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Abstract 

This paper studies the two-machine flowshop scheduling problem with class setups in a 

no-wait processing environment to minimize the maximum lateness. The jobs are divided into 

job classes and a setup is required at the initial processing of a job or between the processing of 

jobs of different classes. In a no-wait environment, a job must be processed from start to finish 

without interruptions on a machine or between the machines. A batch is a maximal subset of 

consecutively processed jobs of the same class. Several properties concerning the beneficial 

merging of batches and some dominance rules that improve the objective function are derived. 

Since the problem is NP-hard, a heuristic is proposed and evaluated computationally. The 

numerical results demonstrate that the heuristic can produce near-optimal solutions quickly for 

realistic-sized problems.  
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1. Introduction 

   An important kind of flowshop scheduling problem is characterized by a no-wait 

environment. In a no-wait environment, a job must be processed from start to finish without 

interruptions on a machine or between machines. The no-wait flowshop scheduling problem 

arises in many industries. Examples include the metal, plastic and chemical processing 

industries, as well as advanced manufacturing, such as just-in-time production. The no-wait 

scheduling problem has attracted the attention of many researchers. A detailed survey of the 

research and applications on this topic has been given by Hall and Sriskandarajah [1]. 

 Recently, many basic scheduling problems have been extended to include 

considerations of job classes. In a scheduling environment with job classes, the jobs are 

divided into several classes according to the similarities of their processing requirements. The 

processing of a job does not require a setup if it follows a job from the same class, but it 

requires a known class setup if it is the first job to be processed on a machine or it follows a job 

from another class. A batch is a maximal subset of consecutively processed jobs of the same 

class. When the number of batches is fixed, the scheduling decisions are made at two levels [2]. 

At the first level, the sequence of the jobs within each batch is decided, and at the second level, 

the sequence of the batches is determined. Sekiguchi [3] proposed a method for solving the 

two-machine flowshop scheduling problem under the series-parallel precedence constraints to 

minimize the makespan. Yang and Chern [4] solved the two-machine group scheduling 

problem to minimize the makespan, in which there is a transportation time between the two 

machines. Baker [5] reviewed research on the two-machine flowshop scheduling problem and 

provided a generalized framework for the class scheduling problem to minimize the makespan. 

When the job classes can be split or the number of batches is not fixed, the class scheduling 

problem becomes very difficult to deal with. Pan et al. [6] presented a heuristic approach for 

the single-machine batch scheduling to minimize the maximum lateness. Webster and Baker [7] 

reviewed work on the single-machine batch scheduling problem and presented some properties 

for the minimization of the total weighted flowtime and the maximum lateness. Monma and 

Potts [8], and Potts and Van Wassenhove [9] analyzed the computational complexity of the 

batch scheduling problem for various objective functions. Potts and Kovalyov [10] 
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summarized the various dynamic programming algorithms for solving variants of the batch 

scheduling problem.  

 In contrast to the existence of many research results on either the no-wait flowshop 

scheduling problem or on scheduling problems with class setups, there have been few attempts 

to study scheduling problems that involve both aspects although they may be applicable in 

actual practice. In the following, we give an example of rolling steel tubes. Steel tubes are 

divided into various job classes according to their outer and inner diameters. The production 

process consists of two stages. First, by setting different mechanical frames, steel pillars are 

rolled as steel tubes with different outer-diameters. Then, steel tubes with different 

inner-diameters are produced through setting different core-sticks. The process of rolling a 

steel tube cannot be interrupted since its temperature must be preserved until finished.  

In this paper we consider the two-machine flowshop scheduling problem with job 

classes in a no-wait processing environment to minimize the maximum lateness. Since no-wait 

scheduling with several machines is at least as difficult as that with a single machine, whatever 

the configuration of the machines [1], and the single-machine job class scheduling problem to 

minimize the maximum lateness is NP-hard when the number of batches is arbitrary [8], the 

scheduling problem under study is NP-hard. The paper is organized as follows. In Section 2, 

we introduce the notation and present some definitions. We derive some theoretical results in 

Section 3. In Section 4, we design a heuristic algorithm for the problem, and in Section 5 we 

evaluate the performance of the heuristic computationally and present the numerical results. 

Finally, some conclusions are given in Section 6. 

 

2. Notation and definitions 

 A set of n jobs are given to be scheduled in a two-machine no-wait flowshop to 

minimize the maximum lateness. The jobs are divided into c job classes. We define job (i, j) as 

the job numbered j in class i. Let aij (>0)and bij (>0) denote the processing times of job (i, j) on 

machines 1 and 2, respectively, and dij the due date of job (i, j). 

