-spectrum communication systems,
whose working principle differs significantly from conventional
direct-sequence and frequency-hopping spread-spectrum sys-
tems. However, like all other kinds of spread-spectrum systems,
chaos-based systems are required to provide reasonable bit error
performance in the presence of a narrow-band signal which
can be generated from an intruder or a coexisting conventional
communication system. In particular, the frequency band of this
foreign narrow-band signal can fall within the bandwidth of
the chaos-based system in question. Such a scenario may occur
in normal practice when chaos-based systems are introduced
while the conventional systems are still in operation. It is there-
fore important to examine the coexistence of chaos-based and
conventional systems. The objective of this paper is to evaluate
the performance of the chaos-based system when its bandwidth
overlaps with that of a coexisting conventional system. In partic-
ular, the chaos-based systems under study are the coherent chaos
shift keying (CSK) system and the noncoherent differential CSK
(DCSK) system, whereas the conventional system used in the study
employs the standard binary phase shift keying scheme. Also, both
the chaos-based and conventional systems are assumed to have
identical data rates. Analytical expressions for the bit-error rates
are derived, permitting evaluation of performance for different
noise levels, power ratios and spreading factors. Finally, results
from computer simulations verify the analytical findings.

Index Terms—Chaos communications, chaos shift keying
(CSK), coexistence, conventional communications, differential
CSK (DCSK).

1. INTRODUCTION

UCH research effort has recently been devoted to the in-
vestigation of chaos-based communication systems. In

their analog forms, chaos-based communications systems em-
ploying techniques like chaotic masking [1], chaotic modula-
tion [2], and many others, have been proposed. Most of these
analog schemes, however, do not perform satisfactorily when
the transmission channel is subject to the usual additive noise.
On the other hand, digital schemes are shown to be more robust
in the presence of noise. Among the many chaos-based digital
schemes proposed, the chaos shift keying (CSK) and differen-
tial CSK (DCSK) schemes are the most widely studied [3]-[5].
Typically, in a digital chaos-based communication system,
digital symbols are mapped to nonperiodic chaotic basis func-
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tions. Detection schemes can be categorized into coherent and
noncoherent types [6], [7]. In coherent detection, such as in
chaotic masking and coherent CSK systems [8], the receiver has
to reproduce the same chaotic carrier which has been used to
carry the information, often through a process known as chaos
synchronization [9]-[11] which is very difficult to achieve in
practice. Thus, until practical chaos synchronization schemes
become available, coherent chaos-based systems remain only
of theoretical interest. In noncoherent systems, however, the
chaotic carrier does not need to be regenerated at the receiver
[12]. Usually, noncoherent detection makes use of some dis-
tinguishable properties of the transmitted signals, which can
be some inherent deterministic properties (e.g., optimal detec-
tion [3], return-map based detection [13] and maximum-like-
lihood method [14]), or fabricated by a suitable bit arrange-
ment (e.g., DCSK [15], [16]), or some statistical properties (e.g.,
bit energy detection [4]). Since chaos synchronization is not
required, noncoherent systems represent, as yet, a more prac-
tical form of chaos-based communication. Moreover, we should
stress that coherent systems theoretically outperform their non-
coherent counterpart, and the correlator-based coherent detec-
tion is the optimal form of detection in terms of bit error perfor-
mance. Therefore, the study of coherent systems will provide
performance indicators which are important for future develop-
ment of the field.

The basic problem considered in this paper is the coexistence
of chaos-based systems and conventional systems. Specifically,
we are interested in finding the performance of a chaos-based
system and the extent to which it is affected by the presence
of a conventional narrow-band system whose bandwidth falls
within that of the chaos-based system in question. This sce-
nario has practical significance, as can be easily appreciated
when one considers the introduction of chaos-based commu-
nication systems while conventional systems are still in oper-
ation. When it happens, chaos-based systems and conventional
systems are actually interfering with one another. The ability
of a chaos-based communication system to coexist with a con-
ventional communication system is therefore an important issue
that should be thoroughly investigated. The main questions are
whether the interference can be tolerated and under what condi-
tions both kinds of systems will operate with satisfactory perfor-
mances. To answer these questions, we first present an analyt-
ical method for evaluating the performances of the chaos-based
communication system and the conventional system when their
corresponding bandwidths overlap substantially. Then, based
on the analytical bit-error rates (BERs), we evaluate the coex-
istence performance for a range of noise levels, power ratios
and spreading factors. In this paper, we choose the coherent
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Fig. 2. Block diagram of a combined CSK-BPSK communication system.

binary-phase-shift-keying (BPSK) system as the conventional
system, and the coherent CSK and noncoherent DCSK systems
as the chaos-based communication systems. Finally, we verify
our findings with computer simulations.

II. SYSTEM OVERVIEW

We consider a chaos-based communication system and a con-
ventional system whose bandwidths overlap significantly. We
refer to the whole system as combined chaos-based conven-
tional system, which can be represented by the block diagram
shown in Fig. 1. In this system, two independent data streams
are assumed to be sent at the same data rate. Our analysis will
proceed in a discrete-time fashion. At time k&, denote the output
of the chaos transmitter by sy, and that of the conventional trans-
mitter by wug. These two signals are then added, as well as cor-
rupted by noise 7, in the channel, before they arrive at the re-
ceiving end. At the receiver, based on the incoming signal 7,
the receivers of the chaos-based system and the conventional
system will attempt to recover their respective data streams. Co-
herent or noncoherent detection schemes may be applied in the
receivers, depending upon the modulation methods used in the
transmitter.

Clearly, the signals from the chaotic and the conventional sys-
tems will be interfering with each other and thus the perfor-
mance of each system will be degraded. Specifically, we will
consider a “combined CSK-BPSK” system and a “combined

Decoded
symbol & 7
L

Nk Chaos-based
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Decoded
symbol b~l

Conventional
system receiver

Block diagram of a combined chaos-based conventional digital communication system.
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DCSK-BPSK” system, and will attempt to develop analytical
expressions for the BERs of the recovered data streams.

III. PERFORMANCE ANALYSIS OF COMBINED CSK-BPSK
COMMUNICATION SYSTEM

We first consider a discrete-time baseband equivalent model
of a combined CSK-BPSK communication system, as shown
in Fig. 2. We assume that the CSK system and the BPSK
system have identical bit rate and that their bit streams are
synchronized. Also, the carrier frequencies of the two systems
are identical and synchronized. Further, “—1” and “+41” occur
with equal probabilities in the bit streams of both systems.

Generally, in the CSK transmitter, a pair of chaotic sequences,
denoted by {Z } and { }, are generated by two chaotic maps.
If the symbol “+1” is sent, {Z} is transmitted during a bit
period, and if “—1" is sent, {#;} is transmitted. For simplicity,
we consider here a CSK system in which one chaos generator is
used to produce chaotic signal samples {z} for k = 1,2,....
The two possible transmitted sequences are {Z; = zj} and
{&r, = —x}. Suppose oy € {—1,+1} is the symbol to be sent
during the /th bit period. Define the spreading factor, 23, as the
number of chaotic samples used to transmit one binary symbol.
During the Ith bit duration, i.e., for k = 26(l — 1) + 1,26(l —
1) + 2,...,20l, the output of the CSK transmitter is

S = 0T (1)
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Fig. 3. Block diagram of a coherent CSK receiver.

In the BPSK system, we denote the [th transmitted symbol by
b, € {—1,+1}. Moreover, the signal power is Pg. Thus, during
the Ith bit duration, i.e., for k = 268(l — 1)+ 1, 26(l - 1) +
2, ..., 201, the transmitted signal is constant and is represented
by

U =/ PBbl.

