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Bifurcation Analysis of Switched Dynamical Systems
With Periodically Moving Borders
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Abstract—This paper describes a method for analyzing the
bifurcation phenomena in switched dynamical systems whose
switching borders are varying periodically with time. The type
of systems under study covers most of power electronics circuits
where two or more dynamical systems are cyclically switched
according to the interaction of the state variables and some peri-
odically moving borders. In particular, the complex bifurcation
behavior of a voltage feedback buck converter is studied in detail.
The analytical method developed in this paper allows bifurcation
scenarios to be clearly revealed in any chosen parameter space.

Index Terms—Bifurcation, border collision, buck converter,
moving border, switched dynamical system, switching converter.

I. INTRODUCTION

SWITCHED dynamical systems are useful in a variety of en-
gineering applications. In electrical engineering, switched

dynamical systems are found in sampled-data filters, oscillators,
power converters, chaos generators, etc. Typically, a switched
dynamical system operates by toggling among two or more dy-
namical systems according to a set of switching rules [1]. From
an analytical viewpoint, we may look at a switched dynamical
system as a set of two or more dynamical systems, each of which
defines the system in a finite interval of time. Switching be-
tween one dynamical system to another occurs on a set of bor-
ders, which are defined on the system’s state space. When the
state variables cross the borders, appropriate switchings occur
to re-define the dynamical flow. In a previous study by Kousaka
et al. [2], switched dynamical systems with fixed borders are
analyzed. Such systems, with fixed borders, can be considered
as autonomous systems since switchings are determined only by
the states of the system and are not affected by external signals.
In many engineering applications, however, switchings are de-
termined by the interaction of the states of the system with some
external driving signal. Such an operation is found in most of
power electronics circuits [3], [4], where the switching borders
are defined by a periodic driving signal. Switched dynamical
systems with moving borders are therefore nonautonomous. In
this paper, we extend the work of Kousaka et al. [2] to the anal-
ysis of switched dynamical systems with their switching borders
moving as functions of time.
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Being a characteristic phenomenon in switched dynamical
systems, border collision bifurcation has attracted a lot of at-
tention in recent years. Many researchers have studied border
collision using the method of “normal form” [5]–[8], which ef-
fectively reduces a piecewise smooth map to a normal form in
a small neighborhood of the border by a change of coordinates.
Also, some consider border collision as “discontinuous bifur-
cation” which is caused by a jump of eigenvalues [9]. Since
these approaches focus only on the neighborhood of the border,
they are local theory of nonlinear dynamical systems. To get
the normal form, one must know the trace and the determinant
of the Jacobian matrix associated with the fixed point on each
side of the border. These elements, however, bear no direct rel-
evance to the practical system parameters with which engineers
are most concerned. Thus, no general method for plotting bifur-
cation diagrams on the system parameter space has been pre-
sented. To solve these problems, we consider rather the global
behavior of a periodic solution than the border’s neighborhood.
We construct analytical conditions for border collision and other
bifurcations of specific periodic solutions. By examining these
conditions in conjunction with the stability condition, we can
identify the occurrence of various bifurcations in terms of the
system parameters.

In much of the previous work, the Poincaré map, which has
been defined in terms of duty cycle, has been found incapable
in dealing with cases where multiple switchings occur in a pe-
riodic cycle [10], [11]. This is due to the particular (but unfor-
tunately popular) way in which the Poincaré map was defined
for switching systems. In this paper, we will define the Poincaré
map in terms of the solution trajectory and border periodicity.
We will see that the validity of the Poincaré map defined in this
way can be extended to multiple-crossing cases.