 In a schedule that includes r batches ( cr ≥ ), let Bk(i) denote the ith batch that belongs 

to class k, and [i, j] the jth job in the ith batch, where ijri β,,2,1,,,2,1 LL == . Then, we 
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have the following notation.  

  a[i, j]: processing time of job [i, j] on machine 1; 

  b[i, j]: processing time of job [i, j] on machine 2; 

  d[i, j]: due date of job [i, j]; 

s[i], k: setup time of the ith batch on machine k, k = 1, 2; 

  C[i, j]: completion time of job [i, j]; 

  L[i, j]: lateness of job [i, j]; 

Ck (i): completion time of batch Bk(i); 

Lk(i): maximum lateness of Bk(i); 

  C[i]: completion time of the ith batch; 

  Lmax: maximum lateness of a schedule. 

 In a no-wait environment, we have 
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 We define a batch due date, which allows us to treat a batch as a composite job in a 

schedule.  

 

Definition 1  For a batch that is in the ith position of a schedule, define a batch due date, iδ , 

as 
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From Definition 1, we see that iδ  is independent of the time at which the batch starts 

to be processed. To extend the idea of the due date of a batch to a series of consecutive batches, 

we give the following definition. 

 

Definition 2  The due date of the ith through jth batches is defined as 
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 From the definition of , we notice that the value of ij∆ ij∆  is independent of the 

time at which the batches begin to be processed. 

 From Definition 1, we have 
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which means that the lateness of a batch is equal to the maximum lateness of the jobs in this 

batch. Definition 2 of a serial batches has a similar meaning as that of Definition 1. 

       

3. Theoretical results 

 An initial schedule can be constructed by sequencing all the jobs in increasing order 

of the job due dates. The maximum lateness of this schedule can be computed by adding the 

setup times on machine 1 and 2 whenever there is a change of class between two consecutive 

jobs. According to Definition 1, it is obvious that the batches are sequenced in increasing order 
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of the batch due dates in this initial schedule. We denote the schedule in which the batches are 

sequenced in increasing order of their due dates as a BEDD schedule. Apparently, this initial 

schedule may be improved by combining some batches of the same class to decrease the 

number of setups.  

 A forward merge is defined as a forward movement of a batch to be combined with 

another batch of the same class sequenced before it, and a backward merge is a backward 

movement of a batch to be combined with another batch of the same class sequenced after it. 

The merged positions are defined as the positions of the batches that are changed because of 

the merge. 

 A forward or a backward merge may decrease the maximum lateness of a schedule. 

Therefore, properties are developed to evaluate the benefits resulting from such merges. 

In the following, although the two merged batches actually become a batch, for the 

convenience of developing the theoretical results, we still denote it as two adjacent batches. 

 

Property 1  In a BEDD schedule, for two batches of class i, Bi(k) and Bi(l),  

i) a forward merge of Bi(l) will cause the maximum lateness of the (k+1)st to lth merged 

positions not to occur in Bi(k+1) in the new schedule;  

ii) a backward merge of Bi(k) will cause the maximum lateness of the kth to st merged 

position to occur in B

)1( −l

i )1( −l in the new schedule. 

 

Proof i) Consider the two schedules σ  and 1σ  in Fig.1 (a), where σ  is a BEDD 

schedule and 1σ is the same asσ except that Bi(l) is merged forward with Bi(k). Sinceσ is a 

BEDD schedule, the due date of Bi(l) is no less than that of Bp(u), for luk <<  and ip ≠ . The 

forward merge of Bi(l) will cause the lateness of Bi(k+1) to be less than that of Bp(u+1) in 1σ . 

Therefore, the maximum lateness of the batches between the (k+1)st and the lth positions will 

not occur in Bi (k+1) in 1σ . 

ii) Consider the two schedules σ  and 2σ  in Fig.1 (b). Since Bi(k) has the earliest due date 
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among all the batches from positions k to l inσ , after a backward merge, Bi(k) will have the 

maximum lateness of the batches between the kth and the )1( −l st positions in 2σ .. □ 

 

 Let Bi(k) and Bi(l), where )1( −< lk , be two batches of class i in a BEDD schedule. 

Define Lf as be the maximum lateness of the batches in the (k+1)st to lth merged positions if 

Bi(l) is merged forward. Also let Lb be the maximum lateness of the batches in the kth to 

st merged positions if B)1( −l i(k) is merged backward. We assume that the maximum lateness 

of a BEDD schedule, Lmax, occurs in a batch sequenced after the lth position. We denote the 

maximum lateness of the new schedule 1σ as Lmax( 1σ ) if Bi(l) is merged forward, and the 

maximum lateness of the new schedule 2σ as Lmax( 2σ ) if Bi(k) is merged backward. For the 

generated schedules 1σ  and 2σ , we consider the following four cases: 