The CSK and BPSK signals are combined and corrupted by
an additive white Gaussian noise in the channel, before arriving
at the receiving end. Thus, the received signal, denoted by 7, is
given by

€5

3

Tk = Sk + U + Nk

where 7, is a Gaussian noise sample of zero mean and variance
(power spectral density) Ny /2. For each of the CSK and BPSK
receivers, we will consider the /th bit and derive the error prob-
ability over all transmitted bits.

A. Performance of the CSK System in Combined CSK—BPSK
System

Assume that a correlator-type receiver is employed. Referring
to Fig. 3, the correlator output for the /th bit, y;, is given by

231

Yy = Z TETE
k=28(1-1)+1
281 281
= o Z z3 ++/Pgb Z Tk
k=28(1—1)+1 k=26(1—1)+1

~ ~ ~

~
required signal

231

>

k=28(1—1)+1

interfering BPSK signal

“

Nk -

noise

Suppose a “+1” is transmitted in both CSK and BPSK systems

during the /th symbol duration, i.e., oy = +1 and b; = +1. For

simplicity we write y;|(oy = +1,b; = +1) as
yill =+1,by=+1)= A+ B+C )

where A, B, and C' are the required signal, interfering BPSK
signal and noise, respectively, and are defined as

241
A= > % ©)
k=28(1—1)+1
231
B=+Ps Y (7
k=28(1-1)+1

393

21

>

k=28(1—1)+1

C= (®)

NkTk-

The mean of y;|(a; = +1,b; = +1) is

Eyl(oq = +1,b; = +1)]
= E[A] + E[B] + E[C]
201
> d
k=28(1-1)+1
201

>

k=28(1—1)+1
281
S SCIE PV
k=28(1—1)+1
281
>

k=28(1-1)+1
= 26P; + 203/ PpE[x}] 9
where P, = E[z?] denotes the average power of the chaotic

signal. The last equality holds because F[n] = 0. The variance
of yl|(()él - +1, bl - +1) is

281

+E|VPs )

k=2B(1—1)+1

=F Tk

+F NMETk

281

>

k=28(1—1)+1

Elzy]

Elng] B[]

var [y|(cy = +1,b; = +1)] = var[A] + var[B] + var[C]

+2cov[A, B] + 2cov[B, C] + 2cov[A, C] (10)

where cov[X, Y] is the covariance between X and Y defined as
cov[X,Y] = E[XY] — E[X]E[Y]. (11)

It can be proved that both cov[A, C| and cov[B, C] are zero (see
Appendix A). Hence, (10) can be simplified to

var [y|(cq = +1,b = +1)]

= var[A] + var[B] 4 var[C] 4 2cov[A, B]. (12)

The mean value and the average power of the chaotic signal can
be computed by numerical simulation. If the invariant proba-
bility density function of {z} is available, in most cases the
mean and the average power can be obtained not only by nu-
merical integration, but also in analytical forms. The variance
and covariance terms in (12) can also be computed using afore-
mentioned techniques. Hence, F[y|(c; = +1,b, = +1)] and
var[y|(c; = +1,b; = +1)] can be evaluated.

For the [th symbol, an error occurs when y; < 0|(oy =
+1,b; = +1). Since yi|(a; = +1,b; = +1) is the sum of a
large number of random variables, we may assume that it fol-
lows a normal distribution. The error probability is thus given
by

Prob (y; < 0|(cyy = +1,b; = +1))
_ lerfc Ey|(c; = +1,b; = +1)]
2 V2var fyl(ar = +1,b; = +1)]

where erfc(.) is the complementary error function defined as

> [
R — d\.
ﬁr/e
P

(13)

erfc(vy) = (14)
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Similarly, when «; = 4+1 and b; = —1, the output of the corre-
lator can be shown equal to

y1|(al:+1,bl:—1):A—B+C. (15)

Likewise, the mean and variance of y;|(«; = +1,b, = —1), de-
noted by Efy|(aq = +1,b; = —1)] and var[y;|(ay = +1,b; =
—1)], can be found as

Efyl(u = +1,by = =1)] =28P; — 26/ PpE[zi] (16)
var [yi|(c; = +1, b = —1)] = var[A] + var[B] + var[C]

— 2cov[A, B] (17)
where A, B, and C' are defined in (6)—(8). The corresponding
error probability is
Prob (yl < 0|(O¢1 =+1,b = —1))

E =41,y = -1
— Zeorfe [yi|(u = +1,b; )] .
2 V2var [yi|(or = +1,b; = —1)]

Hence, for the CSK system, given a “+1” is sent during the /th
bit duration, the error probability is given by

(18)

!
BER (31
= Prob(b; = +1) x Prob (y; < 0|(eyy = +1,b; = +1))
+ PI‘Ob(bl = —1) x Prob (yl < 0|(Oél = +17b1 = —1))
[ Bllon = 1.0 = 1))
4 V2var [y (eq = +1,b; = +1)]
Elyl(cu = +1,b, = —-1)]

+erfc (\/ZVar [yi|(cr = +1,b; = —1)]>] . (19

Also, given “—1” is sent during the /th symbol duration in the
CSK system, i.e., ¢y = —1, it can be shown that

Elyl(or = =1,br = +1)] = — 2BP,
+ 20+/ PpE[zy)
var [y|(c; = —1,b; = 4+1)] = var[A] + var[B]
+ var[C] — 2cov[A4, B] (21)
Efyl(ew = =1,by = =1)] = — 2BP;

(20)

— 20V PpE[xi] (22)
var [yi|(a; = —1,b; = —1)] = var[A] + var[B] + var[C]
+ 2cov[A, B] (23)

where A, B, and C are again defined in (6)—(8). The error prob-
ability, given a “—1” is sent, is then equal to

l
BERE?)SK—II
= PI‘Ob(bl = +1) x Prob (yl > 0|(Oél = —l,bl = -|-1))
+ Prob(b; = —1) x Prob (y; > 0|(ey = =1,b; = —1))
— l erfc _E[yl|(al = _17bl = +1)]
1|\ Vil = L= +0)
—Efyl(a = -1,b; = -1)]

+erfc (\/QVar [yi|l(ay = —1,b; = —1)])] . (24

Hence, the overall error probability of the [th transmitted
symbol is

BERY, . =Prob(ay = +1) x BERYL_;
+ Prob(ay = —1) x BERY, ||

1 ! 1
=3 [BERE:)SKJ + BER(C)SKfII:| . (25)

It can be seen from (19), (24), and (25) that BER() . is in-
dependent of [. Thus, the error probability of the /th transmitted
symbol is the same as the BER of the system. In the combined
CSK-BPSK system, the BER of the symbols carried by the CSK
signal, denoted by BER gk, is therefore

BERcsk = BERY, = % [BERU_; + BER(,_pr] -
(26)
Hence, (19) and (24) can be computed and substituted into (26)
to obtain the BER of the system.

At this point, we make a few assumptions in order to further
simplify the analysis. These assumptions can be easily justified
for the chaotic sequences generated by the logistic map and by
all Chebyshev maps of degree larger than one.

1) The mean value of {x} is zero. The justification for
this assumption is that no power should be wasted in
sending noninformation-bearing dc component through
the channel. The condition also optimizes the perfor-
mance of the joint CSK/BPSK scheme because it ensures
that the chaotic sequences being restricted to the plane
orthogonal to the basis vector [1, 1, 1, 1, 1, 1, ...] in use
for BPSK. In practice, any dc component generated by
the chaos generator can be removed artificially before
transmission.

2) The covariance of z; and z;, vanishes for j # k.

3) The covariance of x5 and z; vanishes for j # k.

4) The correlation of ; and =7 vanishes for j — k # 1.

