
Two-Machine Flowshop Scheduling with Conditional

Deteriorating Second Operations∗

B.M.T. Lin1,# and T.C.E. Cheng2

1Department of Information and Finance Management

Institute of Information Management

National Chiao Tung University, Hsinchu, Taiwan

2Department of Logistics

The Hong Kong Polytechnic University, Kowloon, Hong Kong

Abstract: This paper considers a flowshop scheduling problem with a waiting time

constraint imposed to restrict the processing of the two operations of each job. If the sec-

ond operation of a job cannot start within a specified waiting time after the completion of

its first operation, then an extra processing time will be incurred for its second operation

as a penalty. We first show that is even a greatly restricted version of the problem is

strongly NP-hard. We then develop an O(n2) algorithm to determine the makespan of a

processing sequence of the jobs.

Keywords: Flowshop scheduling, waiting time, makespan, NP-hardness

*: The first author was partial supported by the National Science Council of the R.O.C.

under grant number NSC-93-2416-H-009-026, and the second author was supported in

part by The Hong Kong Polytechnic University under a grant from the Area of Strategic

Development in China Business Services.

#: Corresponding author: Prof. B.M.T. Lin; E-mail: bmtlin@mail.nctu.edu.tw; Tel:

+886-3-5131472.

1

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61005725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Flowshop scheduling, first considered by Johnson (1954), has been one of the most ex-

tensively studied problems in scheduling research. Numerous variants, properties and

solution methods are available in the literature (Lawler et al. 1993; Reisman 1997). In

this paper we consider a two-machine flowshop scheduling problem with possible penalties

imposed on the second operations of the jobs. In most deterministic scheduling problems,

the job parameters are known in advance and fixed throughout the solution process. Since

the last decade, scheduling problems with time- or position-dependent processing times

have received considerable research attention (Cheng et al. 2003).

The problem under study in this paper is defined as follows. There is a set of jobs

N = {1, 2, . . . , n} to be processed on a two-machine flowshop from time zero onwards.

No preemption is allowed. The processing times of the first (or machine-one) and the

second (or machine-two) operations of job i are denoted by pi and qi, respectively. Due to

the characteristics of the manufacturing environment, the machine-two operation of job i

has a basic processing time ai and must start processing no later than li time units after

the completion of its machine-one operation. If the time lag constraint is violated, the

processing time on machine two will be lengthened by bi time units as a penalty. In other

words, the processing time on machine two will become ai + bi as a result. We assume

that all the parameters are non-negative integers, and that the processing sequences on

the two machines are the same. The problem seeks to compose a schedule such that

the makespan is minimum. Following the standard three-field notation (Graham et al.

1979), we use F2/qi = ai or ai + bi/Cmax to denote the problem under study. The terms

sequence and schedule are used interchangeably in some scheduling studies. In this paper

a sequence simply means a processing order of the jobs, while a schedule precisely specifies

the starting time of each job.

If li = ∞ or bi = 0, the studied problem reduces to the classical two-machine flow-

shop scheduling problem, which is solvable in O(n log n) time by Johnson’s algorithm

(Johnson 1954). On the other hand, if li = 0 and bi = ∞, then the constraint is hard

and the F2/qi = ai or ai + bi/Cmax problem is equivalent to the problem with no-wait

constraints, F2/no-wait/Cmax, which is equivalent to a special version of the traveling

2

salesperson problem and can be solved in O(n log n) time (Gilmore and Gomory 1964;

Hall and Sriskandarajah 1996). The F2/qi = ai or ai + bi/Cmax problem is similar to the

scheduling problem introduced by Mitten (1958) where a time lag Di is specified for the

two operations of each job such that the second operation cannot start in less than Di

time units after the first operation is started and the second operation cannot complete in

less than Di time units after the first operation is completed. An O(n log n) algorithm was

also proposed by Mitten (1958). Addressing the same issue considered in Mitten’s paper,

Johnson (1959) provided an alternative proof and presented several properties for general

cases. Later, Mitten (1959) investigated a case where the time lags for the start and

completion of each job’s two operations may be different. To the best of our knowledge,

the F2/qi = ai or ai + bi/Cmax problem has not been studied in the scheduling literature.

In this paper, we will first show that the F2/qi = ai or ai + bi/Cmax is strongly NP-

hard even if restricted conditions are imposed. Then, we explore a property that can be

deployed to determine the makespan of a fixed processing sequence. We will also discuss

potential developments.

2 Computational Complexity

In this section we present NP-hardness results by a reduction from 3-Partition, which

is NP-hard in the strong sense (Garey and Johnson 1979).

3-Partition: Given a non-negative integer B and a set of 3m non-negative integers

A = {x1, x2, . . . , x3m} with 1/4 < xi < 1/2 for each xi and
∑3m

i=1 xi = mB, is there a

partition A1, A2, . . . , Am of set A such that for each subset Aj,
∑

xi∈Aj
xi = B?

