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Abstract 

 
The Bayesian forecasting system (BFS) consists of 
three components which can be deal with 
independently. Considering the fact that the 
quantitative rainfall forecasting has not been fully 
developed in all catchment areas in China, the 
emphasis is given to the hydrologic uncertainty for 
Bayesian probabilistic forecasting. The procedure of 
determining the prior density and likelihood functions 
associated with hydrologic uncertainty is very 
complicated and there is a requirement to assume a 
linear and normal distribution within the framework of 
BFS. These pose severe limitation to its practical 
application to real-life situations. In this paper, a new 
prior density and likelihood function model is 
developed with BP artificial neural network (ANN) to 
study the hydrologic uncertainty of short-term 
reservoir stage forecasts based on the BFS framework. 
Markov chain Monte Carlo (MCMC) method is 
employed to solve the posterior distribution and 
statistics of reservoir stage. A case study is presented 
to investigate and illustrate these approaches using 3 
hours rainfall-runoff data from the ShuangPai 
Reservoir in China. The results show that Bayesian 
probabilistic forecasting model based on BP ANN not 
only increases forecasting precision greatly but also 
offers more information for flood control, which makes 
it possible for decision makers consider the 
uncertainty of hydrologic forecasting during decision-
making and estimate risks of different decisions 
quantitatively. 
 
1. Introduction 
 
    Conceptual rainfall-runoff models are an important 
tool for flood forecasting(e.g., Duan et al., 1992). 
These models commonly include a large number of 
parameters, which cannot be directly obtained from 
measurable quantities of catchment characteristics, and 

hence model calibration is entailed(Cheng et al.,2002, 
2005). However, regardless of the methodology used, 
most hydrologic models suffer from a generic problem 
that different models and parameter sets have a similar 
performance to simulate flood forecasting. The 
intricacy is originated by several causes, such as input 
uncertainty, parameters uncertainty and model 
uncertainty. Recently, considerable attention has been 
given to assess the uncertainty of rainfall-runoff 
simulations. In order to deal with the uncertainty 
problem of hydrologic forecasting, Krzysztofowicz 
(1999) proposed a Bayesian forecasting system (BFS), 
which describes the uncertainty of hydrologic forecast 
quantitatively by using probabilistic distribution 
function. BFS furnishes more information in making 
flood operation decisions, so that the decision makers 
can consider different types of uncertainty and estimate 
risks and consequences of various alternatives 
quantitatively. However, the procedure of determining 
the prior density and likelihood functions is very 
complicated and there is a requirement to assume a 
linear and normal distribution within the framework of 
BFS. These pose severe limitation to its practical 
application to real-life situations, details on which are 
described next.  

The purpose of this article is to present a new 
method to estimate prior density and likelihood 
function model for adopting BFS framework to 
forecast runoff. Considering the fact that BP ANN 
technique has the capability to model various 
characteristics of hydrologic resources system, 
including randomness, fuzziness, non-linearity, etc., it 
is appropriate to develop prior density and likelihood 
functions. In this paper, a new prior density and 
likelihood function model is developed, on the basis of 
the BFS framework, with back propagation (BP) 
artificial neural network (ANN) to study the 
uncertainty of hydrologic forecasting using 3 hours 
rainfall-runoff data from the ShuangPai Reservoir in 
China.  
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2. Hydrologic uncertainty for Bayesian 
Probabilistic Forecasting 
 
The Bayesian forecasting system is a general 
theoretical framework for probabilistic forecasting via 
deterministic hydrologic model (Krzysztofowicz , 
1999). The BFS decomposes the total uncertainty into 
input uncertainty and hydrologic uncertainty which are 
quantified independently and then integrated into a 
predictive distribution. Uncertainty associated with 
input and hydrologic can be independently dealt with 
according to the further studies from Krzysztofowicz 
and his co-investigators (Krzysztofowicz and Herr, 
2001;Krzysztofowicz,2002;Krzysztofowicz and 
Maranzano,2004).Here, we only discuss the 
hydrologic uncertainty because the quantitative rainfall 
forecasting isn’t available at the current stage in China. 
It is considered that  

denotes the early stages of observed flow series at the 
prediction time;  represents the 
actual flow series to be predicted; 

 denotes the output flow series 
generated by a corresponding deterministic hydrologic 
forecast model; n is the prediction period. Moreover, 
the observed values of H
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time and any observed flow stage 