The above assumptions can be translated to

Elz] =0 27)
cov[zj, ] = Elzxr] — E[zj]E[z)
=0, forj #k (28)
cov [m?,wi] =F [x?xz] —-F [a:?] E [wi]
=0, forj #k (29)
E [z;z7] =0, forj —k # 1. (30)
Thus, (9), (16), (20), and (22) become

Elyl(or =+1,bp = +1)] = E [yt (au = +1,b; = —1)]
=20P; 31)

Elyl(r = =1,b0 = +1)] = E[yi|(cw = =1, b, = —1)]
= —2pP; (32)

and the variances of the variables A, B, and C, and the covari-
ance between A and B are given by (see Appendix A)

var[A] = 28A (33)
var[B] =23PgP; (34)
var[C] = BNy Ps (35)

cov[A, B] = \/P_B(Zﬂ —1)E [zp4177]
~ 204/ P, for large 23 (36)
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where
A =var [a:z] 37
Q=F [:pk+1xi] . (38)
Note that A denotes the variance of = and is different from the
average power of the chaotic signal, P;. Hence, (12), (17), (21),
and (23) can be put as
var [y](aq = +1,b; = +1)]

= var [y|(as = —1,b; = —1)]

= 26A 4+ 28P P + BNoPs + 2(28 — 1)/ P2

~ ﬁ(ZA + 2PBP5 + N()Ps + 4\/ PBQ)

var [y|(ouw = +1,b = 1)

= var [yif(au = —1,b; = +1)]

= 20A +26PpPs + BNoPs — 2(20 — 1)\/ P}

~ B(2A + 2P P; + No P, — 41/ PpQ). (40)
Substituting (31) and (32) and (39) and (40) into (19), (24), and
(26), the BER can be found as shown in (41) and (42) at the
bottom of page, where F, = 2(3P; denotes the average bit en-
ergy of the CSK system. The expression given in (41) or (42)
is thus the analytical BER for the noisy coherent CSK system
in a combined communication environment. Note that for fixed
BPSK signal power Pp and noise power spectral density Ny /2,

the BER can be improved by making one or more of the fol-
lowing adjustments.

(39)

1) Reduce the variance of z7}.

2) Reduce the absolute value of Q(E[zg127]).

3) Increase the spreading factor 2.

4) Increase the CSK signal power P;.
In particular, when the BPSK signal power is zero, i.e., Pg = 0,
it can be readily shown that the BER reduces to [17]

1 1
BERCSK|(PB = 0) = ierfc X ~ (43)
5Pzt 35P
1 1
= —erfc (44)

, Decoded
21 5

LN 2L | Threshold |_SYmbol b
k=2B(I-1)+1 Detector

Fig. 4. Block diagram of a BPSK receiver.

B. Performance of the BPSK System in Combined CSK-BPSK
System

In the BPSK receiver shown in Fig. 4, the incoming signal
samples within a symbol period are summed to give z;, i.e.,

201
zZ] = Z Tk
k=28(1-1)+1
281
= o Z T + 2,3\/Eb1
k=24(1-1)+1 required signal
interfering CSK signal
231
+ Y e (45)
k=28(—-1)+1

noise

Using similar procedures as in the Section III-A, it can be shown
that the mean and variance of z;, denoted by E[z;] and var[z],
respectively, are given by

Elz] =2 Elxy] + 26/ Pl (46)
201
var(z;] = var Z x| + BNo. 47)
k=23(1—1)+1

Assuming that: i) the mean value of {z}} is zero, and ii) the
covariance of z; and zj vanishes for j # k, putting (27) and
(28) in (46) and (47) gives

E[Zl] = 2[3\/ PBbl (48)
var[z;| =208Ps + 3No. (49)

Suppose b; = +1. As z;|(b; = +1) is the sum of a large number
of random variables, we may assume that it follows a normal

1 283P, 1 20Ps
BERCSK ~ —erfc + —erfc
4 V/26(2A 4+ 2P5 P, + Ny P, + 4\/P5Q) 4 V/28(2A 4+ 2P5 P, + Ny P, — 4\/PpQ)
1 1 1 1
= —erfc — + Zerfc — 41
A P, N 2 A P, N 2
Vit + 7+ D+ 250 Vit + 35+ B - 20
1 1
= Zerfc e — —= o =
() + () + (%) +(57hm)
1 1
+ Zerfc 42)

Z2 \ -1 o\l L 2 1
VG ()7 + (8) - (srthao)
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distribution. An error occurs when z; < 0|(b; = +1), and the
corresponding error probability is given by

1 E by = +1
Prob (z < 0|(b; = +1)) = =erfe b =+D] )
2 V/2var [z|(by = +1)]
(50)
Likewise, given b; = —1, the error probability is

Prob (z; > 0|(b; = —1)) = %erfc ( —E [z|(by = —1)] ) .

V2var [z] (b = —1)]
(51

Putting (48) and (49) to (50) and (51), the error probability for
the /th transmitted BPSK symbol can be found as

BERW. o _ i = Prob(by=+1)x Prob (z <0|(h;=+1))

+Prob(b;=—1) xProb(z; >0|(b;=—-1))
= 1erfc ( Elal(b = +1)] )
4 V/2var [z](by = +1)]
—Ela|(b = -1)]
+ 46rfC <\/2var [z1|(br = —1)])
= 1erfc <ﬂ> .
2 VABPs + 28N,

Since BERS%}SKchK is independent of /, the error probability
of the [th transmitted symbol is the same as the BER of the
system. Therefore, the BER of the BPSK system, denoted by
BERBPsKk—csK; 1s

(52)

BERgBpsk-csk :BERg%’SK—CSK

1 ( 26\ Pp >
= —erfc [ —m——————

2 VABP; + 28Ny
1 1
=—erfc | ——— (53)
2 L _|_ ]\TO
\ 8Ps 2BPg
1 E
= —erfc | |22 (54)
2 Ny
where
Ep =20Pp (55)
denotes the bit energy of the BPSK signal and
No N
— =—+4 P 56
5 5 + (56)

represents the equivalent noise power spectral density when the
interfering CSK signal is taken into consideration. Thus, the in-
terfering CSK signal simply raises the noise level of the BPSK
signal. The expression given in (53) or (54) is the analytical BER
for the noisy coherent BPSK system in a combined communica-
tion environment. For a fixed chaotic signal power P, the BER
can be improved by increasing the spreading factor 23 and/or
increasing the BPSK signal power Pp.

C. Example

Consider the case where a logistic map is used for chaos gen-
eration. The form of the map is

Tpt1 =g(zp) =1 — 2;1:%. (57)

The invariant probability density function of zj, denoted by
p(x), is [18]

1 if|z] < 1
xr) =< mV/1-a2’ 58
p(e) { 0, otherwise. (58)
Since p(z) is an even function, the mean value of zy, is
=S 1
Elzy] = / xp(z)dr = /a:p(:n)d:v =0 (59)
—o0 —1

Define

g (@) =g (9" V().

Since g(x) is an even function, g(")(x) is also even. Further,
since g™ (x)p(x) is the product of one odd function and two
even functions, it is also an odd function, and we have, forn # 0

Elzprpsn] = /xg(")(m)p(:v)dm = 0.

-1

(60)

Thus, from (59) and (60), we clearly see that the assumptions
corresponding to (27) and (28) made earlier in Section III-A and
the two assumptions made in Section III-B are all well justified.
In Appendix B, it is also shown that (29) and (30) are valid for
the chaotic sequence generated by the logistic map.! Moreover,
we have

oo 1
1
Po=B[] = [ &peyis = [ apla)da = 61
e ;1
A =var [:E%] =F [:E%] — E? [xi]
1
1 1
4
= —_ - = = 2
/:1: p(z)dz 173 (62)
-1
9 1
QO=F [JZkJrl.Tk] = _Z (63)
from which we can write
1L fork=m
= 27
Elzrm] { 0, fork # m. ©4)

Tn Appendix C, it is illustrated that (27) to (30) are satisfied by the chaotic
sequences generated by the class of Chebyshev maps of degree larger than one.
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For the case where the logistic map is used to generate the
chaotic samples, we substitute (61) to (63) into (41) to obtain
the BER of the CSK system, i.e.,

1 23
BER(sk ~ —erf
COSK g ere (\/1+4PB—|—2N0 —4,/PB>

+1e fc 26

—er .

