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Bifurcation Behavior in Parallel-Connected
Buck Converters

H. H. C. Iu and C. K. Tse

Abstract—This paper describes the bifurcation phenomena of a system
of parallel-connected dc/dc buck converters. The results provide useful in-
formation for the design of stable current sharing in a master–slave config-
uration. Computer simulations are performed to capture the effects of vari-
ation of some chosen parameters on the qualitative behavior of the system.
These are summarized in a series of bifurcation diagrams. In particular, it
is found that while variation of the voltage feedback gains leads to standard
period-doubling bifurcation, variation of the current sharing ratio leads to
border collision bifurcation. Analysis is presented to establish the possi-
bility of the bifurcation phenomena and to locate the current sharing ratio
at which border collision occurs.

Index Terms—Bifurcation, buck converter, parallel dc–dc converter.

I. INTRODUCTION

Paralleling power converters allows high current to be delivered to
loads without the need to employ devices of high power rating. The
main design issue in parallel converters is the control of the sharing
of current among the constituent converters. If a dc/dc converter is re-
garded as a voltage regulator that provides very stiff voltage to a load,
then it is theoretically impossible to put two such converters in parallel
feeding the same load and sharing equal current, unless the two con-
verters are perfectly identical. In practice, mandatory control is needed
to ensure proper current sharing, and many effective control schemes
have been proposed in the past [1]–[4]. One common approach is to em-
ploy an active control scheme to force the current in one converter to
follow that of the other. The essence of this control approach is to mon-
itor the difference of the output currents in two constituent converters
(i.e.,current error) and incorporate this information in the main voltage
control loop. Specifically, for the case of two converters connected in
parallel, one converter simply has a voltage feedback control while the
other has an additional inner current loop that provides the current error
information which is used in turn to “adjust” the voltage feedback loop
to ensure equal sharing of current. Such a scheme is commonly known
as themaster–slavecurrent-sharing scheme [1], [3].

Nonlinear dynamics and bifurcation behavior are important topics of
investigation in power electronics [5]–[12]. As parallel converter sys-
tems gain popularity in power electronics applications, there is a strong
motivation for better understanding of their nonlinear dynamics and bi-
furcation behavior. In this paper, we attempt to probe into some non-
linear phenomena of a system of parallel-connected buck converters
controlled under a master–slave current-sharing scheme.

II. M ASTER–SLAVE CONTROLLED PARALLEL -CONNECTEDDC/DC
CONVERTERS

The system under study consists of two dc/dc converters which are
connected in parallel feeding a common load. The current drawn by
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Fig. 1. Block diagram of parallel-connected dc/dc converters under a
master–slave control.

Fig. 2. Pulse-width modulation (PWM) showing relationship between the
control voltage and the PWM output.

the load is shared properly between the two buck converters by the
action of a master–slave control scheme, as mentioned briefly in the
preceding section. Fig. 1 shows the block diagram of this master–slave
configuration.

Denoting the two converters as Converter 1 and Converter 2 as shown
in Fig. 1, the operation of the system can be described as follows. Both
converters are controlled via a simple pulse-width modulation (PWM)
scheme, in which a control voltagevcon is compared with a sawtooth
signal to generate a pulse-width modulated signal that drives the switch,
as shown in Fig. 2. The sawtooth signal of the PWM generator is given
by

vramp = VL + (VU � VL)
t mod T

T
(1)
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Fig. 3. Two parallel-connected buck converters.

whereVL andVU are the lower and upper voltage limits of the ramp,
andT is the switching period. The PWM output is “high” when the
control voltage is greater thanVramp, and is “low” otherwise.

For Converter 1, the control voltage is derived from a voltage feed-
back loop, i.e.,

vcon1 = Vo�set �Kv1(v � Vref) (2)

where
Vo�set dc offset voltage that gives the steady-state duty cycle;
Vref reference voltage;
Kv1 voltage feedback gain for Converter 1.
For Converter 2, an additional current error signal, which is propor-

tional to the weighted difference of the output currents of the two con-
verters, determines the control voltage. Specifically we write the con-
trol voltage for Converter 2 as

vcon2 = Vo�set �Kv2(v � Vref )�Ki(i2 �mi1) (3)

where
Kv2 voltage feedback gain of Converter 2;
Ki current feedback gain;
m current weighting factor.

Under this scheme, the output current of Converter 2 will follow that of
Converter 1 at a ratio ofm to 1, wherem > 0. Whenm = 1, we expect
equal current sharing. In much of the literature, Converter 1 is referred

to as the “master” which operates independently, and Converter 2 the
“slave” which imitates the master’s current value.

