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Performance of Chaos-Based Communication Systems
Under the Influence of Coexisting Conventional

Spread-Spectrum Systems

Francis C. M. Lau and Chi K. Tse

Abstract—This brief studies the performance of selected chaos-based
systems which share their frequency bands with conventional spread-spec-
trum systems. Such a scenario may occur in normal practice when
chaos-based systems are introduced while the conventional systems are
still in operation. The particular chaos-based systems under study are
the coherent chaos-shift-keying system and the noncoherent differential
chaos-shift-keying system, and the coexisting conventional system employs
the standard direct-sequence spread-spectrum modulation scheme. Ana-
lytical expressions for the bit-error rates are derived in terms of system
parameters such as spreading factor, chaotic signal power, conventional
spread-spectrum signal power, and noise power spectral density. Finally,
computer simulations are performed to verify the analytical findings.

Index Terms—Chaos communication, chaos shift keying (CSK), coexis-
tence, differential chaos shift keying (DCSK), differential sequence spread
spectrum.

I. INTRODUCTION

Communication using chaos has attracted a great deal of attention
from many researchers for more than a decade [1]–[4]. Much of the
research work has focused on the basic modulation processes and the
noise performance assuming ideal channel conditions. Both analog [1],
[5] and digital [6]–[9] modulation schemes have been proposed, and
it has been found that digital schemes are comparatively more robust
than analog schemes in the presence of noise and thus represent a more
practical form of systems for implementation. Direct application of
chaos to conventional direct-sequence spread-spectrum (DSSS) sys-
tems was also reported on the code level [10], [11]. The basic prin-
ciple is to replace the conventional binary spreading sequences, such as
m sequences or Gold sequences [12], by the chaotic sequences gener-
ated by a discrete-time nonlinear map. The advantages of using chaotic
spreading sequences are that an infinite number of spreading sequences
exist and that the spread signal is less vulnerable to interception. In-
stead of applying analog chaotic sequences to spread the data symbols,
Mazzini et al. proposed quantizing and periodically repeating a slice
of a chaotic time series for spreading. It was also reported that sys-
tems using the periodic quantized sequences have larger capacities and
lower bit-error rates (BERs) than those usingm sequences and Gold
sequences in a multiple-access environment [13], [14].

Among the various digital chaos-based communication schemes,
coherent chaos-shift-keying (CSK) and noncoherent differential
chaos-shift-keying (DCSK) schemes have been most thoroughly an-
alyzed [15]–[18]. Compared with chaotic-sequence spread-spectrum
modulation, CSK and DCSK modulation schemes make use of analog
chaotic wideband waveforms directly to represent the binary symbols.
No spreading as in traditional DSSS systems is required. Recently, the
DCSK scheme has also been considered for practical implementation
[19]. For coherent systems (e.g., coherent CSK system), the receiver
is required to reproduce the chaotic carriers through a process called
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“chaos synchronization,” and detection is normally achieved by
correlating the incoming signal with the reproduced carriers. Although
practical robust synchronization methods for chaotic signals are
still not available, the study of CSK systems is important in that
it can provide benchmark performance for comparison with other
chaos-based communication systems. Despite the fact that their
performance is inherently inferior than coherent systems, noncoherent
systems present more practical forms of systems because they do not
require the reproduction of chaotic carriers at the receiving end.

Being spread-spectrum, chaos-based communication systems are
expected to perform well even in the presence of other wideband
signals sharing the same bandwidth. Such a scenario may occur
in normal practice, for example, when chaos-based systems are
introduced while the conventional systems are still in operation.
This aspect of performance is important, though it has rarely been
addressed in the literature. It is therefore of interest to probe into the
error performance of chaos-based systems in channels where other
wideband communication systems coexist. Furthermore, it is useful
to compare the relative performances of coherent and noncoherent
chaos-based systems and the extent to which coherent systems
excel in the presence of other coexisting wideband systems. In this
brief, we investigate the performance of selected chaos-based digital
systems when their bandwidths are co-occupied by a conventional
spread-spectrum signal. The chaos-based systems under study are the
coherent CSK and the noncoherent DCSK systems, and the coexisting
system is a standard DSSS system. Analytical expressions for the
BERs are derived in terms of system parameters such as spreading
factor, chaotic signal power, conventional spread-spectrum signal
power, and noise power spectral density. Finally, computer simulations
are performed to verify the analytical findings.