4 1+4+4Pg + 2Ny + 4v/Pp
(65)

Moreover, for the BPSK system, we put (61) into (53) to obtain
2(3Pp
1+ Ny )~

IV. PERFORMANCE ANALYSIS OF COMBINED DCSK-BPSK
COMMUNICATION SYSTEM

1
BERppsk—csk = gerfc < (66)

2

In this section, we move on to a combined DCSK-BPSK
system. In a DCSK system, the basic modulation process in-
volves dividing the bit period into two equal slots. The first slot
carries a reference chaotic signal, and the second slot bears the
information. For a binary system, the second slot is the same
copy or an inverted copy of the first slot depending upon the
symbol sent being “41” or “—1.” This structural arrangement
allows the detection to be done in a noncoherent manner re-
quiring no reproduction of the same chaotic carrying signals
at the receiver. Essentially, the detection of a DCSK signal can
be accomplished by correlating the first and the second slots
of the same symbol and comparing the correlator output with
a threshold. Fig. 5 shows the block diagram of a DCSK trans-
mitter and receiver pair.

Making the same assumptions as in Section III, we obtain the
transmitted DCSK signal in the [th bit duration as

. for k= 26(1 — 1) + 1,28(1 — 1) + 2,
28 =1)+p

fork=28(1-1)+p+1,
25(1—1)+ﬂ+2,...,2ﬂ€

S =
ATk—3,

67)

and the BPSK signal as
fork =208(1-1)+1,28(1-1)+2,...,24L.

ur =/ Ppby,
(68)

All symbols and notations are as defined in the previous section.
The noisy received signal r, is given by

T = Sk + Uk + M. (69)

A. Performance of the DCSK System in Combined
DCSK-BPSK System

At the DCSK receiver, the detector essentially computes the
correlation of the corrupted reference and data slots of the same

Chaotic signal R

generator X TN Sk
Delay of I

Digital information
to be transmitted
—lor+l
(a)
Correlator Decoded
Tiip 2B U-1)+p Y symbol
> X . " — >
\ - ~
Yy k=2p (I-1)+1 ay
Threshold
Delay of detector
B e
(b)
Fig. 5. Block diagram of a noncoherent DCSK system. (a) Transmitter.

(b) Receiver.

symbol. We consider the output of the correlator for the /th re-
ceived bit, y;, which is given by

28(1-1)+8
= TETk+p
k=23(1-1)+1
28(1—1)+8
= Z [k + ur + mp][ouzr + U4+ + 77k+5]
k=28(1—1)+1
28(1—1)+8 28(1—1)+8
= Z wi-l— vV Pebi(1+ «p) Z T
k=28(1—1)+1 k=28(1—1)+1
28(1-1)+3
+ B8P + / Ppb Z (k5 + Me)
k=243(1-1)+1
28(1—1)+8 28(1-1)+8
+ Y a(mestam)+ Y mmss
k=28(1—1)+1 k=28(1—1)+1
= oD +Ppbj(1+ a)F + BPg + \/ PebG

~
required signal interfering BPSK signal

+H+ o+ K (70)
where
28(1-1)+43
D= Z z3 (71)
k=28(1—1)+1
28(1-1)+43
F= Z Tk (72)
k=28(1—1)+1
26(1-1)+
G= Z [Mk+5 + Nk (73)
E=28(1—1)+1
28(1-1)+p3
H= Y Zlkys (74)
k=28(1—1)+1
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28(1-1)+3
J = Tk (75)
k=28(1—1)+1
20(1-1)+5
K = Z M Tke+3- (76)
k=28(1—1)+1

Suppose a “+41” is transmitted in both DCSK and BPSK systems
during the [th symbol duration, i.e., «; = 41 and b; = +1.
Then, (70) can be rewritten as

yil(ew = +1,b, = +1) = D + 21/PgF + Pp
+v PG+ H+J+K. (77)

Similar to the combined CSK-BPSK environment (Sec-
tion III-A), the mean and variance of y;|(ay = +1,b; = +1)
for the DCSK system can be evaluated by numerical sim-
ulations. Denote the respective mean and variance by
E[yl|(al =+1,b = +1)] and var[yl|(al =+1,b = +1)] As
yi|(aq = +1,b; = +1) is the sum of a large number of random
variables, we may assume that it is normally distributed. An
error occurs when y; < 0|(ay = +1,b, = +1), and the
corresponding error probability is given by

Prob (y; < 0(ew = +1,b; = +1))
Efyil(ou = +1,b = +1)] )

= —eric
2 (\/2var [yil(ar = +1,b; = +1)]
(78)

Likewise, for the case «; = +1 and b; = —1, (70) becomes
yil(w = +1,by = —1) = D = 2/ PpF + Py
—/PgG+H+J+ K.
(719)
The corresponding error probability is
Prob (yl < 0|(Ozl =+1,b = —1))
E =41, =-1
_ 1o [il(cn = +1,b; IIRY
2 V2var [yi|(w = +1,b; = —1)]
(80)
Given a “+1” is sent by the DCSK signal in the [th symbol
duration, the probability that an error occurs is equal to
!
BERI(D)CSK—I
= PI‘Ob(bl = —|—1) x Prob (yl < 0|(Oll =41, = —|—1)
+ PI‘Ob(bl = —1)><Pr0b (yl SOKO{[ =+1,b = —1)
e [ _Elnl(on = 41,0 = +1)]
4 V2var [yl(ar = +1,0; = +1)]

wte [ Elul(or=+1.b; = —-1)]
~+erfi (\/2var[yl|(06l:+1vbl:_1)]>‘|. 81)

Similarly, given “—1” is sent during the /th symbol duration

in the DCSK system, i.e., a; = —1, it can be shown that

yil(ey = —1,by =41) = — D + BPp + /PG
+H-J+K (82)

ul(ay=—-1,bp =—1)= — D+ Pg — /PG
+H-J+K (83)

where D, G, H, J, and K are defined in (71) to (76). Denote

the respective means and variances of y;|(«; = —1,b; = +1)
and yi|(ew = =1,by = —1) by E[yi|(aw = —1,b, = +1)],
Elyl(aq = =1,b; = =1)], var[y;|(ey = —1,b; = +1)] and
var[y;|(aq = —1,b; = —1)]. The error probability, given a

“—17 is sent, is then equal to
l
BER](D)CSK—II

= Prob(b; = +1) x Prob (y; > 0|(eyy = —1,b;, = +1)
+ PI‘Ob(bl = —1)><Pr0b (y1>0|(al =-1,b = —1)

o 1 orfe —E[y1|(al =-—1,b = +1)]

V2var [y (e = —1,b; = +1)]

—EWMmz—Lhz—U]>

. (84)

4
+erfc
<\/2V&1" [il(cw = =1,by = —1)]

Since both (81) and (84) are independent of [, the BER of the
DCSK system under a combined communication environment,
denoted by BERp sk, equals the overall error probability of the
[th transmitted symbol (BER]()I)CSK), ie.,

BERpcsk =BERY).o
=Prob(ay = +1) x BERY) |

+ Prob(a; = —1) x BERU o,

1

l l
= 9 [BERI(D)CSK—I + BER](D)CSK—II:| - (89)

To simplify the analysis, we make similar assumptions as in
Section ITI-A. With these assumptions, we apply (27)—(30) to
(71)—(76) and obtain the relevant means, variances and covari-
ances, i.e.,