III. STATE EQUATIONS FORTWO PARALLEL BUCK CONVERTERS

The foregoing section defines the essential control scheme that pro-
vides current sharing and output voltage regulation. In this section we
focus on a specific converter type and derive the state equations that
will be needed for subsequent simulation study as well as analysis
of the nonlinear phenomena of parallel-connected converters. Specif-
ically, we will focus on the buck converter which is a second-order
circuit comprising an inductor, a diode, a switch and a load resistance
connected in parallel with a capacitor. Fig. 3 shows two buck converters
connected in parallel. The presence of four switches (S1, S2, D1 and
D2) allows a total of 16 possible switch states, and in each switch state,
the circuit is a linear third-order circuit.

When the converters are operating in continuous conduction mode,
diodeDi is always in complementary state to switchSi, for i = 1; 2.
That is, whenSi is on,Di is off, and vice versa. Hence, only four switch
states are possible during a switching cycle. These are: 1)S1 andS2
are on; 2)S1 is on andS2 is off; 3) S1 is off andS2 is on; and 4)S1
andS2 are off. The state equations corresponding to these switch states
are generally given by

_x =A1x +B1E; for S1 andS2 on

_x =A2x +B2E; for S1 on andS2 off

_x =A3x+B3E; for S1 off andS2 on

_x =A4x+B4E; for S1 andS2 off (4)

whereE is the input voltage,x is the state vector defined as

x = [ v i1 i2 ]
T (5)

and theAs andBs for the case of two buck converters are given by (6)
and (7) as shown at the bottom of the page.

It is worth noting that the sequence of switch states, in general, takes
the order as written in (4), i.e., starting with “S1 andS2 on” and ending
with “S1 andS2 off” in a switching cycle. However, either “S1 onS2
off” or “ S1 off S2 on” (not both) goes in the middle, depending upon
the duty cycles ofS1 andS2. In the case whereS1 has a larger duty
cycle, we should omit the third equation in (4), and likewise for the
case whereS2 has a larger duty cycle. This should be taken care of in
the simulation and analysis.
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TABLE I
COMPONENTVALUES AND STEADY-STATE VOLTAGESUSED IN SIMULATION

Fig. 4. Bifurcation diagram withK as bifurcation parameter (K = 4,
K = 5 andm = 1), first period-doubling occurs whenK = 4:47.

IV. SELECTED BIFURCATION PHENOMENA

BY COMPUTERSIMULATIONS

We now begin our investigation with computer simulations. Since we
are primarily concerned with system stability in conjunction with the
feedback design, we will focus our attention on the effects of varying
the various gains on the bifurcation behavior of the system. In partic-
ular, the gainsKv1, Kv2, Ki andm present themselves as design pa-
rameters that can be changed at will. We will henceforth focus on vari-
ation of these parameters.

Our simulation is based on the exact state equations derived in
Section III. Essentially, for each set of parameter values, time-domain
cycle-by-cycle waveforms are generated by solving the appropriate
linear equation in any sub-interval of time, according to the states of
the switches which are determined from values of the control voltages
vcon1 andvcon2. Sampled data are then collected att = nT in the
steady state. With sufficient number of sets of steady-state data, we can
construct the bifurcation diagrams as required. Our computer program
automatically organizes bifurcation diagrams from time-domain
waveforms. The circuit parameters used in our simulations are shown
in Table I.

A large number of bifurcation diagrams have been obtained. In the
following, only representative bifurcation diagrams are shown, which
serve to exemplify the main findings concerning the bifurcation be-
havior of a system of parallel buck converters under a master–slave
sharing scheme.

A. Voltage Feedback Gains as Bifurcation Parameters

We first keepKv2 constant and varyKv1. The bifurcation diagram,
as shown in Fig. 4, shows repeated period-doublings to chaos. Next, we

Fig. 5. Bifurcation diagram withK as bifurcation parameter (K = 4,
K = 5 andm = 1), first period-doubling occurs whenK = 4:85.

Fig. 6. Bifurcation diagram withK andK as bifurcation parameters
varying simultaneously (K = 5,m = 1).

keepKv1 constant and varyKv2. The bifurcation diagram, as shown
in Fig. 5, again manifests a period-doubling bifurcation. Finally, we
varyKv1 andKv2 simultaneously, and the corresponding bifurcation
diagram is shown in Fig. 6. Again, period-doubling bifurcations are
observed.

