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Anti-Jamming Performance of Chaotic Digital
Communication Systems

F. C. M. Lau, M. Ye, C. K. Tse, and S. F. Hau

Abstract—Among the various modulation schemes proposed for
chaos-based digital communications, chaos-shift keying (CSK) and
differential chaos-shift keying (DCSK) have been most thoroughly
analyzed and considered for practical implementation. One important
aspect of performance of any communication system is the ability to resist
jamming. This area of study, however, is not available in the literature.
In this paper, an analysis of antijamming performance of the coherent
CSK and noncoherent DCSK systems is presented. The study includes
performance analysis for the two types of systems in terms of the bit
error probability under different levels of noise power, jamming power,
jamming frequency and spreading factor. Computer simulations are used
to verify the analytical results.

Index Terms—Anti-jamming, chaos communications, chaos-shift-
keying, differential chaos-shift-keying.

I. INTRODUCTION

In the past decade, chaos-based communication systems have
received a great deal of attention from both the system theory and
communication research communities [1]–[8]. Much of the work has
focused on the basic modulation processes and the noise performance
assuming ideal channel conditions. The ability to resist jamming,
though is an important aspect of performance, has not been thor-
oughly studied. Intuitively, any coherent system, where the receiver
knows or is able to reproduce the chaotic carriers, is expected to be
considerably better in anti-jamming than its noncoherent counterpart.
In chaos-based communication, moreover, coherent systems suffer
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Fig. 1. Block diagram of a chaotic communication system with jamming and
noise added.

serious drawbacks due to the fragility of chaos synchronization
which is the main technique for reproducing the chaotic carriers [9].
Noncoherent systems are practically more favorable although their
noise performance is inherently worse than coherent systems. It is,
therefore, of interest to study thoroughly the antijamming properties
of chaos-based communication systems in order to gain a better under-
standing of how well or poorly, in exact quantitative terms, a practical
noncoherent chaotic communication system performs in comparison
with the theoretically better coherent systems. Our purpose in this
paper is to present an analytical method for evaluating anti-jamming
performance of chaos-based communication systems, specifically
the coherent chaos-shift-keying (CSK) system and the noncoherent
differential chaos-shift-keying (DCSK) system. Analytical bit error
rates (BERs) are derived, permitting evaluation of performance for
a range of noise level, jamming power, jamming frequency and
spreading factor. Results from computer simulations are then used to
verify the analytical findings.

II. SYSTEM OVERVIEW

The basic problem we wish to investigate in this paper is the
performance of chaos-based digital communication systems when the
channel is subject to a strong jamming signal as well as additive white
Gaussian noise. Fig. 1 shows a block diagram of the system under
study. In our analysis, we assume that the jamming signal is a sine
wave of powerPjam and frequencyf , i.e.

sjam(t) = 2Pjam sin(2�ft+ �) (1)

where� is an arbitrary constant phase angle. A sinusoidal jammer is
investigated here because it is one of the most common jamming signals
used and it can be generated easily. Suppose the transmitter output is
s(t). Assuming additive jamming and noise, the signal at the input of
the receiver,r(t), is given by

r(t) = s(t) + sjam(t) + �(t) (2)

where�(t) is the Gaussian noise function. This signal will be used
by the receiver to recover the digital symbols that have been sent to
the transmitter. The method of demodulation depends of the type of
the system under study. Broadly, we may differentiate two types of
systems, namelycoherentandnoncoherentsystems.

In a coherent system, the receiver has the information of the chaotic
signal that carries the information [4]. This is often achieved through
a so-called chaos synchronization process. Thus the detection method
for a coherent system involves a correlation process operated upon the
received signal and the known (reproduced) chaotic signal at the re-
ceiver. Specifically, if a few chaotic signals are used to represent some
digital symbols, the correlation operation is able to differentiate accu-
rately the different chaotic signals. Hence, a threshold detector can be
used to recover the digital symbols. For a noncoherent system, how-
ever, no information about the chaotic signal is known to the receiver
[10], [11]. The modulation scheme is designed such that the transmitter
signal allows information to be recovered by comparing a part of the
signal with another part of it.

Clearly, the coherent system should give better performance if the
receiver is able to regenerate the chaotic signal and hence knows what
the chaotic signal is. However, in practice (at least as known to date),
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(a)

(b)

Fig. 2. Block diagram of a coherent CSK system. (a) Transmitter. (b) Receiver.

there exists no robust and reliable means of reproducing chaotic signals
at the receiving end. Thus noncoherent systems still present practical
and useful alternatives for chaos-based communications. In this paper
we focus on the anti-jamming performance and compare the two types
of systems. Specifically, in the following sections, we will consider
the coherent CSK and the noncoherent DCK systems and attempt to
develop analytical expressions for the bit error rates of the recovered
symbols.

