
Semi-Online Multiprocessor Scheduling with Given

Total Processing Time

T.C. Edwin Cheng∗ Hans Kellerer†‡ Vladimir Kotov§

Abstract

We are given a set of identical machines and a sequence of jobs,
the sum of whose weights is known in advance. The jobs are to be
assigned on-line to one of the machines and the objective is to minimize
the makespan. An algorithm with performance ratio 1.6 and a lower
bound of 1.5 is presented. These results improve on the recent results
by Azar and Regev, who proposed an algorithm with performance ratio
1.625 for the less general problem that the optimal makespan is known
in advance.

Keywords: On-line algorithms; Semi-online algorithms; Bin stretching;
Multiprocessor scheduling; Approximation algorithms

1 Introduction

The on-line version of the classical multiprocessor scheduling problem is one
of the well-investigated problems of the last years. A set of independent jobs
is to be processed on m parallel, identical machines in order to minimize the
makespan. The jobs arrive on-line, i.e., each job must be immediately and
irrevocably assigned to one of the machines without any knowledge on future
jobs. This problem was first investigated by Graham who showed that the
list scheduling algorithm has a performance ratio of exactly 2 − 1/m [6, 7]

∗Department of Logistics, The Hong Kong Polytechnic University, Kowloon, Hong

Kong, lgtcheng@polyu.edu.hk
†Institut für Statistik und Operations Research, Universität Graz, Universitätsstraße

15, A–8010 Graz, Austria, hans.kellerer@uni-graz.at
‡corresponding author
§Byelorussian State University, Faculty of Applied Mathematics and Computer Sci-

ence, Byelorussian State University, Skarina ave. 4, Minsk, 220050, Byelorussia,

kotov@fpm.bsu.unibel.by

1

and is best possible for m ≤ 3 [3]. A long list of improved algorithms has
since been published. The best heuristic is due to Fleischer and Wahl [4].
They designed an algorithm with competitive ratio smaller than 1.9201 when
the number of machines tends to infinity. The best lower bound of 1.8358 is
due to Gormley et al. [5]. For a survey on on-line algorithms for scheduling
problems, we refer the reader to Sgall [9].

We investigate a semi on-line version of this on-line multiprocessor schedul-
ing problem, where we assume that the sum of processing times is given in
advance. In a previous paper [8], an algorithm with performance ratio 4/3
for the problem with known processing times and two machines was given.
Moreover, this bound is best possible. A less general semi on-line version
has been introduced by Azar and Regev in [1], who labeled it as the on-line
bin stretching problem. A sequence of items is given, which can be packed
into m bins of unit size. The items are to be assigned on-line to the bins
minimizing the stretching factor of the bins, i.e., to stretch the sizes of the
bins as least as possible such that the items fit into the bins.

Thus, the bin stretching problem can be interpreted as a semi on-line schedul-
ing problem where, instead of the total processing time, even the value of the
optimal makespan is known in advance. The motivation for investigating
this problem comes from a file allocation problem as illustrated in [1]. In
analogy to Azar and Regev we call our problem the generalized on-line bin
stretching problem (GOBSP). Obviously, any online algorithm for (GOBSP)
with competitive ratio α turns into an algorithm for the online bin stretch-
ing problem with stretching factor α (after possibly adding some dummy
items).

For the bin stretching problem, a sophisticated proof for an algorithm with
stretching factor 1.625 was given by Azar and Regev in [1]. Moreover, the
authors extended the lower bound of 4/3 on the stretching factor of any
algorithm for two machines to any number of machines m. In a recent
paper Epstein [2] studied several online models of bin stretching on two
machines. Especially, she shows a tight bound of 10/9 for two identical
machines assuming the jobs sorted by non-increasing order of processing
times.

In this paper we will present an elementary algorithm with performance ratio
1.6 for the more general problem (GOBSP). Moreover, we will establish an
improved lower bound of 1.5 for m ≥ 6 machines.

2

2 Exact Problem Definition and Notation

In the (GOBSP) we are given a set M of m identical machines (bins) of
unit size and a sequence I of jobs (items), which are to be assigned on-line
to one of the machines. (For the rest of the paper, we will use only the
expressions bins and items.) Each item j has an associated weight wj > 0,
which is often identified with the corresponding item. The weight of a bin
B is defined as the sum of the weights of all items assigned to B, and is
denoted by w(B). More exactly, wj(B) denotes the weight of bin B just
before item j is assigned, but most of the time we will just write w(B) if it
is clear from the context. When we speak of time j , we mean the state of
the system just before item j is assigned. The sum of the item weights w(I)
is given in advance. W.l.o.g., w(I) = m.