II. SYSTEM OVERVIEW

The basic problem we wish to investigate in this brief is the
performance of chaos-based digital communication systems when the
channel is under the influence of

• additive white Gaussian noise;
• wideband signal generated from a coexisting conventional

spread-spectrum communication system, which shares the same
frequency band as the chaos-based system under study.

Fig. 1 shows a block diagram of the system under study. In this system,
two independent data streams, denoted by�l andl, respectively, are
assumed to be sent at the same data rate. At timet, denote the output
of the chaos transmitter bys(t) and the conventional DSSS signal by
u(t). Assuming that noise�(t) is added to the transmitted signals, the
received signal consists of three components, namely, chaotic, con-
ventional spread-spectrum, and additive noise. The receivers of the
chaos-based system and the conventional system will attempt to re-
cover their respective data streams. Coherent or noncoherent detection
schemes may be applied in the chaos-based system receiver, depending
upon the modulation method used.

In Section III, we focus on the coherent CSK system and the non-
coherent DCSK system [3], [8]. The coexisting conventional system
is a DSSS system. Our analysis will be carried out in a discrete-time
fashion, and we will develop analytical expressions for the BERs of
the recovered data streams for each of the chaos-based communication
schemes under the afore-described environment.

III. A NALYSIS OF BIT–ERRORPERFORMANCE

A. Coherent CSK System

We consider a discrete-time binary CSK communication system
combined with a DSSS communication system, as shown in Fig. 2.
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Fig. 1. Block diagram of a combined chaos-based and conventional DSSS digital communication.

Fig. 2. Block diagram of a combined CSK-DSSS communication system.

Also, we assume that the sampling rate equals the spreading code rate
of the DSSS system. In general, two sets of chaotic signal samples,
denoted byfx̂kg andf�xkg, are produced in the CSK transmitter by
two chaos generators. If the symbol “+1” is sent,fx̂kg is transmitted
during a bit period, and if “�1” is sent,f�xkg is transmitted. Further,
we assume that “�1” and “+1” occur with equal probabilities. For
simplicity, we consider a CSK system in which one chaos generator
is used to produce chaotic signal samplesfxkg for k = 1; 2; . . ..
The two possible transmitted signal samples arefx̂k = xkg and
f�xk = �xkg.

Suppose�l 2 f�1;+1g is the symbol to be sent during thelth bit
period. Define the spreading factor2� as the number of chaotic samples
used to transmit one binary symbol. During thelth bit duration, i.e., for
k = 2�(l � 1) + 1, 2�(l � 1) + 2; . . . ; 2�l, the output of the CSK
transmitter is

sk = �lxk: (1)

For the DSSS system, we assume that the period of the pseudo-
random spreading sequence is very long. We denote the output power
of the system byPB . Essentially, we can model the output of the DSSS
system as a random binary spreading codebk 2 f�1;+1g multiplied
by

p
PB . Also, “�1” and “+1” occur with equal probabilities. Thus,

for timek, the transmitted signal of the DSSS system is represented by

uk =
p
PBbk: (2)

The CSK and DSSS signals are added and corrupted by an additive
white Gaussian noise before arriving at the receiving end. The received
signal, denoted byrk, is thus given by

rk = sk +
p
PBbk + �k (3)

where�k is a Gaussian noise sample of zero mean and variance (power
spectral density)N0=2.

For the CSK system, we assume that a correlator-type receiver is
employed. As shown in Fig. 3, the correlator output for thelth bit, yl,
is given by

yl =

2�l

k=2�(l�1)+1

rkxk

= �l

2�l

k=2�(l�1)+1

x2k

required signal

+
p
PB

2�l

k=2�(l�1)+1

bkxk

interfering DSSS signal

+

2�l

k=2�(l�1)+1

�kxk

noise

: (4)

Suppose a “+1” is transmitted in the CSK system during thelth symbol
duration, i.e.,�l = +1. For simplicity, we writeylj(�l = +1) as

ylj(�l = +1) = A+B + C (5)
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Fig. 3. Block diagram of a coherent CSK receiver.

whereA, B, andC are the required signal, interfering DSSS signal,
and noise, respectively, and are defined as

A =

2�l

k=2�(l�1)+1

x
2
k (6)

B =
p
PB

2�l

k=2�(l�1)+1

bkxk (7)

C =

2�l

k=2�(l�1)+1

�kxk: (8)

The mean ofylj(�l = +1) is

E [ylj(�l = +1)] =

2�l

k=2�(l�1)+1

E x
2
k

+
p
PB

2�l

k=2�(l�1)+1

E[bk]E[xk]

