
A Hybrid Algorithm for the Single-machine Total
Tardiness Problem

T. C. E. Cheng a, A. A. Lazarev b c, E. R. Gafarov d

a Department of Logistics, The Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong. Email: lgtcheng@polyu.edu.hk

b Corresponding author. Computing Centre of the Russian Academy of Sci-
ences, Vavilov st. 40, 119333 Moscow GSP-1, Russia. Tel, fax: +007 495 1356238.
Email: alaz@ccas.ru, jobmath@mail.ru

c Partially supported by DAAD (Deutsche Akademische Austauschdienst):
A0206237/Ref. 325 and by Russian funding support of scientific school N -
5833.2006.1

d Computing Centre of the Russian Academy of Sciences, Vavilov st. 40, 119333
Moscow GSP-1, Russia. Tel, fax: +007 495 1356238. Email: axel73@mail.ru

Abstract

We propose a hybrid algorithm based on the Ant Colony Opti-
mization (ACO) meta-heuristic, in conjunction with four well-known
elimination rules, to tackle the NP -hard single-machine scheduling
problem to minimize the total job tardiness. The hybrid algorithm
has the same running time as that of ACO. We conducted extensive
computational experiments to test the performance of the hybrid al-
gorithm and ACO. The computational results show that the hybrid
algorithm can produce optimal or near-optimal solutions quickly, and
its performance compares favourably with that of ACO for handling
standard instances of the problem.

Keywords: Scheduling, Meta-heuristics

Introduction
We are given a set N of n independent jobs that must be processed on a
single machine. Preemption of the jobs is not allowed. The machine can
handle only one job at a time. All the jobs are assumed to be available for
processing at time 0. For each job j, j ∈ N , a processing time pj > 0 and a
due date dj are given. A schedule π is uniquely determined by a permutation
of the elements of N . Define Tj(π) = max{0, cj(π)− dj} as the tardiness of
job j under schedule π, where cj(π) is the completion time of job j under

1

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61005757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

schedule π. We seek to find an optimal schedule π∗ that minimizes the total
job tardiness, i.e., F (π) =

∑n
j=1 Tj(π). The problem is denoted by 1||∑ Tj

and is known to be NP -hard in the ordinary sense [1]. Lawler [2] presented an
O(n4

∑
pj) time dynamic programming algorithm for the problem. Szwarc et

al. [3, 4] designed enumeration algorithms to handle the special instances of
the problem discussed in [5] for n ≤ 500. It was shown in [6] that all known
constructive and decomposition heuristics for non-paradoxical instances of
the problem can yield arbitrarily bad approximation ratios.

In this paper we propose a hybrid algorithm based on the Ant Colony
Optimization (ACO) meta-heuristic by Bauer et al. [7], in conjunction with
the four well-known Elimination Rules 1-4 for 1||∑ Tj introduced in [4, 8,
9]. We conducted comprehensive computational experiments to compare the
performance of the hybrid algorithm and ACO with respect to the following
measures: percentage of time that an optimal solution is found, relative error
of the solution found, and number of iterations needed to find an optimal
solution, where one ant in ACO is equivalent to one iteration of the solution
procedure. We tested both algorithms using three special cases of 1||∑ Tj,
namely the special instances of Potts and van Wassenhove [5], the case B-1
of Lazarev [8], and the canonical instances of Du and Leung [1].

The paper is organized as follows. We introduce in the next section Elim-
ination Rules 1-4, and an exact algorithm that solves the problem optimally.
In the following section, we present the ACO algorithm. We then discuss our
hybrid algorithm, and present the results of the computational experiments
in Sections 3-6. We conclude the findings in the final section.

1 An exact solution algorithm
Without loss of generality, let d1 ≤ d2 ≤ . . . ≤ dn; if dk = dk+1 then pk ≤
pk+1. In other words, the jobs are first sequenced in the earliest due date
(EDD) order, and if there is a tie, then the jobs are sequenced in the shortest
processing time (SPT) order, i.e., for jobs that have the same due dates, they
are sequenced in nondecreasing order of their processing times.