The objective of an algorithm for (GOBSP) is to minimize the stretching
factor of the bins, i.e., the maximal weight of the bins after assigning the
items. For a given sequence of items I, let α denote the stretching factor of
an on-line algorithm for (GOBSP), and α∗ denote the stretching factor of
an optimal off-line algorithm, respectively. Of course, α∗ ≥ 1. An algorithm
is defined to have a stretching ratio ρ if for any sequence of items I with
total weight m the ratio α/α∗ is less than or equal to ρ.

Denote the set of the first �m
2 � bins to which items are assigned by B(1,m/2)

and the other bins by B(m/2,m).

The items are divided into several classes. Items with weight in]0; 0.6] are
called small, items in]0.6; 0.8] are called medium and items greater than 0.8
are called large. A more detailed partition is given for the small and the large
items. Altogether, we have the classes]0; 0.3],]0.3; 0.6],]0.6; 0.8],]0.8; 0.9]
and]0.9; ∞[. The corresponding items are called tiny , little, medium, big ,
and very big , respectively.

Also some bin classes are introduced. A bin B with no items in it is called
empty . For w(B) ∈]0; 0.3] it is called tiny , for w(B) ∈]0.3; 0.6] it is called
little and for w(B) ∈]0; 0.6] it is called small . If B consists only of a medium
item, B is called medium. If w(B) > 0.8, it is called large. If B consists
only of a big item, it is called big . A bin consisting only of a very big item
is called very big . If a bin contains a large item and small items but has
weight not exceeding 1.1, it is called nearly full . Finally, bins which contain
a large item and have weight greater than 1.1, are called full .

The number of tiny items is denoted by tI, the number of tiny bins is denoted
by tB. The abbreviations for cardinalities of the other classes of bins are

3

depicted in Table 1.

Types empty tiny little small medium
Bins ∅B tB �iB sB mB

Types large nearly full big very big full
Bins �aB nfB bB vbB fB

Table 1: Abbreviations for bin classes

3 Phase 1 of the Algorithm

Our algorithm with stretching ratio 1.6 is split into two parts. The first part
(called Phase 1) runs (in three of four cases) until there are no more empty
bins. At the end of Phase 1 it will decide, depending on the structure of
the bins, how the algorithm will continue with Phase 2. We will distinguish
four different structures, leading to Stages 1, 2, 3 and 4.

During the algorithm we call LB the current lower bound for the stretching
factor of an optimal off-line assignment, starting with LB = 1. In Phase
1 medium items are put alone into bins, big items are put alone into bins
as long as more than m/2 bins are empty. When the number of empty
bins does not exceed m/2, a big item (like all other large items) is put into
the largest small bin in which it fits, i.e., in which the total weight will
not exceed 1.6LB, or otherwise into an empty bin. Finally, small items are
assigned to small bins if the total weight will not exceed 0.6 or to empty
bins. Depending on the four conditions at the end, it will decide with which
stage we will continue. A formal description of Phase 1 of the algorithm is
depicted in Figure 1.

Some simple properties of the bins after Phase 1 are described in the follow-
ing lemma:

Lemma 1 During any time of Phase 1 of the algorithm, the following prop-
erties hold for any bin B:

(a) If w(B) ∈]0.6; 0.8], then B is a medium bin. Moreover, all medium
items are alone in bins.

(b) If w(B) > 0.8, then B contains a large item.

4

Phase 1 of the Algorithm

LB := 1 initialization of the lower bound

Let a denote the current item to be assigned and set LB := max{LB, a}.

1. If a is very big or if a is big and ∅B ≤ m/2, assign a to the largest bin B

with w(B) ≤ 0.6.

2. Assign all medium items and, for ∅B > m/2, also big items to empty

bins.

3. If a is small and there is a small bin B1 or a nearly full bin B2, assign a

to B1 if w(B1) + a ≤ 0.6 (or to B2 if w(B2) + a ≤ 1.6LB). Otherwise,

assign small item a to the largest bin B with w(B) > 0.9 (for ∅B ≤ m/2
even to the largest bin B with w(B) > 0.8) and w(B) + a ≤ 1.6LB, or

else to an empty bin.

Stop, if one of the following four conditions holds:

(a) If ∅B = 0 and sB = 0, goto Stage 1.

(b) If ∅B = 0, sB > 0 and bB = 0, goto Stage 2.

(c) If ∅B = 0, sB > 0 and bB > 0, goto Stage 3.

(d) If ∅B > 0 and 2(mB + ∅B) ≤ �iB, goto Stage 4.

Figure 1: Algorithmic description of Phase 1

(c) tB + nfB ≤ 1.

(d) sB = 0 or vbB = 0.

(e) All bins have weight ≤ 1.6LB.

(f) After Phase 1 the following types of bins are possible: empty bins, little
bins, medium bins, big bins, very big bins, full bins and at most one
tiny bin or nearly full bin.

