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Abstract

The inflation GI of a graph G with n(G) vertices and m(G) edges is obtained

from G by replacing every vertex of degree d of G by a clique Kd. A set S of vertices

in a graph G is a paired dominating set of G if every vertex of G is adjacent to

some vertex in S and if the subgraph induced by S contains a perfect matching. The

paired domination number γp(G) is the minimum cardinality of a paired dominating

set of G. In this paper, we show that if a graph G has a minimum degree δ(G) ≥ 2,

then n(G) ≤ γp(GI) ≤ 4m(G)
δ(G)+1 , and the equality γp(GI) = n(G) holds if and only

if G has a perfect matching. In addition, we present a linear time algorithm to

compute a minimum paired-dominating set for an inflation tree.
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1 Introduction

All graphs considered here are finite, undirected, and simple. For standard graph theory

terminology not given here we refer to [6]. Let G = (V, E) be a graph with vertex

set V of order n(G) and edge set E of size m(G). The degree, neighborhood, close

neighborhood of a vertex x of G are respectively denoted by dG(x), NG(x), NG[x] or simply

by d(x), N(x), N [x] if there is no ambiguity. For a subset S ⊆ V , we define N [S] =

∪x∈SN [x]. The subgraph induced by S is denoted by 〈S〉. The private neighbor set of a

vertex v ∈ S with respect to the set S, denoted by pn[v, S], is the set N [v]−N [S −{v}].
If pn[v, S] 6= ∅ for some vertex v ∈ S, then every vertex of pn[v, S] is called a private
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neighbor of v with respect to S. The minimum and maximum degree of G are denoted

by δ(G) and ∆(G).

A matching in a graph G is a set of independent edges in G. The cardinality of a

maximum matching in G is called the matching number of G and is denoted by β1(G),

or simply by β1. A perfect matching M in G is a matching of G such that every vertex

of G is incident to an element of M . A set S of vertices of G is a dominating set if

every vertex of V − S has at least one neighbor in S. For sets X,Y ⊆ V , we say that

X dominates Y if every vertex in Y has a neighbor in X, and we write X Â Y . In

particular, when S is a dominating set of G, we say that S dominates V and write S Â V .

A subset S ⊆ V is a paired-dominating set if S is a dominating set of G and the induced

subgraph 〈S〉 has a perfect matching. If (vj, vk) = ei ∈ M , where M is a perfect matching

of 〈S〉, we say that vj and vk are paired in S. The paired-domination number γp(G) is

defined to be the minimum cardinality of a paired-dominating set S in G. Obviously,

every graph without isolated vertices has a paired-dominating set since the end-vertices

of any maximal matching form such a set. Paired-domination was introduced by Haynes

and Slater [7] with the following application in mind. If we think of each s ∈ S ⊆ V as the

location of a guard capable of protecting each vertex in N [s], then “domination” requires

every vertex to be protected. For paired-domination, we require the guards’ locations to

be selected as adjacent pairs of vertices so that each guard is assigned one other location

and they are designated as backup for each other. Paired-domination is also studied in

[5, 8, 9]

For the notation for inflated graphs, we follow that of [3]. The inflation or inflated

graph GI of the graph G without isolated vertices is obtained as follows: each vertex xi

of degree d(xi) of G is replaced by a clique Xi
∼= Kd(xi) and each edge (xi, xj) of G is

replaced by an edge (u, v) in such a way that u ∈ Xi, v ∈ Xj, and two different edges of

G are replaced by non-adjacent edges of GI . An obvious consequence of the definition is

that n(GI) =
∑

xi∈V (G) dG(xi) = 2m(G), ∆(GI) = ∆(G) and δ(GI) = δ(G). There are

two different kinds of edges in GI . The edges of the clique Xi are colored red and the

Xi’s are called the red cliques (a red clique Xi is reduced to a point if xi is a pendant

vertex of G). The other ones, which correspond to the edges of G, are colored blue

and they form a perfect matching of GI . Every vertex of GI belongs to exactly one red

clique and one blue edge. Two adjacent vertices of GI are said to red-adjacent if they

belong to a same red clique, blue-adjacent otherwise. In general, we adopt the following

notation: if xi and xj are two adjacent vertices of G, the end-vertices of the blue edge of

GI replacing the edge (xi, xj) of G are called xixj in Xi and xjxi in Xj, and this blue edge

is (xixj, xjxi). Figures 1 and 2 show examples of inflated graphs. Clearly an inflation is

claw-free. More precisely, GI is the line-graph L(S(G)) where the subdivision S(G) of

G is obtained by replacing each edge of G by a path of length 2. The study of various

domination parameters in inflated graphs was originated by Dunbar and Haynes in [2].
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Results related to the domination parameters in inflated graphs can be found in [3, 4, 10].