III. A NALYSIS OF ANTI-JAMMING PERFORMANCE

Instead of studying the bandpass system shown in Fig. 1 directly,
we transform the bandpass system to an equivalent baseband model
such that the carrier frequency of the chaotic signal is now zero [12],
[13]. As a consequence, the frequency of the jammer in the bandpass
model is different from its equivalent in the baseband model. Based on
the equivalent model, we attempt to derive the bit error rate using dis-
crete-time analysis. Moreover, the chaotic, jamming and noise signals
are derived from different sources. Thus the assumption that they are
independent of each other, which will be used throughout this paper, is
well justified.

A. Coherent CSK System

We consider a discrete time binary CSK communication system, as
shown in Fig. 2. In the transmitter, a pair of chaotic sequences, denoted
by fx̂kg andf�xkg, are generated by two chaotic maps. If the symbol
“+1” is sent,fx̂kg is transmitted during a bit period, and if “�1” is
sent,f�xkg is transmitted.

For simplicity, we consider a CSK system in which one chaos gener-
ator is used to produce chaotic signal samplesfxkg for k = 1; 2; . . ..
The two possible transmitted sequences arefx̂k = xkg andf�xk =
�xkg. Suppose�l 2 f�1; +1g is the symbol to be sent during thelth
bit period and assume that “�1” and “+1” occur with equal probabili-
ties. Define the spreading factor,2�, as the number of chaotic samples
used to transmit one binary symbol. During thelth bit duration, i.e., for
time k = 2(l � 1)� + 1, 2(l � 1)� + 2; . . . ; 2l�, the output of the
transmitter is

sk = �lxk: (3)

In the following analysis, we assume that a jamming signal of power
Pjam and frequencyf is added to the transmitted signal in the channel.

At the same time, white Gaussian noise is also added. The “jammed”
noisy signal arriving at the receiver, denoted byrk, is given by

rk = sk + 2Pjam sin 2�k
F

2�
+ � + �k (4)

whereF is the normalized jamming frequency defined as

F = fTb (5)

andTb represents the bit duration, and� is the initial phase angle of
the jamming signal and is assumed to be an arbitrary constant angle
selected from[��; �]. �k is a Gaussian noise sample of zero mean
and variance (power spectral density)N0=2. We will first consider the
lth bit before deriving the error probability over all transmitted bits.

Assuming that a correlator-type receiver is employed, the correlator
output for thelth bit yl is given by

yl =

2�l

k=2�(l�1)+1

rkxk

= �l

2�l

k=2�(l�1)+1

x2k

required signal

+ 2Pjam

2�l

k=2�(l�1)+1

xk sin
k�F

�
+�

jamming signal

+

2�l

k=2�(l�1)+1

�kxk

noise

: (6)

Suppose a “+1” is transmitted for thelth symbol, i.e.,�l = +1. For
simplicity we writeyl j (�l = +1) as

yl j (�l = +1) = A+B + C (7)

whereA, B, andC are the required signal, jamming signal and noise,
respectively, and are defined as

A =

2�l

k=2�(l�1)+1

x2k (8)

B = 2Pjam

2�l

k=2�(l�1)+1

xk sin
k�F

�
+ � (9)

C =

2�l

k=2�(l�1)+1

�kxk: (10)

The mean ofyl j (�l = +1) is

E[yl j (�l = +1)]

= E[A] + E[B] + E[C]

= E

2�l

k=2�(l�1)+1

x2k

+E 2Pjam

2�l

k=2�(l�1)+1

xk sin
k�F

�
+�

+ E

2�l

k=2�(l�1)+1

�kxk

=

2�l

k=2�(l�1)+1

E[x2k] + 2Pjam

2�l

k=2�(l�1)+1

E[xk]

� E sin
k�F

�
+ � +

2�l

k=2�(l�1)+1

E[�k]E[xk]

= 2�Ps + 2� 2PjamE[xk]E sin
k�F

�
+ � (11)
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wherePs = E[x2k] denotes the average power of the chaotic signal. The
last equality holds becauseE[�k] = 0. The variance ofyl j (�l = +1)
is

var[ylj(�l = +1)] = var[A] + var[B] + var[C] + 2cov[A;B]

+2cov[B; C] + 2cov[A; C] (12)

wherecov[X; Y ] is the covariance betweenX andY defined as

cov[X; Y ] = E[XY ]� E[X]E[Y ]: (13)

It can be readily shown that bothcov[A; C] andcov[B; C] are zero.
Hence, (12) is simplified to

var[yl j (�l= +1)]= var[A]+var[B]+var[C]+2cov[A; B]: (14)

The average power of the chaotic signal, denoted byPs, can be
computed by numerical simulation, or by numerical integration if the
probability density function (pdf) offxkg is available. The second
term on the right hand side of (11), and the variance and covariance
terms in (14) can also be computed by numerical simulation. Hence,
E[yl j (�l = +1)] andvar[yl j (�l = +1)] can be evaluated.