We will first present a formal system description and a gen-
eral procedure for analyzing the bifurcation behavior. To illus-
trate the practicality of the method, we apply the analysis pro-
cedure to a popular voltage feedback buck converter. We will
show that bifurcation scenarios under the variation of any pa-
rameter can be uncovered by this method. In this paper, we sys-
tematically describe the bifurcation phenomena in the voltage
feedback buck converter, covering the standard period-doubling
[12], [13], saddle-node bifurcation as well as border collision
bifurcation [6], [14]–[16]. We will show, from a practical per-
spective, how the operating regime of such a converter can be
affected by the choice of parameters. In particular, the method
we develop in this paper permits the types of bifurcations to be
clearly and conveniently identified under different choices of
parameter values. Hence, the results from the analysis can be
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used by engineers to develop practically useful design rules for
avoiding certain types of bifurcation scenarios.

II. SYSTEM FORMULATION

A. Switched Dynamical Systems With Moving Borders

We begin our discussion by defining the type of systems we
study in this paper. Consider two dynamical systems and

(1)

where and are the system parameters with appropriate
dimensions. Next, we define a border

(2)

where is a time-varying periodic function of period , i.e.,

This border thus divides the state space into two parts,
namely, and , which are given by

(3)

The solution of the system in and is governed by the
state equation corresponding to and , respectively, as given
in (1). Suppose the solutions in and are given by

(4)

where and are initial points located in and ,
respectively.

Whenever the flow intersects the border transversally, the
system switches from to , or vice versa. The point where
the flow crosses the border can then be regarded as the initial
point of the successive flow. Thus, we can describe any trajec-
tory of this periodically switched system using the state equa-
tions of and in conjunction with the switching conditions
defined by the border crossings.

B. Buck Converter

The foregoing system formulation indeed applies to many
practical electronic circuits. Numerous examples can be found
in power electronics. In particular, let us consider the voltage
feedback buck converter shown in Fig. 1, which is a very popular
circuit for stepping down dc voltages. In this circuit, switch S is
controlled by a voltage comparator which compares a control
signal with a ramp signal . Essentially, switch
S is open if , and is closed otherwise. Here,

is derived from the output voltage through a standard error
amplifier configuration. For simplicity, we consider a simple
proportional type of feedback, as shown in Fig. 1. In this case,
the control voltage can be written as

(5)

Fig. 1. Voltage feedback buck converter. (a) Schematic diagram. (b) Typical
operating waveforms.

where is the feedback amplifier gain. Also, the ramp signal is

(6)

Therefore, the border function is given by

(7)

Now, the switching of S can be regarded as border crossing,
and we may formulate this buck converter as

(8)

where

(9)

Since the border function is independent of , the
border manifold is parallel to the direction of in the 2-dim
phase plane, as shown in Fig. 2(a). The dynamics above the
border is governed by the state equation of , and that below
the border is governed by the state equation of . Meanwhile,
the border moves in the vertical direction within a specific re-
gion periodically. The movement is defined by (7), which is de-
picted by the ramp signal shown in Fig. 2(b). Note that a latch is
often used in the practical control loop to avoid multiple cross-
ings in one cycle. Here, we omit the latch in order to consider
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Fig. 2. Periodically moving border in the buck converter.

Fig. 3. Period-1 solution in the buck converter denoted as P1(1).

a more general example of switched dynamical systems satis-
fying the definition of Section II-A.

From the above description, we can see that the voltage feed-
back buck converter is a switched dynamical system with peri-
odically moving border. We will use this model to illustrate our
solution approach.

III. POINCARÉ MAP AND PERIODIC SOLUTIONS

Since the border movement is periodic, we can conveniently
define the Poincaré map as follows:

(10)

This straightforward definition gives the Poincaré map the ca-
pability to describe arbitrary trajectory between 0 and . Based
on the formulation described in Section II-A, any solution can
be constructed according to the initial conditions and switching
actions. In particular, if a solution satisfies

(11)

it is a period- solution, i.e., the solution is invariant under the
map .

For notational clarity, we will denote periodic solutions as
, where is the period of the solution and

indicates the number of times the solution crosses
the border in each period. For example, the solution shown in
Fig. 3 is denoted as P1(1). This solution is the simplest periodic
solution for the buck converter, and is often the preferred oper-
ating regime for most practical applications. Likewise, P2(0,1)
denotes a period-2 solution with no border crossing in the first
period and one border crossing in the second period, etc.