1) The batches in the (k–1)st and (k+1)st positions of the schedule are not of the same class, 

nor are the batches in the (l–1)st and (l+1)st positions. Then, we have  
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2) The batches in the (k–1)st and (k+1)st positions of the schedule are of the same class, but 

the batches in the (l–1)st and (l+1)st positions are not. Then, Lf and Lmax( 1σ ) are the same as 

those in 1). For Lb and Lmax ( 2σ ), we have 
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3) The batches in the (k–1)st and (k+1)st positions of the schedule are not of the same class, 

but the batches in the (l–1)st and (l+1)st positions are. Then, Lf , Lb and Lmax ( 2σ ) are the same 

as those in 1), but the value of Lmax ( 1σ ) is changed to 
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4) The batches in the (k–1)st and (k+1)st positions of the schedule are of the same class, and 

so are the batches in the (l–1)st and (l+1)st positions of the schedule. Then, Lf is the same as 

that in 1), Lb and Lmax ( 2σ ) are the same as those in 2), and Lmax ( 1σ ) is the same as that in 3). 

 By the above discussion, we analyze the changes of the maximum lateness of the 

merged positions and that of the whole schedule after two batches of the same class are merged. 

From (1) to (4), we notice that if neglecting the job processing times, the selection of the 

batches with the larger class setup time on machine 2 to merge will yield a better schedule.   

 

Property 2  In a BEDD schedule, its jobs satisfy  
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where Bi(k), Bi(l) and Bi(m) are three batches of class i, k< )1( −l and l< . For batch B)1( −m i(l), 

i) If its Lf <Lb, then, the maximum lateness of the batches in the (k+1)st to st merged 

positions resulting from a forward merge of B

)1( −m

i(l) is less than that resulting from a backward 

merge of Bi(l);  

ii) If its Lf >Lb, then, the maximum lateness of the batches in the (k+1)st to st merged 

positions resulting from a backward merge of B

)1( −m

i(l) is less than that resulting from a forward 

merge of Bi(l) . 

 

Proof i) Let L1 denote the maximum lateness of the batches in the (k+1)st to )1( −m st 

positions of a BEDD schedule. Let C1x (u), where 11 −≤≤+ mul , denote the completion 

time of Bx (u) if Bi(l) is merged forward, C2i(l) the completion time of batch Bi(l) if Bi(l) is 
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merged backward. We have 
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From (5), (6) and (7), we have C1x(u) <C2i(l) for 1,,1 −+= mlu L . And in a BEDD schedule, 

lu δδ ≥  if , then, lu >

L2 : = bx LixmuluL <≠−≤≤+ },11|)(max{ .                    

 For batch Bi (l), if its Lf < Lb , consider the following two cases: 

Case 1. L1 occurs in a batch between  the (k+1)st and )1( −l st positions of the BEDD 

schedule. A forward merge of Bi (l) will cause the maximum lateness of the batches in the 

(k+1)st to lth merged positions to be equal to Lf; and the maximum lateness in the (l+1)st 

to st batches is L)1( −m 2. A backward merge of Bi(l) will cause the maximum lateness of 

batches in the (k+1)st to st positions to be max{L)1( −m 1 , Lb}. Since Lf <Lb and L2<Lb, max{Lf, 

L2} < max{L1 , Lb}. 

Case 2. L1 occurs in a batch between the lth and the )1( −m st positions of the BEDD schedule. 

A forward merge of Bi (l) will cause the maximum lateness of the batches in the (k+1)st to 

( )st positions to be equal to max{L1−m f, L2} ; and a backward merge of Bi(l) will have the 

maximum lateness equal to Lb. From Lf  < Lb and L2 < Lb, we have max{Lf, L2} <Lb. 

ii) Similar to the proof of i). □ 

 

 In a schedule, for the batches of the same class before the batch with the maximum 

lateness, we may merge them to reduce setup times. The merging procedure can be performed 

until the objective cannot be improved any more. Property 2 gives us the preference rules of 

merging two batches for three batches of the same class. 

 For the studied problem, sequencing the jobs in each batch in increasing order of the 

job due dates is not an optimal schedule. So we derive a local dominance rule for sequencing 

the jobs in each batch. The following theorem will be proved by the technique of swapping two 

adjacent jobs in a batch. 

 

Theorem 1  If job (k, i) and job (k, j) are adjacent in the kth batch in a schedule, then job (k, i) 

should precede job (k, j) for minimizing the maximum lateness, if kikjkjkikjki babbaa ≤≤≤ ,, , 
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and . kjki dd ≤

 

Proof We assume that job (k, i) is in an arbitrary position τ  and job (k, j) in position 1+τ  
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and job (k, j) are interchanged. 

 Since the two schedules have the same jobs in the first position to the ( 1−τ )st 

position of the kth batch, we can set hCC kk == −− )()( 2]1,[1]1,[ σσ ττ . 

i) For the caseτ >1. 