Remarks: The occurrence of period-doubling bifurcations gener-
ally agrees with previous findings for the buck converter. Intuitively
speaking, if the two converters were identical, the system would reduce
to a buck converter feeding a load. Thus, we may expect period-dou-
bling to occur in the parallel system when the voltage feedback gain is
varied, as it would occur likewise in a buck converter [7], [10]. We will
present detailed analysis in Section V.

B. Current Gain as Bifurcation Parameter

In studying the bifurcation behavior in respect of current gain vari-
ation, we keepm, Kv1 andKv2 constant, and varyKi. It is found
that the system remains in stable period-1 operation irrespective of the
choice ofKi. BasicallyKi only determines how close the slave fol-
lows the master. The largerKi is, the closer the slave’s output current
is to the master’s.

C. Current-Sharing Ratio as Bifurcation Parameter

Our final computer investigation is performed for variation of the
current sharing ratiom. This time, we fixKv1,Kv2 andKi at suitable
values such that the system is in stable operation. We varym and collect
bifurcation diagrams which look typically like the one shown in Fig. 7.

In this type of bifurcation, the stable operation suddenly gives way
to chaos. The origin of such a bifurcation is the nonsmooth operation
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Fig. 7. Bifurcation diagram with current sharing ratiom as bifurcation
parameter (K = 3:5,K = 3:5,K = 5).

of the system near the bifurcation point, which has been studied ex-
tensively by Nusse, Ott and Yorke [13] who coined such bifurcation as
border collisionbifurcation, and also by Banerjeeet al. [11], [14]. To
probe further into this bifurcation, we examine the time-domain wave-
forms of the control voltagesvcon1 andvcon2 and see how they cross
the ramp in the process of generating the PWM signals.

In normal operation,vcon1 andvcon2 hit the ramp once per switching
cycle as shown in Fig. 8(a), and the corresponding inductor waveforms
are shown in Fig. 8(b). Now, if we increasem and take a close look
at the waveform, we observe the following qualitative change near the
point of border collision bifurcation.

• Before border collision—Whenvcon2 is slightly larger thanVL,
normal operation is maintained, as shown in Fig. 9(a).

• After border collision—Whenvcon2 falls belowVL, it fails to hit
the ramp. Stable operation is lost and the system bifurcates to
chaos. Fig. 9(b) shows the waveform just after the bifurcation.

The above bifurcation, which has not been observed previously for par-
allel converter systems, indicates that stable operation of such systems
require keepingm below a certain value. In Section VI, we will ana-
lyze the condition under which this bifurcation occurs.

V. ANALYSIS OF PERIOD-DOUBLING BIFURCATION

From the foregoing simulation study, we have identified pe-
riod-doubling bifurcation in a system of parallel buck converters
when the voltage feedback gains are varied. We have also seen how
stability suddenly gives way to chaos when the current sharing ratio is
increased. In this and the next sections we analyze these bifurcations
in terms of a suitable discrete-time model [12]. We will first derive
the model, and examine the Jacobian matrix and the way the system
loses stability.

A. Derivation of the Discrete-Time Map

Our purpose in this subsection is to derive a discrete-time map that
describes the dynamics of a system of two buck converters connected
in parallel, as defined earlier in Section III (see Fig. 3), in the neigh-
borhood of theT -periodic steady state. We letx be the state variables
as defined previously, and further letd1 andd2 be the duty cycle of
Converter 1 (master) and Converter 2 (slave), respectively. The dis-
crete-time map that we aim to find takes the following form:

xn+1 = f(xn; d1; n; d2; n) (8)

where subscriptn denotes the value at the beginning of thenth cycle,
i.e.,xn = x(nT ). For the closed-loop system, we need also to find the
feedback equations that related1; n andd2; n to xn.

The state equations are given in (4) for different switch states. The
order in which the system toggles between the switch states depends
ond1 andd2. We will study periodic orbits for whichd2; n > d1; n for
all n as this allows a convenient derivation of the discrete-time model.
In particular, the assumptiond2 > d1 is consistent with our simulation
study sincerL1 has a lower value thanrL2. Note that such an assump-
tion loses no generality.

Recall that ifd2 > d1, the state “S1 on andS2 off” should be
omitted. Hence, we have three switch states. These are as follows.

1) FornT < t � nT + d1; nT , bothS1 andS2 are turned on.
2) FornT + d1; nT < t � nT + d2; nT , S1 is turned off andS2

remains on.
3) FornT + d2; nT < t � (n+ 1)T , bothS1 andS2 are off.