With the solution and border function given by (4) and (7), we
can then take the following steps to find the periodic solution.
We refer to Fig. 3 for ease of description.

1) In the first interval , i.e., , we have

(12)

2) At , we put as the initial point for the flow
during , i.e., . Then, enforcing
the boundary condition, we have

(13)

3) Moreover, the border crossing condition is

(14)

Clearly, (12), (13), and (14) contain five scalar equations from
which the five scalar unknowns , , and can be solved
using an appropriate numerical method.

IV. CLASSIFICATION OF BIFURCATIONS AND

ANALYSIS METHODS

Like many nonlinear systems, switched dynamical systems
can exhibit a rich variety of bifurcation behavior. Generally
speaking, if the phase portrait changes its topological structure
as a parameter is varied, the system is said to undergo a
bifurcation [17], [18]. Most standard types of bifurcations are
caused by the loss of stability of a solution and the picking
up of another. For switched dynamical systems, moreover, a
special type of bifurcation, known as border collision, is often
observed. This type of bifurcation is not caused by a loss of
stability of the solution, but by a change in the system operation
[4]. In the following, we will discuss these bifurcations and
their interplay in detail.

A. Standard Bifurcation From Change of Stability Status

The stability of a periodic solution can be determined by cal-
culating the eigenvalues of the linearized system around the
fixed point. For example, if one eigenvalue passes through
as a parameter is varied, the solution undergoes a period-dou-
bling bifurcation. Also, if one eigenvalue is equal to as a
parameter is varied, the solution undergoes a saddle-node bi-
furcation, etc. [17], [18]. These types of bifurcation have been
widely studied and are often considered as standard types of bi-
furcation in nonlinear systems. In the following, we describe a
general procedure for analyzing these bifurcations, which is ap-
plicable to any switched dynamical system.

Let us take the period-1 solution discussed in Section III as
an example. To get the linearized system at the fixed point ,
we consider the trajectory at and , denoted by
and , respectively

(15)

(16)

(17)

Note that the Poincaré map in this case is simply the function
. Here, we are interested in the linearized dy-

namics near the small neighborhood of , which can be simply
described by , i.e., the Jacobian of the Poincaré map.

From (15) and (16), we get

(18)

(19)
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where and denote and , respec-
tively. Note that the partial derivative of the crossing time, i.e.,

, must be considered in the above equations. From (17),
we have

(20)

Hence, can be obtained as

(21)

Then, by writing and as and , and
putting (19) and (21) in (18), we get

(22)

where and are solutions of the following dif-
ferential equations:

(23)

Thus, we can calculate the Jacobian of the Poincaré map by
an appropriate numerical method. Finally, by finding the roots

of the characteristic equation

(24)

we can determine the stability of the periodic solution and ana-
lyze the bifurcation behavior.

We should stress that the above procedure is completely gen-
eral, without involving specific system definitions and border
function. Also, it can be easily extended to systems that contain
more than one border functions.

B. Border Collision From Change of Operation

Unlike the standard bifurcation behaviors which involve
the change of stability status, border collision is a result of
operational change which is commonly observed in switched
dynamical systems where the usual switching sequence can
be disrupted under certain conditions. Since the way in which
operation changes is system dependent, we have to focus
on a specific system in order to illustrate the method. In the
following, we present an analysis, along with a classification of
the possible operational changes, for the same buck converter
system described earlier. Also, instead of using the normal
form method [5]–[7], we will take on a global approach in our
analysis.

When the switching sequence of a switched dynamical
system is altered as a parameter is varied, the behavior may
change abruptly and such a phenomenon is generally called
border collision. For the buck converter under study, the basic
cause for border collision is the natural saturation of the duty

Fig. 4. Classification of border collision in buck converter.

cycle, which is always bounded between 0 and 1. Referring to
Fig. 1, is limited from above by as well as from below
by . When it hits the ramp voltage , switching action
happens. Thus, at the point where just leaves the allowable
range, i.e., “grazes” at the upper or lower tip of the ramp
signal, the system is said to undergo a border collision.