E[D)=BE [22] =8P, var[D] = fvar [z7]

= BA
E[F]1=0 var[F] = P
E[G]=0 var[G] = BNy
E[H]=0 var[H] = 25
E[J]=0 var[J] = 28N
EK]=0 var[K]:mZa
cov[D, F]=(B-1)E [zp4177] = BQ  cov[x,~]=0

86
where x,v € {D,F,G,H,J,K}, and (x,v) # (D, F) or((F),
D). Furthermore, it can be readily shown that

Ey|(ow = +1,bp = +1)] = E[D] 4+ 2/ PgE[F| + Pz
+ vV PsE[G] + E[H]
+ E[J] + E[K]
Eyi|(a; = +1,b; = =1)] = E[D] — 24/ PgE[F]
+ 8P — / P E[G]
+ E[H]+ E[J] + E[K] (88)
Eyl(ar = —=1,bp = +1)] = — E[D] + #Ps
+ vV PsE[G] + E[H]

(87)

— E[J] + EIK] (89)
E[y|(y = =1,b; = —1)] = — E[D] + Pg

— /P3E|G] + E[H]

— E[J] + EIK] (90)
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var [yi|(aq = +1,b; = 4+1)] =var[D] + 4Ppgvar[F]
+ Ppvar|G] + var[H]
+ var[J] + var[K]

+ 44/ Ppcov]D, F] 1)
var [yi|(c; = +1,b, = —1)] =var[D] + 4Pgvar[F]

+ Ppvar|[G] + var[H]

+ var[J] + var[K]

— 44/ Ppcov[D, F] (92)

var [yi|(ar = =1,b; = +1)] =var[y|(ey = =1,b, = —1)]
= var[D] + Pgvar[G]
+ var[H] + var[J]

+ var[K]. (93)

Putting (86) into (87) through (93), we obtain

Eyl(er = +1,br = +1)] = E [yil(aw = +1,b = —1)]

=pPs + fPp (94)
Ely|(a = ~1,by = +1)] = E [yi|(au = —1,b; = —1)]
= — (3P, + P (95)
var [yi|(au = +1,b = +1)] % fA + 45P5 P, + fP5 No
2
+ /BPSNO + %
+ 4604/ P (96)

var [yl|(()él = +1,b1 = —1)] %ﬂA + 4ﬂPBPS + ﬂPBNO
BN§
+ BPsNo +

4
— 480/ Pg 97)
var [yi|(ar = =1,b; = +1)] =var [y|(cy = —1,b, = —1)]
=pBA + BPpNo

N2
+ﬁ&%+ﬁ°.

(98)

Also, putting (94)—(98) into (81), (84) and (85), we get the BER
of the DCSK system, as shown in (99) at bottom of page. The
expression given in (99) is then the analytical BER for the noisy
DCSK signal in a combined communication environment. Note
that for fixed BPSK signal power Pp and noise power spectral
density Ny/2, the BER can be reduced by making one or a com-
bination of the following adjustments:

1) reduce the variance of z7;

2) reduce the absolute value of Q(E[z+1237]);

3) increase the spreading factor 23;

4) increase the DCSK signal power Ps.

In particular, when the BPSK signal power is zero, i.e., Pg =
0, it can be readily shown that the BER reduces to [17]

1 1
= —erfc

(100)

(101)

g2y 1 [N 5 2
V) () (%)
where E;, = 23 P; denotes the average bit energy.

B. Performance of the BPSK System in Combined
DCSK-BPSK System

The same BPSK receiver shown in Fig. 4 is used to demod-
ulate the BPSK signal in the combined DCSK-BPSK commu-
nication system. The output of the summer at the end of the /th
symbol duration is

231
z] = Z Tk
k=28(1—1)+1
28(1-1)+p3
=14 ) Z zr+ 206+ Pgb
—_———

k=28(1—1)+1

required signal

~
interfering DCSK signal
241

+ Z Mk -

E=28(1—1)+1

(102)

noise

When the transmitted symbol for the DCSK system is “—1,”
ie., oy = —1, (102) becomes

231
al(m=-1)=268vVPebi+ Y me (103)
k=28(1—1)+1

Clearly, from (103), the interference from the DCSK signal van-
ishes. This is because the interfering DCSK signals coming from

BERpcsk ~ éerfc PL+BPs =
V2BA+ 8PPy + 28PNy + 28PNy + 23 + 860/ Py
1 P, + (P
+ gerfc P+ BPp -
\/26A + 8PP, + 26PNy + 28P,No + 238 — 860/ P5
1 P, — 3P,
+ erfe BF, — Plp (99)
\/251\ +28Pp Ny + 26P, Ny + 23
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the first half and second half of the symbol duration exactly
cancel each other. When «; = +1, (102) becomes

2p(1-1)+p 21
z|(u=+1)=2 Z T +28+/ Pbi+ Z M-
k=28(1—1)+1 k=28(1—1)+1
(104)

Using a likewise procedure as in Section III-B, it can be

shown that the means and variances of z;|(c; = —1) and
zi|(ap = +1), denoted by E[z|(aq = —1)], E[z|(oq = +1)],
var[z|(cqy = —1)] and var[z|(a; = +1)], respectively, are
given by
E [z|(0q = =1)] =28/ Psby (105)
28(1-1)+3
Elz|(a; = +1)] =2E > | +28VPsb
k=28(1—1)+1
(106)
var [z|(cy = —=1)] = BNy (107)
28(1-1)+
var [z|(ay = +1)] =4var Z x| + BNo.
k=28(1—1)+1
(108)

Assuming that: i) the mean value of xj, is zero, and ii) the chaotic
samples z; are uncorrelated with other samples z, for j # k,
we combine (27) and (28) with (106) and (108) to get

E[z](an = +1)] =28\/Psb; (109)
var [z|(cy = +1)] =46Ps + BNy. (110)

Suppose by = +1 and oy = +1. As z|(bi = +1,q = +1)
is the sum of a large number of random variables, we assume
that it follows a normal distribution. An error occurs when z; <

0|(b; = +1,a; = +1), and the corresponding error probability
is given by
Prob (Zl < 0|(bl =41, = +1))
_ lerfc FE [Zl|(bl =41, = -|—1)]
2 \/2var [21](b = +1, 00 = +1)]
1 206/ P,
= —erfc # . (111)
2 V36D, + 28N,
Likewise, it can be shown that
Prob (Zl < 0|(bl =4+1l,q = _1))
= L (20v 8 (112)
2 Vo
Prob (z; > 0|(by = =1,y = +1))
1 20/ P
= —erfc L (113)
2 V8BP; + 2Ny
Prob (Zl > 0|(bl =—-1l,q = —1))
zlerfc<2ﬁvPB>. (114)
2 V26Ng

The error probability for the /th transmitted BPSK symbol is
given by

BERS%SK_DCSK =Prob(h; = +1) x Prob(a; = +1)
x Prob (z; < 0|(b; = +1, a4 = +1))
+ Prob(b; = +1) x Prob(a; = —1)
x Prob (z; < 0|(b; = +1,; = —1))

x Prob (z; > 0|(b; = —1,a; = +1))
+ Prob(b; = —1) x Prob(a; = —1)
x Prob (z; > 0|(b; = —1,a; = —1))
(erssm)
86, + 28Ny
2[3\/E>
V2BNy )

+ Prob(b; = —1) x Prob(ay = +1)
(

= Zerfc

1
+ Zerfc (

(115)

Since BERS%,SK_DCSK is independent of /, the error probability
of the [th transmitted symbol is the same as the BER of the
system. Therefore, the BER of the BPSK system, denoted by
BERpBpsk-_DpCsK; 18

BERBpsk—DCsK

— O]
=BERppsk peosk

1 26/ Pz 1 26/ Pz
=—erfc| ————— | +—erfc (116)
4 V8BP+23Ny ) 4 V2[3No
1 Ep Ep
=—erfc| ,/ —erfc| /=
4erc< N0)+4 ( N0> (117)
where Ep is as defined in (55) and
No N
70 = —0 +2P, (118)

represents the equivalent noise power spectral density when the
interfering DCSK signal is taken into consideration. It can be
seen that the BPSK signal remains unaffected by the DCSK
signal for half of the time and the noise power affecting the
BPSK signal increases by 2P for another half of the time. The
expression given in (116) or (117) is the analytical BER for the
noisy coherent BPSK system in a combined communiction en-
vironment. For a fixed chaotic signal power Ps, the BER can
be improved by increasing the spreading factor 23 and/or in-
creasing the BPSK signal power Pp.