Theorem 1 The F2/qi = ai or ai + bi/Cmax problem is strongly NP-hard even if all the

jobs have the same machine-one processing time, lag and penalty.

Proof: It is easy to see that the decision version of F2/qi = ai or ai + bi/Cmaxwith the

specified constraints belongs to NP . Given an instance of 3-Partition, we create an

instance of 4m + 1 jobs for F2/qi = ai or ai + bi/Cmax as follows:

3

Ordinary jobs: ai = B + xi, 1 ≤ i ≤ 3m;

Enforcer jobs: a3m+i = 0, 1 ≤ i ≤ m + 1.

All the jobs have machine-one processing time pi = B, time lag li = B and penalty bi = 1.

With the above two instances, we show that there is a partition as specified for set

A if and only if there is a schedule for F2/qi = ai or ai + bi/Cmax whose makespan is no

greater than (4m + 1)B. Without loss of generality we assume m ≥ 2.

(IF) Let subsets A1, A2, . . . , Am constitute a partition of set A as specified in 3-

Partition. We compose a schedule for F2/qi = ai or ai + bi/Cmax as follows: The three

jobs corresponding to the elements of A1 come first and job 3m + 1 follows. Then, the

three jobs corresponding to the elements of A2 and job 3m + 2 are scheduled. Repeat the

scheduling pattern for the remaining jobs and schedule jobs 4m and 4m + 1 last. The

Gantt chart in Figure 1 illustrates the arrangement. It can easily be verified that the

makespan of the schedule is (4m + 1)B.

——————————————-

Insert Figure 1 here.

——————————————-

(ONLY IF) Assume S is a schedule for F2/qi = ai or ai + bi/Cmaxwith makespan no

greater than (4m + 1)B. Because the sum of machine-one processing times of all the jobs

is exactly (4m + 1)B, no idle time is allowed on machine one. The sum of the machine-

two processing times of all the jobs is exactly 4mB and an idle time of B time units is

inevitable for the first operation on machine two. Therefore, no other idle time can be

incurred on the second machine. Moreover, no penalty can be incurred by any job.

We start the analysis from the job scheduled in the first position of the schedule. If

any enforcer job occupies the first position, an idle time of 2B time units will be incurred

for the first two jobs on machine two. As a result, the first job must be an ordinary one.

Because all the enforcer jobs are homogeneous, we assume without loss of generality that

they are arranged in ascending order of their indices.

Let N1 denote the set of jobs preceding job 3m + 1. We consider the following two

cases:

4

(1) |N1| < 3 :

On the two machines, the completion times of job 3m+1 are |N1|B +B and B + |N1|B +∑
i∈N1

xi. Consider the difference (B + |N1|B +
∑

i∈N1
xi) − (|N1|B + B) =

∑
i∈N1

xi.

The inequality
∑

i∈N1
xi < B must hold because xi < B/2 and |N1| ≤ 2. Therefore, on

machine two a non-zero idle time will be introduced to the job that immediately follows

job 3m + 1, and a contradiction arises.

(2) |N1| ≥ 3 :

Let N1 = {i1, i2, . . . , iN1} and consider the first three jobs i1, i2, i3. If xi1 + xi2 + xi3 > B,

then the difference between the completion times of job i3 on both machines is

(B + (B + xi1) + (B + xi2) + (B + xi3))− 3B,

which is greater than 2B. Thus, the fourth job i4, or the enforcer job 3m + 1 if |N1| = 3,

needs to be deferred or penalized and a contradiction arises. On the other hand, if

xi1 + xi2 + xi3 < B and |N1| ≥ 4, then the difference between the completion times of job

i4 on both machines is

(B + (B + xi1) + (B + xi2) + (B + xi3) + (B + xi4))− 4B

= B + xi1 + xi2 + xi3 + xi4 ,

which is greater than 2B because xi > B/4 for all i. Similarly, a contradiction arises. if

xi1 + xi2 + xi3 < B and |N1| = 3, then the difference between the completion times of job

3m + 1 on both machines is

(B + (B + xi1) + (B + xi2) + (B + xi3))− 4B,

which is smaller than B, implying non-zero idle time for the immediate successor of 3m+1

on machine one. Excluding the possibilities discussed above, we establish that the equality

xi1 + xi2 + xi3 = B must hold. However, we still need to show that N1 contains exactly

three elements. If |N1| > 3, then when considering the fourth job i4, we come up with

the same contradiction concerning the successor of job i4.

From the above discussion, we have that |N1| = 3 and xi1 + xi2 + xi3 = B. We let the

elements corresponding to the jobs of N1 constitute subset A1. Continuing the same line

of reasoning, we can come up with A2, A3, . . ., and Am as required. Therefore, we have

derived a partition for set A as specified in 3-Partition. The proof is thus accomplished.