,the expected density of model output is 
given by the total probability 

( 1,2,...,n n N= )

0

0 n

n

0H h=

0 0( | ) ( | , ) ( | )n n n ns h f s h h g h h dhκ
∞

−∞
= ∫              (1)     

and the posterior density function of actual 
discharge , conditional on model discharge stage 

 is as follows: 
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where  is the prior density function 
representing the uncertainty of the observed flow 
series;  is the likelihood function of h

)|( 0hhg n

),|( 0hhsf nn n 
representing the prediction capability of the forecast 
model. 
     Equation 2 demonstrates that the posterior density 
depends on the prior density function and likelihood 
function. Currently, the research on prior density and 
likelihood functions are still in an exploratory stage. 

Krzysztofowicz and his co-investigators proposed a 
linear-normal model in addressing this problem 
(Krzysztofowicz and Herr, 2001; Krzysztofowicz, 
2002; Krzysztofowicz and Maranzano, 2004). In their 
model, the actual flow Hn and the predicted flow Sn 
generated by the deterministic model are firstly 
undergoing a series of transformation. The transformed 

 and  are assumed to be 
linear and normally distributed. Linear regression 
method is then employed to determine the posterior 
density of H

}|{ 0hhn },|{ 0hsh nn

n in the transformed space, from which the 
posterior density function of Hn in the original space 
can be found. However, the procedure in this method is 
very complicated and there is a requirement to assume 
a linear and normal distribution. These pose severe 
limitation to its practical application to real-life 
situations. Since BP ANN technique has the capability 
to model various characteristics of hydrologic 
resources system, including randomness, fuzziness, 
non-linearity, etc., it is appropriate to develop prior 
density and likelihood functions 

 
3. BP ANN with Prior Density and 
Likelihood Functions 
 
      Generally, error of hydrologic simulation can be 
estimated in normal distribution. Contraditionally, 
prior density and likelihood functions can be 
determined by statistics methods based on historical 
observations. Here, we presented a BP ANN to 
estimate them.  
     It is generally recognized that the flow series in 
reservoirs can be simulated by the pth order Markov 
process. Sample series 

},...2,1;,...,2,1:,),{( 0 miNnhh in ==  and  

},...2,1;,...,2,1:,),,{( 0 miNnhhs inn ==  can 
be acquired from historical observation data. In the 
above formulation, n is the prediction period; m is the 
length of time series; h0 is the flow series in the early 
stage, 10201000 ,...,,, +−−−= ptttt hhhhh ; p is 

the model order. Based on these two sample series, a 
three layer BP ANN model with the prior density and 
likelihood functions is developed. 
     The prior density distribution model defined by a 
BP ANN can be represented by the following equation: 

0 0( | ) ( )n nH g H H g H nε= = +                         (3) 
where n is the prediction period; t0 is the time at the 
prediction; g is the non-linear representation of the 
prior density by BP ANN model; H0 is the early stages 
of observed flow series at time t0, 
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010100 ,...,,..., ttpt HHHH −+−= ; p is the model order; 

nε  is the model residue error with a random nature. 
Assuming that the residue error follows a normal 
distribution, then  where RMSE is 
the root mean square error of the model. It can be 
deduced from eq (3) that H

),0(~ 2RMSENnε

n will follow a normal 
distribution  

)),,...,,((~ 2
10100 RMSEhhhgNH ptttn +−−  under the 

conditions of , , …, 

.  
00 tt hH = 1010 −− = tt hH
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      The likelihood function model defined by a BP 
ANN can be represented by the following equation: 
 

0 0( | , ) ( , )n n n nS f S H H f H H nε= = +                    (4) 
where the various parameters have the same meaning 
as in the above section, f is the non-linear 
representation of the likelihood function by BP ANN 
model. Sn will follow a normal distribution 

 under the conditions of 
, .  