C. Example

Consider the case where the logistic map described in Sec-
tion III-C is used for generating the chaotic sequences. We sub-
stitute (61) and (62) into (99) to obtain the BER of the DCSK
system, i.e., we obtain (119) shown at the bottom the next page.
For the BPSK system, we combine (61) with (116) to obtain

23 P
e ( T )

(120)

1 26P, 1
BERBpsk_Dcsk = Zerfc < Pls )

21N, ) 1
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V. COMPUTER SIMULATIONS AND DISCUSSIONS

In this section, we study the performances of the chaos-based
and conventional digital communication systems under a com-
bined environment by computer simulations. The logistic map
described in Section III-C has been used to generate the chaotic
sequences. In particular, the BER performance of each of the
chaos-based and conventional communication systems will be
investigated under variation of the following parameters:

* average bit-energy-to-noise-spectral-density ratio;
* conventional-to-chaotic-signal-power ratio;
* spreading factor.

For comparison, we also plot in each case, the analytical BERs
obtained from the expressions derived in Sections III and IV.2
Results are shown in Figs. 6 and 7 for the combined CSK-BPSK
system, and in Figs. 8 and 9 for the combined DCSK-BPSK
system. In general, computer simulations and analytical results
are in good agreement. Also, as would be expected, the coherent
CSK system generally performs better than the noncoherent
DCSK system. Further observations are summarized as follows.

1) Except for the DCSK system, the BERs of the com-
bined chaos-based and conventional systems generally
decreases (improves) as the spreading factor or the
bit-energy-to-noise-power-spectral-density (Eg/Ng or
Ey/Ny) increases.

2) The BER of the chaos-based system in the combined envi-
ronment generally deteriorates (increases) as Pg/P; in-
creases for any given Fj/Ny. This is apparently due to
the increasing power of the BPSK signal which causes
more interference to the chaos-based system, thus giving
a higher BER.

3) Ata fixed Ep /Ny, the BER of the BPSK system in the
combined environment improves as Pp/Ps increases.
This result comes with no surprise because as Pp/Ps
increases, the power of the chaotic signal becomes
weaker compared to the BPSK signal power. Thus,
the interference due to the chaotic signal diminishes,
resulting in an improved BER for the BPSK system.

4) Comparing the two types of chaos-based communication
systems, the performance of the DCSK system is de-
graded to a larger extent under the influence of a BPSK
signal. For example, from Fig. 8, for a spreading factor
of 200 and F}, /Ny = 20 dB, we observe that the BER

2It has been verified by computer simulations that the conditional receiver
outputs are “sufficiently Gaussian” for large spreading factors, e.g., 100 or
higher.
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Fig. 6. BERs versus E, /Ny of the coherent CSK system in a combined
CSK-BPSK environment. Simulated BERs are plotted as points and analytical
BERs plotted as lines. (a) Spreading factor is 100. (b) Spreading factor is 200.

of the DCSK system increases from 2 x 1074 to 0.5
when Pp / Ps increases from —5 dB to 5 dB. For the CSK
system employing the same spreading factor, at £, / Ny =
8 dB, the BER only increases from around 2 X 104 to
7 x 10~* when Pp/ P, increases from —5 dB to 5 dB.

1 0.5 + 8P
BERpcsi & gerfe p+6Ps —
\/0.25ﬂ +408Pg + 28PNy + BNy + 230 — 28/ Pp
1 0.53 + BP
+ gerfc p+8Ps —
\J0.250 + 48P5 + 28P5 Ny + BN + 32 1 28/ P5
1 0.53 — BP
+ Jorfe 58— OPs . (119)
\J0.250 + 28P5 Ng + BN + 23
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Fig. 7. BERs versus E /N of the BPSK system in a combined CSK-BPSK
environment. Simulated BERSs are plotted as points and analytical BERs plotted
as lines. (a) Spreading factor is 100. (b) Spreading factor is 200.

5) From Figs. 6 and 7, we observe that for a spreading factor
of 100 and Pg/Ps = 5 dB, both the CSK and BPSK sys-
tems can achieve a BER of 10™* if they can operate at
around E, /Ny = 12 dB and Eg/Ny = 9 dB respec-
tively. In other words, both the BPSK and CSK systems
can perform reasonably well under a combined environ-
ment.

6) From Figs. 8 and 9, for both the DCSK and BPSK systems
to operate with BERs near 10, a possible set of oper-
ating parameters is Pg/Ps = —5 dB, E,/Ny = 20 dB,
Ep/Ny = 16 dB and spreading factor = 100.
Compared to the combined CSK-BPSK system, the
DCSK-BPSK system requires more restrictive operating
conditions in order to maintain performance.

Finally, we investigate the channel capacity for a given
total-bit-energy-to-noise-power-spectral-density ratio, defined

X > o O

Pp/P,=5dB
Pg/P,=15dB
Pg/P,=-15dB (analysis)
e Pp /Py = -5 dB (analysis)
------- Pg/P,=5 dB (analysis)
—-—--Pg/P,=15dB (analysis)

1.0BE-04 =

1.0E-05 T g T T t

8 . 12
E,/N, indB

(b)

Fig. 8. BERs versus E;, /N, of the noncoherent DCSK system in a combined
DCSK-BPSK environment. Simulated BERs are plotted as points and analytical
BERs plotted as lines. (a) Spreading factor is 100. (b) spreading factor is 200.

as Fy/Ny where F;, = Ej, + Ep. The total capacity of the
combined system is the sum of the capacity of the chaos-based
system and that of the BPSK system. The capacity of each indi-
vidual system is further evaluated using the capacity formula for
a binary symmetric channel. Hence, the total capacity, denoted
by C, for the CSK-BPSK system and the DCSK-BPSK system
isgivenby C' = (1 — H(BERCSK)) + (1 - H(BERBPSK—CSK))
and C = (1 — H(BERDCSK)) + (1 — H(BERBPSK—DCSK)),
respectively, where H (.) represents the entropy function [19].
The results are plotted in Fig. 10. The observations on the fig-
ures are summarized as follows.

1) Under the same condition, the capacity of the combined
CSK-BPSK system is higher than that of the combined
DCSK-BPSK system. It is because the bit error perfor-
mances of the former system are better than those of the
latter one.
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LOEH0 s

P /P,=-15 dB (analysis)
-------------- Pp/P,=-5dB (analysis)
. -+----Pp/P,=5dB (analysis)
e B ot IS P /P,=15 dB (analysis)

1.0B-04 A

1.0E-05 T T T T T

(a)

1L.OB+00 5

1.0E-01

e 1|

T &

Pp/P,=-15dB
Pg/P,=-5dB
Pg/P;=5dB
Pg/P,=15dB
Pg/P,=-15dB (analysis)
Pp/P,=-5dB (analysis)
------- Pg/P,=5dB (analysis)
~-=--Pg/P =15dB (analysis)

X b o 0O

1.0E-04

1.0E-05 T T T
8 12 16 20
Eg/N, indB

(b)

Fig. 9. BERs versus E /Ny of the BPSK system in a combined DCSK—
BPSK environment. Simulated BERs are plotted as points and analytical BERs
plotted as lines. (a) Spreading factor is 100. (b) Spreading factor is 200.