For thelth symbol, an error occurs whenyl � 0 j (�l = +1). Since
yl j (�l = +1) is the sum of a large number of random variables, we
may assume that it follows a normal distribution. The error probability
is thus given by

Prob(yl � 0 j (�l = +1))=
1

2
erfc

E[yl j (�l= +1)]

2var[yl j (�l= +1)]

(15)

where the complementary error function,erfc(:), is defined as

erfc( ) � 2p
�

1

 

e�� d�: (16)

Similarly, when a “�1” is sent, the output of the correlator can be
shown equal to

yl j (�l= �1) = �A+B + C: (17)

Likewise, the mean and variance ofyl j (�l = �1), denoted by
E[yl j (�l= �1)] andvar[yl j (�l= �1)], can be derived, i.e.

E[yl j (�l= �1)]=�2�Ps + 2� 2Pjam E[xk]

� E sin
k�F

�
+� (18)

var[yl j (�l= �1)]= var[A] + var[B] + var[C]�2cov[A; B]

(19)

whereA, B, andC are defined in (8)–(10). The corresponding error
probability is

Prob(yl>0 j (�l= �1))= 1

2
erfc

�E[yl j (�l= �1)]
2var[yl j (�l= �1)] :

(20)

Hence, the error probability of thelth transmitted symbol is

BER
(l)
CSK =Prob(�l = 1)� Prob(yl � 0 j�l = 1)

+ Prob(�l = �1)� Prob(yl > 0 j�l = �1)

=
1

4
erfc

E[yl j (�l = +1)]

2var[yl j (�l = +1)]

+ erfc
�E[yl j (�l= �1)]
2var[yl j (�l= �1)] : (21)

SinceE[yl j (�l = +1)], var[yl j (�l = +1)], E[yl j (�l = �1)]
andvar[yl j (�l = �1)] [given by (11), (14), (18) and (19) respec-
tively] are all independent ofl,BER(l)

CSK is also independent ofl. Thus
the bit error probability of thelth transmitted symbol is the same as
the bit error rate (BER) of the whole system. The BER of the noisy
CSK system under the influence of a sinusoidal jammer, denoted by
BERCSK, is therefore

BERCSK =BER
(l)
CSK

=
1

4
erfc

E[yl j (�l = +1)]

2var[yl j (�l = +1)]

+ erfc
�E[yl j (�l= �1)]
2var[yl j (�l= �1)] : (22)

Hence, (11), (14), (18) and (19) can be computed and substituted into
(22) to obtain the BER of the system.

Further simplifications of the equations are possible if we make some
assumptions.

1) The mean value offxkg is zero. This is a reasonable assumption
because it is a waste of power to send any noninformation-bearing dc
component through the channel. Any dc component generated by the
chaos generator can be removed artificially before transmission.

2) fxkg has a vanishing autovariance function. This can be proved
to be true for some chaotic sequences.

3) fx2kg has a vanishing autocovariance function.
4) The normalized frequencyF is an irrational number because

the jamming signal and the chaotic signals are derived from different
sources which are not synchronized. Therefore, we can assume that
the sampled sinusoidal signalsin((k�F=�) + �) is not periodic.

From the above assumptions, we have

E[xk] = 0 (23)

cov[xj ; xk] = E[xjxk]�E[xj]E[xk] = 0 for j 6= k (24)

cov[x2j ; x
2
k] = E[x2jx

2
k]�E[x2j ]E[x

2
k] = 0 for j 6= k (25)

E sin
k�F

�
+ � =0: (26)

Thus (11) and (18) are simplified to

E[yl j (�l = +1)] = 2�Ps (27)

E[yl j (�l= �1)] =�2�Ps (28)

and the variances of the variablesA, B andC, and the covariance be-
tweenA andB are given by

var[A] = 2�� (29)

var[B] = 2�PjamPs (30)

var[C] =�N0Ps (31)

cov[A; B] = 0 (32)

where� is the variance offx2kg, i.e.,

� = var[x2k]: (33)