In this paper, we prove that for a graph G with δ(G) ≥ 2, n(G) ≤ γp(GI) ≤ 4m(G)
δ(G)+1

,

and γp(G) = n(G) if and only if G has a perfect matching. In the last section, we give a

linear algorithm to compute a paired-dominating set for an inflated tree.

2 Bounds on paired-domination number in inflated

graphs

Let G be a graph. For X, Y ⊆ V (G), and X ∩ Y = ∅, let e(X,Y ) = |{(x, y) ∈ E(G) :

x ∈ X, y ∈ Y }|. G(X, Y ) denotes the bipartite graph with vertex classes X and Y that

contains all edges of G having one end-vertex in X and the other end-vertex in Y . First

we recall a result that we will use later.

Lemma 2.1 ([1]) If G is a k-regular bipartite graph with k > 0, then G has a perfect

matching.

Lemma 2.2 If G has no isolated vertices, then γp(GI) ≤ 2n(G)− 2β1(G) and this bound

is tight.

Proof. Let M = {(u1, v1), (u2, v2), . . . , (uβ1 , vβ1)} be the maximum matching of G and

Ω be the set of vertices not met by M , where β1 is the matching number of G. Then Ω

is an independent set of vertices of G. For each xj ∈ Ω, we choose a vertex x′j ∈ N(xj).

Then S = {uivi | 1 ≤ i ≤ β1} ∪ {xjx
′
j | xj ∈ Ω} is a paired-dominating set of GI . So,

γp(GI) ≤ 2β1(G) + 2(n(G)− 2β1(G)) = 2(n(G)− β1(G)). The bound can be attained for

instance when G = Kr,r+1 (r ≥ 2). Figure 1 shows the case for r = 2.
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Figure 1: The complete bipartite graph K2,3 and its inflation

Theorem 2.3 If G is a graph with δ(G) ≥ 2, then γp(GI) ≥ n(G) with equality if and

only if G has a perfect matching.
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Proof. Let S be a minimum paired-dominating set of GI . We partition the red cliques

of GI into U0 ∪ U1 ∪ U2, where

U0 = {Xi | Xi is a red clique of GI and |V (Xi) ∩ S| = 0},
U1 = {Xi | Xi is a red clique of GI and |V (Xi) ∩ S| = 1},
U2 = {Xi | Xi is a red clique of GI and |V (Xi) ∩ S| ≥ 2}.

Let l0 = |U0|, l1 = |U1| and l2 = |U2|. Then n(G) = l0 + l1 + l2. We set

S1 = {xixj ∈ S | Xi ∈ U1, where xj ∈ NG(xi)},
S2 = {xixj ∈ S | Xi ∈ U2, where xj ∈ NG(xi)}.

So

|S1| = |U1| = l1, l2 ≤ b|S2|
2
c. (1)

Let T = ∪Xi∈U0V (Xi). We consider the bipartite subgraph GI(T, S2) of GI .

Claim 1. For any xx′ ∈ T , x′x, the extremity of the blue edge through xx′, is in S2.

Suppose to the contrary that there exists a vertex uu′ ∈ T and u′u 6∈ S2, that is, u′u ∈ S1

or u′u ∈ V − S1 ∪ S2. If u′u ∈ V − S1 ∪ S2, then uu′ cannot be dominated by S, a

contradiction. If u′u ∈ S1, since S is a minimum paired-dominating set of GI , it follows

that uu′ ∈ S. But T ∩ S = ∅, again a contradiction. The Claim follows.

Since δ(G) ≥ 2, it follows that |V (Xi)| ≥ 2 in inflation GI . By Claim 1 and counting

the number of edges between S2 and T , we get

2l0 ≤
∑

Xi∈U0

|V (Xi)| ≤ e(S2, T ) ≤ |S2|. (2)

So

l0 ≤ b|S2|
2
c. (3)

Using (1) and (3), we have

γp(GI) = |S1|+ |S2|
≥ |S1|+ b|S2|

2
c+ b|S2|

2
c

≥ l1 + l0 + l2

= n(G).

