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The cases ofH(1)(z) andH(2)(z) are “trivial” because we can take
k1 = 0 in Step 4), and write
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In both cases, positive realizations of dimension 6 can be given as
follows:

c1 = (1 0 1 0 1:675 0:507925)
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A positive realization of the originalH(z) is then possible to con-
struct as in [4] or [8].

V. CONCLUSION

In this brief, we provided a generalfinite step procedurefor checking
the nonnegativity of the impulse-response sequence ofH(z), which
answers an open problem raised in [1]. For primitive transfer functions
a new method of positive realization was proposed by reducing the pole
order of the dominant pole.
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Analysis of Bit Error Rates for Multiple Access CSK and
DCSK Communication Systems

W. M. Tam, Francis C. M. Lau, and Chi K. Tse

Abstract—In this paper, multiple-access techniques for use with chaos
shift keying (CSK) and differential CSK under a noisy condition are an-
alyzed using a discrete-time approach. A mixed analysis-simulation tech-
nique is developed to calculate the bit error rates (BERs). When certain
assumptions are made, closed-form analytical expressions of the BERs are
found.

Index Terms—Bit error rate (BER), chaos communication, chaos shift
keying (CSK), differential chaos shift keying (DCSK), multiple access .

I. INTRODUCTION

Chaos-based spread-spectrum communication techniques have
emerged rapidly during the last decade, and much research effort has
been devoted to the development of analog and digital chaos-based
communication systems that can achieve performance comparable
to the existing communication systems. Typically, in a digital
chaos-based communication system, digital symbols are mapped to
nonperiodic chaotic basis functions [1]–[4].

Multiple access is an important requirement for spread-spectrum
communication. For chaos-based systems, only a few multiple-access
schemes have been proposed. For instance, a method based on multi-
plexing chaotic signals has been proposed by Carroll and Pecora [5],
and some chaos-based approaches for generating spreading codes have
been applied to conventional CDMA systems [6]–[8]. Furthermore,
multiple access using differential chaos shift keying (DCSK) has been
introduced by Kennedyet al. [2] and [9], and the multiple-access ca-
pability of frequency-modulated DCSK (FM-DCSK) has been studied
by Jákoet al. [10]. Recently, an alternative multiple-access technique
for use with DCSK has been proposed by Lauet al. [11]. Only a pre-
liminary study of the performance of this scheme under a noise-free
environment has been given.
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Fig. 1. MA-CSK communication system.

In this paper, we investigate in depth, using a discrete-time approach,
a CSK system with multiple users, as well as the multiple-access DCSK
(MA-DCSK) system proposed by Lauet al. [11]. It is assumed that
the amplitude of the carrier is modulated by the chaotic signals (am-
plitude modulation) and we analyze the system using the equivalent
baseband model [12], [13]. A mixed analysis-simulation (MAS) tech-
nique is developed to calculate the bit error rates (BERs). When certain
assumptions hold, analytical expressions for the BERs can also be ob-
tained. In Sections II and III, the multiple-access CSK (MA-CSK) and
MA-DCSK systems are described and the corresponding BER equa-
tions are derived. Results found by the MAS method and the analytical
method are compared with simulations in Section IV.

II. A NALYSIS OF MA-CSK SYSTEMS

A. Transmitter Structure

We consider a MA-CSK communication system withN users, as
shown in Fig. 1. A discrete-time approach will be adopted in the fol-
lowing analysis. In the transmitter of theith user, a pair of chaotic
sequences, denoted byfx̂(i)k g andf�x(i)k g, are generated by a chaotic
map with different initial conditions. We also assume that the mean
value of each of the chaotic sequences is zero in order to avoid trans-
mitting any dc component which is a waste of power. Denote themth
transmitted symbol for theith user byd(i)m 2 f�1;+1g and assume
that “�1” and “+1” occur with equal probabilities for all users. De-
fine the spreading factor� as the number of chaotic samples used to
transmit one binary symbol. During themth bit duration, i.e., for time
k = (m� 1)� + 1; (m� 1)� + 2; . . . ; m�, the output of the trans-
mitter of useri, v(i)k , is

v
(i)
k =

x̂
(i)
k if d(i)m = +1

�x
(i)
k if d(i)m = �1.