+

2�l

k=2�(l�1)+1

E[�k]E[xk]

= 2�Ps (9)

wherePs = E[x2k] denotes the average power of the chaotic signal.
The last equality holds becauseE[bk] = 0 andE[�k] = 0. The mean
value and the average power of the chaotic signal can be computed
by numerical simulation, or by numerical integration if the invariant
distribution function offxkg is available. The variance ofylj(�l =
+1) is

var[ylj(�l = +1)] = var[A] + var[B] + var[C]

+2cov[A;B] + 2cov[B;C] + 2cov[A;C] (10)

where cov[X;Y ] is the covariance ofX andY defined as

cov[X; Y ] = E[XY ]�E[X]E[Y ]: (11)

It can be shown that all the covariance terms are zero and the variance
terms are given by

var[A] = 2�� (12)

var[B] = 2�PBPs (13)

var[C] =�N0Ps (14)

where� is the variance offx2kg, i.e.,

� = var x2k : (15)

In the derivation of var[A], it has been assumed that the autovariance
of fx2kg vanishes, i.e.,

cov x
2
j ; x

2
k = E x

2
jx

2
k � E x

2
j E x

2
k = 0 for j 6= k: (16)

Using (12) and (14), and because all covariance terms in (10) are zero,
we may write (10) as

var[ylj(�l = +1)] = 2��+ 2�PBPs + �N0Ps: (17)

For thelth symbol, an error occurs whenyl � 0j(�l = +1). Since
ylj(�l = +1) is the sum of a large number of random variables, we
may assume that it follows a normal distribution when2� is large. The
error probability is thus given by

Prob(yl � 0j(�l = +1))

=
1

2
erfc

E [ylj(�l = +1)]

2var[ylj(�l = +1)]

=
1

2
erfc

2�Ps

4��+ 4�PBPs + 2�N0Ps)
(18)

where erfc(.) is the complementary error function, which is defined as

erfc( ) � 2p
�

1

 

e
��

d�: (19)

Similarly, when�l = �1, the corresponding error probability can be
shown equal to

Prob(yl > 0j(�l = �1))

=
1

2
erfc

�E [ylj(�l = �1)]

2var[ylj(�l = �1)]

=
1

2
erfc

2�Ps

4��+ 4�PBPs + 2�N0Ps)
: (20)

Hence, the overall error probability of thelth transmitted symbol is

BER(l)CSK =Prob(�l = +1)� Prob(yl � 0j(�l = +1))

+ Prob(�l = �1)� Prob(yl � 0j(�l = �1))

=
1

2
erfc

2�Ps

4��+ 4�PBPs + 2�N0Ps)
: (21)

It can be seen from (21) that BER(l)CSK is independent ofl. Thus, the
error probability of thelth transmitted symbol is the same as the BER
of the system. The BER of the CSK system, denoted by BERCSK, is
therefore

BERCSK =
1

2
erfc

2�Ps

4��+4�PBPs+2�N0Ps)

=
1

2
erfc

1

�
�P

+ P

�P
+ N

2�P

(22)

=
1

2
erfc

1

E

4��

�1

+ E

2P

�1

+ E

N

�1
(23)

where

Eb = 2�Ps (24)

denotes the average bit energy of the CSK system. The expression
given in (22) or (23) is thus the analytical BER for the noisy coherent
CSK system under the interference of a DSSS signal. Note that for
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Fig. 4. Block diagram of a noncoherent DCSK system. (a) Transmitter.
(b) Receiver.

fixed DSSS signal powerPB and noise power spectral densityN0=2,
the BER can be improved by making one or more of the following
adjustments.

1) Reduce the variance offx2kg.
2) Increase the spreading factor2�.
3) Increase the CSK signal powerPs.
Example: Consider the case where a logistic map is used for chaos

generation. The form of the map is

xk+1 = g(xk) = 1� 2x2k where xk 2 (�1;+1): (25)

Given that the invariant distribution function offxkg equals [20]

�(xk) =
1

�
p

1�x
; if jxkj < 1

0; otherwise
(26)

we obtain

Ps =E x2k =

1

�1

x2�(x)dx=

1

�1

x2�(x)dx=
1

2
(27)

� = var x2k =E x4k �E2 x2k =

1

�1

x4�(x)dx� 1

4
=
1

8
: (28)

For the case where the logistic map is used to generate the chaotic
samples, we substitute (27) and (28) into (22) to obtain the BER, i.e.,

BERCSK =
1

2
erfc

2�

1 + 4PB + 2N0
: (29)

B. Noncoherent DCSK System

In this section, we consider the noncoherent DCSK system. For this
system, the basic modulation process involves dividing the bit period
into two equal slots. The first slot carries a reference chaotic signal, and
the second slot bears the information. For a binary system, the second
slot is the same copy or an inverted copy of the first slot depending
upon the symbol sent being “+1” or “�1.” Essentially, the detection
of a DCSK signal can be accomplished by correlating the first and the
second slots of the same symbol and comparing the correlator output
with a threshold. Fig. 4 shows the block diagrams of a DCSK trans-
mitter and receiver pair.