Furthermore, if G has a perfect matching, then by Lemma 2.2, we immediately have

γp(GI) = n(G). Conversely, we will show that if γp(GI) = n(G) then G has a perfect

matching. Suppose that γp(GI) = n(G), then n is even and |S2| = |S|−l1 = n−l1 = l0+l2.
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We claim that |S2| is even, thus, l1 is also even. Otherwise, if |S2| is odd, then by (1)

and (3), we have |S2| = l0 + l2 ≤ b |S2|
2
c + b |S2|

2
c = |S2| − 1 < |S2|, a contradiction. Let

|S2| = 2k. Then l0 ≤ b |S2|
2
c = k and l2 ≤ b |S2|

2
c = k. Combining this with |S2| = l0 + l2,

it follows that l0 = l2 = k. This implies that each clique Xi ∈ U2 exactly contains two

vertices of S.

Claim 2. For any Xi ∈ U0 (i = 1, 2, . . . , k), |V (Xi)| = 2 and |T | = 2k.

Otherwise, if there exists a Xi0 ∈ U0 such that |V (Xi0)| ≥ 3, then by (2), we have

2l0 < e(S2, T ) ≤ |S2| = 2k, so l0 < k, contradicting the fact that l0 = k. So, |V (Xi)| = 2

for any Xi ∈ U0 (i = 1, 2, . . . , k) and |T | = 2k.

Claim 3. NGI
[T ]− T = S2.

By Claim 1 and Claim 2, every vertex in T is adjacent to a vertex in S2 and no vertex

in S2 is adjacent more than one vertex in T . So, |NGI
[T ] − T | ≥ |T | = 2k = |S2|. Since

NGI
[T ]− T ⊆ S2, it immediately follows that NGI

[T ]− T = S2.

By Claim 2 and Claim 3, there is a one-to-one correspondence between the set T and

the set S2 in GI . Therefore, the vertices of S can be paired as follows: two vertices of S2

in the same red clique are paired, for xixj ∈ S1, then xjxi ∈ S1, and xixj and xjxi are

paired. We set

U∗
0 = {xi ∈ V (G) | Xi ∈ U0}

U∗
2 = {xj ∈ V (G) | Xj ∈ U2}.

We consider the bipartite subgraph G(U∗
0 , U∗

2 ) of G. Obviously, G(U∗
0 , U∗

2 ) is 2-regular. By

Lemma 2.1, G(U∗
0 , U∗

2 ) has a perfect matching M ′. Hence, M = M ′∪{(xi, xj) | xixj ∈ S1}
is a matching of G. Since |M | = |M ′| + l1

2
= k + l1

2
= n

2
, it follows that M is a perfect

matching of G. This completes the proof of Theorem 2.3.

Theorem 2.4 If δ(G) ≥ 2, then γp(GI) ≤ 4m(G)
δ(G)+1

and the bound is tight.

Proof. Let M = {(u1, v1), (u2, v2), . . . , (uβ1 , vβ1)} be the maximum matching of G and Ω

be the set of vertices not met by M , where β1 is the matching number of G. Let Ui(Vi)

be the red clique of GI corresponding to ui(vi) of G. Let Ω = {x1, x2, · · · , xs}. For each

xj ∈ Ω, choose two vertices xjwj, xjw
′
j ∈ Xj in GI . We set

A = {uivi ∈ Ui, viui ∈ Vi | (ui, vi) ∈ M, 1 ≤ i ≤ β1}
B = {xjwj, xjw

′
j ∈ Xj | 1 ≤ j ≤ s}.

Then S = A ∪ B is a paired-dominating set of GI . Depending on the value δ(G), we

distinguish two cases.