(1)

The overall transmitted signal of the whole system at timek, denoted by
vk, is derived by summing the signals of all users, i.e.,vk = N

i=1 v
(i)
k .

B. Receiver Structure

The received signal, denoted byrk, is given byrk = vk+ �k where
�k denotes the additive white Gaussian noise with zero mean and vari-
ance (power spectral density)N0=2. Assume that synchronized ver-
sions of the chaotic signalsfx̂(j)k g andf�x(j)k g can be reproduced at the
receiver. The detection essentially involves correlating the incoming
signal with the locally regenerated chaotic signals and sampling the
outputs of the correlators at the end of each symbol duration. Themth

decoded symbol for thejth user, denoted by~d(j)m , is determined ac-
cording to following rule:

~d(j)m

=

+1 if z(j)m� =
m�

k=(m�1)�+1

rkx̂
(j)
k �

m�

k=(m�1)�+1

rk�x
(j)
k > 0

�1 if z(j)m� =
m�

k=(m�1)�+1

rkx̂
(j)
k �

m�

k=(m�1)�+1

rk�x
(j)
k � 0.

(2)

C. Derivation of BER

Consider thejth user. Without loss of generality, we consider the
probability of error for the first symbol. For brevity, the subscripts of
the variablesd(j)m , ~d

(j)
m , ĉ(j)m� , �c(j)m� , andz(j)m� are omitted. If “+1” is

transmitted for userj, i.e.,d(j) = +1 andv(j)k = x̂
(j)
k , it is readily

shown that the mean value ofz(j)j(d(j) = +1) equals

E z(j) d(j) = +1 = �E x̂
(j)
k

2

: (3)

Also, the variance ofz(j)j(d(j) = +1) is given by

var z(j) d(j) = +1

= �var x̂
(j)
k

2

+

�

k=1
k 6=l

�

l=1

cov x̂
(j)
k

2

; x̂
(j)
l

2

+ �E2 x̂
(j)
k

2

+

�

k=1
k 6=l

�

l=1

E2 x̂
(j)
k x̂

(j)
l

+ 2�E x̂
(j)
k

2
N

i=1
i6=j

E x̂
(i)
k

2

+ 2

N

i=1
i6=j

�

k=1
k 6=l

�

l=1

E x̂
(i)
k x̂

(i)
l

� E x̂
(j)
k x̂

(j)
l + �N0E x̂

(j)
k

2

: (4)
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Likewise, we can findz(j)j(d(j) = �1) and confirm that

E z(j) d(j) = �1 = � E z(j) d(j) = +1 (5)

var z(j) d(j) = �1 = var z(j) d(j) = +1 : (6)

Sincez(j)j(d(j) = +1) andz(j)j(d(j) = �1) are the sum of a large
number of random variables, we assume that both of them are normally
distributed. The BER for userj can thus be computed from

BER(j) =
1

2
Prob z(j) � 0 d(j) = +1

+
1

2
Prob z(j) > 0 d(j) = �1

=
1

2
erfc

E z(j) d(j) = +1

2var[z(j) j(d(j) = +1)]
(7)

where erfc(:) is the complementary error function [13].
1) MAS Technique:To find the BER, we can first attain the

values of the terms (expected values, variances and covariances) on
the right-hand side of (3) and (3) by numerical simulations. Then,
the values ofE[z(j)j(d(j) = +1)] and var[z(j)j(d(j) = +1)] can
be computed and substituted into (7) to get the BER. Since both
numerical simulation and analytical method are involved in obtaining
the BER, we refer to it as the MAS technique.