Hence, both (14) and (19) are given by

var[yl j (�l = +1)] =var[yl j (�l= �1)]
= 2��+ 2�PjamPs + �N0Ps

=�(2�+ 2PjamPs +N0Ps): (34)
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Note that the larger the signal powerPs, the larger the variance of the
correlator outputyl. Substituting (27), (28) and (34) into (22), the BER
can be found as

BERCSK =
1

2
erfc

2�Ps

2�(2� + 2PjamPs +N0Ps)

=
1

2
erfc

1

�

�P
+

P

�P
+ N

2�P

(35)

=
1

2
erfc

1

E

4��

�1

+ E

2P

�1

+ E

N

�1
(36)

whereEb = 2�Ps denotes the average bit energy. The expressions
given in (35) and (36) are thus the analytical bit error rate (BER) for
the jammed noisy coherent CSK system. Note that for fixed jamming
powerPjam and noise power spectral densityN0=2, the BER can be
improved by making one or more of the following adjustments.

1) reduce the variance offx2kg;
2) increase the spreading factor2�;
3) increase the signal powerPs.

When the jamming power is zero, i.e.,Pjam = 0, it can be readily
shown that the bit error rate reduces to

BERCSK j (Pjam = 0) =
1

2
erfc

1

�

�P
+ N

2�P

(37)

=
1

2
erfc

1

E

4��

�1

+ E

N

�1
: (38)

Note that in the derivation of the BER, it has been assumed that an
exact reference is available in the receiver. While the re-construction of
the exact reference at the receiver, especially in the presence of noise
and jamming, remains an unsolved problem at present, the BER derived
can nonetheless provide performance benchmarks for evaluating other
chaotic modulation/demodulation techniques under similar jamming
conditions.

Example: Consider the case where a logistic map is used for chaos
generation. The form of the map is

xk+1 = g(xk) = 1� 2x2k (39)

and the invariant probability density function (pdf) offxkg, denoted
by �(x), is [14]

�(x) =

1

�
p
1� x2

; if jxj < 1

0; otherwise.
(40)

It can be shown easily that the mean value offxkg is zero andfxkg has
a vanishing autovariance function. Also, it is proved in the Appendix
that the autovariance forfx2kg is vanishing for the logistic map. In other
words, the first three assumptions made earlier are justified. Also, we
have

Ps =E[x2k]=
1

�1

x2�(x) dx =
1

�1

x2�(x) dx =
1

2
(41)

� =var[x2k]=E[x4k]� E2[x2k]=
1

�1

x4�(x) dx� 1

4
=

1

8
: (42)

Fig. 3. Block diagram of a noncoherent DCSK system: (a) transmitter; (b)
receiver.

For the case where the logistic map is used to generate the chaotic
samples, we substitute (41) and (42) into (35) to obtain the BER, i.e.

BERCSK =
1

2
erfc

2�

1 + 4Pjam + 2N0

: (43)

B. Noncoherent DCSK System

In this section, we consider the DCSK system. The basic modula-
tion process involves dividing the bit period into two equal slots. The
first slot carries a reference chaotic signal, and the second slot bears
the information. For a binary system, the second slot is the same copy
or an inverted copy of the first slot depending upon the symbol sent
being “+1” or “�1.” This structural arrangement allows the detection
to be done in a noncoherent manner requiring no reproduction of the
same chaotic carrying signals at the receiver. Essentially, the detection
of a DCSK signal can be accomplished by correlating the first and the
second slots of the same symbol and comparing the correlator output
with a threshold. Fig. 3 shows the block diagrams of a DCSK trans-
mitter and receiver pair.

As in the previous case, we assume that the signal is jammed addi-
tively by a sine wave of powerPjam and normalized frequencyF . In
addition, the received signal contains additive white Gaussian noise.
Using the same notations and functions as defined in Section III-A, the
signal transmitted in thelth bit can be written as

sk =

xk; for k = 2�(l� 1) + 1; 2�(l� 1) + 2; . . . ;

2�(l� 1) + �

�lxk�� ; for k = 2�(l� 1) + � + 1;

2�(l� 1) + � + 2; . . . ; 2�l

(44)

where�l takes on the values of�1 according to the bit being sent. The
noisy jammed signal,rk, within a bit duration is given by

rk = sk + 2Pjam sin
k�F

�
+ � + �k (45)

where the symbolsF , � and �k are as defined previously in Sec-
tion III-A.
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At the receiver, the detector essentially calculates the correlation of
the reference and data slots of the same symbol. We consider the output
of the correlator for thelth received bit,yl, which is given by

yl =

2�(l�1)+�

k=2�(l�1)+1

rkrk+�

=

2�(l�1)+�

k=2�(l�1)+1

xk + 2Pjam sin
k�F

�
+ � + �k

� �lxk + 2Pjam sin
(k + �)�F

�
+ � + �k+�

=�l

2�(l�1)+�

k=2�(l�1)+1

x2k + 2Pjam

2�(l�1)+�

k=2�(l�1)+1

xk

� sin
(k + �)�F

�
+ � + �l sin

k�F

�
+ �

+ 2Pjam

2�(l�1)+�

k=2�(l�1)+1

sin
(k + �)�F

�
+ �

� sin
k�F

�
+ � +

2�(l�1)+�

k=2�(l�1)+1

xk(�k+� + �l�k)