5

Proof: The proofs are straightforward. Assertions (a) and (b) are true by
definition of the algorithm. Note that assigning a very big item a to a small
bin results always in a bin with weight not exceeding 1.6LB since for a > 1
the lower bound LB is redefined. Therefore, assertion (e) is true. Assertions
(c) and (d) follow by induction. In the following we will show (c), assertion
(d) can be proven analogously. Assertion (f) will then follow directly from
(a), (b) and (c).

Assume first that there is one tiny bin B, thus no nearly full bin. Denote
the next arriving item by a. If a is tiny, it will be assigned to B since the
total weight will not exceed 0.6. If a is little, it can be assigned to B or to
an empty bin, forming a little bin, or to a large bin or full bin, forming a
full bin. If a is large and is assigned to B, we get either a full bin or B is
changed into a nearly full bin. So, in any case tB + nfB ≤ 1 holds.

Now assume that there is one nearly full bin B, thus no tiny bin. Thus a
large item assigned to a small bin gives a full bin. Consider now a small
item a. If a fits into B, it is assigned to B and B remains a nearly full bin
or becomes full. If a does not fit into B, we have a > 0.5LB, and the bin to
which a will be assigned will become either a little bin or a full bin.

The next lemma describes the structure of the bins at the end of Phase 1,
depending on which Stage is entered in Phase 2.

Lemma 2 The structure of the bins after Phase 1 at the beginning of Stages
1 to 4 can be described as follows:

(a) Stage 1: There are full bins, very big bins, big bins, medium bins plus
at most one nearly full bin.

(b) Stage 2: There are full bins, medium bins, little bins and at most one
tiny bin or nearly full bin. Moreover we have

2mB ≥ �iB − 2. (1)

(c) Stage 3: There are full bins, big bins, medium bins, little bins and
at most one tiny or nearly full bin. The bins of B(m/2,m) are all
medium bins and thus

mB ≥
⌊
m

2

⌋
. (2)

(d) Stage 4: There are full bins, medium bins, little bins, at most one tiny
bin or nearly full bin and empty bins. Moreover we have

�iB ≥ 2(mB + ∅B) ≥ �iB − 2. (3)

6

Proof: We distinguish four cases according to the different stages. The
possible types of bins in Stages 1 to 3 follow directly from Lemma 1(c), (d)
and (f).

(a): The claim follows directly from above since by assumption ∅B = 0
and sB = 0 holds.

(b): Only inequality (1) has to be shown. Denote by mB′ and �iB′ the
number of medium bins and little bins, before assigning an item to the last
empty bin. Analogously, denote by mB and �iB the number of medium
bins and little bins, after assigning an item to the last empty bin. Since we
do not enter Stage 4 while there are empty bins, the inequality

2(mB′ + 1) ≥ �iB′ + 1

must hold for ∅B = 1. With the preceding inequality we get

2mB ≥ 2(mB′ − 1) = 2(mB′ + 1) − 2 ≥ �iB′ − 1 ≥ (�iB − 1) − 1.

This proves (1).

(c): Due to |B(m/2,m)| = �m/2	 it is sufficient to show that the bins in
B(m/2,m) are all medium bins. Remember that big items are put alone
into bins as long as ∅B > m/2. After the last bin in B(1,m/2) becomes
nonempty, big items can be combined with small items and vice versa.

The following statement can be easily seen by induction on the number of
empty bins: If ∅B ≤ m/2 and bB = 0 or sB = 0, then also bB = 0 or
sB = 0 must hold for the rest of Phase 1.

Since bB > 0 and sB > 0 hold at the end of Phase 1, it follows that bB > 0
and sB > 0 must hold already after the last bin in B(1,m/2) becomes
nonempty and also afterwards. After this time large items can be assigned
to small bins and small items to small bins or bins with load greater than
0.8, only medium items are assigned to empty bins. Consequently, only
medium bins can be elements of B(m/2,m).

(d): The left-hand side of inequality (3) follows directly from the definition
of Stage 4 and the right-hand side of (3) is shown with an argumentation
analogously to (b):

Consider the bins just before the last item a is assigned. Denote by mB′,
�iB′ and ∅B′ the number of medium bins, little bins and empty bins, just
before item a is assigned. Analogously, denote by mB, �iB and ∅B the
number of medium bins, little bins and empty bins, after item a is assigned.
Then, mB ≥ mB′, ∅B ≥ ∅B′ − 1 and �iB ≤ �iB′ + 1.

7

Then, 2(mB′ + ∅B′) > �iB′ but after assigning item a we get

�iB ≤ �iB′ + 1 ≤ 2(mB′ + ∅B′) ≤ 2(mB + ∅B + 1) = 2(mB + ∅B) + 2.