2) Analytical BERs: To ensure that all users are treated equally, we
assume that all users transmit with equal average powerPs. Further, if
both the autovariance off(x̂(j)k )

2
g and the autocorrelation offx̂(j)k g

vanish, i.e.,

cov x̂
(j)
k

2

; x̂
(j)
l

2

=0; k 6= l (8)

E x̂
(j)
k x̂

(j)
l =0; k 6= l (9)

the analytical BER for userj can be reduced to

BER(j)CSK-I=
1

2
erfc

2	(j)

�
+
2(2N�1)

�
+2

Eb

N0

�1 �

(10)

where	(j) = var[(x̂(j)k )
2
]=P 2

s = var[(x̂(j)k )
2
]=E2[(x̂

(j)
k )

2
], andEb =

�Ps represents the average bit energy.
Finally, if all users employ the same map that generate sequences

satisfying (8) and (9), the values	(j) will become identical and all
users will have the same BER.

III. A NALYSIS OF MA-DCSK SYSTEMS

A. Frame Structure of the Transmitted Signal

In a MA-DCSK system, to avoid excessive interference, and hence,
misdetection, the separation between the reference and data samples
must be different for different users. A multiple-access scheme has
been proposed by Lauet al. [11] where the separation between the
reference and data samples differs for different users, as illustrated in
Fig. 2.

Suppose there areN users in the system. Define a superframe as the
minimum number of slots within which allN users transmit an inte-
gral number of frames. Within one superframe, denote the number of
frames sent by useri by f

(i)
N . From now on, we restrict our discus-

sion to one superframe which is assumed to contain2Ns slots, where
2Ns = Nf

(N)
N = (N � 1)f

(N�1)
N = . . . = 2f

(2)
N = f

(1)
N .

Fig. 2. Transmission scheme for the MA-DCSK communication system.

Fig. 3 shows an MA-DCSK communication system in a dis-
crete-time mode. In the transmitter of theith user, a chaotic map
is used to generate a chaotic sequencefx

(i)
k g with zero mean. The

chaotic maps for different users are different in general. Assume that
� chaotic samples are sent in each slot(spreading factor= 2�).
Consider the transmitted signal of useri during themth time slot.
Denote the output of the transmitter byy(i)k . If the slot is a reference
sample slot,y(i)k = x

(i)
k . If the slot corresponds to a data sample slot

sending a binary symbol “+1”, y(i)k = x
(i)
k�i�. Otherwise, if the slot

corresponds to a data sample slot sending a binary symbol “�1”,
y
(i)
k = �x

(i)
k�i�. Thus, for themth time slot of useri, we definea(i)m as

a(i)m =
+1; if y(i)k = x

(i)
k�l

�1; if y(i)k = �x
(i)
k�l

(11)

wherel = 0 for reference samples, andl = i� for data samples.
Therefore, the transmitted signal of useri during themth time slot can
be represented by

y
(i)
k =a(i)m x

(i)
k�l; k=(m� 1)�+ 1; (m� 1)�+ 2; . . . ;m�: (12)

The overall transmitted signal at timek, denoted byyk, equalsyk =
N

i=1 y
(i)
k .

B. Receiver Structure

At time k, the received signal,rk, is given byrk = yk + �k. For
each user, the signal received during a reference sample slot will cor-
relate with the signal at the corresponding data sample slot. Depending
on whether the output is larger or smaller than the threshold, a “+1”
or “�1” is decoded. In Fig. 3, a block diagram of a DCSK correlator
receiver is shown.

Define theuth sub-state of the system at themth slot by ~A
(u)
m , i.e.,

~A(u)
m = a(1)m a(2)m . . . a(u�1)m a(u+1)m . . . a(N)

m

T

: (13)

Consider thejth user and the received signal during themth time slot.
Suppose the slot corresponds to a reference sample slot for userj, i.e.,
a
(j)
m = +1. These reference samples will correlate with the received
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Fig. 3. MA-DCSK communication system.

samplesj slots later, i.e., the(m+j)th slot. The output of the correlator,
denoted byz(j)m j( ~A