+ 2Pjam

2�(l�1)+�

k=2�(l�1)+1

�k+� sin
k�F

�
+ �

+�k sin
(k + �)�F

�
+ �

+

2�(l�1)+�

k=2�(l�1)+1

�k�k+�: (46)

Define

A =

2�(l�1)+�

k=2�(l�1)+1

x2k (47)

B =2 2Pjam cos
�F

2

2�(l�1)+�

k=2�(l�1)+1

xk

� sin
k�F

�
+
�F

2
+ � (48)

B0 =2 2Pjam sin
�F

2

2�(l�1)+�

k=2�(l�1)+1

xk

� cos
k�F

�
+
�F

2
+ � (49)

C =�Pjam cos(�F ) (50)

D =
�Pjam sin(�F )

sin(�F=�)
cos 4l�F�2�F+

�F

�
+ 2� (51)

G =

2�(l�1)+�

k=2�(l�1)+1

xk�k+� (52)

H =

2�(l�1)+�

k=2�(l�1)+1

xk�k (53)

J = 2Pjam

2�(l�1)+�

k=2�(l�1)+1

sin
k�F

�
+ � �k+� (54)

K = 2Pjam

2�(l�1)+�

k=2�(l�1)+1

sin
(k + �)�F

�
+ � �k (55)

L =

2�(l�1)+�

k=2�(l�1)+1

�k�k+�: (56)

Using (47)–(56), it can be easily shown that when�l = +1 and�l=
�1, (46) becomes, respectively

yl j (�l= +1)

= A

required signal

+ B + C +D

jamming signal

+G+H + J +K + L

noise

(57)

yl j (�l= �1)

= �A

required signal

+B0 + C +D

jamming signal

+G�H + J +K + L

noise

: (58)

Similar to the case of CSK, the means and variances ofyl given a
“+1” or “�1” is sent can be evaluated by numerical simulations. De-
note the respective means and variances byE[yl j (�l = �1)] and
var[yl j (�l = �1)]. As yl j (�l = �1) is the sum of a large number
of random variables, we assume that it is normally distributed. Hence,
the approximated error probability of thelth transmitted bit is

BER
(l)
DCSK =Prob(�l = 1)� Prob(yl � 0 j (�l = +1))

+ Prob(�l = �1)� Prob(yl > 0 j (�l = �1))

=
1

4
erfc

E[yl j (�l = +1)]

2var[yl j (�l = +1)]

+ erfc
�E[yl j (�l= �1)]

2var[yl j (�l= �1)]
: (59)

Note that the approximation gets better with a larger spreading factor.
To simplify the analysis, we make similar assumptions as in Sec-

tion III-A, i.e.:

1) the mean value offxkg is zero;
2) fxkg has a vanishing autovariance function;
3) fx2kg has a vanishing autovariance function;
4) the normalized frequencyF is an irrational number.

With these assumptions, it can be shown that

E[yl j (�l = +1)]

= E[A] + E[B] + E[C] + E[D] + E[G]

+ E[H] + E[J ] + E[K] + E[L] (60)

E[yl j (�l= �1)]

= �E[A] + E[B0] + E[C] + E[D] + E[G]

� E[H] + E[J ] + E[K] + E[L] (61)

var[yl j (�l= +1)]

� var[A] + var[B] + var[C] + var[D] + var[G]

+ var[H] + var[J ] + var[K] + var[L] (62)

var[yl j (�l= �1)]

� var[A] + var[B0] + var[C] + var[D] + var[G]

+ var[H] + var[J ] + var[K] + var[L]: (63)
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Moreover, it can be shown readily that the relevant means and variances
are

E[A] = �E[x2k] � �Ps var[A] = �var[x2k] � ��

E[B] = 0 var[B] = 4�PsPjam

� cos2
�F

2
E[B0] = 0 var[B0] = 4�PsPjam

� sin2
�F

2
E[C] = �Pjam cos(�F ) var[C] = 0

E[D] =
�Pjam sin(�F )

sin(�F=�)