It remains to show that there are no bins with a single large item in it. First
note that we do not enter Stage 4 (or any other stage) before the number of
empty bins is less than or equal to m/2 because 2(mB + ∅B) ≤ �iB cannot
hold for ∅B > m/2. This means that there is some time when small items
are allowed to be packed with big items and vice versa.

From ∅B > 0 and the left-hand side of (3) we conclude �iB ≥ 2, hence
�iB′ ≥ 1.

If a is medium, the number 2(mB′ + ∅B′) remains constant, i.e. 2(mB +
∅B) = 2(mB′ +∅B′). A large item a would be assigned to a small bin which
exists due to �iB′ ≥ 1. Consequently, a is small and is assigned to a big or
very big bin if there is one. But a can only be the last item if the number
of little bins is increased or the number of empty bins is decreased. Thus,
there can be no big bin or very big bin.

4 Phase 2 of the Algorithm

Phase 2 of the algorithm is split into four stages, depending on the structure
of the bins after Phase 1. For Stages 1 to 3, we apply a best fit approach.
First, we try to put an item into the largest bin in which it fits, and if this
is not possible, we assign it to the bin with the smallest weight.

Before we continue the description of the algorithm, we introduce some
further notation. Consider the bins at the end of Phase 1. Then the set
of the very big bins is called the V-group. Analogously, the set of the big
bins, medium bins and small bins are called B-group, M-group and S-group,
respectively. Note that the M -group consists of all medium items assigned
to separate bins in Phase 1.

All bins shall be sorted in non-increasing order of weight at the end of Phase
1, i.e.

w(B1) ≥ w(B2) ≥ . . . ≥ w(Bm), (4)

and we will keep this notation for the bins even after some new items are
assigned.

The formal algorithm for Stages 1 to 3 is depicted in Figure 2.

8

Phase 2 for Stages 1 to 3 of the Algorithm

Let a denote the current item to be assigned and let β denote the current

(m + 1)-st largest item. Set LB := max{LB, a, 2β}. Assign item a to the

largest bin B, for which w(B) + a ≤ 1.6LB, else assign a to the bin with the

smallest weight. In case of ties, bins with smaller index, as defined in (4), are

considered to have “larger” weight.

Figure 2: Algorithmic description of Phase 2 for Stages 1 to 3

If our algorithm for (GOBSP) has stretching ratio greater than 1.6, there
is a failure item zf that shall be the first item being assigned to a bin B

(w(B) < 1) with w(B) + zf > 1.6α∗. Then the following lemma is easy to
verify:

Lemma 3 (a) If zf is assigned to bin B, we have zf ≤ α∗ < 5
3wzf

(B) <
5
3 . While there are bins with weight not greater than 0.6, the stretching
ratio does not exceed 1.6.

(b) Let the current item a be assigned to bin B with wa(B) ≤ 0.9 and
α∗ ≥ wa(B) + 0.6. Then, wa(B) + a ≤ 1.6α∗.

(c) Assume the algorithm fails and the failure item zf is assigned to a bin
B. Let a denote the first item assigned to B in Phase 2. If wa(B) ≥ 0.4
and if all bins which have weight less than 0.4 at the end of Phase 1,
have weight at least 1 after Phase 2, then zf = a holds.

Proof: (a): The inequality follows directly from wzf
(B)+α∗ ≥ wzf

(B)+
zf > 1.6α∗. Now let B be a bin with w(B) ≤ 0.6. If item a is assigned to
B we get with a ≤ LB that w(B) + a ≤ 0.6 + LB ≤ 1.6LB.

(b): Assume the assertion does not hold, i.e., a = zf . Then we get from
wa(B)+a > 1.6α∗ ≥ 1.6 (wa(B)+0.6) that a > 0.96+0.6wa(B). Inserting
a = zf < 5

3wa(B) from Lemma 3(a) into the preceding inequality, we get
wa(B) > 0.9, a contradiction.

(c): Note that a failure item zf is always assigned to a bin B with smallest
weight. Let B = Bf as defined in (4). Bin Bf has weight smaller than 1
since w(I) = m, i.e.

wzf
(Bf) < 1. (5)

9

Assume a
= zf . We get from (5) that wa(Bf)+a < 1. From the assumption
that wa(Bf) ≥ 0.4 follows that a < 0.6. All bins B1, . . . , Bf−1 have weight
at least wa(Bf) in the beginning of Phase 2. They are considered for item
a before Bf and were not used. This means that they are full by more than
1. Now consider bins Bf+1, . . . , Bm. Those bins had weight smaller than or
equal to wa(Bf) in the beginning of Phase 2. Yet just before the assignment
of zf , they have larger weight than wa(Bf). This means they all received at
least one item in the meantime. However Bf has weight smaller than 1 until
zf arrives. An item will be put in a bin with smaller weight if it does not
fit in Bf . Thus it has weight larger than 0.6. Thus, the bins Bf+1, . . . , Bm

also have weight at least 1 a contradiction to w(I) = m.