We classify border collision in the buck converter into two
types, as depicted in Fig. 4, according to the way in which
interacts with the ramp at the point of border collision. Consider
the situation before a border collision takes place. Suppose C is
the intersecting point of with the ramp signal, and D is the
point where crosses the vertical edge of the ramp signal, as
indicated in Fig. 4. After the border collision, we may identify
two possible scenarios.

1) If both C and D move upward and conjoin at the vertex
of the ramp, the type of border collision is classified as
“C-type.” See Fig. 4(a).

2) If only point D moves up and leaves the ramp from its
vertex, creating a new intersection point C’, the type of
border collision is classified as “D-type.” See Fig. 4(b).

Obviously, both scenarios can happen at the lower tip of the
ramp, and we may, in principle, classify the corresponding sce-
narios as C-type and D-type.

Although the two types of border collision lead to different
behavioral changes, they can be analyzed under a unified ap-
proach, as described in the following. First, we recognize that
the condition for border collision is the “touching” of with
the upper tip of . A relevant equation can therefore be
written to describe this condition. This new equation can be
added to the earlier set of equations describing the periodic solu-
tion to form a new set of equations. Solving this, we can obtain
the parameter condition under which a specific border collision
occurs. An example will clarify this procedure.

Consider a border collision from a period-2 solution. The sit-
uation is shown in Fig. 5, where denotes the grazing point.
To find the value of (input voltage) at which border collision
occurs, we solve the following set of equations:

border collision s condition

(25)

where all symbols are defined earlier or explained in Fig. 5. We
note that (25) contains eight scalar equations from which the
eight scalar unknowns, , , , , , can be solved. More-
over, for a specific border collision, the operational sequence of
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Fig. 5. Border collision (Bc2a) of period-2 solution.

TABLE I
SYSTEM OF ABBREVIATIONS OF BIFURCATION. EACH TYPE

OF BIFURCATION IS ABBREVIATED AS4n]

the resulting solution after bifurcation is known. Then, by an-
alyzing the stability of the resulting solution as introduced in
Section IV, we can investigate how system behavior is altered
by a border collision.

V. BIFURCATION BEHAVIOR OF BUCK CONVERTER

In this section, we will investigate the complicated bifur-
cation behavior exhibited by the buck converter described in
Section II-B. To facilitate numerical analysis, we fix some of
the parameters as follows:

mH V

V V and s

Using the analysis methods developed in the foregoing sec-
tion, together with appropriate numerical calculations, we can
obtain bifurcation diagrams for any given ranges of parameters.

For the sake of clarity and to avoid confusion, we adopt a
system for denoting the bifurcation curves on the bifurcation
diagrams, as explained in Table I. For example, the period-dou-
bling bifurcation from a period-1 solution to a period-2 solu-
tion is denoted as D1. Likewise, the period-doubling bifurcation
from a period-2 solution to a period-4 solution is denoted as D2.
But if there are two such bifurcations in different parameter re-
gions, we denote them as D2a and D2b, etc.

A. Detailed Bifurcation Behavior of the Buck Converter

In practice, a converter is designed to work in a range of
input voltage and output load resistance. It is therefore useful
to examine the bifurcation behavior with the input voltage and
load resistance serving as the bifurcation parameters, and with
other circuit parameters fixed. Moreover, the inductance is usu-
ally dictated by the choice of operating mode and the required
ripple level, whereas the output capacitance can be chosen ac-
cording to the transient requirement. In our study, we will keep
the inductance fixed, and consider the bifurcation behavior for
different choices of the output capacitance.