� cos 4l�F�2�F+
�F

�
+2� var[D] = 0

E[G] = 0 var[G] = �PsN0=2

E[H] = 0 var[H] = �PsN0=2

E[J ] = 0 var[J ] = �PjamN0=2

E[K] = 0 var[K] = �PjamN0=2

E[L] = 0 var[L] = �N2
0=4:

(64)
Substituting (64) into (60)–(63), we obtain

E[yl j (�l = +1)] =�Ps + �Pjam cos(�F )� Pjam sin(�F )

sin(�F=�)

� cos 4l�F � 2�F +
�F

�
+ 2� (65)

E[yl j (�l= �1)] =��Ps + �Pjam cos(�F )� Pjam sin(�F )

sin(�F=�)

� cos 4l�F � 2�F +
�F

�
+ 2� (66)

var[yl j (�l = +1)] ���+ 4�PsPjam cos2
�F

2
+ �PsN0

+ �PjamN0 +
�N2

0

4
(67)

var[yl j (�l= �1)] ���+ 4�PsPjam sin2
�F

2
+ �PsN0

+ �PjamN0 +
�N2

0

4
: (68)

Also, (59) now becomes (69) as shown at the bottom of the page. The
average error rate over all transmitted bits is thus

BERDCSK = lim
N !1

1

Ns

N

l=1

BER
(l)
DCSK: (70)

In (69), only the termcos(4l�F � 2�F +(�F=�)+ 2�) is a function
of l. Moreover, it has been assumed thatF is irrational. Therefore,
asl varies,4l�F and hence(4l�F � 2�F + (�F=�) + 2�) will be
uniformly distributed in[��; +�]. Denoting4l�F�2�F+(�F=�)+
2� by 
, (70) can be rewritten as

BERDCSK =
+�

��

BER
(l)
DCSK �(
)d
 (71)

where�(
) = 1=2� is the pdf of
. DefineW = cos 
. The pdf of
W , denoted as�(W ), is

�(W ) =

1

�
p
1�W 2

; for jW j � 1

0; otherwise.
(72)

Thus (71) becomes (73) and (74), as shown at the bottom of the page,
whereEb = 2�Ps denotes the average bit energy. The expressions
given in (73) and (74) are thus the analytical BER for the jammed
noisy DCSK system. Note that for fixed jamming powerPjam and noise
power spectral densityN0=2, the BER can be reduced by making one
or a combination of the following adjustments:

1) reduce the variance offx2kg;
2) increase the signal powerPs.

In each of the complimentary error functions in (73) and (74), the de-
nominator increases with�. However, in the numerator, the variation
of the terms�Pjam cos(�F ) and(Pjam sin(�F )= sin(�F=�))W with
� cannot be observed easily. Therefore, the overall effect of� on the
BER performance cannot be determined simply by observing (73) or
(74).

BER
(l)
DCSK =

1

4
erfc

�Ps + �Pjam cos(�F )� P sin(�F )

sin(�F=�)
cos 4l�F � 2�F + �F

�
+ 2�

2��+ 8�PsPjam cos2 �F
2

+ 2�PsN0 + 2�PjamN0 +
�N

2

+erfc
�Ps � �Pjam cos(�F ) +

P sin(�F )

sin(�F=�)
cos 4l�F � 2�F + �F

�
+ 2�

2��+ 8�PsPjam sin2 �F
2

+ 2�PsN0 + 2�PjamN0 +
�N

2

(69)

BERDCSK =
+1

�1

BER
(l)
DCSK �(W )dW

=
1

4

+1

�1

erfc
�Ps + �Pjam cos(�F )� P sin(�F )

sin(�F=�)
W

2��+ 8�PsPjam cos2 �F
2

+ 2�PsN0 + 2�PjamN0 +
�N

2

+erfc
�Ps � �Pjam cos(�F ) +

P sin(�F )

sin(�F=�)
W

2��+ 8�PsPjam sin2 �F
2

+ 2�PsN0 + 2�PjamN0 +
�N

2

� 1

�
p
1�W 2

dW (73)

=
1

4

+1

�1

erfc

E
2

+ �Pjam cos(�F )� P sin(�F )

sin(�F=�)
W

2��+ 4EbPjam cos2 �F
2

+EbN0 + 2�PjamN0 +
�N

2

+erfc

E
2
� �Pjam cos(�F ) +

P sin(�F )

sin(�F=�)
W

2��+ 4EbPjam sin2 �F
2

+ EbN0 + 2�PjamN0 +
�N

2

� 1

�
p
1�W 2

dW (74)
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(a) (b)

(c) (d)