Proposition 1 For Stage 1, the algorithm has stretching ratio 1.6.

Proof: Assume the algorithm fails. Recall from Lemma 2(a) that at the
beginning of Stage 1 we have full bins, very big bins, big bins, medium bins
plus at most one nearly full bin. Especially there are no small bins and due
to Lemma 1(b) each bin contains an item with weight greater than 0.6.

Because the minimum weight of a bin at the beginning of Stage 1 is at least
0.6, by Lemma 3(c) a failure item zf is according to (4) assigned to a bin
Bf , f ∈ {1, . . . ,m}, and zf is the first item assigned to Bf in Phase 2.

Since zf is always assigned to a bin with smallest weight, the bins Bj,
j = f + 1, . . . ,m, all received at least one item bj in the meantime. Items
bj did not fit in bin Bf and have weight larger than 0.6.

Recall that at the beginning of Phase 2 there are already m items with
weight greater than 0.6. Thus, when the first of the items bj arrives, there
are at least m+1 items with weight greater than 0.6 and so LB > 1.2 holds
at that time. Therefore, bj + w(Bf) > 1.6LB > 1.6 · 1.2 = 1.92. Because
of wzf

(Bf) < 1, we have bj > 0.92 for j = f + 1, . . . ,m. With the same
argumentation also zf > 0.92 holds. We distinguish now several cases with
respect to the item group to which zf is assigned.

a) Bf is a bin of the M -group: By definition all bins B1, . . . , Bf−1 contain
an item with weight at least mf where mf = wzf

(Bf) denotes the medium
item in Bf . Using that all full bins contain a large item, at time zf there
are m + 1 items with weight at least mf and we conclude α∗ ≥ 2mf >

wzf
(Bf) + 0.6. Lemma 3(b) with wzf

(Bf) = mf ≤ 0.8 contradicts the
assumption that zf is assigned to a medium bin.

10

b) Bf is a bin of the B-group:

Now to each medium bin Bj a very big item bj > 0.92 is assigned in Phase
2. Thus, including zf , there are at least (m + 1) large items and at time zf

even LB ≥ 2 · 0.8 = 1.6 holds. We conclude wzf
(Bf) + zf > 1.6 · 1.6 = 2.56.

From Lemma 3(a), we get zf < 5
3wzf

(Bf), which gives with the preceding
inequality (1 + 5/3)wzf

(Bf) > 2.56, and so wzf
(Bf) > 0.96, contradicting

that Bf is a bin of the B-group.

c) Bf is a bin of the V -group: Since all items bj have weight greater than
0.92, at time zf all bins except those which are already full after the end of
Phase 1 contain a very big item.

If all full bins contain very big items at the end of Phase 1, then there are
including zf at least (m + 1) very big items. Hence, α∗ > 0.9 + 0.9 = 1.8,
contradicting Lemma 3(a).

Thus, assume there is a full bin B̃ with big item b and some small items
at the end of Phase 1. Let s denote the first small item assigned to bin
B̃. Then at time s all bins with very big items except one are full and at
most one is at least nearly full with weight greater than 1 by Lemma 1(c).
Otherwise s would have been assigned to one these bins. (Note that very
big bins with items greater than 1 would increase LB, so any small item fits
in these bins.)

If b is the first item assigned to B̃, due to the definition of Phase 1, s can
only be assigned to bin B̃ if at time s all bins of B(1,m/2) are nonempty.
Thus, s can only be assigned to B̃ after all bins in B(1,m/2) with very big
items except one are full and one is at least nearly full with weight greater
than 1. Since all bins of the B-group and the M -group are full at time zf ,
in the end all bins of B(1,m/2) except one are full and one is at least nearly
full with weight greater than 1.

If s is the first item assigned to B̃, then no big item is assigned to B̃ for
∅B > m/2. Hence, B̃ remains small while ∅B > m/2 and due to Lemma 1(d)
there is at most one bin with a very big item which is not full. Again in this
case all bins of B(1,m/2) except one are full and one is at least nearly full
with weight greater than 1.

We summarize that all bins of B(1,m/2) except one are full and one is at
least nearly full with weight greater than 1 and all bins in B(m/2,m) have
weight at least 0.9 since they contain very big items or they are full. At time
zf the total item weight is then greater than 1.1(�m/2�−1)+1+0.9�m/2	+
zf , an obvious contradiction to w(I) = m.