We denote by I = 〈{pj, dj}j∈N , t〉 an instance of the problem 1||∑ Tj

with the job set N and parameters {pj, dj}j∈N that must be processed from
the start time t. Let (j1 → j2)π denote that job j1 precedes job j2 under
schedule π. Let j∗ denote the job with the largest processing time in N .

Let N = {1, 2, . . . , n} = {j1, . . . , jn}, where dj1 ≤ . . . ≤ djn . We denote

2

by πk = (j1, . . . , jm−1, jm+1, . . . , jk, j
∗, jk+1, . . . , jn), j∗ = jm, m < k, the

modified EDD sequence, where job j∗ is moved from its original position m
to position k.

We consider a subset of jobs N ′ ⊆ N that must be processed from time
t′ ≥ t0. Let N ′ = {1, 2, . . . , n′}. Construct a position list L(N ′, t′) for the job
j∗, the job with the largest processing time in N ′, as follows:

0. L(N ′, t′) := {j∗, j∗ + 1, . . . , n′}; dn′+1 := +∞;

1. FOR k := j∗ + 1 TO n′ DO

IF t′ +
∑k

j=1 pj ≥ dk+1 (Elimination Rule 1 [4, 8])
THEN L(N ′, t′) := L(N ′, t′) \ {k};
FOR i := j∗ + 1 TO n′ DO

IF di + pi > t′ +
∑k

j=1 pj (Elimination Rules 2 and 3 [4, 8])
THEN L(N ′, t′) := L(N ′, t′) \ {k}.

FOR i := j∗ TO k DO

IF F (πk) > F (πk+1) or F (πk) ≥ F (πi) (Elimination Rule 4
[9, 10]) THEN L(N ′, t′) := L(N ′, t′) \ {k}.

Proposition 1 [8] For all instances 〈{pj, dj}j∈N , t0〉, the list L(N, t0) is not
empty.

Proposition 2 [8] For all instances 〈{pj, dj}j∈N , t0〉, there exists an optimal
schedule π∗ such that (j → j∗)π∗ for all j ∈ {1, 2, . . . , k}\{j∗} and (j∗ → j)π∗

for all j ∈ {k + 1, . . . , n} for some k ∈ L(N, t0).

Now we present Algorithm A by Lazarev [8], an exact solution algorithm
for 1||∑ Tj, which is based on Elimination Rules 1-4. Szwarc et al. [3] and
Chang et al. [9] have applied similar ideas for constructing Algorithm A in
designing algorithms for 1||∑ Tj.

3

Procedure ProcL(N, t)
Input: An instance 〈{pj, dj}j∈N , t〉 with the job set N = {j1, j2, . . . , jn}

and start time t, where dj1 ≤ dj2 ≤ . . . ≤ djn;

1. IF N = ∅ THEN π∗:= empty schedule, GOTO 6;

2. Find j∗ ∈ N ; construct the list L(N, t) for job j∗;

3. FOR ALL k ∈ L(N, t) DO:

πk := (ProcL(N ′, t′), j∗,ProcL(N ′′, t′′)), where
N ′ := {j1, . . . , jk} \ {j∗}, t′ := t,
N ′′ := {jk+1, . . . , jn}, t′′ := t +

∑k
i=1 pji

;

4. π∗:=arg min
k∈L(N,t)

{F (πk, t)};

5. RETURN π∗.

Algorithm A

π∗:=ProcL(N, t0).

It is known that Algorithm A has an exponential running time for several
cases of the problem 1||∑ Tj [10]. The running time of Algorithm A for
instances of the problem with integer parameters is O(n4

∑
pj) [2, 8].