Fig. 4. BER of the coherent CSK system. Simulated BERs are plotted as points and analytical BERs plotted as lines. (a) BER versus averageE =N . Jamming
levelP =P is�6.02,�9.54 and�12.04 dB. Spreading factor is 200. Normalized jamming frequency is 3.127 35. (b) BER versusP =P . AverageE =N
is 5, 8, and 15 dB. Spreading factor is 200. Normalized jamming frequency is 3.127 35. (c) BER versus the jamming frequency. AverageE =N is 5, 8, and 10 dB.
Jamming levelP =P is�9.54 dB. Spreading factor is 200. (d) BER versus the spreading factor. AverageE =N is 5, 10, and 15 dB. Jamming levelP =P
is �12.04 dB.

Moreover, when the jamming power is zero, i.e.,Pjam = 0, it can
be readily shown that the bit error rate reduces to

BERDCSK j (Pjam = 0)

=
1

2
erfc

1

2�
�P

+ 2N
�P

+
N

2�P

(75)

=
1

2
erfc

1

E

8��

�1

+ 4 E
N

�1

+ 2� E
N

�2
: (76)

Example: Consider the case where the logistic map (39) in Sec-
tion III-A is used for generating the chaotic sequence. Putting (41) and
(42) in (73) gives (77) as shown at the bottom of the page.

IV. COMPUTERSIMULATIONS AND DISCUSSIONS

A. Simulation Results

In this subsection the anti-jamming performances of the coherent
CSK system and the noncoherent DCSK system are studied by com-
puter simulations. The logistic map described in Section III-A has been
used to generate the chaotic sequences in both cases. In particular the
following aspects of performance are relevant:

• BER versus the average ratio of the bit energy to noise spectral
density (Eb=N0) in the presence of a jamming signal;

• BER versus the ratio of the signal power to the jamming signal
power (Ps=Pjam) for constantEb=N0;

• BER versus the normalized jamming frequency defined in (5);
• BER versus the spreading factor.

The relevant simulated BERs for the coherent CSK system are shown
in Fig. 4, and that for the noncoherent DCSK system is shown in Fig. 5.

BERDCSK =
1

4

+1

�1

erfc

�
2
+ �Pjam cos(�F )� P sin(�F )

sin(�F=�)
W

�
4
+ 4�Pjam cos2 �F

2
+ �N0 + 2�PjamN0 +

�N

2

+erfc

�
2
� �Pjam cos(�F ) +

P sin(�F )

sin(�F=�)
W

�
4
+ 4�Pjam sin2 �F

2
+ �N0 + 2�PjamN0 +

�N

2

1

�
p
1�W 2

dW (77)
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(a) (b)

(c) (d)

Fig. 5. BER of the noncoherent DCSK system. Simulated BERs are plotted as points and analytical BERs plotted as lines. (a) BER versus averageE =N .
Jamming levelP =P is 0.92, 1.4 and 3.1 dB. Spreading factor is 200. Normalized jamming frequency is 3.828 734. (b) BER versusP =P . AverageE =N
is 15, 18 and 20 dB. Spreading factor is 200. Normalized jamming frequency is 3.828 734. (c) BER versus the normalized jamming frequency. AverageE =N is
18 dB.P =P is 3.1 dB. Spreading factor is 200. (d) BER versus the spreading factor. AverageE =N is 13, 15, 18, 20 and 23 dB. Jamming levelP =P
is 1.4 dB. Normalized jamming frequency is 3.828 734.

In all cases, we plot also the analytical BERs obtained from the expres-
sions derived in Sections III-A and III-B. From the figures, the consis-
tency between the analytical BERs and the simulated BERs is clearly
evidenced.

B. Discussions

Our analyses and simulations have consistently shown that the co-
herent CSK system generally performs better than the noncoherent
DCSK system in the presence of sinusoidal jamming signals. On the
other hand, it must be noted that the assumption a clean reference being
available at the CSK receiver is still not fulfilled using the existing
synchronization approaches. Several other interesting observations are
worth noting.

1) As expected, the BER generally decreases (improves) as the av-
erageEb=N0 increases and the jamming power decreases.

2) For the coherent CSK system, the jamming frequency has little
effect on the BER, whereas for the noncoherent DCSK system, BER
experiences maxima and minima as the jamming frequency varies. In
particular, the noncoherent DCSK system is most severely affected
when the jamming frequency is an integer multiple of the bit frequency
(1=Tb). This effect can be attributed to the inherent bit structure of
DCSK which splits one bit duration into two slots. If the jamming fre-
quency is an integer multiple of the bit frequency, then for each bit,
the two slots will be superposed by two identical sinusoidal signal seg-
ments (may differ by a factor “�1”), giving a high correlation of the

two slots, regardless of what digital message is sent. This strongly bi-
ases the correlator output and causes great error in the recovered mes-
sage.