11

Let G be a set of bins. If at least one item has been assigned to each bin of
G in Phase 2 (Stages 1 to 3), the set G is called filled . The following lemma
is simple but very useful:

Lemma 4 Let G be a filled set of bins each having weight greater than
w at the end of Phase 1. Then all bins except one have weight greater
than (0.8 + w/2). Moreover, the average weight of the bins is greater than
(0.8 + w/2) if G contains at least two bins.

Proof: We show that the assertion holds during Phase 2 for all bins of G

which are filled already. Let a be a new arriving item in Phase 2. Assume
there is exactly one bin B of set G to which items have been assigned at time
a, but which has weight not exceeding (0.8+w/2). If a fits in B, there is still
at most one filled bin of G with weight less than (0.8 + w/2). Thus, assume
a does not fit into B but is put into a bin B′ ∈ G with smaller weight but no
items added. Hence, a > 0.8−w/2 and w(B′)+a > w+0.8−w/2 = 0.8+w/2.
The first claim follows. The second claim is straightforward.

We now show that the algorithm works for Stages 2 and 3.

Proposition 2 For Stage 2, the algorithm has stretching ratio 1.6.

Proof: We assume there is a failure item zf . Recall from Lemma 2(b)
that at the beginning of Phase 2 there are full bins, an M -group of bins, an
S-group, and at most one extra bin B which is nearly full or tiny. Recall
also that as long as there are bins with weight smaller than or equal to
0.6, especially the S-group and a tiny bin is not filled, by Lemma 3(a) any
item a of arbitrary weight can be assigned to a small bin B without getting
w(B)+a > 1.6α∗. Thus, the S-group and a tiny extra bin will be filled before
zf arrives. We distinguish two cases depending on whether the M -group is
filled or not.

a) The M -group is filled: Then the S-group and a tiny extra bin are also
filled before item zf is assigned. By Lemma 4 all bins of the S-group except
one have weight greater than 0.95 and all bins of the M -group except one
have weight greater than 1.1. Consider the set of the two bins with smallest
weight in the S-group and the M -group. By Lemma 4 with w = 0.3 the
average weight of these two bins is at least 0.95. Since zf did not fit in the
extra bin B, we get zf +wzf

(B) > 1.6. Denote by t and u the number of bins
in the M -group and in the S-group, respectively. According to inequality

12

(1), we have m ≥ t + u ≥ 3
2u − 1, and hence u ≤ 2

3(m + 1). Thus, the total
weight of the items can be estimated as follows:

w(I) > 1.1(t − 1) + 0.95(u − 1) + 2 · 0.95 + 1.1(m − t − u − 1) + 1.6

= 1.1m − 0.15u + 0.35 ≥ m + 0.25,

a contradiction to w(I) = m.

b) The M -group is not filled: Then the first item in Phase 2 assigned to
each bin of the S-group or the extra tiny bin is a large item, since items
not greater than 0.8 are assigned preferably to a non-filled bin of the M -
group. Thus, after the S-group is filled, all bins of this group are full. The
remaining bins consist of bins with a medium item and at most one nearly
full bin.

Denote the bin to which the failure item zf is assigned by Bf according to
the enumeration in (4). Bf is a bin of the M -group or a nearly full bin.
Since zf is always assigned to a bin with smallest weight and the M -group
is not filled, zf is assigned to a bin of the M -group. Hence, all conditions of
Lemma 3(c) are fulfilled and zf is the first item assigned to Bf in Phase 2.

The argumentation for the remainder of the proof is similar to the proof
of part (a) of Proposition 1: The bins Bj, j = f + 1, . . . ,m all received at
least one item bj before zf arrives. These items bj did not fit in bin Bf and
because of wzf

(Bf) ≤ 0.8, they have weight larger than 0.8.

Thus, at time zf there are m+1 items not smaller than mf , and we conclude
α∗ ≥ 2mf > wzf

(Bf) + 0.6. Lemma 3(b) contradicts the assumption that
zf is assigned to a bin of the M -group.

Proposition 3 For Stage 3, the algorithm has stretching ratio 1.6.

Proof: The proof for Stage 3 is similar to the proof for Stage 2. We assume
there is a failure item zf . At the beginning of Phase 2 there are full bins, an
M -group of bins, an S-group, at most one extra bin B, nearly full or tiny,
and additionally a B-group. Again by Lemma 3(a) the S-group and a tiny
extra bin will be filled in Phase 2 of the algorithm.

a) The M -group and the B-group are filled: Then the S-group and a tiny
extra bin are also filled before item zf is assigned. We continue as in the
proof for part (a) of Proposition 2, noting that inequality (1) is replaced by
(2). By Lemma 4 all bins of the S-group except one have weight greater than
0.95, all bins of the M -group except one have weight greater than 1.1 and

13

all bins of the B-group except one have weight greater than 1.2. Consider
the set of the three bins with smallest weight in the S-group, the M -group
and the B-group. By Lemma 4 with w = 0.3 the total weight of these three
bins is at least 3 ·0.95 = 2.85. Since zf did not fit in the extra bin B, we get
zf + wzf

(B) > 1.6. Denote by t, u, v the number of bins in the M -group,
the S-group and the B-group, respectively. According to inequality (2), we
have t ≥ �m/2	. Thus, the total weight of the items can be estimated as
follows using u ≤ m − t ≤ m/2 + 1:

w(I) > 1.2(v − 1) + 1.1(t − 1) + 0.95(u − 1) + 1.1(m − t − u − v − 1)

+2.85 + 1.6 = 1.1m + 0.1v − 0.15u + 0.1 ≥ 1.025m − 0.05.