2 Ant Colony Optimization for 1||∑Tj

We present the ACO algorithm by Bauer et al. [7] in this section. In each
generation, each of the m ants constructs one solution. An ant selects the
jobs in the order in which they appear in a schedule. For the selection of a
job, the ant uses both heuristic and pheromone information. The heuristic
information, denoted by ηij, and the pheromone information, denoted by
τij, is an indicator of how good it seems to place job j in position i of the
schedule. With probability q0, where 0 < q0 < 1 is a parameter of the
algorithm, the ant chooses the next job j from the set S of jobs that have
not been scheduled so far that maximizes [τij]

α[ηij]
β, where α and β are

constants that determine the relative influence of the pheromone values and
the heuristic values, respectively, on the decision of the ant. With probability

4

1−q0, the ant selects the next job j according to the probability distribution
determined by

pij =
[τij]

α[ηij]
β

∑
h∈S[τih]α[ηih]β

.

The heuristic values ηij are computed according to the modified due date
(MDD) rule, i.e., ηij = 1

max{T+pj ,dj} , where T is the total processing time of
all the jobs that have already been scheduled.

After an ant has selected the next job j, a local pheromone update is
performed at element (i; j) of the pheromone matrix according to τij :=
(1 − ρ)τij + ρτ0 for some constant ρ, 0 < ρ < 1, where τ0 = 1

mTEDD
, and

TEDD is the total tardiness of the schedule that is obtained when the jobs
are ordered according to the EDD rule. The value τ0 is also used to initialize
the elements of the pheromone matrix.

After each ant has constructed a solution, the solution is further improved
with a 2-opt strategy, i.e., a local search procedure with pairwise swapping
of jobs. The 2-opt strategy considers possible swaps between all pairs of jobs
in the constructed sequence.

The best solution found so far is then used to update the pheromone
matrix. But before doing so, some old pheromone values will decay according
to τij := (1−ρ)τij. The reason is that old pheromone values should not have
too strong an influence on the future. Then, for every job j in the schedule of
the best solution found so far, some amount of pheromone is added to element
(i; j) of the pheromone matrix, where i is the position of job j in the schedule.
The amount of pheromone added is ρ/T ∗, where T ∗ is the total tardiness of
the best found schedule, i.e., τij := τij + ρ/T ∗. The algorithm stops when
some stopping criterion is met, e.g., a certain number of generations has been
reached or the best found solution has not changed for several generations.

Computational results of the ACO algorithm were presented in [7], where
the instances from [5] for n = 50 and 100 were tested. For n = 50, ACO
generated an optimal solution for 609 out of the 625 tested instances. The
relative error was less than 0.08%. For n = 100, all 125 tested instances were
solved optimally.

It is easy to show that the running time of ACO without local search is
O(mn2). For each i (there is a total of n positions), job j is chosen in O(n)
time. Local search has a running time of O(n3), but the number of times
local search is applied is unknown. So ACO has a running time no less than
O(mn3). In practice, the running time of ACO does not exceed O(mn2).

5

3 A hybrid algorithm
We present in this section Algorithm H, a hybrid algorithm based on the
ACO meta-heuristic by Bauer et al. [7], in conjunction with Elimination
Rules 1-4 [4, 8, 9, 10].

In Algorithm H, each ant (i.e., each iteration) executes a modified
version of Algorithm A, where the current job j∗ is randomly placed in
position k ∈ L(N, t).

Procedure ProcL modified(N, t)
Input: An instance 〈{pj, dj}j∈N , t〉 with the job set N = {j1, j2, . . . , jn}

and start time t, where dj1 ≤ dj2 ≤ . . . ≤ djn;

1. IF N = ∅ THEN π∗:= empty schedule, GOTO 6;

2. Find j∗ ∈ N ; construct the list L(N, t) for job j∗;

3. Compute the array of probabilities for each i ∈ L(N, t):

ρij∗ =
τij∗/F (πi)∑

h∈L(N,t) τhj∗/F (πh)
,

where πi = (j1, . . . , jm−1, jm+1, . . . , ji, j
∗, ji+1, . . . , jn), j∗ = jm,m < i;

4. Choose k ∈ L(N, t) randomly according to probability ρkj∗;

5. Update the local trail:

τkj∗ := (1− ρ)τkj∗ + ρτ0,

where τ0 = 1/(mTEDD), and TEDD is the total tardiness of schedule
πEDD;

6. RETURN

π∗ :=(ProcL(N ′, t′), j∗,ProcL(N ′′, t′′)), where
N ′ := {j1, . . . , jk} \ {j∗}, t′ := t,
N ′′ := {jk+1, . . . , jn}, t′′ := t +

∑k
i=1 pji

.