 If the conditions of the theorem hold, then we have 

kikikkikikk dbbahdCL −+−+=−= − },0max{)()( ]1,[1],[1],[ τττ σσ ,                  (8) 

kjkjkikikjkkikjkk dbbbabahdCL −++−+−+=−= −++ },0max{},0max{)()( ]1,[1]1,[1]1,[ τττ σσ             

kjkjkikki dbbbah −++−+= − },0max{ ]1,[ τ  ,                           (9) 

kikjkikjkikkjkikk dbbbabahdCL −++−+−+=−= −++ },0max{},0max{)()( ]1,[2]1,[2]1,[ τττ σσ             

     .},0max{ ]1,[ kikjkikkj dbbbah −++−+= −τ          (10) 

From (8) and (10), we have 

)()( 2]1,[1],[ σσ ττ +≤ kk LL . 

From (9) and (10), we have 

)()( 2]1,[1]1,[ σσ ττ ++ ≤ kk LL . 

For kq βτ ,,2 L+= , we have 

],[1],[1],[ )()( qkqkqk dCL −= σσ  

             kjkikjkkki bbbabah ++−+−+= +− },0max{},0max{ ]2,[]1,[ ττ  

],[
2

],[]1,[],[
3

},0{max qk

q

p
pkpkpk

q

p
dbba −+−+ ∑∑

+=
−

+= ττ

,                     (11) 

],[2],[2],[ )()( qkqkqk dCL −= σσ  

kjkikikkkj bbbabah ++−+−+= +− },0max{},0max{ ]2,[]1,[ ττ   
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],[
2

],[]1,[],[
3

},0{max qk

q

p
pkpkpk

q

p
dbba −+−+ ∑∑

+=
−

+= ττ

.                     (12) 

Therefore, from (11) and (12), we have 

   ),()( 2],[1],[ σσ qkqk LL ≤ for k,,q βτ L2+= . 

 Similarly, for the case that the jobs are sequenced after the kth batch, we can also 

prove  

 ),()( 2],[1],[ σσ qmqm LL ≤ for .,,1,,,2,1 rkmq m LL +== β  

ii) For the case 1=τ . 

 Similar to the case i), we can prove the conclusion of the theorem. □ 

For the two batches of the same class in a schedule, we will derive a dominance rule 

concerning the last job of the preceding batch and the first job of the following batch. The 

dominance rule can be proved by moving the jobs’ positions, namely the last job of the 

preceding batch to the first position of the succeeding batch or the first job of the succeeding 

batch to the last position of the preceding batch. 

 

Theorem 2  Assume that the ith and jth batches in a schedule belong to the same class and we 

wish to minimize the maximum lateness. 

i) If the following conditions hold: 

2],1[]1,1[1],1[],[ +++ −+≥ iiii sasa
iβ

,                                      (13) 

},0max{},0max{ ],1[2],[]1,[1],[],[2],1[]1,1[1],1[ 1−−+++ −−++−−+
ji jjjjiiii bsasbsas ββ  

},0max{},0max{ ],[]1,[],1[2],[],[1],[ 1 iji ijjjij babsas βββ −+−−+≥
−− ,      (14) 

and 

],[],[2],1[]1,1[1],1[ },0max{
ii iiiii dbsas ββ +−−+ +++  

1,1],1[],[1],[2],[ },max{
1 −+− ∆+−+≥
− jijijj ji

bass ββ ,                         (15) 

then the last job of the ith batch should move to the first position of the jth batch. 

ii) If the following conditions hold: 

2],1[]1,1[1],1[]1,[ +++ −+≤ iiij sasa ,                                       
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},0max{},0max{ ],1[2],[]2,[1],[]1,[2],1[]1,1[1],1[ 1−−+++ −−++−−+
jjjjjjiii bsasbsas β  

},0max{},0max{ ]1,[]2,[],1[2],[]1,[1],[ 1 jjjjjj babsas
j

−+−−+≤
−− β ,           

and 

          ]1,[]1,[2],1[]1,1[1],1[ },0max{ jjiii dbsas +−−+ +++  

 1,1],1[]1,[1],[2],[ },max{
1 −+− ∆+−+≤
− jijjjj j

bass β ,                        

then the first job of the jth batch should move to the last position of the ith batch. 

 

Proof i) Let the maximum lateness of the (i+1)st through (j–1)st batches in a schedule be 

]1,1[ −+ jiψ . We have  

]1,1[1],1[2],1[],[]1,[],[]1,[]1[ ,0max{},0max{ +++−−− ++++−+= iiiiiiij assbbaCC
iiii ββββ  

}),0{max(} ],1[2],[]1,[1],[

1

2
2],[],[2],1[ 1−−

−

+=
+ −−+++−− ∑ qi qqqq

j

iq
qii bsassbs ββ  

∑ ∑∑ ∑
−

+= =
−

−

+= =

+−+
1

1 1
],[]1,[],[

1

1 2

},0{max
j

iq p
pqpqpq

j

iq p

qq

bba
ββ

 ,                        

1,1]1[]1,1[ −+−−+ ∆−= jijji Cψ .                                                

The maximum lateness of the jth batch, ][ jψ , is 

},0max{ ],1[2],[]1,[1],[2],[]1[][ 1−−− −−+++=
jjjjjjjj bsassC βψ  

j
p

pjpjpj
p

jj

bba δ
ββ

−+−+ ∑∑
=

−
= 1

],[]1,[],[
2

},0{max . 