In each switch state, the describing state equation is_x = Ajx+BjE,
wherej = 1; 3; 4. (Note thatj = 2 does not appear here.) For each
state equation, we can derive the solution, and by stacking up the solu-
tions,xn+1 can be expressed in terms ofxn, d1; n andd2; n, i.e.,

xn+1 =�4((1� d2; n)T )�3((d2;n � d1; n)T )�1(d1;nT )xn

+�4((1� d2; n)T )�3((d2;n � d1; n)T )

� (�1(d1;nT )� 1)A�11 B1E + �4((1� d2; n)T )

� (�3((d2;n � d1; n)T )� 1)A�13 B3E

+ (�4((1� d2; n)T )� 1)A�14 B4E (9)

where1 is the unit matrix, and�j(�) is the transition matrix corre-
sponding toAj and is given by

�j(�) = e
A � = 1+

1

k=1

1

k!
A
k
j �

k
; for j = 1; 2; 3; 4: (10)

For parallel-connected buck converters, we letA = A1 = A2 = A3 =
A4 and�(�) = �1(�) = �2(�) = �3(�) = �4(�). Hence, (9) can
be written as

xn+1 =�(T )xn +�(T )A�1B1E + �((1� d1; n)T )A
�1

� (B3 �B1)E +�((1� d2; n)T )A
�1(B4 �B3)

� E �A
�1
B4E: (11)

Our next step is to find the feedback relations that connect the duty
cycles and the state variables. The control voltagesvcon1 andvcon2, as
given before by (2) and (3), can be rewritten as

vcon1 =U1 + �
T
1 x (12)

vcon2 =U2 + �
T
2 x (13)

whereU1 andU2 are constants, and the gain vectors�1 and�2 are

�
T
1 = [�Kv1 0 0 ] and �

T
2 = [�Kv2 Kim �Ki ]:

(14)

The ramp function can also be rewritten simply as

vramp = �+ �(t mod T ) (15)

where � and � are constants. To find the defining equations for
the duty cycles, we first note that the switches are turned off when

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on December 18, 2008 at 21:17 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 2, FEBRUARY 2001 237

Fig. 8. Stable period-1 operation. (a) Control voltages and ramp; (b) inductor currents.

Fig. 9. Control voltage waveforms (a) just before border collision bifurcation (m = 3); and (b) just after border collision bifurcation (m = 3:5).

vcon1 = vramp andvcon2 = vramp. Now, defines1(xn; d1; n) and
s2(xn; d1; n; d2; n) as

s1(xn; d1; n)
def
= vcon1 � vramp

= U1 + �
T
1 x(d1; nT )� (�+ �d1; nT )

= U1 + �
T
1 �(d1;nT )xn + (�(d1;nT )� 1)A�1B1E

� (�+ �d1; nT ) (16)

s2(xn; d1; n; d2; n)
def
= vcon2 � vramp

= U2 + �
T
2 x(d2; nT )� (�+ �d2; nT )

= U2 + �
T
2 �(d2;nT )xn +�(d2;nT )A

�1
B1E

+�((d2;n � d1; n)T )A
�1(B3 �B1)E

�A
�1
B3E � (�+ �d2; nT ): (17)

Thus,S1 andS2 are turned off, respectively, when

s1(xn; d1; n) = 0 (18)

s2(xn; d1; n; d2; n) = 0: (19)

Solving (18) and (19),d1; n and d2; n can be obtained. Combining
with (11), we have the discrete-time iterative map for the closed-loop
system.

B. Derivation of the Jacobian Matrix

The Jacobian matrix plays an important role in the study of dynam-
ical systems [15]. The essence of using a Jacobian matrix in the analysis
of dynamical systems lies in the capture of the dynamics in the small
neighborhood of an equilibrium point or orbit (stable or unstable). We
will make use of this conventional method to examine the bifurcation
phenomena in Section V-C. But before we move on, we need to find the
necessary expressions that enable the Jacobian matrix to be computed.