6

Upon completing each iteration (recalling that 1 ant = 1 iteration), we update
the "global trail" τij according to

τij := (1− ρ)τij + ρ/T ∗,

if job j is placed in position i of the best schedule found. Otherwise,

τij := (1− ρ)τij,

where ρ ∈ [0, 1] is a parameter of the algorithm, and T ∗ is the total tardiness
of the best found schedule. After each iteration (1 ant = 1 iteration), we
invoke the 2-opt strategy.

It is easy to show that the running time of Algorithm H without local
search is O(mn2). For each j∗ (there are a total n jobs), position k is chosen
in O(n) time. Local search has a running time of O(n3), but the number of
times it is invoked is unknown. So Algorithm H has a running time no less
than O(mn3). In other words, the running times of Algorithms H and ACO
are comparable.

4 Computational results for instances of Potts
and van Wassenhove

In this section we present the computational results of applying ACO and
Algorithm H to deal with instances of the problem 1||∑ Tj comprising n =
4, . . . , 70, 100 jobs that are generated using the schema given in [5].

The instances were generated as follows: for each job j, a processing time
pj ∈ Z was randomly chosen from the uniform distribution [1, 100], and a
due date from the uniform distribution

[
n∑

j=1

pj(1− TF −RDD/2),
n∑

j=1

pj(1− TF + RDD/2)],

where TF is the tightness factor and RDD is the relative due date. Both of
the values TF and RDD were taken from the set {0.2, 0.4, 0.6, 0.8, 1.0}. For
each combination of (TF, RDD), we generated 100 instances, i.e., a total of
2,500 instances were generated for each n.

We did not consider trivial instances where F (πEDD) = 0. We used the
following parameter settings: α = 1, β = 2, and ρ = 0.1. For the heuristic
information ηij, we used the MDD rule.

7

For each instance, the exact Algorithm A returned an optimal value Fopt.
In applying ACO, ants were allowed to continue to run when the optimal
solution was not found. The number of ants was constrained by m ≤ 100.
ACO could run up to 10 times for each instance when the optimal solution
was not obtained. The best total tardiness value FACO found was recorded,
and the relative error FACO−Fopt

Fopt
was computed. The same experimental ap-

proach was taken to test Algorithm H.
In this way, we obtained computational results to compare the perfor-

mance of ACO and Algorithm H with respect to the following measures:
percentage of time that an optimal solution is found, relative error of the
solution found, and number of iterations needed to find an optimal solution.
The results are presented in Table 1.

The first column records the number of jobs n. The second and third
columns show the number of instances for which ACO and Algorithm H
could not find an optimal solution, respectively. The relative errors of ACO
and Algorithm H are shown in columns 4 and 5, respectively, while the
average numbers of iterations needed to solve the instances by ACO and
Algorithm H are shown in the last two columns, respectively.

For n = 100, we considered 617 instances, whereas for each n, 4 ≤ n ≤ 70,
we considered 2,500 instances. In the table only rows for which the number
of non-optimal solutions greater than zero are shown.

The results show that both ACO and Algorithm H could produce an
optimal solution for more than 99% of the instances. Algorithm H could not
find an optimal solution for less than 0.44% of the total number of instances
considered, and its relative error was less than 0.46%. On the other hand,
the relative error of ACO was up to 1.26% for n = 61, and the number of
instances for which ACO could not optimally solve was greater than 1% of
the instances considered for n = 70. We thus expect that the superiority of
the performance of Algorithm H over ACO will become more significant as
n grows.

5 Computational results for instances of case
B-1

In this section we present the computational results of applying ACO and
Algorithm H to tackle instances of a special case B-1 of the problem 1||∑ Tj.

8

For this case, we have

p1 ≥ p2 ≥ . . . ≥ pn,
d1 ≤ d2 ≤ . . . ≤ dn,
dn − d1 ≤ pn.