2) For the combined CSK-BPSK system, under the same
E,/Ny, the capacity is highest when Pg/P; = 0 dB,
i.e., both the CSK and BPSK signals have the same (av-
erage) power, the reason being that both the CSK and the
BPSK systems have similar BER performance when their
powers are equal (due to the assumptions made on the
statistics of the chaotic signal). For a fixed power ratio
between the chaos and conventional signals, the capacity
is the same regardless of CSK or BPSK signal having a
higher power. In other words, the capacity is the same for
the same absolute value of P/ Ps in decibels. Moreover,
when the power ratio increases, the capacity decreases.

3) For the combined DCSK-BPSK system, the capacity is
very low when E;/Nj is less than 8 dB. Under the same
E;/Ny with value above 8 dB, the highest capacity is
achieved when Pg/P; = —5 dB.

=t
L
&
-
’_,er'
’.oﬂ'.
Zer”
Z2
a8
g
K
g O Py/P,=-15dB
3] © Pg/P,=-10dB
.
A Pp/P=-5dB
——Py/P,=0dB
04 e ————Pp/P,=5dB
....... Pg/P,~10dB
021 —me=Py/P,=15dB
B''s
0.0 ; : ,
0 5 10 15 20
E/N, indB
(a)
20 e
e
1.8 1 - 6
‘v -
16 4 B : g e — B ——
A a’
14 4 AL
© ‘_D
212 A S W—
g A
&
o
E
g » o--Pg/P,=-15dB
(3] it ~o--Pg/P,=-10dB
: b Pp [P=-5 dB
——Py/P,=0dB
-———Py/P,=5dB
....... PB/P’=10dB
_ --—--Py/P,=15dB
00 2 H ; .
0 5 10 15 20
o E/N, indB
(b)

Fig. 10. Channel capacity of the combined chaos-based conventional system.
Spreading factor is 100. (a) Combined CSK-BPSK system. (b) Combined
DCSK-BPSK system.

VI. CONCLUSION

In this paper, the problem of coexistence of chaos-based
communication systems and conventional communication
systems is studied in terms of two specific sample systems,
namely, a combined CSK-BPSK system and a combined
DCSK-BPSK system. This problem is important technically
since spread-spectrum communications should be designed to
resist interference and the proposed combined systems repre-
sent practical future scenarios. To the authors’ knowledge, no
previous work has been reported in the study of the aforemen-
tioned coexistence problem, despite its potential significance.
In particular this paper has shown that chaos-based systems can
indeed coexist with narrow-band conventional systems whose
frequency bands fall within those of the chaos-based systems.
Note that for the combined CSK-BPSK system, coherent
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correlation CSK receiver has been assumed. Since robust chaos
synchronization techniques are still not available, the corre-
sponding results represent the benchmark performance that a
combined CSK-BPSK system can achieve. If a noncoherent
CSK receiver, such as the one based on optimal detection [3],
is used instead, the performance is bound to degrade.

In this study, it has been assumed that the chaos-based (CSK
or DCSK) communication system and the conventional (BPSK)
communication system are synchronized. Also, the bit rates are
taken to be identical. In general, the systems may not be syn-
chronized and they may operate at different data rates. Under
such conditions, the performances of the systems may deviate
from the reported results significantly. In addition, the study of
the coexistence problem is being extended to the case of wide-
band conventional systems. All the aforementioned scenarios
are being investigated by the authors and the results will be re-
ported in future publications.

APPENDIX A
DERIVATION OF COVARIANCES AND VARIANCES RELEVANT TO
THE ANALYSIS OF COMBINED CSK-BPSK SYSTEM

All symbols are as defined as in Section III.

cov[A, C| = E[AC]—- E[A]E[C)]
281 281
=F Z i, Z NETk
k=28(1—1)+1 k=2B8(1—1)+1
201 2p1
- F Z i | E Z NkTk
k=28(1—1)+1 k=28(1—1)+1
281
=E > aim
k=2B8(1—1)+1
281 281
DD ]
K=26(0+1 =261 1)+
281
-1 X Bl
k=28(1—1)+1
281
X Z Elnk|Elzi]
k=28(1—1)+1
281
= Z E[ﬂfi]E[m]
k=28(1—1)+1
281 281
k=2B(1-1)+1 j=28(1—1)+1
k#j
=0 (121)
cov[B,C] = E[BC] — E[B|E[C]
281
=F \ PB Z Tk
k=2B8(1—1)+1

201
x Z MkTk
k=28(1—1)+1
281
slvm 3
k=28(1—1)+1
201
X E Z kT
| k=2p3(1-1)+1
201
PpE Z x%nk
k=28(1—1)+1
281 21
oA 2w
k=200-1+1 j=26(1-1)+
281
Pg > Elz]
k=28(1—1)+1
201
< EmlEx
k=28(1—1)+1
281
=Pz > E[x}]Elm]
k=28(1—1)+1
201 281
+ Y > ElmEzia]
k= 26! 1)+1] 28(1—1)+1
-0 (122)
21
var[A] = var Z z?
k=28(1-1)+1
201
= Z var[a:i]
k=28(1—1)+1
201 201

PN

J=28(1—-1)+1 k=23(1—1)+1
o B-1)+

:2,8var[:17%] apply (29)

cov [z? x%]

=20A where A:var[ajz] (123)
261
var[B] = var |\/Pg Z T,
k=28(1—1)+
261
=Pgp Z var[zg]
k=28(1—1)+1
281 261
+ Pp Z Z cov[a:j, Tk]
F=2B(L V4 k=2B(1-1)+
=206PpP; apply (28) (124)

281

var[C] = var Z MLk
k=28(1—1)+1
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281
= Z var[ngz)
k=28(1—1)+1
281 201

)

7=28(1-1)+1 k=28(1—1)+1
o A1)+

cov[n;x;, k]

261
= Z {E [ni=}] — E*[miwe] }
k=26(1—1)+1
201 261

DN

J=28(1-1)+1k=23(1—1)+1
o Bl-1)+

x {Enjznkar] — Enjz| Elnkar] }

231
= > AEM]E[+}] - E*lm] B[]}
k=20(1-1)+1

281 281

DN

j:wj(l#—lel k=28(1—1)+1
X {Elzjar]Elnjm] = Elzj] Eli] Eln] Elne

()

=pNoPs (125)
261 241
cov[A, B] = cov Z 22, \/Ps Z T
k=28(1—1)+1 k=28(1—1)+1
251
=\/PgE Z 2
k=28(1—1)+1
261
X Z Tk
k=28(1—1)+1
261 281
—\/PsE > ai|E >
k=28(1—1)+1 k=28(1—1)+1
261 241
=+/PpFE Z Z xj:v%

i=28(1—1)+1k=28(1—1)+1

241
—\/Pp > E[a]
k=26(1—1)+1
201
X > Elwl]
k=28(1—-1)+1

241 201

I YD

J=2B(1—1)+1k=28(1—1)+1

E ;7]

231
SN S
k=2p(1-1)+1
281
X Z E[:Ek]
k=28(1-1)+1

2811

=vPp Z E[zp127]
k=28(1—1)+1

apply (27) and (30)

=/ Pp(2B-1)E[zty127] . (126)

APPENDIX B
DERIVATION OF cov|[x%, z7] AND E[x;x7] FOR THE CHAOTIC
SEQUENCE GENERATED BY THE LOGISTIC MAP

All symbols are as defined as in Section III.

Derivation of cov([x3, x7]

The autovariance of {72} is given by

cov [m?,x%] =F [:vjzmz] - F [a:?] E [a:i] . 127

We consider the case where j # k. Without loss of generality,
assume k = j + n for some positive integer .