Suppose the equilibrium point is given byx(nT ) = XQ. The Jaco-
bian of the discrete time map evaluated at the equilibrium point can be
written as follows:

J(XQ) =
@f

@xn
�

@f

@d1; n

@s1

@d1; n

�1

�

@s1

@xn
�

@f

@d2; n

@s2

@d2; n

�1

�

@s2

@xn
+

@s2

@d1; n

@s1

@d1; n

�1
@s1

@xn
x =X

(20)
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where

@f

@xn
=

@f1
@vn

@f1
@i1; n

@f1
@i2; n

@f2
@vn

@f2
@i1; n

@f2
@i2; n

@f3
@vn

@f3
@i1; n

@f3
@i2; n

(21)

@f

@d1; n
=

@f1
@d1; n

@f2
@d1; n

@f3
@d1; n

T

(22)

@s1
@xn

=

@s1
@vn

@s1
@i1; n

@s1
@i2; n

(23)

@f

@d2; n
=

@f1
@d2; n

@f2
@d2; n

@f3
@d2; n

T

(24)

@s2
@xn

=

@s2
@vn

@s2
@i1; n

@s2
@i2; n

: (25)

Using (16), (17) and (11), we can find all the derivatives in (20). First,
@f=@xn can be found from (11), i.e.,

@f

@xn
= �(T ): (26)

Also, direct differentiation gives@f=@d1; n as

@f

@d1; n
= �T�((1� d1; n)T )(B3 �B1)E: (27)

Likewise, we get@f=@d2;n as

@f

@d2; n
= �T�((1� d2; n)T )(B4 �B3)E: (28)

From (16), we obtain@s1=@xn readily as

@s1
@xn

= �T1 �(d1;nT ): (29)

Again, by direct differentiation, we get

@s1
@d1; n

=�T1
@�(d1; nT )

@d1; n
xn

=�T1 (AT�(d1; nT ))xn + �T1 (�(d1;nT )B1T )E � �T

=T�T1 �(d1;nT )(Axn +B1E)� �T (30)

and, from (17), we get

@s2
@xn

= �T2 �(d2;nT ): (31)

Finally, we need to get@s2=@d2; n and@s2=@d1; n. From (17) we have

@s2
@d2; n

=�T2
@�(d2; nT )

@d2; n
xn + �T2

@�(d2; nT )A
�1B1

@d2; n
E

+ �T2
@�((d2;n � d1; n)T )A

�1(B3 �B1)

@d2; n
E � �T

=�T2 (AT�(d2;nT )xn + �T2 (�(d2;nT )B1T )E

+ �T2 �((d2;n � d1; n)T )(B3 �B1)TE � �T

=T�T2 �(d2;nT )(Axn +B1E)

+ T�T2 �((d2;n � d1; n)T )(B3 �B1)E � �T (32)

@s2
@d1; n

=�T2
@�((d2;n � d1; n)T )A

�1(B3 �B1)E

@d1; n

=�T�T2 �((d2;n � d1; n)T )(B3 �B1)E: (33)

Now, putting all the derivatives into (20) gives (34) as shown at the
bottom of the next page. Numerical algorithms can now be developed
for computingJ(XQ) and hence the characteristic multipliers, as will
be shown in the next subsection.

C. Characteristic Multipliers and Period-Doubling Bifurcation

The Jacobian derived in the foregoing subsection provides a means
to evaluate the dynamics of the system. We will, in particular, study
the loci of the characteristic multipliers (also called eigenvalues), the
aim being to find out possible bifurcation scenarios as the voltage feed-
back gains are varied. To find the characteristic multipliers, we solve
the following polynomial equation in�, whose roots actually give the
characteristic multipliers

det [�1� J(XQ)] = 0 (35)

whereJ(XQ) is the Jacobian matrix found previously. We will pay
attention to the movement of the characteristic multipliers asKv1 and
Kv2 are varied. Any crossing from the interior of the unit circle to
the exterior indicates a bifurcation. In particular, if a real characteristic
multiplier goes through�1 as it moves out of the unit circle, a period-
doubling occurs.

Using (34), we can generate loci of characteristic multipliers numer-
ically. Since we are interested here in varyingKv1 andKv2, we keep
m = 1, thereby ensuring that the system is remote from any border
collision due possibly to largem, as we have seen previously in the
simulation. The parameter values of the system are the same in Tables I
and II and in Figs. 4 and 5. To maintain conciseness, we exemplify here
the typical loci in Tables II and III, which are graphically illustrated in
Figs. 10 and 11. Both loci indicate a period-doubling bifurcation asKv1

andKv2 vary. This agrees with our simulation results in Section IV.