(1)

It was reported in [11] that this case is the "hardest" for Algorithm A,
i.e., it requires frequent execution of Elimination Rules 1-4. Instances of this
case were also called "hard" instances in [6]. This case has been shown to
be NP -hard in the ordinary sense [12]. It has been shown that the exact
algorithms proposed in [4, 8, 9, 10] for this case each have a running time of
O(2

n
2).
We tested instances with n = 4, . . . , 100 jobs. For each n, we considered

1,000 instances of case B-1. The values of pj were randomly sampled from the
uniform distribution [1, 500], while the due dates dj were randomly chosen
from the uniform distribution [X,X + pn], where X ∈ [0,

∑
pj − pn].

The experimental approach discussed in Section 4 was applied to treat
the instances in this section. We used the exact Algorithm B-1 [8] modified
for integer instances to obtain the optimal solutions, which has a running
time of O(n

∑
pj). The results are presented in Table 2. In the table only

rows for which the number of non-optimal solutions is greater than zero and
the relative error is greater than 0.01% are shown.

The results show that ACO found the optimal solutions for all of the
instances considered, except for n = 7, while Algorithm H found the optimal
solutions for 99% of the instances. However, the relative error of Algorithm
H was no larger than 0.01%. In general, both algorithms required fewer
than 3 ants (iterations) to produce the optimal solutions. Therefore, we may
conclude that the performance of Algorithm H is only marginally inferior to
that of ACO.

6 Computational results for canonical
DL-instances

In this section we consider another NP -hard case, known as the canonical
DL-instances [1], of the problem 1||∑ Tj. It has also been shown that the
exact algorithms presented in [4, 8, 9] for the canonical DL-instances each
have a running time of O(2

n
2).

9

First, consider the Even-Odd Partition (EOP) problem: Given a set
of 2n∗ positive integers B = {b1, b2, . . . , b2n∗}, where bi ≥ bi+1, i =
1, 2, . . . , 2n∗ − 1, is there a partition of B into two subsets B1 and B2 such
that

∑
bi∈B1

bi =
∑

bi∈B2
bi, and such that for each i = 1, . . . , n, B1 (and

hence B2) contains exactly one number of {b2i−1, b2i}?
We generated instances of EOP for n∗ = 4, . . . , 40. Let δi = b2i−1 −

b2i, i = 1, . . . , n∗. The values of δi were randomly chosen from the uniform
distribution [1, 50]. For each n∗ and each set of δi values generated, we
constructed an instance of EOP as follows: b2n∗ := 1, b2n∗−1 := b2n∗ +
δ∗n, b2i := b2i+1 + 1, b2i−1 := b2i + δi, i := 1, . . . , n∗ − 1.

We then converted the EOP instance to a canonical DL-instance for
each n∗, with the job set N = {V1, V2 . . . , V2n∗ ,W1,W2, . . . , Wn∗+1}, where
|N | = 3n∗ + 1. Let b = (4n∗ + 1)δ. Denote δ = 1

2

∑n∗
i=1(b2i−1 − b2i). Let

a2i−1 = b2i−1 + (9n∗2 + 3n∗ − i + 1)δ + 5n∗(b1 − b2n∗) and a2i = b2i + (9n∗2 +
3n − i + 1)δ + 5n(b1 − b2n∗), i = 1, . . . , n∗. Define the job due dates and
processing times as follows:

pVi
= ai, i = 1, 2, . . . , 2n∗;

pWi
= b, i = 1, 2, . . . , n∗ + 1;

dVi
=

{
(j − 1)b + δ + (a2 + a4 + . . . + a2i), if i = 2j − 1,
dV2j−1

+ 2(n∗ − j + 1)(a2j−1 − a2j), if i = 2j, j = 1, 2, . . . , n∗;

dWi
=

{
ib + (a2 + a4 + . . . + a2i), if i = 1, 2, . . . , n∗,
dWn∗ + δ + b, if i = n∗ + 1.