We begin with 47 F, which is typical for the switching
frequency concerned. A bifurcation diagram in the – plane
and a blow-up view are shown in Fig. 6. From these diagrams,

Fig. 6. (a) Bifurcation diagram in E–R plane with C = 47 �F. (b) Enlarged
view.

in conjunction with the waveforms shown in Figs. 7 and 8, we
are able to make the following observations regarding the bifur-
cation behavior of period-1 and period-2 solutions.

1) In the dark-grey region [shown in Fig. 6(a)], the stable
solution is P1(1) for which only period-doubling D1 is
observed.

2) Period-2 solutions exhibit a much richer bifurcation
behavior. In Fig. 7, we show the phase portraits and
waveforms of some typical period-2 solutions. Here, for
P2(1,1), a period-doubling D2a and border collision are
possible, as shown in Fig. 6(a). Note that Bc2a is the
situation depicted earlier in Fig. 5.

3) Some complex bifurcation behavior can be observed
around point I on the bifurcation diagram. Crossing the
bifurcation curve of Bc2a from left to right, P2(1,1)
becomes P2(0,1), as depicted in Fig. 7(d). However, in-
specting the eigenvalues of P2(0,1), we find that P2(0,1)
is unstable.

4) Crossing the bifurcation curve of Bc2a from left to right
above point I, we see that D2a takes place ahead of Bc2a.
For clarity, Bc2a happening on unstable solution P2(1,1)
is shown as a dashed curve in Fig. 6(a).

5) From the blow-up view of Fig. 6(b), we observe that
another border collision Bd2a occurs below point J.
This bifurcation, corresponding to Fig. 8(a), transmutes
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Fig. 7. Phase portraits and waveforms of v and V for some typical period-2 solutions.

Fig. 8. Conditions of various border collision bifurcations. indicates grazing point.

P2(1,1) into P2(1,2). Note that P2(1,2) is a stable period-2
solution as shown in Fig. 7(b). Also, P2(1,2) can undergo
period-doubling and saddle-node bifurcation, denoted
as D2b and S2 respectively on the bifurcation diagrams.
For ease of reference, the region in which P2(1,1) exists
is shown as the hatched area, and the region in which
P2(1,2) exists is shown as the back-hatched area.

6) As mentioned above, P2(0,1) is unstable. This unstable
P2(0,1) undergoes another border collision Bd2b to
become P2(0,2), as depicted in Fig. 8(c). The solution
P2(0,2), corresponding to Fig. 7(c), is stable and only
exists in a narrow region between Bd2b and Bc2b.

7) Since P2(0,1) is unstable, the Bc2a discussed earlier actu-
ally leads to P4(0,1,1,1). Moreover, chaotic state appears
in succession. That is, P2(0,1), as a periodic solution, is
never manifested. Thus, in the light-gray region [shown in
Fig. 6(b)], we actually find a stable period-2 solution co-
existing with possible longer periodic solutions or chaos.

8) Bc2b, corresponding to Fig. 8(b), transmutes P2(0,2) into
P2(1,2).

9) Four border collision curves meet at the same point J on
the bifurcation diagram. The coordinate of J is (40.781 V,
3.946 ). At this set of parameters, both C and D types
of border collision occur at the same time. This situation
is illustrated in Fig. 8(f).

B. Fundamental Differences Between C-Type and D-Type
Border Collisions

We may obtain some specific bifurcation diagrams by fixing
at certain values. For instance, with and 5.4 ,

we obtain the bifurcation diagrams shown in Fig. 9. These di-
agrams are able to reveal further details of the bifurcation be-
havior. Specifically, we can see clearly from Figs. 9(c) and (d)
the coexisting solutions. Furthermore, we observe an important
difference in the manifestations of the C-type and D-type border
collision on the bifurcation diagrams. The C-type border colli-
sion manifests itself as a leap, whereas the D-type manifests as
an inflection. This difference can be attributed to the kind of op-
erational change associated with the specific type of border col-
lision. Specifically, in the C-type border collision, the switching
sequence is disrupted, giving rise to “skipped” cycles. More-
over, in the D-type border collision, the relative durations of the
on and off intervals are disturbed while the same switching se-
quence is maintained. Fig. 10 shows a schematic comparison
between the two types of border collision. Thus, we expect a
more severe alteration in the circuit operation due to a C-type
border collision.