VI. A NALYSIS OF BORDERCOLLISION BIFURCATION WITH RESPECT

TO VARIATION OF CURRENT- SHARING RATIO

As observed in the simulation, a border collision bifurcation occurs
whenm increases beyond a certain limit. In this section, we attempt
to analyze this border collision and specifically to find the limit ofm
below which the system maintains stable operation. In the following
study, we assume thatKv1 andKv2 are kept within the stable range
so that the system is remote from any period-doubling bifurcation due
possibly to largeKv1 andKv2.
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TABLE II
CHARACTERISTIC MULTIPLIERS FORDIFFERENTVALUES OFK

TABLE III
CHARACTERISTIC MULTIPLIERS FORDIFFERENTVALUES OFK

Inspection of the locus of the characteristic multipliers reveals that a
sudden “jump” occurs asm increases, which is typical of border colli-
sion bifurcation [11], [13]. Such a bifurcation arises whenvcon1 orvcon2
begins to pass over or under the ramp without hitting it during the whole
switching period. This situation is illustrated in Fig. 12. Asm increases,
the system traverses from one situation wherevcon1 andvcon2 both hit
the ramp, to another wherevcon1 orvcon2 misses the ramp.Such a transi-
tion isnonsmoothat the point wherevcon1 orvcon2 just misses the ramp,
and at this point, border collision bifurcation occurs.

By studying the expressions ofvcon1, vcon2 andvramp, we can es-
timate the critical value ofm, at which border collision takes place.
Ignoring the ripple, we havev � Vref in the steady state. Thus, (2) and
(3) can be approximated by

vcon1(t) �Vo�set (36)

vcon2(t) �Vo�set �Ki[i2(t)�mi1(t)]: (37)

Fig. 10. Locus of characteristic multipliers asK varies. Arrows indicate
increasingK .

Fig. 11. Locus of characteristic multipliers asK varies. Arrows indicate
increasingK .

SinceVo�set is always set betweenVL andVU , vcon1 will always hit
the ramp during a switching cycle. We therefore need only to focus on
vcon2(nT ). As mentioned before, we assume thatd2 > d1 in the
neighborhood ofT periodic s tate. Also, neglecting the middle
period (d2; n � d1; n)T in the T periodic state and assuming

J(XQ) =�(T )�
��((1� d1; n)T )(B3 �B1)E�

T
1 �(d1;nT )

�T
1
�(d1;nT )(Axn +B1E)� �

�

��((1� d2; n)T )(B4 �B3)E �T2 �(d2;nT ) +
��T2 �((d2;n � d1; n)T )(B3 �B1)E�

T
1 �(d1;nT )

�T
1
�(d1;nT )(Axn +B1E)� �

�T
2
�(d2;nT )(Axn +B1E) + �T

2
�((d2;n � d1; n)T )(B3 �B1)E � �

(34)
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Fig. 12. The two possible border collision scenarios.

i2(d1; nT ) � mi1(d1;nT ), and neglecting equivalent-series resistance
(ESR) of inductors, we may expressi1(nT ) andi2(nT ) as

i1(nT ) = i1(d1; nT )�
v

L1

(1� d1; n)T (38)

i2(nT ) = i2(d1; nT )�
v

L2

(1� d1; n)T: (39)

Putting (38) and (39) in (37), we get

vcon2(nT ) = Vo�set �Kiv(1� d1; n)T
m

L1

�

1

L2

: (40)

Now, we may substitute eithervcon2(nT ) = VL or vcon2(nT ) = VU

in (40) to obtain the critical value ofm. In particular, putting
vcon2(nT ) = VL in (40) gives

mcrit =
Vo�set � VL

Kiv(1� d1; n)T
+

1

L2

L1 (41)

wheremcrit is the critical value ofm at whichvcon2 just hitsVL at
t = nT . Furthermore,vcon2(nT ) = VU gives a negative value for
m, which is not possible, thus ruling out the possibility of a border
collision with vcon2 hitting VU .

Using the same set of parameter values and voltages as in Sec-
tion IV-C, we find thatmcrit = 3:0 which agrees very well with the
bifurcation diagram shown in Fig. 7.

The above result clearly illustrates that the current-sharing ratiom in
a master–slave controlled parallel converter system must be kept below
a certain value in order to ensure stable operation.

VII. CONCLUSION

Despite the popularity of parallel converter systems in power
electronics applications, their bifurcation phenomena are rarely
studied. This paper reports some selected bifurcation phenomena in
a parallel system of two buck converters which share current under
a master–slave control scheme. The study of stability is a complex
issue in this type of system [2], [3]. This paper focuses on the effects
of variation of some voltage feedback gains and current sharing
ratio. It has been found that period-doubling bifurcations are possible
when voltage feedback gains are varied, and that a border collision
bifurcation is also possible when the current-sharing ratio is varied.
These results are useful for practical design of parallel converter
systems to ensure stable period-one operation in the expected stable
region.
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