(j)
m ; ~A

(j)
m+j ; a

(j)
m = +1; a

(j)
m+j), is given by

z
(j)
m

~A(j)
m ; ~A

(j)
m+j ; a

(j)
m = +1; a

(j)
m+j

=

m�

k=(m�1)�+1

N

u=1

y
(u)
k + �k

N

v=1

y
(v)
k+�j + �k+�j

=

N

u=1

N

v=1

m�

k=(m�1)�+1

a
(u)
m a

(v)
m+jx

(u)
k�l x

(v)
k+�j�l

+

N

u=1

m�

k=(m�1)�+1

a
(u)
m x

(u)
k�l �k+�j

+

N

v=1

m�

k=(m�1)�+1

a
(v)
m+jx

(v)
k+�j�l �k

+

m�

k=(m�1)�+1

�k�k+�j (14)

whereli = 0 (i = 1; 2; . . . ; N) for reference samples, andli = i� for
data samples. The decoded symbol corresponding to this pair of time
slots, denoted by~d(j)m , is determined according to the following rule:

~d(j)m =
+1; if z(j)m

~A
(j)
m ; ~A

(j)
m+j ; a

(j)
m = +1; a

(j)
m+j > 0

�1; if z(j)m
~A
(j)
m ; ~A

(j)
m+j ; a

(j)
m = +1; a

(j)
m+j � 0 .

(15)

C. Derivation of BER

Denote the binary symbol transmitted by thejth user in the(m +

j)th slot byd(j)m , i.e.,a(j)m+j = d
(j)
m . Using a likewise procedure as in

Section II, it is readily shown that the average BER for userj, BER(j),
is (for details, refer to [14])

BER(j) =
1

2Ns
m2S ~A 2U ~A 2U

�
1

2
erfc

E ~z
(j)
m d

(j)
m = +1

2var ~z
(j)
m d

(j)
m = +1

+
1

2
erfc

�E ~z
(j)
m d

(j)
m = �1

2var ~z
(j)
m d

(j)
m = �1

� Prob ~A(j)
m ; ~A

(j)
m+j (16)

whereU 2 f�1;+1g and S(j) is the set of slot numbers cor-
responding to the reference slots of userj over one superframe.
Define B( ~A

(j)
m ; ~A

(j)
m+j) as the average probability of occurrence of

( ~A
(j)
m ; ~A

(j)
m+j) over all reference slots, i.e.,

B ~A(j)
m ; ~A

(j)
m+j =

1

Ns
m2S

Prob ~A(j)
m ; ~A

(j)
m+j : (17)

Thus, (16) can be rewritten as

BER(j) =
1

2
~A 2U ~A 2U

�
1

2
erfc

E ~z
(j)
m d

(j)
m = +1

2var ~z
(j)
m d

(j)
m = +1

+
1

2
erfc

�E ~z
(j)
m d

(j)
m = �1

2var ~z
(j)
m d

(j)
m = �1

�B ~A(j)
m ; ~A

(j)
m+j : (18)

1) MAS Technique:As in the MA-CSK case, we find out the
required expected values, variances and covariances by numerical
simulations. The values ofE[~z(j)m jd

(j)
m = +1], E[~z(j)m jd

(j)
m = �1],

var[~z(j)m jd
(j)
m = +1] and var[~z(j)m jd

(j)
m = �1] are then computed and

put into (18) to obtain the BER.
2) Analytical BER: As in Section II-C2, we assume that all users

transmit with equal average powerPs. Assume that the chaotic se-
quence generated by useri, fx(i)k g, satisfies the following conditions:

cov x
(i)
k

2

; x
(i)
n

2

=E x
(i)
k

2

x
(i)
n

2

� E x
(i)
k

2

E x
(i)
n

2

=0; k 6= n (19)

E x
(i)
k x

(i)
n =0; k 6= n (20)

E x
(i)
k x

(i)
k+�x

(i)
k+�x

(i)
k+� =0 8�; �; � 2 I

+ and

0 < � < � < �: (21)
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TABLE I
STATISTICAL PROPERTIES OF THENORMALIZED CHAOTIC SEQUENCES

Then, (18) can be readily simplified to

BER(j)DCSK�I =
1

2
erfc

2	(j)

�
+

2(N2
� 1)

�

+4N
Eb

N0

�1

+ 2�
Eb

N0

�2 �

(22)

where	(j) = var[(x(j)k )
2
]=P 2

s = var[(x(j)k )
2
]=E2[(x

(j)
k )

2
] andEb =

2�Ps denotes the average bit energy.
In addition to the statistical properties given in (19) to (21), if all

users employ the same map, the values of	(j) are now identical and
all users will have the same bit error performance.