Case 1. δ(G) ≥ 3.
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For any vertex ui met by M , if |V (Ui) ∩ NGI
(B)| = |{uixi1 , uixi2 , . . . , uixil}| ≥ 2, then

|V (Vi) ∩ NGI
(B)| = ∅. Otherwise, if there exists a vertex vixj ∈ V (Vi) ∩ NGI

(B), then

j 6= i1 or i2. Thus, either xi1uivixj or xi2uivixj is a M -augmenting path of G, which

contradicts the maximality of M . Hence, |pn[viui, S]| ≥ δ(G)− 1, and thus |pn[uivi, S]|+
|pn[viui, S]| ≥ δ(G)−1. Similarly, if |V (Ui)∩NGI

(B)| = 1, then |V (Vi)∩NGI
(B)| ≤ 1. So,

|pn[uivi, S]|+ |pn[viui, S]| ≥ 2δ(G)− 4 ≥ δ(G)− 1 again. Therefore, for each 1 ≤ i ≤ β1,

we have |pn[uivi, S]|+ |pn[viui, S]| ≥ δ(G)− 1. Note that |NGI
[B]| ≥ (δ(G) + 1)s. So, we

have

(δ(G)− 1)β1(G) + 2β1(G) + (δ(G) + 1)s ≤ 2m(G).

This implies that β1(G) + s ≤ 2m(G)
δ(G)+1

. So, γp(GI) ≤ 2(β1(G) + s) ≤ 4m(G)
δ(G)+1

.

Case 2. δ(G) = 2.

In GI , we note that

4β1(G) + 2s ≤ |NGI
[A]|+ |B| ≤ 2m(G)

and

2β1(G) + 4s ≤ |A|+ |NGI
[B]| ≤ 2m(G).

It immediately follows that 3β1(G) + 3s ≤ 2m(G). So, γp(GI) ≤ 2(β1(G) + s) ≤ 4m(G)
δ(G)+1

.

This bound is tight for G = mK3.

3 Paired domination of inflated trees

In this section, we turn our attention to trees. For ease of presentation, we consider rooted

trees. A rooted tree T is a directed tree in which there exists a vertex r with the property

that there is a directed path in T from r to every other vertex in T . The vertex r is

unique with respect to the above-mentioned property and is called the root of T . Thus,

if T is a rooted tree at r, then all edges of T are directed away from r. For a vertex v

of a rooted tree T , the parent p(v) of v is the unique vertex such that there is a directed

edge from p(v) to v, a child of v is a vertex u such that p(u) = v, and a descendant

of v is a vertex u such that there is a directed v-u path in T . We define the notation

D(v) = {u ∈ V | u is a descendant of v}, D[v] = D(v) ∪ {v}. The subtree of T induced

by D[v] is denoted by Tv; note that if T is rooted at r, then T = Tr. A vertex of T is said

to be a leaf if it is an endvertex, and a branch vertex if it has degree at least 3. A path P

in T is said to be a v-L path if P joins v to a leaf of T . Denote the length of P by l(P ).

Let TI be the inflated graph of tree T , and we call TI the inflated tree. Let u be a

branch vertex in T at the maximum distance from root r, and U is a red clique of TI

corresponding to u of T . We define

C0(U) = {ux ∈ V (U)| x is a child of u in T, and Tx contains a x-L path
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P in T with l(P ) = 0(mod 2)},
C1(U) = {ux ∈ V (U)| x is a child of u in T, and Tx contains a x-L path

P in T with l(P ) = 1(mod 2)}

For each uw (w is a child of u in T ) in U , we assign a priority to uw, where uw ∈ C0(U)

has a higher priority than uw1 ∈ C1(U). Let Tux denote the subgraph of TI that is an

isomorphism to the inflated graph of 〈D[x] ∪ {u}〉, and let D[ux] = V (Tux).

In the following we present a linear time algorithm for finding the minimum paired-

domination set in an inflated tree TI .

Algorithm 1. Minimum paired-domination for inflated trees.

Input: A rooted tree Tr with root r. An inflated graph TI of the tree Tr.

Step 1. Set T := Tr, TI := TI , S := ∅. We set T0 to be a dummy empty graph, i.e., a

graph with no vertices and no edges.

Step 2. Using the breadth-first method to search all the vertices of Tr and determine

the distance dTI
(x, r) for each x ∈ V (Tr), and simultaneously generate the branch-vertex

sequence

(u1, u2, . . . , us)

such that each branch vertex appears exactly once in the sequence, and such that

d(u1, r) ≤ d(u2, r) ≤ . . . ≤ d(us, r).

Set B(T ) := {u1, u2, . . . , us}, m := s.

Step 3. If m = 0 (i.e., B(T ) = ∅), set T0 := T0 ∪ TI , go to Step 5; otherwise (i.e.,

B(T ) 6= ∅), go to Step 4.