C. Effects of the Value of Output Capacitance
As mentioned earlier, the output capacitance can be chosen

by the circuit designer to suit specific applications. Here, we are
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Fig. 9. Bifurcation diagrams for fixed R, with E serving as the bifurcation parameter.

Fig. 10. Operational difference between C-type and D-type border collisions.

interested to see how the bifurcation behavior will be affected
by the choice of the output capacitance value.

We consider the case with 33 F. The corresponding bi-
furcation diagram is shown in Fig. 11. In this case, we observe

the same rich bifurcation behavior, but the locations of occur-
rence of the various bifurcations on the – plane differ sig-
nificantly from those corresponding to the case of F.
A few observations are summarized as follows.

1) We begin with the familiar Bc2a, which is supposed to
transmute P2(1,1) to P2(0,1). In this case, D2a always
goes ahead of Bc2a. Thus, Bc2a transmutes unstable
P2(1,1) to unstable P2(0,1). Again, we use a dashed
curve to indicate this situation.

2) The region in which the stable P2(2,1) exists is much
larger than the corresponding region for the case of
47 F.

3) In addition to D2b, P2(2,1) exhibits another period-dou-
bling bifurcation as decreases (i.e., from right to left),
denoted as D2c in Fig. 11. This D2c is interrupted by
Bc2d, which is depicted in Fig. 8(e). Also, Bc2d, crossing
from right to left in Fig. 11, transmutes stable P2(2,1) into
unstable P2(3,1).

4) Another border collision Bc2c is found. This bifurcation
occurs for relatively small values of , corresponding to
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Fig. 11. Bifurcation diagram in E–R plane with C = 33 �F.

Fig. 12. Bifurcation diagram in E–R plane with C = 4.7 �F.

the case where the control voltage hits the lower tip of
the ramp signal. This situation is illustrated in Fig. 8(d).
Moreover, solutions created by Bc2c, crossing from right
to left in Fig. 11, are unstable.

Next, we consider an even smaller output capacitance. With
4.7 F, the converter responds much more rapidly and

border crossing occurs more frequently. Here, in the absence
of a latch in the circuit, we can see many multiple-crossing in-
stances, and many border collision bifurcations associated with
multiple-crossing are possible. The bifurcation diagram is pre-
sented in Fig. 12. We summarize a few key features as follows.

1) In the light-gray region (shown in Fig. 12), P1(1) solution
exists. This P1(1) solution undergoes period-doubling D1
as well as border collision Bd1a.

2) Bc1a and Bd1a occur in close proximity, and so do Bc1b
and Bd1b, as depicted in the enlargements Z1 and Z2
shown in Fig. 12. The situations corresponding to these
period-1 border collisions are shown in Fig. 13.

Fig. 13. Conditions of border collision in period-1 solutions.

3) Multiple-crossing solutions exist. For example, P1(3) ex-
ists between Bc1a and Bd1b, and Bc1b gives rise to P1(5).

Again, we take the liberty of fixing at a certain value to
reveal further details of the bifurcation behavior. For 15 ,
we obtain a bifurcation diagram with serving as the bi-
furcation parameter, as shown in Fig. 14(a). As increases,
border crossing becomes more and more frequent, as shown
in Fig. 14(b). Furthermore, enlarging the bifurcation diagram
near the cusps reveals some interesting behavior. For the first
cusp, as shown in Fig. 14(c), an unstable P1(2) exists in a
narrow range of , whose endpoints are defined by the onset
of Bc1a and Bd1a which connect P1(2) with P1(3) and P1(1).
In summary, the bifurcation scenarios near the cusps involve
generic border collision, although they may look deceptively
like saddle-node bifurcations.