As in the CSK case, we assume that the DCSK signal is interfered
by the DSSS signal and corrupted by additive white Gaussian noise.

Using the same notations as defined in Section III-A, during thelth
bit duration of the DCSK system, the transmitted DCSK signal can be
written as

sk =

xk; for k = 2�(l� 1) + 1; 2�(l� 1)

+2; . . . ; 2�(l� 1) + �

�lxk�� ; for k = 2�(l� 1) + � + 1; 2�(l� 1)

+� + 2; . . . ; 2�l

(30)

whereas thekth transmitted signal for the DSSS system is given by

uk =
p
PBbk: (31)

The received noisy signalrk is given by

rk = sk + uk + �k (32)

where the symbol�k is as defined previously in Section III-A.
At the DCSK receiver, the detector essentially calculates the corre-

lation of the corrupted reference and data slots of the same symbol. We
consider the output of the correlator for thelth received bit,yl, which
is given by

yl =

2�(l�1)+�

k=2�(l�1)+1

rkrk+�

=

2�(l�1)+�

k=2�(l�1)+1

�lx
2
k +

p
PBbk+�xk + �l

p
PBbkxk

+ PBbkbk+� + �k+�xk + �l�kxk

+
p
PB�k+�bk +

p
PB�kbk+� + �k�k+�

= �lD

required signal

+
p
PBF + �l

p
PBG+ PBH

interfering DSSS signal

+ J + �lK +
p
PBL+

p
PBM +N

noise

(33)

where

D =

2�(l�1)+�

k=2�(l�1)+1

x2k (34)

F =

2�(l�1)+�

k=2�(l�1)+1

bk+�xk (35)

G =

2�(l�1)+�

k=2�(l�1)+1

bkxk (36)

H =

2�(l�1)+�

k=2�(l�1)+1

bkbk+� (37)

J =

2�(l�1)+�

k=2�(l�1)+1

�k+�xk (38)

K =

2�(l�1)+�

k=2�(l�1)+1

�kxk (39)

L =

2�(l�1)+�

k=2�(l�1)+1

�k+�bk (40)

M =

2�(l�1)+�

k=2�(l�1)+1

�kbk+� (41)

N =

2�(l�1)+�

k=2�(l�1)+1

�k�k+�: (42)
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Fig. 5. BERs versus of the coherent CSK system under the interference of a DSSS signal. Simulated BERs are plotted as points and analytical BERs
plotted as lines. (a) Spreading factor is 20. (b) Spreading factor is 50. (c) Spreading factor is 100. (d) Spreading factor is 200.

The means and variances of the variablesD toN can be shown equal
to

E[D] = �E[x2k] � �Ps var[D] = �var x2k � ��

E[F ] = 0 var[F ] = �Ps

E[G] = 0 var[G] = �Ps

E[H] = 0 var[H] = �

E[J ] = 0 var[J ] = �P N

2

E[K] = 0 var[K] = �P N

2

E[L] = 0 var[L] = �N

2

E[M ] = 0 var[M ] = �N

2

E[N ] = 0 var[N ] =
�N

4

(43)

where in the derivation of var[D], it has been assumed that the auto-
variance offx2kg vanishes. Further, it can be readily shown that

cov[�; �] = 0 8�; � 2 fD;F;G;H; J;K; L;M;N : � 6= �g:
(44)

Using a likewise procedure as in Section III-A, the means and variances
of ylj(�l = +1) andylj(�l = �1) can be shown equal to

E [ylj(�l = +1)] = �E [ylj(�l = �1)] = �Ps (45)

var[ylj(�l = +1)] = var[ylj(�l = �1)]

= var[D] + PBvar[F ] + PBvar[G]

+ P
2
Bvar[H] + var[J ] + var[K]

+ PBvar[L] + PBvar[M ] + var[N ]

=��+ 2�PBPs + �P
2
B + �PsN0

+ �PBN0 +
�N2

0

4
: (46)