Step 4. Set u := um. For each child x of u in tree T , let x′ be the unique vertex in Tx

with dT (x′) = 1. Set

C0(U) = {ux ∈ U | dT (r, x′)− dT (r, x) = 0(mod 2)},
C1(U) = {ux ∈ U | dT (r, x′)− dT (r, x) = 1(mod 2)}.

Choose a vertex ux (x is a child of u in T ) in the red clique U has the lowest priority. If

ux ∈ C1(U), set TI := TI−D[ux], T := T−D[x], T0 := T0∪Tux. If ux ∈ C0(U), then there

exists another vertex ux1 ∈ C0(U) (x1 is a child of u in T ) in the red clique U . If dT (u) = 3,

set TI := TI−D[ux]∪D[ux1]∪{up(u)}, T := T −Tu, T0 := T0∪(Tux∪Tux1∪{(ux, ux1)}).
If dT (u) > 3, set TI := TI −D[ux]∪D[ux1], T := T −D[x]∪D[x1], T0 = T0∪ (Tux∪Tux1 ∪
{(ux, ux1)}), and return to Step 3.

Step 5. If T0 is a dummy empty graph, then stop; otherwise, go to Step 6.
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Step 6. Choose an arbitrary component P of T0. Suppose that P = vi1vi2 . . . vil , l =

4k + r(0 ≤ r ≤ 3), where we denote each vertex of P by a simple letter x.

Step 7. If r = 0, set S := S ∪ {vi2 , vi3 , vi6 , vi7 , . . . , vil−2
vil−1

}, T0 := T0 − V (P ), return to

Step 6. Otherwise, go to Step 8.

Step 8. Set S := S ∪ {vi2 , vi3 , vi6 , vi7 , . . . , vi4k−2
, vi4k−1

, vil−1
, vil}, T0 = T0 − V (P ), return

to Step 6.

Output: The vertex set S (which is a minimum paired-dominating set of the inflated

tree TI).

The complexity of the above algorithm can be estimated as follows. The time needed

to perform Step 2 is clearly O(|V (Tr)|). The time needed to perform Step 4 for a given

branch vertex u is O(|C(u)|). Hence, the time taken by the loop from Step 3 to Step

4 is at most O(|V (Tr)|). The loop from Step 7 to Step 8 for determining the minimum

paired-dominating set of a path P clearly needs at most O(|V (P )|) time. Thus, the time

taken by the loop from Step 6 to Step 8 is at most O(V (Tr)). It follows that the total time

needed to perform the above algorithm is O(|V (Tr)|). In Figure 2 we show an example

of inflated trees and a minimum paired-dominating set (the shaded vertices represent the

paired-dominating set) computed using Algorithm 1.
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Figure 2: A paired-dominating set computed using Algorithm 1 in the inflation of a tree.

We now verify the validity of Algorithm 1. First, Algorithm 1 leads immediately to

the following property.

Property 3.1 (a) Any branch of the graph T0 produced by Step 1–Step 4 is a path P .

(b) For every component P of T0, S ∩ P is a minimum paired-dominating set of P .

Lemma 3.2 Let TI be an inflated graph of a rooted tree Tr, and u be a branch vertex at

the maximum distance from r in Tr, then there exists a minimum paired-dominating set

S of TI containing all the vertices in C0(U).
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Proof. Let S be a minimum paired-dominating set of TI . For any vertex ux ∈ C0(U),

if ux is adjacent to a pendant vertex, then ux ∈ S. So we assume that D[ux] =

{ux, xu, xx1, x1x, x1x2 . . . , xlxl−1} (l ≥ 2) for any ux ∈ C0(U). If ux 6∈ S, then S ∩
D[ux] Â Txu and γp(Txu) = γp(Txx1) + 2. Let S1 be a minimum paired-dominating set of

Txx1 , then S ′ = (S − S ∩D[xu])∪ (S1 ∪ {xu, ux}) is a minimum paired-dominating set of

TI . The lemma follows.

Theorem 3.3 Given an inflated tree TI , Algorithm 1 computes in time O(n) a minimum

paired-dominating set of TI .

Proof. Let TI be an inflated graph of tree Tr. We proceed by induction on the order of

TI . Let u be a branch vertex at the maximum distance from r in Tr. Let ux (x is a child

of u in T ) be a vertex in the red clique U of the lowest priority in TI .

Case 1. ux ∈ C1(U).