3) In general, a larger spreading factor improves the anti-jamming
performance of the coherent CSK system, while no significant differ-
ence in performance is observed in the noncoherent DCSK system as
the spreading factor varies. This effect can be explained as follows. In
the coherent CSK system, higher the spreading factor, more accurate is
the information provided by the correlator regarding the message iden-
tity, irrespective of the presence of a jamming signal. This is because
the receiver is assumed to be able to regenerate a clean synchronized
replica of the chaotic samples. However, for the noncoherent DCSK
system, increasing the spreading factor does not necessarily improve
performance because noise and/or jamming signal is equally admitted
in both the reference and the information-bearing half bits.

V. CONCLUSION

Chaos-based communication has aroused considerable interest in the
past few years both in physics and engineering research communities.
Noise performance has been studied for many different types of sys-
tems. Rarely studied but certainly of interest is the antijamming capa-
bility of these systems. This paper attempts to fill this gap by presenting
an analysis of the antijamming performance of two typical chaos-based
digital communication systems. The specific systems studied are the
coherent chaos-shift-keying system and the noncoherent differential
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chaos-shift-keying system. Closed-form analytical expressions for the
bit error probabilities are obtained and compared with simulation re-
sults. From these results, useful design data for chaos-based digital
communication systems can be obtained. Finally, it would be inter-
esting to compare the antijamming capability of chaotic systems with
traditional spread-spectrum communication systems, which will prob-
ably lead to further publications. From the authors’ point of view, com-
pared with traditional spread-spectrum systems which use coherent de-
tection, noncoherent chaotic systems such as DCSK will be less favor-
able, whereas coherent CSK systems should provide comparable per-
formance.

APPENDIX

AUTOVARIANCE FUNCTION OFfx2kg FOR THELOGISTIC MAP

The autovariance offx2kg is given by

cov[x2j ; x
2

k] = E[x2jx
2

k]� E[x2j ]E[x
2

k]: (78)

We consider the case wherej 6= k. Without loss of generality, assume
k = j + n for some positive integern

E[x2jx
2

k] =
1

�1

�(x)x2 g
(n)(x)

2

dx

=
1

�1

1

�
p
1� x2

x
2

g
(n)(x)

2

dx (79)

where �(x) denotes the invariant probability density function of
xj ; g(2)(x) = g(g(x)), g(3)(x) = g(g(2)(x)); . . . ; g(n)(x) =
g(g(n�1)(x)) andg(x) = 1 � 2x2 for the logistic map under study.
Making the substitutionx = cos�, (79) becomes

E[x2jx
2
k] =

0

�

1

� sin�
cos2 � g

(n)(cos�)
2

(� sin�) d�

=
1

�

�

0

cos2 � g
(n)(cos�)

2

d�: (80)

Applying the formula1 � 2 cos2 � = � cos 2� to g(i)(cos�) (i =
1; 2; . . . ; n � 1) repeatedly, we have

g(cos�) = 1� 2 cos2 � = � cos 2�

g
(2)(cos�) = g(g(cos�)) = g(� cos 2�)

= 1� 2 cos2(2�) = � cos(22�)

g
(3)(cos�) = g g

(2)(cos�) = g(� cos(22�))

= 1� 2 cos2(22�) = � cos(23�)

... =
...

g
(n)(cos�) = g g

(n�1)(cos�) = g(� cos(2n�1�))

= 1� 2 cos2(2n�1�) = � cos(2n�): (81)

Substituting (81) into (80), we obtain

E[x2jx
2
k] =

1

�

�

0

cos2 � cos2(2n�)d�

=
1

�

�

0

1 + cos 2�

2

1 + cos(2n+1�)

2
d�

=
1

4�

�

0

1+cos 2�+cos(2n+1�) +
1

2
cos((2n+1+2)�)

+1
2
cos((2n+1�2)�) d�

=
1

4�
�+

1

2
sin 2�+

1

2n+1
sin(2n+1�)

+
1

2n+2 + 4
sin((2n+1 + 2)�)

+
1

2n+2 � 4
sin((2n+1 � 2)�)

�

0

=
1

4
: (82)

Similarly it is readily shown that

E[x2j ] = E[x2k] =
1

�1

�(x)x2 dx =
1

�1

1

�
p
1� x2

x
2
dx =

1

2
:

(83)

Putting (82) and (83) into (78), it is proved that the autovariance for
fx2kg is vanishing for the logistic map.
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