D. Interplay of Border Collision and Period-Doubling
Bifurcation

As mentioned earlier, border collision can occur in unstable
solutions. Such border collisions are normally unobserved and
ignored in practice. However, as we will see shortly, border col-
lisions of unstable solutions can provide useful clues for pre-
dicting the occurrence of chaos.

Without probing into the detailed mechanisms of the for-
mation of chaotic attractors, we can intuitively explain (and
estimate) the location of the onset of chaos in terms of an
important behavior which is associated with the interplay
between the main period-doubling cascade and border col-
lisions. A schematic illustration is shown in Fig. 15. In the
normal period-doubling bifurcation, a solution loses its stability
and generates a solution whose period is doubled. In the pe-
riod-doubling cascade, period-doubling bifurcation continues
to generate solutions of longer periods and to chaos, as the
parameter continues to vary in the chosen direction. However,
border collision comes into play, for the class of systems under
study, and interrupts the normal period-doubling cascade, as
depicted in Fig. 15(a).

Generally speaking, whenever hits a boundary, e.g., ,
border collision occurs. For the buck converter, if we focus on
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Fig. 14. Bifurcation diagrams based on the Poincaré map with E serving as
bifurcation parameter for R = 15 
 and C = 4.7 �F.

the border collision associated with grazing of the control signal
at the upper tip of the ramp signal, we have

(26)

With this added feature, we see from Fig. 15(a) that the border
collision of stable period-8 solution (B8) must happen before the
border collision B4 of the unstable period-4 solution and after

Fig. 15. (a) Schematic bifurcation diagram showing interplay between border
collision and period-doubling cascade. (b) Typical bifurcation sequence.

the period-doubling D4 of the stable period-4 solution. The en-
tire period-doubling cascade will move upward as is reduced.
Note that the vertical axis is in Fig. 15(a). Thus, as de-
creases, B8 and D4 will soon be displaced from the top (disap-
pear) while B4 will occur for the stable period-4 solution.

In general, we may conceive a bifurcation pattern, as shown in
Fig. 15(b), which illustrates the interplay between period-dou-
bling bifurcations and border collisions. We now look at the bi-
furcation with serving as the parameter and increasing. The
first border collision (marked in boldface) must be located be-
tween a period-doubling of a stable solution and a border col-
lision of an unstable solution (marked in italics), as depicted
in Fig. 15(b). The region where the first border collision is hit
becomes narrower and narrower as the period of the solution
lengthens. Moreover, these first border collisions often repre-
sent overtures to prelude the occurrence of chaos. Referring to
Fig. 15(a), we can conclude that chaos occurs between Bc2a and
D2a. Here, point I can be interpreted as a critical point where the
bifurcation sequence jumps from the second row to the first row
in Fig. 15(b). However, we should stress that this simple rule,
though helpful in making prediction of the onset of chaos, has
assumed the validity of an ideal period-doubling cascade.

VI. CONCLUSION

In this paper, we have introduced a method for analyzing the
bifurcation behavior of switched dynamical systems with peri-
odically moving borders. By constructing the periodic solutions
according to the switching sequences, we can find periodic or-
bits, evaluate their stability, and study the bifurcation behavior.
The method developed in this paper leads to the plotting of de-
tailed bifurcation diagrams on the parameter space that can pro-
vide useful practical information for engineers to determine the
complex bifurcation behavior of any given switched dynamical
system. In particular, we have provided specific bifurcation di-
agrams for the voltage feedback buck converter and discussed
the key features of the bifurcation behavior. In this paper we
have limited ourselves to the study of bifurcations of period-1

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on December 18, 2008 at 20:22 from IEEE Xplore.  Restrictions apply.



MA et al.: BIFURCATION ANALYSIS OF SWITCHED DYNAMICAL SYSTEMS 1193

and period-2 solutions. We have shown the rich variety of pos-
sible border collision scenarios and their interplay with the main
period-doubling cascade. The same method of analysis can be
extended to solutions of longer periods, with higher complexity
of the numerical solution being the price to pay.
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