We conclude w(I) > m for m ≥ 2, a contradiction to w(I) = m.

b) The M -group is filled, but not the B-group: Then the first items
assigned in Phase 2 to bins of the M -group are all greater than 0.7, since
otherwise they should be assigned to a non-filled bin of the B-group which
has weight at most 0.9. Thus, each bin of the M -group has weight greater
than 0.6 + 0.7 = 1.3. By Lemma 3(a) the S-group and the tiny bin must
be filled before the failure item can arrive and by Lemma 4 all bins of the
S-group except one have weight greater than 0.95. Failure item zf did not
fit in the smallest bin among the bins of the S-group and the extra bin B.
Thus, the total weight of this bin and zf is at least 1.6. With inequality (2)
the total weight of the items can be estimated by

w(I) > �m/2	 1.3 + (�m/2� − 1) 0.8 + 1.6 > m,

a contradiction to w(I) = m.

c) The M -group is not filled: Then the first items assigned in Phase 2
to bins of the S-group are all greater than 0.8 since otherwise they should
be assigned to an non-filled bin of the M -group which has weight at most
0.8. Thus, each bin of the S-group has weight greater than 0.3 + 0.8 = 1.1.
Since zf is always assigned to a bin with smallest weight and the M -group
is not filled, zf is assigned to a bin of the M -group. The rest of the proof
is completely identical to the end of part b) of the proof for Proposition 2.

It remains to present the algorithm of Phase 2 for Stage 4. In this case,
instead of a best fit approach, the bins are collected in batches of three bins
each, depending on their type after the end of Phase 1. A set of three bins
B1, B2, B3 forms a 3-batch, if it is generated from two little bins and one

14

empty bin or one medium. If only small items are assigned to a 3-batch, it
is called small 3-batch, if only items greater 0.6 are assigned to a 3-batch, it
is called large 3-batch. At the time, when a 3-batch is opened , the current
number of little bins, medium bins and empty bins, is reduced appropriately.
At the first time when a small item does not fit into a small 3-batch or an
item with weight greater than 0.6 does not fit into a large 3-batch, we close
the corresponding 3-batch, i.e., no more items are assigned to it. Phase 2
for Stage 4 is depicted in detail in Figure 3.

Phase 2 for Stage 4 of the Algorithm

Let a denote the current item to be assigned.

1. If a ≤ 0.6 (a > 0.6) does not fit in the current open small 3-batch (large

3-batch) or there is none, close the batch and open a new small 3-batch

(large 3-batch) if possible. If this is not possible, goto 2.

1.1 a is small: Assign a to the largest bin of the small 3-batch in which

it fits. Goto 1.

1.2 a is medium: Assign a to an empty bin of the large 3-batch, or

otherwise to the largest bin in which it fits. Goto 1.

1.3 a is large: If the large 3-batch contains an empty bin and one large

item that has been already assigned to this batch, assign a to the

empty bin. Otherwise, assign it to the largest bin in which it fits.

Goto 1.

2. Use best fit, to assign the remaining items to bins of a possible open

3-batch and to the remaining bins not in batches.

Figure 3: Algorithmic description of Phase 2 for Stage 4

Lemma 5 Any closed 3-batch has total weight greater than 3.

Proof: a) The assertion is trivially true for small 3-batches, since small
items are not greater than 0.6.

b) Now consider a large 3-batch that consists of two little bins B1, B2

and one medium bin B3. When opened, this batch has weight at least
2 · 0.3+0.6 = 1.2. In this case the algorithm assigns the items to the largest

15

bins in which they fit. In any case, two items a1, a2 with weight greater
than 0.6 are assigned to B1 and B2. If an item is assigned to B3, the total
weight is greater than 1.2 + 3 · 0.6 = 3. If no item is assigned to B3, none
of the items a1 and a2, assigned to B1 and B2, fits in B3. Consequently,
ai > max{0.8, 1.6 − w(B3)} for i = 1, 2 . Thus, the total weight of the
3-batch exceeds (1.6 − w(B3)) + w(B3) + 0.8 + 0.6 ≥ 3.

c) Finally, consider a large 3-batch that consists of two little bins B1, B2

and one empty bin B3. If the first item a1 to be assigned is medium, a1 is
put in the empty bin and we can continue like in b). Assume a1 is large.
Then, a1 is assigned to B1 or B2. The following item a2 (at least medium)
is assigned to the empty bin B3. If the next item a3 can be assigned to
B3, there is also a fourth item with weight greater than 0.6 which can be
assigned to the 3-batch, yielding a total weight greater than 3. If a3 cannot
be assigned to B3, it is put into the remaining little bin, yielding total weight
greater than (1.6 − w(B3)) + 0.8 + w(B3) + 0.6 ≥ 3.