 Consider the effect of moving job [i, iβ ] to the first position of the jth batch. The 

maximum lateness of the first batch to the ( iβ –1)st job of the ith batch will remain unchanged. 

Let the maximum lateness of the (i +1)st through (j–1)st batches after the change be ]1,1[1 −+ jiψ . 

We have 

},0max{1 ]1,[2],1[]1,1[1],1[2],1[]1,[]1[ −++++−− −−+++=
ii iiiiiij bsassCC ββ   
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},0{max},{max ]1,[],[

1

1 2
],1[]1,[1],[2],[

1

2
1 −

−

+= =
−

−

+=

−+−++ ∑ ∑∑ − pqpq

j

iq p
qqqq

j

iq

babass
q

q

β

β             

, ∑ ∑
−

+= =

+
1

1 1
],[

j

iq p
pq

q

b
β

1,1]1[]1,1[ 11 −+−−+ ∆−= jijji Cψ . 

The lateness of job [i, iβ ] after the change, , is ],[1
iiL β

],[],[],1[2],[],[1],[2],[]1[],[ },0max{11
1 iijii iijjijjji dbbsassCL βββββ −+−−+++=
−−− . 

The maximum lateness of the jth batch after change, ][1 jψ , is 

],[],1[2],[],[1],[2],[]1[][ },0max{11
1 iji ijjijjjj bbsassC βββψ +−−+++=
−−−  

j
p

pjpjpj
p

ij

jj

i
bbaba δ

ββ

β −+−+−+ ∑∑
=

−
= 1

],[]1,[],[
2

],[]1,[ },0{max},0max{ . 

It is obvious that 

]1,1[]1,1[1 −+−+ ≤ jiji ψψ . 

From (13) and (15), we have  

]1,1[],[1 −+≤ jii i
L ψβ . 

In addition, from (13) and (14), we have  

               ][][1 jj ψψ ≤ . 

 For the mth batch in the schedule with m>j, its maximum lateness will either remain 

unchanged or decrease after the change. 

ii) Similar to i), we can prove the conclusion of the theorem. □ 

 

4. Heuristic algorithm 

 Since our studied scheduling problem is NP-hard, it is very unlikely that efficient 

algorithms exist for solving it exactly. However, the theoretical results derived in Section 3 are 

useful for designing heuristic algorithms. Property 2 provides guidelines on the beneficial 

merging of batches. Theorems 1 and 2 offer hints that the EDD and BEDD rules are important 

factors for obtaining an optimal solution and provide methods for improving schedules.   
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4.1 Description of heuristic algorithm 

 The heuristic algorithm proceeds to solve the problem by first finding an initial 

schedule and then applying the merging properties and the theorems to improve the initial 

schedule. 

 The details of the heuristic procedure are described below. 

Step 1. Determine an initial schedule through sequencing jobs in increasing order of the job 

due dates. Compute the maximum lateness of the schedule, Lmax, and determine the position m 

of the batch with the maximum lateness. In case of ties, choose the batch with the least m. 

Step 2. Assume that the initial schedule consists of n batches. Take the first m batches to form 

a partial schedule, P1, and the remaining (n – m) batches to form a partial schedule, P2. 

Step 3. For partial schedule P1, select the class with the largest setup time on machine 2, 

which has not been evaluated for merging yet and go to step 4. If no such batches can be found, 

go to step 5. 

Step 4. Apply Property 1 to compute Lf and Lb of each batch for the selected job class (only Lb 

for the first batch and only Lf for the last batch); choose the batches with the smallest value of 

all Lf and Lb, apply Property 2 to merge two batches if the maximum lateness of the schedule 

after the two batches are merged is less than Lmax; then sequence all batches such that the 

schedule becomes a BEDD schedule and update Lmax, go to Step 4; otherwise, go to Step 3. 

Step 5. For each batch i in the schedule, check: 

 Start at the first job of this batch, for two adjacent jobs [i, j] and [i, j+1], if they satisfy 

the conditions of Theorem 1, go to the next two adjacent jobs [i, j+1] and [i, j+2]. Otherwise, 

switch their order, and compute the maximum lateness of the schedule, . If , 

then they are switched back to their old positions; otherwise, let 

maxL′ maxmax LL ≥′

maxmax LL ′= . Go to next two 

adjacent jobs [i, j+1] and [i, j+2]. 