(oo}

Blad] = [ ote)s? (4)() do

— 00

1

-1

22 (g(")(x))z dz  (128)

where p(z) denotes the invariant probability density function of
zj: 9P (2) = g(9(2)),9®(2) = g(g® (@), 9" (2) =
g(g=V(x)) and g(z) = 1 — 2z for the logistic map under
study. Making the substitution « = cos ¢, (128) becomes

0
E [z527] = / cos? ¢ (g(n)(cos¢))2(—sin¢)d¢

T sin ¢
7 2
=— /0052 ¢ (g("‘)(cos ¢)) de. (129)
0
Applying the formula 1 — 2cos?v = — cos 2v to g (cos ¢)

(i=1,2,...,n — 1) repeatedly, we have

g(cos ) =1 —2cos? p = — cos 2¢
9@ (cos $) =g (g(cos ) = g(— cos29)
=1—2cos?(2¢) = — cos(2%¢)
99 (cos§) =g (92 (cos 9)) = g (— cos(2%9))
=1—2cos?(2%¢) = — cos(2%¢)

9™ (cos ) =g (g("fl)(cos ¢>)) = g (—cos(2"1¢))
=1-2c0os*(2"7'¢) = —cos(2¢).  (130)
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Substituting (130) into (129), we obtain

™

E [z3a}] = % /cosz¢cosz(2"¢)d¢

0
1 {1+ cos 20\ [ 1+ cos(2nt1g)
[ () e
0

= / (1 + €08 26 + cos(2" T ¢)

1
4
0
+ % cos (2" + 2)9)
+% cos ((2"+! — 2)(;5)) deo

sin(2" 11 ¢)

1 1 . 1
=1 [¢+551n2¢+2n+1

+ sin (2" + 2)¢)

1
2n+2 4 4

+ﬁ sin (2" — 2)¢)}

0
=-. (131)
Simliarly it is readily shown that

1

Els?) = B[] = 7p(z):v2d:v - / e =

: /1 — z2
(132)
Putting (131) and (132) into (127), it is proved that the autovari-
ance for {x7} is vanishing for the logistic map.

Derivation of E[xjx2]
When j = k,

E[zjz;) = E 23] = / 3p(z)de = /x3p(x)dw =0

(133)
because p(x) is an even function whereas x2 is odd. Next, we
consider the case where j < k. Assume k = j + n for some
positive integer n and we obtain

oo

Blegat) = [ o) (o) do.

— 00

(134)

Within the integral, both p(z) and (g(™ (z))? are even while =
is odd. Thus, it can be concluded that E[z;23] = 0 for j < k.
Finally, for j > k, we assume j = k + m for some positive
integer m. Making the substitution z = cos¢ and applying
(130), we have

oo

B [onimad] = [ plo)ay™)(w)ds

— 00

K

:%/COSQQS(—COS(ZmQS))CM)

0

0, form > 2
- {—%7 form = 1. (135)
Thus, we conclude that
0, forj—k#1
2] — ’
B[] = { —1 forj—k=1. (136)
APPENDIX C

DERIVATION OF THE STATISTICAL PROPERTIES FOR THE
CHAOTIC SEQUENCES GENERATED BY CHEBYSHEV
MAPS OF DEGREE LARGER THAN ONE

In this appendix, we show that the chaotic sequences gener-
ated by Chebyshev maps of degree larger than one satisfy the
assumptions (27) to (30) mentioned in Section III-A. A Cheby-
shev map of degree 1 is defined as [20]

1

1) (137)

ZTg+1 = h(zy) = cos(pcos™
where 1 is an integer. We consider the case where ;1 > 1. The

invariant probability density function of {x }, denoted by p(x),
is known to be [20]

1 .
o) ={ A= Bl <! (139)

™
0, otherwise.

Derivation of E|xg]

Since p(z) is an even function, the mean value of {z} is

Elz] = 7 wp(z)dz = /1 zp(z)dz = 0. (139)

Derivation of cov|z;, T)

The autovariance of {z} is given by

covlzj, x| = Elzjzi] — Elzj]E[z] = Elz;zg].  (140)

We consider the case where 7 # k. Without loss of generality,
assume k = j + n for some positive integer n. Define

AV (z) = h(z)
h® () =h (h(l)(:c))

R (z) = h (h("_l)(a:)) . (141)
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The autovariance of {z}} can be rewritten as

o0

p(2)zh ™ (x)da

cov[zj, xx]

1

— (n)
= meh (z)dx. (142)
21
Making the substitution z = cos ¢, (142) becomes
r 1
. - (n) s
cov[zj, ] / Tsnd cos ¢ph'"™ (cos ¢)(— sin ¢)d¢p
1 s
=— /cos $h™ (cos ¢)dep
™
0
1 ™
=— /cosqﬁcos(u”gb)dqﬁ
T
0
1 r n n
=5 [ cos (" + 1)6) + cos (u" ~ 1)) d
0
_ L [sn (@ 109) |, sin (= D)
2T w41 pur—1 0
=0. (143)
Derivation of cov[z3, x}]
The autovariance of {z7} is given by
cov [x?,x%] =F [x?xz] —-F [a:?] E [wi] . (144)

We consider the case where 7 # k. Without loss of generality,
assume k = j + n for some positive integer n.

oo

/ p(x)x? (h(")(z))2 dx

1

™ -

Making the substitution = cos ¢, (145) becomes

E [27ai]

/0 ™ siln ¢ cos” ¢ (h(n) (cos </5)) : (—sin¢)de

cos? ¢ (h(") (cos ¢)) ’ d¢

3=

I
Oy Ty TT—

cos? ¢ cos®(u"p)dg

1+ cos2¢ 1+ cos(2u"¢) d
< 2 )( 2 ) ?

1
s

1 K

=— / (1 + cos2¢ + cos(2u™ @)
4

0

+ 3 cos (260" +1))

#5008 (200" = 1)) ) b

1 1 1
1
————sin (2¢(p" + 1
+ G D) SR 9+ 1)
1 ™
+———sin (2¢(p" — 1 }
T =) R = )|
1
=_. 146
1 (146)
Simliarly it is readily shown that
[S9) 1
1 1
E2:E2:/ 2 = | ——22dx = =
[#5] = E[ai] = | pla)2’da R
(147)

Putting (146) and (147) into (144), it is proved that the autovari-
ance for {z7} is vanishing for the Chebyshev map of degree
larger than one.

Derivation of E[z ;%]
When j = k

E[ejal] = B [o2] = / 2 p(x)dz = /1 P p(x)dz = 0

(148)
because p(x) is an even function whereas z2 is odd. Next, we
consider the case where j < k. Assume k = j + n for some
positive integer n and we obtain

oo

/ p(x)x (h(")(x))2 dx

— 00

1

e

s

= % /cos ¢ (h(")(cos ¢)) ’ d¢

0

™

1
=— / cos ¢ cos® (U™ p)dep
T
0
=0 (149)
in which the substitution z = cos ¢ has been made. Thus, it can
be concluded that E[z;z%] = 0 for j < k. Finally, for j > k,
we assume j = k 4+ m for some positive integer m. Making the
substitution = cos ¢ and applying (141), we have

oo

E [Zkymay) = /p(x)th(m)(:ﬂ)daz

— 00

E [zj27] =

™

_l 2 m
—W/cos ¢pcos(u™p)de

0
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17 m 9
0

45”““2"”¢)d¢

form > 2andall > 2
form=1and pu > 2
form=1and p = 2.

1 T m
— - [ costum = 2ypas
0
0,
0, (150)
1

4
Thus, we conclude that for the Chebyshev map of degree larger
than one

E [z;27] =0, for j—k#1. (151)
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