Since all terms in (45) and (46) are independent ofl, the BER of
the DCSK system under the interference of a DSSS signal, denoted by
BERDCSK, equals the overall error probability of thelth transmitted
symbol(BER(l)DCSK), i.e.,

BERDCSK = BER(l)DCSK
= Prob(�l = +1)� Prob(yl � 0j(�l = +1))

+ Prob(�l = �1)Prob(yl > 0j(�l = �1))

=
1

2
erfc

�Ps

2��+4�PBPs+2�P 2
B + 2�PsN0+2�PBN0+

�N

2

=
1

2
erfc

1

4�+4P +4P N +N

2�P
+ 4P +2N

�P

(47)
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Fig. 6. BERs versus of the noncoherent DCSK system under the interference of a DSSS signal. Simulated BERs are plotted as points and analytical
BERs plotted as lines. (a) Spreading factor is 20. (b) Spreading factor is 50. (c) Spreading factor is 100. (d) Spreading factor is 200.

=
1

2
erfc

1

8��+8�P +8�P N +2�N

E
+ 8P +4N

E

(48)

whereEb is defined as in (24). The expression given in (47) or (48) is
then the analytical BER for the noisy DCSK signal under the influence
of a DSSS signal. Note that for fixed DSSS signal powerPB and noise
power spectral densityN0=2, the BER can be reduced by making sim-
ilar adjustments as suggested in Section III-A.

Example: Consider the case where the logistic map is used for gen-
erating the chaotic signal samples. We substitute (27) and (28) into (47)
to obtain the BER of the DCSK system, i.e.,

BERDCSK =
1

2
erfc

1

1+8P +8P N +2N

�
+ 8P +4N

�

: (49)

IV. COMPUTERSIMULATIONS AND DISCUSSIONS

In this section, the performance of the chaos-based digital commu-
nication systems under the influence of a DSSS signal is studied by
computer simulations. The logistic map described in Section III-A has

been used to generate the chaotic signal samples. For comparison, we
also plot in each case, the analytical BERs obtained from the expres-
sions derived in Sections III-A and B. The relevant simulated BERs for
the CSK system and DCSK systems are shown in Figs. 5 and 6.

From these figures, the simulated performance is found to be
better than that from the analysis. The discrepancy is due to the
limited validity of the assumption of a normal distribution for the
correlator output in the analysis [21]. For large spreading factors (e.g.,
2� = 100 and 200), where the assumption of normal distribution of
the conditional correlator output holds better, we clearly see that the
analytical and simulated BERs are in very good agreement.

Also, at low spreading factors, the BER performance is worse. This
can be attributed to the larger variation of bit energy sent for each
symbol. As a general observation, the coherent CSK system consis-
tently performs better than the noncoherent DCSK system under the
influence of a coexisting conventional DSSS signal. As shown in Fig. 7,
for the CSK system, atEb=N0 = 7 dB and a spreading factor of
100, the BER degrades from about10�3 to 10�2 when the conven-
tional-to-chaotic-signal-power ratio(PB=Ps) increases from 0 dB to
10 dB. For the DCSK system, with the same increase inPB=Ps, the
BER now degrades from about10�3 to 0.3 atEb=N0 = 20 dB. Thus,
the CSK system is more tolerant to wideband interfering signals com-
pared with the DCSK system.
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Fig. 7. Simulated BERs versus for the coherent CSK and noncoherent
DCSK systems under the interference of a DSSS signal. (a) Spreading factor is
100. (b) Spreading factor is 200.

V. CONCLUSION

In this brief, the performance of chaos-based communication
systems under the influence of a wideband signal generated from
a coexisting conventional spread-spectrum system is investigated.
The problem is important technically since chaos-based systems are
spread-spectrum systems which are expected to resist interfering and
the kind of interference considered here, namely one being generated
from another conventional spread-spectrum system such as a DSSS
system, represents a realistic (future) practical concern when chaos-
based systems need to “cooperate” with existing systems. For the
coexisting CSK-DSSS system, coherent correlation CSK receiver has
been assumed. Although robust chaos synchronization techniques are
still not available, the results representbenchmarkperformance that a
coexisting CSK-DSSS system can achieve. A more practical scenario
in which a noncoherent DCSK system coexists with a DSSS system is
also investigated. The performance data presented in this study will
be useful in designing coherent CSK and noncoherent DCSK systems
when they are required to operate in channels already occupied by
conventional wideband DSSS systems.
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