Step 6. Append P2 to P1. Assume there are N batches in this schedule. For i = 1 to  and 

for k = i + 2 to N, check: 

2−N

 If batch k is of the same class as that of batch i, check the conditions i) and ii) in 

Theorem 2. If i) holds, move job [i, iβ ] ahead of batch k; if ii) holds, move job [k, 1] to follow 
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batch i. 

 Finally, calculate the maximum lateness of the schedule, Lmax. Stop. 

 

In step 1, O(nlogn) time is required to construct an EDD schedule. In steps 3 and 4, 

the time complexity is no more than O(n2logn). In steps 5 and 6, the computing time is at most 

O(n). Therefore, the time complexity of the heuristic is O(n2logn). 

 

4.2 A numerical example 

  To illustrate the heuristic algorithm, we give an instance of the considered scheduling 

problem, which consists of 20 jobs belonging to 4 different job classes. The processing times 

on machines 1 and 2, the due date of each job, and the setup times on machines 1 and 2 of each 

class are shown in Table 1. The procedures carried out to solve the instance are detailed below. 

Steps 1 and 2. Sequence the jobs in increasing order of the job due dates, which is a BEDD 

schedule. The 20th job has the maximum lateness of 808. So the partial schedule P1 is formed 

with 18 batches, which are 

B1(1) = {job (1, 3) }, B1(7) = {job (1, 5)}, B1(9) = {job (1, 4)},  

B1(15) = {job (1, 2)}, B1(17) = {job (1, 1)}; 

B2(4) = {job (2, 2)}, B2(6) = {job (2, 4), job (2, 3)}, 

B2(10) = {job (2, 1)}, B2(14) = {job (2, 5)}; 

B3(3) = {job (3, 4)}, B3(8) = {job (3, 5)}, B3(12) = {job (3, 3)}, 

B3(16) = {job (3, 1)}, B3(18) = {job (3, 2)}; 

B4(2) = {job (4, 2), job (4, 5)}, B4(5) = {job (4, 1) },  

B4(11) = {job (4, 3)}, B4(13) = {job (4, 4)}. 

The due dates of these batches are detailed in Table 2. The partial schedule P2 is an empty set 

in this instance.    

Steps 3 and 4. For a partial BEDD schedule, according to the largest setup time on machine 

2, select class 3 with setup time 85 on machine 2.  

 For batches {B3(3), B3(8), B3(12), B3(16), B3(18)}, apply Property 1 to calculate Lb = 

478 for B3(3), {Lb, Lf }={425, 51} for B3(8), {Lb, Lf }={591, 195} for B3(12), {Lb, Lf }={656, 

536} for B3(16), Lf =780 for B3(18). Apply Property 2 to select B3(8) for forward merging. 
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After merging, the maximum lateness of the current schedule is 600. Sequence all batches 

again to yield a BEDD schedule.  

 Repeat this procedure, in turn: forward merge B3(16), obtaining Lmax = 434; forward 

merge B3(12)-B3(16), obtaining Lmax = 289; and forward merge B3(18), obtaining Lmax = 266.  

 Select class 1: no any merge occurs. 

  Select class 4: forward merge B4(5), obtaining Lmax = 207. 

 Select class 2: forward merge B2(14), obtaining Lmax = 148. 

 Finally, we obtain the schedule: [B1(1), B4(2)-B4(5), B2(4), 

B3(3)-B3(8)-B3(12)-B3(16)-B3(18), B2(6), B1(7)-B1(9), B2(10)-B2(14), B4(11)-B4(13), 

B1(15)-B1(17)]. Its maximum lateness is 148. 

Step 5. Check the adjacent two jobs for each batch, job (4, 2) and job (4, 5) in B4(2) require to 

be exchanged. Denote the changed batch B4(2) as )2(4B = { job (4, 5), job (4, 2)}. So the 

current schedule is  [B1(1), )2(4B -B4(5), B2(4), B3(3)-B3(8)-B3(12)-B3(16)-B3(18), B2(6), 

B1(7)-B1(9), B2(10)- B2(14), B4(11)-B4(13), B1(15)- B1(17)], whose maximum lateness is 120. 

Step 6. Applying Theorem 2 to check the jobs of different batches of the same class, we see 

that the objective value of the schedule cannot be improved. 

 Finally, we obtain the schedule: [B1(1), )2(4B -B4(5), B2(4), B3(3)-B3(8)-B3(12)- 

B3(16)- B3(18), B2(6), B1(7)-B1(9), B2(10)- B2(14), B4(11)-B4(13), B1(15)- B1(17)] with a 

maximum lateness of 120. This is also an optimal schedule. 

 

5. Computational results 

 Computational experiments were conducted to test the performance of the heuristic 

approach. The algorithm was coded in VB language and run on a PC Celeron 700. 