5

Treating the problem in a mirror way from the other side of the time horizon, we

can also show that the F2/qi = ai or ai + bi/Cmax problem remains strongly NP-hard

even if all the jobs have the same basic machine-two processing time, lag and penalty. A

polynomial-time reduction from 3-Partition can be carried out by creating a job set of

4m + 1 jobs as follows:

pi = xi, 1 ≤ i ≤ 3m;

Enforcer jobs: p3t+i = 3B, 1 ≤ i ≤ m + 1; p4m+1 = 0.

All the jobs have the same ai = B, li = 2B and bi = M2.

Given the instance transformation, we claim that the desired partition of set A exists

if and only if there is a schedule for F2/qi = ai or ai + bi/Cmax whose makespan is no

greater than (4m + 1)B. The optimal job sequence is configured as

4m + 1, < A1 >, 3m + 1, < A2 >, 3m + 2, · · · , < Am−1 >, 4m,

where < Ai > denotes the jobs corresponding to the elements in subset Ai.

3 Determining the Makespan of a Job Sequence

In most flowshop scheduling problems, the makespan is readily determined when the

order of the jobs is known. The F2/qi = ai or ai + bi/Cmax problem, however, exhibits

a very intriguing characteristic about the determination of the optimal makespan of a

given sequence. This difficulty arises mainly from the decision about whether or not to

postpone some machine-one operations to prevent the possible incurring of penalties. In

the worst case, there will be O(2n) combinations of decisions of whether or not to defer

each of the n jobs. In this section, we develop a polynomial time procedure to determine

the optimal makespan for a give job sequence.

Assume a sequence [1], [2], · · · , [n] is given, where [i] denotes the job in position i of the

sequence. We call a job deferred if idle time is inserted before its machine-one operation

so as to avoid the penalty that might be incurred by its machine-two operation. It is

the variability caused by deferred jobs that makes the determination of the makespan

difficult. A key to overcoming this obstacle is based upon the observation that the last

6

deferred job will hedge the variability. Therefore, we focus on schedules with the last

deferred job fixed. Consider any two schedules S1 and S2 for the first j jobs with job

[i], 1 ≤ i ≤ j ≤ n, as the last deferred job. Let C1
Sk

(i, j) and C2
Sk

(i, j) denote the

completion times of job [i] on machine one and machine two in schedule Sk, k = 1

or 2. Due to the role of job [i], the differences between the completion times on the

two machines are the same for the two batches. In other words, although it is possible

that C1
S1

(i, j) 6= C1
S2

(i, j) and C2
S1

(i, j) 6= C2
S2

(i, j), the differences are the same, i.e.,

C2
S1

(i, j) − C1
S1

(i, j) = C2
S2

(i, j) − C1
S2

(i, j). Furthermore, in both schedules, no idle time

is inserted on machine one for any successor of job [i]. Therefore, the successor jobs of

job [i] have the same processing mode as, in both schedules, they are both either normal

or penalized. As shown in Figure 2, the shaded part of both schedules are the same.

——————————————-

Insert Figure 2 here.

——————————————-

Based upon the above observation, we may then develop an algorithm for calculating

the optimal makespan of a given sequence. Let F (i, j) denote the optimal makespan of

the job sequence [1], [2], . . . , [j] given that job [i], 0 ≤ i ≤ j ≤ n, is the last deferred job.

Let C1(i, j) and C2(i, j) respectively, denote the completion times on the two machines

for the schedule associated with F (i, j). Initially, we set C1(0, 1) = p1, C
2(0, 1) = p1 +

a1, F (0, 1) = C2(0, 1) and F (1, 1) = ∞. The first three terms reflect that a dummy job is

added for initialization. The term F (1, 1) = ∞ indicates that it is not necessary to defer

the machine-one operation of the first job. For any i and j, 1 < i ≤ j ≤ n, F (i, j) = ∞

means that a schedule with job [i] as the last deferred job cannot be optimal for the first

j jobs.

For a fixed j, we want to calculate the values of F (i, j) for all 1 ≤ i ≤ j. To compute the

value of F (i, j), we need to know the completion times on the two machines corresponding

to F (i, j − 1). Based upon the information conveyed in the schedule associated with

F (i, j − 1), we have three possible cases: (1) job j can be normally processed without

deferring or incurring a penalty; (2) job j is processed with a penalty incurred; and (3)

job j is deferred. Therefore, considering F (i, j − 1) and job j will result in two entries

7

F (i, j) and F (j, j). The latter one dictates the fact that job j is deferred. Moreover, for

any specific i and j, 1 < i < j, F (i, j) = ∞ if and only if F (i, j′) = ∞, j < j′ ≤ n. The

detailed computation is outlined in the following algorithm.