For this case we used the exact pseudo-polynomial Algorithm B-1 canon-
ical [12] for canonical-DL instances to obtain the optimal solutions for the
instances considered, which has a running time of O(n∗δ). The experi-
mental settings followed those discussed in Section 4. For each n∗, where
n∗ = 4, . . . , 40, the number of jobs was n = 3n∗+1 = 13, 16, . . . , 121, and we
considered 50 instances. Both Algorithm H and ACO were applied to deal
with the instances. The results are presented in Table 3. In the table only
rows for which the number of non-optimal solutions is greater than zero are
shown.

The performance of both algorithms was largely comparable. It is noted
that when 3n∗ + 1 = 25 or 28, the number of instances for which the al-
gorithms could not find an optimal solution was greater than 10% of the

10

instances tested. But the relative errors were all less than 0.01%, and the
number of iterations required to obtain the optimal solutions were all fewer
than 20.

It can be assumed that the chance of finding an optimal canonical DL-
schedule is approximately O(1/2n∗) [1]. This is because for each pair of
V2i−1 and V2i, i = n∗, . . . , 1, there exist two orders with almost identical
probabilities: V2i−1 is processed in position 2i− 1 and V2i in position 3n∗ +
1− (i− 1) of an optimal schedule, and vice versa.

We repeated the experiments without the 2-opt strategy for both algo-
rithms. The results are shown in Table 4. In the table only rows for which
the number of non-optimal solutions is greater than zero are shown.

The results show that both algorithms achieved a "good" performance
only with the aid of local search. But the number of local search executed
may be exponential. For 3n∗ + 1 ≥ 40, none of the solutions obtained by
both algorithms was optimal.

Conclusions
Our computational results show that Algorithm H performs better than
ACO for the instances generated by the schema of [5]. For 99.5% of the
instances considered for this case, Algorithm H found the optimal solutions.
The relative error was less than 0.5%, and the average number of iterations
needed was fewer than 5 (i.e., 5 ants).

For the "hard" instances of case B-1, Algorithm H performs marginally
inferior to ACO. But Algorithm H found the optimal solutions for 99% of
the instances considered, and its relative error was no larger than 0.01%.

For the NP -hard case of [1], both ACO and Algorithm H perform com-
parably and could achieve a "good" performance only with the aid of local
search.

Acknowledgments We are grateful to the Editor and the anonymous ref-
erees for their constructive comments on earlier versions of this paper. This
research is part of a project funded by the Russian Science Support Founda-
tion.

11

References
[1] J. Du and J.Y.-T. Leung. Minimizing total tardiness on one processor

is NP -hard. Mathematics of Operations Research 1990; 15: 483–495.

[2] E.L. Lawler. A pseudopolynomial algorithm for sequencing jobs to min-
imize total tardiness. Annals of Discrete Mathematics 1977; 1: 331–342.

[3] W. Szwarc, F. Della Croce and A. Grosso. Solution of the single machine
total tardiness problem. Journal of Scheduling 1999; 2: 55–71.

[4] W. Szwarc, A. Grosso and F. Della Croce. Algorithmic paradoxes of the
single machine total tardiness problem. Journal of Scheduling 2001; 4:
93-104.

[5] C.N. Potts and L.N. van Wassenhove. A decomposition algorithm for
the single machine total tardiness problem. Operations Research Letters
1982; 1: 177–182.

[6] F. Della Croce, A. Grosso and V. Paschos. Lower bounds on the approx-
imation ratios of leading heuristics for the single-machine total tardiness
problem. Journal of Scheduling 2004; 7: 85–91.

[7] A. Bauer, B. Bullnheimer, R.F. Hartl and C. Strauss. Minimizing to-
tal tardiness on a single machine using Ant Colony Optimization. Pro-
ceedings of the 1999 Congress on Evolutionary Computation (CEC99),
Washington, D.C., USA, 6-9 July, 1999; 1445–1450.

[8] A.A. Lazarev. Solution of the NP -hard total tardiness minimization
problem in scheduling theory. Computational Mathematics and Mathe-
matical Physics 2007; 47: 1039-1049.

[9] S. Chang, Q. Lu, G. Tang and W. Yu. On decomposition of total tardi-
ness problem. Operation Research Letters 1995; 17: 221–229.