 The processing times on machines 1 and 2 were generated from a uniform integer 

distribution between 1 and 100. We note that if adding a constant to all the due dates, there will 

be no difference in the optimal schedule, but the value of Lmax will change by an amount equal 

to the constant. In other words, it is essential to pay attention only to the relative distances of 

the due dates, but not their absolute values in a given problem. Hence, we set the due dates to 
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be a uniform integer distribution between 1 and ∑ ∑+ )( ijij baR , where R is a parameter 

called the factor of the due date range, which indicates the characteristic of the relative 

distances of the due dates for each other. We chose the R-values in the range between 0.5 and 

2.0 in our experiments. Since the size of the setup times may be different from the processing 

times in practice [6], we generated two integer distributions between 1 and 100, and between 1 

and 50, respectively. The latter case is called the problems with reduced setup times.  

 The algorithm was tested over problem sizes of n = 20, 30 jobs, divided into classes of 

2, 4, 5, 10 and 3, 5, 6, 10, respectively. For setting R as 0.5, 1.0, 1.5 and 2.0, and considering 

the situations with setup times and reduced setup times, 64 cases were examined and 20 

replications were randomly generated for each case.  

 In order to maintain consistency in the computational results of all instances, we 

anchored the minimum due date of each instance, dmin , at zero. Thus, we dealt with the lateness 

of each job as . This also assured that the optimal value of L)]([ minddCL ijijij −−= max is 

positive. Computational results on the maximal relative deviations and the average relative 

deviations of the approximate solutions from the optimal solutions were reported, where 

relative deviation = (approximate maximum lateness – optimal maximum lateness)/optimal 

maximum lateness. The optimal solutions were obtained by a branch-and-bound algorithm. The 

branch-and-bound algorithm adopts the depth-first search strategy. In the search procedure, any 

branch that does not satisfy Theorem 1 or 2, or whose evaluated lower bound is larger than the 

upper bound is pruned, where the upper bound may be improved by a solution. The average 

CPU times in seconds also were recorded. Table 3 exhibits the experiment results for setup 

times between 1 and 100, and Table 4 shows the results for the problems with reduced setup 

times. 

 From Table 3, we see that the maximal relative deviations of the approximate 

solutions from the optimal solutions were within 10%, and the average relative deviations were 

within 5%. Given the inherent intractability of the studied problem, which involves not only 

class setup times, but also the constraint of a no-wait processing environment, it is evident that 

the proposed heuristic algorithm is both efficient and effective.  

  To further appreciate the experiment results in Table 3, we observe that the maximal 
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and average relative deviations, and the average CPU times are closely related to the parameter 

R. In the following, we provide some explanations to account for this observation: For the 

tested problem, we set R at 0.5, 1, 1.5 and 2. When the value of R is small, the job due dates are 

closer to one another, rendering the problem more difficult to be solved. Since the procedures 

used by the heuristic algorithm to search for an optimal solution are carried out according to 

given rules in advance, the computational cost is small regardless of the problem difficulty, but 

the relative deviations may be larger in solving harder problems. Because an EDD schedule is 

closer to the optimal solution for a larger range of the due date distribution, and our heuristic 

algorithm begins with an EDD schedule, so the larger the value of R for a problem, the less is 

the CPU time required to solve the problem. 

 For the problems with reduced setup times, the heuristic algorithm exhibited a similar 

pattern as that for the solving the problems with larger setup times. However, the performance 

of the heuristic algorithm in this case is a little superior.  

 

6. Conclusions 

 This paper studied the two-machine flowshop scheduling problem with class setups in a 

no-wait processing environment to minimize the maximum lateness. After an initial schedule 

was constructed, two properties were derived to evaluate the effects of forward or backward 

merge of batches. In addition, two theorems about the dominance relations between jobs were 

established to improve a schedule. A heuristic utilizing these properties and theorems was 

proposed. Computational experiments were designed to evaluate the performance of the 

heuristic. The experimental results reveal that the heuristic approach is very efficient and 

effective in solving realistic-sized problems.  
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Table 1   
Data of the example 

 

Class C1 C2

Job (1, 1)    (1, 2)    (1, 3)    (1, 4)    (1, 5) (2, 1)    (2, 2)    (2, 3)    (2, 4)    (2, 5) 

aij 55      75       84      71      46  39      31       37      95      67 

bij 57      94       2       44      58  24      35       59      76      5 

dij 1784    1724     51      1368    1119  1376    605      1067    1040    1613 

si1 85  72 

si2 77  15 

 
(Continued) 

Class C3 C4

Job (3, 1)    (3, 2)    (3, 3)    (3, 4)    (3, 5) (4, 1)    (4, 2)    (4, 3)    (4, 4)    (4, 5) 

aij 29       18      22      51       20 50       37      12      38      78 

bij 61       87      27      18       62 8        49      63      70      88  

dij 1744     1843    1546    585      1126 862      296     1502    1586    466  

si1 91 41 

si2 85 60 

 
 