We consider T ′
I = TI − D[ux]. It is easily seen that T ′

I is an inflated graph of tree

T ′ = T − D[x]. Let S be a paired-dominating set of TI produced by Algorithm 1, then

S ′ = S ∩ V (T ′
I) is a paired-dominating set of T ′

I produced by Algorithm 1. By the

inductive hypothesis, S ′ is a minimum paired-dominating set of T ′
I . Combining with

Property 3.1, we have γp(TI) ≤ γp(T
′
I) + γp(Tux) = |S|. Furthermore, we show that

γp(TI) ≥ |S|. Assume D[ux] = {ux, xu, xx1, x1x, x1x2 . . . , xlxl−1}. Let D be a minimum

paired-dominating set of TI . If ux 6∈ D, then D ∩ D[ux] Â Txu and D ∩ V (T ′
I) Â T ′

I .

Combining with γp(Txu) = γp(Tux), we have γp(TI) = |D| ≥ γp(T
′
I)+γp(Tux) = |S|. If ux ∈

D, without loss of generality, we assume that ux is paired with a vertex uw in T ′
I , then

D∩D[ux] Â Txx1 . But γp(Txx1) = γp(Tux). Let D1 be the minimum paired-dominating set

of Tx1x2 , uw′ ∈ NTI
(uw) and uw′ 6∈ D, then D′ = (D−D∩D[ux])∪(D1∪{xu, xx1})∪{uw′}

is a minimum paired-dominating set of TI . And D′ ∩ V (T ′
I) Â T ′

I , D
′ ∩D[ux] Â Tux. So,

γp(TI) = |D′| ≥ γp(T
′
I) + γp(Tux) = |S|.

Case 2. ux ∈ C0(U).

There exists another child x′ of u in T such that ux′ ∈ C0(U). If dT (u) > 3, we consider

T ′
I = TI −D[ux] ∪D[ux′]. Let ux′′ (x′′ is a child of u) be a vertex in C0(U)− {ux, ux′}.

It is easily seen that T ′
I is an inflated graph of T ′ = T − D[x] ∪ D[x′]. Let S be a

paired-dominating set of TI produced by Algorithm 1, then S ′ = S ∩ V (T ′
I) is a paired-

dominating set of T ′
I produced by Algorithm 1. By the inductive hypothesis, S ′ is a

minimum paired-dominating set of T ′
I . Combining with Property 3.1, we have γp(TI) ≤

γp(T
′
I) + γp(Tux ∪ Tux′ ∪ {(ux, ux′)}) = |S|. Furthermore, we show that γp(TI) ≥ |S|. By

Lemma 3.2, let D be a minimum paired-dominating set of TI containing all the vertices

in C0(U), then ux, ux′, ux′′ ∈ D. Without loss of generality, we assume ux is paired

with ux′, then D ∩ T ′
I Â T ′

I , and D ∩ (D[ux] ∪ D[ux′]) Â Tux ∪ Tux′ ∪ {(ux, ux′)}. So,

γp(TI) = |D| ≥ γp(T
′
I) + γp(Tux ∪ Tux′ ∪ {(ux, ux′)}) = |S|.
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If d(u) = 3, we consider T ′
I = TI − (D[ux] ∪ D[ux′] ∪ {up(u)}). It is easily seen

that T ′
I is an inflated graph of T ′ = T − D[u]. Let S be a paired-dominating set of TI

produced by Algorithm 1, then S ′ = S ∩V (T ′
I) is a paired-dominating set of T ′

I produced

by Algorithm 1. By the inductive hypothesis, S ′ is a minimum paired-dominating set

of T ′
I . So γp(TI) ≤ γp(T

′
I) + γp(Tux ∪ Tux′ ∪ {(ux, ux′)}) = |S|. Furthermore, we show

that γp(TI) ≥ |S|. By Lemma 3.2, let D be a minimum paired-dominating set of TI

containing ux and ux′. Without loss of generality, we may assume up(u) 6∈ D, then

D ∩ V (T ′
I) Â T ′

I , D ∩ (D[ux] ∪D[ux′]) Â Tux ∪ Tux′ ∪ {(ux, ux′)}. So, γp(TI) ≥ γp(T
′
I) +

γp(Tux ∪ Tux′ ∪ {(ux, ux′)}) = |S|. Then, γp(TI) = |S|. This completes the proof of

Theorem 3.3.
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