Algorithm Find Makespan

1: Initialization: C1(0, 1) = p1, C
2(0, 1) = p1 + a1, F (0, 1) = C2(0, 1); and F (1, 1) = ∞;

2: For j=2 to n do

3: F (j, j) = ∞;

4: For i = 0 to j − 1

5: If F (i, j − 1) = ∞ then F (i, j) = ∞ else do the following steps

{

6: Case 1: C2(i, j − 1)−C1(i, j − 1)− pj ≤ lj /* Job j is normally processed */

{

7: C1(i, j) = C1(i, j − 1) + pj;

8: C2(i, j) = max{C1(i, j), C2(i, j − 1)}+ aj;

9: F (i, j) = C2(i, j);

}

10: Case 2: C2(i, j − 1)− C1(i, j − 1)− pj > lj;

{

/* Job j is penalized; */

11: C1(i, j) = C1(i, j − 1) + pj;

12: C2(i, j) = C2(i, j − 1) + aj + bj;

13: F (i, j) = C2(i, j);

/* Job j is deferred; */

14: If F (j, j) = ∞ or C2(i, j − 1) + aj < F (j, j) then

{

15: C1(j, j) = C2(i, j − 1)− lj;

16: C2(j, j) = C2(i, j − 1) + aj;

17: F (j, j) = C2(i, j);

}

8

}

}

18: Else F (i, j) = ∞;

19: Output
n

min
i=0

{F (i, n)}.

The algorithm comprises a loop of O(n2) iterations, each of which takes O(1) time.

Therefore, we conclude the results with the following theorem.

Theorem 2 Given a processing sequence of the jobs, the makespan can be determined in

O(n2) time.

4 Conclusion

In this paper we considered a flowshop scheduling problem with the consideration of lag

penalties. The problem was shown to be strongly NP-hard. To determine the makespan

of a job sequence is not as straightforward as in the case of classical flowshop scheduling

problems. We elaborated on a property and applied it to develop an O(n2) algorithm for

calculating the makespan of a given job sequence. For further research, it is interesting

to extend the study to the general flowshop with m machines, where m is an input vari-

able. For example, settling the complexity status of determining the makespan of a fixed

sequence in the general flowshop setting is a worthy topic.

References

Cheng, T.C.E., Ding, Q., Lin, B.M.T., 2003. A concise survey of scheduling with time-

dependent processing times. European Journal of Operational Research, 152, 1-13.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide to the Theory

of NP-Completeness, Freedman, San Francisco, CA.

Gilmore, P.C., Gomory, R.E., 1964. Sequencing a one-state variable machine: a solvable

case of the traveling salesman problem. Operations Research, 12, 655-679.

9

Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G., 1979. Optimization

and approximation in deterministic sequencing and scheduling: A survey, Annals of

Discrete Mathematics, 5, 287-326.

Hall, N., Sriskandarajah, C., 1996. A survey of machine scheduling problems with block-

ing and no-wait in process. Operations Research, 44, 510-525.

Johnson, S.M., 1954. Optimal two- and three-stage production schedules with setup

times included. Naval Research Logistics Quarterly, 1, 61-68.

Johnson, S.M., 1959. Discussions: Sequencing n jobs on two machine with arbitrary

time lags. Management Science, 5, 299-303.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., ShmoysD.B., 1993. Sequencing and

scheduling: algorithms and complexity. In Logistics of Production and Inventory,

(S.C. Graves, A.H.G. Rinnooy Kan and P.H. Zipkin, Eds.) North Holland, Amster-

dam, the Netherlands, 445-522.

Mitten, L.G., 1958. Sequencing n jobs on two machine with arbitrary time lags. Man-

agement Science, 5, 293-298.

Mitten, L.G., 1959. A scheduling problem: An analytical solution based upon two

machines, n jobs, arbitrary start and stop lags, and common sequences. Journal of

Industrial Engineering, 10, 131-135.

Reisman, A., Kumar, A., Motwani, J., 1997. Flowshop scheduling/sequencing research:

A statistical review of the literature, 1952-1994. IEEE Transactions on Engineering

Management, 44, 316-329.

10

B

M
2

M
1

A1 3m+1 3m+2A2 4m+1Am 4m

5B 9B (4m-3)B 4(m+1)BTime

Figure 1: The schedule used in the proof of Theorem 1.

11

12

[i-1]

[i-1]

[i]

[i]

[i+1],[i+2],…,[j]

[i+1],[i+2],…,[j]

S1

[i-1]

[i-1] [i]

[i+1],[i+2],…,[j]

[i+1],[i+2],…,[j]

S2

l[i]

[i]

Figure 2: Two schedules with the same job [i] as the last deferred job.

l[i]