IV. RESULTS AND DISCUSSIONS

The following maps are used in our simulations.

5) Logistic map:xk+1 = 2x2k � 1

6) Cubic map:xk+1 = 4x3k � 3xk

7) Bernoulli-shift map:xk+1 =
1:2xk + 1; whenxk < 0

1:2xk � 1; whenxk > 0:
In the simulations, the chaotic sequences are normalized before
transmission. The statistical properties of the normalized sequences
are shown in Table I. Based on the invariant distribution of the logistic
map and the cubic map [15], it is readily shown that the chaotic
sequences generated from these two maps satisfy the statistical prop-
erties assumed in (8), (9), and (19) to (21). Also, due to the shortage
of space, we only present the results in which all chaotic signals are
generated by the same map but with different initial conditions. (For
other related results, please refer to Lau and Tse [14].)

A. MA-CSK System

In the first simulation, the cubic map is used with a spreading factor
of 100. In Fig. 4, the BERs are plotted againstEb=N0 for a three-user
system. It can be seen that both the MAS and the analytical results
are in good agreement with the brute-force (BF) simulated results.
In Fig. 5, we present the BF simulated BERs againstEb=N0 for
the cases corresponding to different choices of chaotic maps. It is
found that the chaotic sequences generated by the Bernoulli-shift
map produce a higher BER, while the BERs of the users using cubic
map and logistic map are the same. One reason is that the value
of var[x2k] is larger for the normalized chaotic sequences generated
from the Bernoulli-shift map compared with that of the cubic map
and logistic map (see Table I).

B. MA-DCSK System

We consider the results for a three-user MA-DCSK system in
which all chaotic sequences are generated from the cubic map with a
spreading factor of 200(� = 100). As shown in Fig. 6, all methods
give consistent results. Next, we compare the BF simulated BERs
for different choices of chaotic maps. Fig. 7 shows the results when

Fig. 4. BER versus in a three-user MA-CSK system. Cubic map is
used and = 100.

Fig. 5. Simulated BER versus in a three-user MA-CSK system.
Cubic map, Bernoulli-shift map and logistic map are used, respectively.
= 100.

Fig. 6. BER versus in a three-user DCSK system. Cubic map is used
and = 100.

Bernoulli-shift map, cubic map and logistic map are used, respec-
tively. It can be observed that using Bernoulli-shift map produces
a higher BER compared with the other two cases. One possible
reason is that the value of var[x2k] is larger for the Bernoulli-shift
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Fig. 7. Simulated BER versus in a three-user DCSK system.
Bernoulli-shift map, cubic map and logistic map are used, respectively.

= 100.

Fig. 8. Analytical BER versus spreading factor(2 ) under different
in a three-user DCSK system. Logistic map is used.

map. Finally, assuming the logistic map is used,we plot the analyt-
ical BER against the spreading factor(2�) under differentEb=N0

for a three-user system. Fig. 8 shows that when the spreading factor
increases initially, the BER improves. After the spreading factor has
reached an optimum value, increasing the spreading factor further
will deteriorate the BER.

V. CONCLUSION

In this paper, two multiple-access techniques for use with CSK and
DCSK under a noisy condition are analyzed thoroughly. An MAS tech-
nique and an analytical method are developed to derive the BERs. The
techniques developed are applicable to other multiple-access schemes.
Finally, the DCSK scheme is known to be suboptimal in the ampli-
tude modulated version. An extension of the present numerical analysis
to the FM-DCSK scheme and the multiple-access FM-DCSK scheme
based on Walsh functions [16] would also be worth studying.
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