 
Table 2 

The initial batches of the example 
 

 B1(1)   B4(2)   B3(3)   B2(4)   B4(5)   B2(6)   B1(7)   B3(8)   B1(9)   B2(10)   B4(11)    

ijδ   51     413     585    605    862    1067    1119   1126   1368    1376   1502  

 
(Continued) 

 B3(12)    B4(13)   B2(14)   B1(15)    B3(16)    B1(17)    B3(18)  

ijδ   1546     1586     1613    1724     1744      1784     1843 
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Table 3  
Computational results 

 
 Lmax  

No. of jobs No. of 
classes R Max relative 

deviation (%) 
Average relative 

deviation (%) 
Average CPU 
time (second) 

20 2 0.5 6.438 3.362 1.49E-2 

  1.0 3.747 0.601 1.07E-2 

  1.5 0.000 0.000 4.61E-3 

  2.0 0.000 0.000 5.69E-3 

 4 0.50 10.23 4.547 1.80E-2 

  1.00 8.765 2.732 2.22E-2 

  1.50 0.000 0.000 4.22E-3 

  2.00 1.829 0.187 2.42E-3 

 5 0.50 8.084 2.158 1.41E-2 

  1.00 3.681 0.809 9.57E-3 

  1.50 2.042 0.566 3.03E-3 

  2.00 0.000 0.000 8.04E-3 

 10 0.50 6.729 3.196 1.03E-2 

  1.00 0.000 0.000 1.07E-3 

  1.50 0.000 0.000 4.10E-3 

  2.00 1.195 0.120 2.52E-3 

30 3 0.50 7.527 2.418 6.13E-2 

  1.00 0.563 0.049 3.02E-2 

  1.50 0.000 0.000 0.1993 

  2.00 1.997 0.286 1.69E-2 

 5 0.50 9.760 2.753 7.07E-2 

  1.00 0.000 0.000 2.42E-2 

  1.50 2.237 0.659 9.83E-3 

  2.00 1.588 0.238 1.04E-2 

 6 0.50 9.918 4.601 6.41E-2 

  1.00 5.402 1.358 2.21E-2 

  1.50 0.000 0.000 1.21E-2 

  2.00 3.404 0.301 1.04E-2 

 10 0.50 12.50 3.355 4.81E-2 

  1.00 7.41 1.342 1.64E-2 

  1.50 3.180 0.215 5.36E-3 

  2.00 0.783 0.067 6.14E-3 
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Table 4   
Computational results with reduced setups 

 
 Lmax  

No.of jobs No.of 
classes R Max relative 

deviation (%) 
Average relative 

deviation (%) 
Average CPU 
time (second) 

20 2 0.5 8.812 2.360 9.23E-3 

  1.0 3.048 0.493 5.99E-3 

  1.5 0.000 0.000 3.91E-3 

  2.0 0.000 0.000 5.30E-3 

 4 0.50 11.00 3.936 1.94E-2 

  1.00 12.46 7.850 9.11E-3 

  1.50 6.493 0.896 2.57E-3 

  2.00 0.000 0.000 3.21E-3 

 5 0.50 6.465 3.305 1.15E-2 

  1.00 5.519 1.381 3.20E-3 

  1.50 0.000 0.000 2.99E-3 

  2.00 0.000 0.000 3.06E-3 

 10 0.50 8.001 3.735 1.72E-2 

  1.00 1.634 0.285 1.58E-3 

  1.50 0.000 0.000 1.82E-3 

  2.00 0.656 0.079 2.60E-3 

30 3 0.50 4.114 1.907 4.22E-2 

  1.00 4.512 0.673 1.57E-2 

  1.50 0.000 0.000 1.34E-2 

  2.00 0.000 0.000 1.27E-2 

 5 0.50 3.365 1.501 4.49E-2 

  1.00 2.867 0.573 1.21E-2 

  1.50 1.215 0.832 9.67E-3 

  2.00 0.609 0.087 7.66E-3 

 6 0.50 3.268 0.947 5.71E-3 

  1.00 2.419 0.348 9.96E-3 

  1.50 0.000 0.000 7.57E-3 

  2.00 1.250 0.321 1.03E-2 

 10 0.50 8.967 2.901 2.73E-2 

  1.00 1.363 0.485 1.18E-2 

  1.50 1.170 0.082 4.72E-3 

  2.00 0.000 0.000 2.42E-2 
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b[k, 2]s[k], 2 b[k, 1]

s[k], 1 a[k, 1] a[k,2]
b[u, 2]s[u], 2 b[u, 1]

s[u], 1 a[u, 1] a[u, 2]
s[l+1], 2

s[l+1], 1
b[l, 2]b[l, 1]

a[l, 2]

σ 

σ1 

(b) 

(a) 

σ2 

Fig.1. (a) A forward merge of Bi (l),  (b) A backward merge of Bi (k). 
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