[10] A.A. Lazarev and E.R. Gafarov. Scheduling Theory: The Total Tardi-
ness Problem. Computing Centre of the Russian Academy of Sciences,
Russia, 2006 (in Russian).

[11] A.A. Lazarev, A. Kvaratskhelia and A. Tchernykh. Solution algorithms
for the total tardiness scheduling problem on a single machine. Workshop
Proceedings of the ENC’04 International Conference 2004; 474–480.

12

[12] E.R. Gafarov and A.A. Lazarev. A special case of the single-machine
total tardiness problem is NP -hard. Journal of Computer and Systems
Sciences International 2006; 45: 450–458.

13

Table 1. Computational results for instances of Potts and van
Wassenhove

n not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
19 2 0 0.22 0 1.6164 1.4004
20 1 0 0.58 0 1.6064 1.4204
22 1 0 0.16 0 1.626 1.4844
28 2 0 0.09 0 1.9704 1.6688
34 1 0 0.15 0 2.2212 1.9568
36 0 1 0 0.04 2.2332 2.154
37 1 1 0.38 0.01 2.4796 2.102
40 1 0 0.04 0 2.6036 2.2424
42 1 1 0.05 0.01 2.7888 2.4092
43 1 1 0.07 0.06 2.7316 2.3656
44 3 0 0.04 0 2.8464 2.3784
45 2 0 0.68 0 2.9736 2.4728
46 1 0 0.03 0 3.1624 2.4088
47 2 0 0.01 0 3.248 2.5152
48 9 0 0.56 0 3.4516 2.5196
49 3 1 0.15 0.08 3.4252 2.7
50 9 1 0.35 0.29 3.716 2.6336
51 8 0 0.22 0 3.8412 2.7768
52 4 1 0.04 0.07 3.5816 2.86
53 4 2 0.03 0,42 3.8948 2.9668
54 9 3 0.1 0.29 4,0324 2,9924
55 8 2 0.11 0.06 4.1048 3.0496
56 9 1 0.83 0.01 4,2916 3.0064
57 7 0 0.23 0 4.1568 3.158
58 14 0 0.17 0 4.71 3.3724
59 14 4 0.24 0.1 4.81 3.3372
60 11 1 0.22 0.01 4.7268 3.4224
61 18 2 1.26 0.02 5.3032 3.5216
62 10 2 0.26 0.01 5.0964 3.5032
63 17 7 0.16 0.08 5.3016 3.5728
64 15 6 0.57 0.46 5.2388 3.6504
65 18 7 0.1 0.14 5.548 3.6604
100 36 0 0.31 0 27.35 4.66

14

Table 2. Computational results for instances of case B-1

n not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
7 1 0 0.67 0 1.38 1.044
26 0 3 0 0.01 1.381 1.871
27 0 1 0 0.01 1.429 1.707
31 0 4 0 0.01 1.354 1.929

Table 3. Computational results for canonical DL-instances

n not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
16 1 0 <0.01 0 4.92 3.4
19 2 3 <0.01 <0.01 10.3 11.64
22 2 2 <0.01 <0.01 7.66 8.22
25 4 4 <0.01 <0.01 16.28 16.44
28 6 4 <0.01 <0.01 19.2 15.24
31 0 3 0 <0.01 8.16 15.66
34 1 1 <0.01 <0.01 8.8 9.44
37 1 0 <0.01 0 7.12 7.58

Table 4. Computational results for canonical DL-instances
(without local search)

n not opt. ACO not opt H. rel. ACO rel. H. Ants ACO Ants H.
13 50 26 13.46 0.01 100 58.2
16 50 35 0.77 0.03 100 73.82
19 50 43 3.29 2.78 100 88.06
22 50 46 2.86 2.05 100 93.52
25 50 49 2.03 1.58 100 98.02
28 50 50 2.97 2.49 100 100
31 50 49 3.48 2.02 100 98.48
34 50 49 2.85 1.67 100 98.4
37 50 49 1.71 1.41 100 98.02

15