Now we are ready to show that the algorithm works for Stage 4.

Proposition 4 For Stage 4, the algorithm has stretching ratio 1.6.

Proof: Assume there is a failure item zf . Consider the bins to which items
are assigned in Step 2 of Stage 4. By inequality (3) of Lemma 2(d) there can
be two little bins and (at most) one tiny bin or nearly full bin that could not
be assigned to 3-batches. After going to Step 2 at most one open 3-batch
remains. It consists of three bins, two of which are at least little at the end
of Phase 1. Altogether there are at most four bins which are little at the
end of Phase 1 but not part of a 3-batch. These little bins are filled by
Lemma 3(a). Hence, by Lemma 4 at time zf the total weight of these bins
is greater than 4 · 0.95 = 3.8, and the total weight of the possible two other
bins exceeds 1.6. By Lemma 5 the bins in batches have average weight 1.
Therefore, zf < 6− (3.8 + 1.6) = 0.4, contradicting that zf is a failure item.

We summarize our results in the following theorem:

Theorem 5 The presented algorithm has stretching ratio 1.6. Moreover,
the stretching ratio of any deterministic on-line algorithm for (GOBSP) is
at least 1.5 for any number m ≥ 6 of machines.

Proof: We obtain the claimed stretching ratio by a combination of Proposi-
tions 1, 2, 3 and 4. The lower bound can be obtained from an easy example:

16

Send m items of weight 0.75. If the algorithm puts two of them in the same
bin, then send m items of weight 0.25. We would get α = 1.5 and α∗ = 1.
Thus, the algorithm must distribute the m items of weight 0.75 on different
bins. The final item will have now weight 1.5. We get α = 2.25 and α∗ = 1.5.

5 Conclusions

In this paper we have presented an elementary algorithm with stretching
ratio 1.6 for the (GOBSP). Note that the proof of the algorithm can be
shortened substantially if we apply our algorithm to the on-line bin stretch-
ing problem by Azar and Regev. There remain some further interesting
open problems to address: We believe that our algorithm for (GOBSP) can
be further improved. Is it possible to adapt our algorithm so that we get a
stretching factor of at most 1.5 for the on-line bin stretching problem? The
two lower bounds for (GOBSP) and for the on-line bin stretching problem
are very simple. An improvement of these bounds is not obvious. Specific
algorithms for a small number of machines could be developed.

Acknowledgment This research is partially supported by The Hong
Kong Polytechnic University under grant number G-T397. The authors
would like to thank an anonymous referee for his comments which improved
the presentation of this paper a lot.

References

[1] Y. Azar, O. Regev, On-line bin-stretching, Theoretical Computer Sci-
ence 268 (2001) 17–41.

[2] L. Epstein, Bin stretching revisited, Acta Informatica 39 (2003) 97–
117.

[3] U. Faigle, W. Kern, G. Turan, On the performance of on-line algo-
rithms for partition problems, Acta Cybernetica 9 (1989) 107–119.

[4] R. Fleischer, M. Wahl, On-line scheduling revisited, Journal of Schedul-
ing 3 (2000) 343–353.

17

[5] T. Gormley, N. Reingold, E. Torng, J. Westbrook, Generating adver-
saries for request-answer games, in: Proceedings of the 11th ACM-
SIAM Symposium on Discrete Algorithms (SODA’00), 2000, pp. 564–
565.

[6] R.L. Graham, Bounds for certain multiprocessor anomalies, Bell Sys-
tem Technical Journal 45 (1966) 1563–1581.

[7] R.L. Graham, Bounds on multiprocessing timing anomalies, SIAM
Journal of Applied Mathematics 17 (1969) 263–269.

[8] H. Kellerer, V. Kotov, M.G. Speranza and Z. Tuza, Semi on–line al-
gorithms for the partition problem, Operations Research Letters 21
(1997) 235–242.

[9] J. Sgall, On-line scheduling – a survey, in: A. Fiat, G.J. Woeginger
(Eds.), Online Algorithms: the State of the Art, Lecture Notes in
Computer Science, Vol. 1442, Springer, Berlin, 1998, pp. 196–238.

18