)),,((~ 2
0 RMSEhhfNS nn

nn hH = 00 hH =

    Through BP ANN, we develop the prior density 
function  and the likelihood function 

 of the observed flow series in 
Shuangpai Reservoir. Since the universal constant 

)|( 0hhg n
),|( 0hhsf nn

)|( 0hsnκ  entailed for the posterior density function 

),|( 0hsh nnφ  as shown in eq (1) is unknown, the 
actual value of the flow posterior density function 

),|( 0hsh nnφ  cannot be determined. Under such 
conditions, the Markov Chain Monte Carlo (MCMC) 
method can be employed to sample the posterior flow 
series  at random, based on the universal 

probability distribution . In 

this way, the extreme distribution of  can also be 
found. 

nh
)|(),|( 00 hhghhsf nnn

nh

     The basic principle of the MCMC method is to 
generate initially a Markov chain such that its extreme 
distribution will converge to the flow posterior density 
function ),|( 0hsh nnφ . Monte Carlo method is then 
used to sample this Markov chain. The probability 
distribution of the resulting flow sample series 

 will converge to ,...,, 210
nnn hhh ),|( 0hsh nnφ . 

      The MCMC method adopted here is the commonly 
used Metropolis-Hasting algorithm, which is employed 
to sample and search the flow in Shuangpai Reservoir. 

The basic procedures of the Metropolis-Hasting 
algorithm are briefly introduced as follows: 

1)Initialize to set I = 0 and ; n
i
n sh =

2)Generate a new  based on the transformation 

probability ; 

*
nh

)|( * i
nn hhG

3)Compute the acceptance probability 
 of  )|( *

n
i
n hhA *

nh
* * *

* 0
*

0 0
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n n i i i
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4)Generate an evenly distributed random number 
u ~ U[0,1] 
5)If , then . Otherwise, 

. 

)|( *
n

i
n hhAu < *1

n
i
n hh =+

i
n

i
n hh =+1

6)Set i = i+1 and repeat steps 2) to 6). 
In order to obtain better sampling effect and faster 

convergence speed in using the Metropolis-Hasting 
algorithm, an appropriate transformation probability 

 of  is required. If the variation of  

generated by  is too small, the 
convergence speed in searching the posterior density 
function will become very slow. On the contrary, if the 
variation of  generated by  is too large, 
it might lead to an inconsistency with the posterior 
distribution, which in turn might also result in a slow 
convergence speed. After having considered the 
characteristics of flow distribution in Shuangpai 
Reservoir, it is assumed that the distribution limit of 

 is 

)|( * i
nn hhG *

nh nh
)|( * i

nn hhG

nh )|( * i
nn hhG

nh ]1000},1000,0[max{ +− nn ss . In this paper, 

the transformation probability  is defined 
by a randomly generated and evenly distributed 
number . 

)|( * i
nn hhG

]1000},1000,0[max{~* +− nnn ssUh
 
4. Case study 
 
     Shuangpai Reservoir in Hunan Province is used as 
case study here. The catchment basin in Shuangpai 
Reservoir is located at the wet area with plentiful 
amount of rainfall. The prediction model adopted here 
is the XAJ model with 17 parameters(Cheng et al. , 
2002, 2005). 10 flooding events with 3 hours time step 
from 1984 to 1990 in Shuangpai Reservoir are used to 
train the prior density and likelihood functions of the 
BP ANN model. 10 flooding events from 1990 to 2002 
are used to verify the model as well as to analyze the 
posterior distribution.  
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     In the modeling process, the data sets of discharge 
were scaled to the range between 0 and 1 as follow: 
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where  is the scaled value,  is the original 

discharge value and ,  are respectively the 
minimum and maximum of discharge series. 

'
iq iq

minq maxq

    The correlation coefficient (CORR) and the root 
mean square error (RMSE) are used to evaluate the 
training performances. 
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Where  is observed value; is simulated 

value; is the average value of observed series;

( )h i ( )h f

h
−

fh
−

 is 

the average value of simulated series using ANN.   
     The results during the training of the of BP ANN 
show that the most effective modeling outcome is 
attained with the model order p = 3 and the number of 
hidden layer r = 5 (represented by ANN(3,5) later). In 
such case, the correlation coefficient (CORR) has the 
largest value whilst the root mean square error (RMSE) 
has the smallest value. Hence, this set of parameters is 
adopted in the prior density and likelihood function BP 
ANN model for flow prediction.  
      The application of the abovementioned prior 
density and likelihood function BP ANN model to 
Shuangpai Reservoir on 16 April 2000 is used to 
illustrate a typical example. In this example, the 
prediction period (n) is 1 and the MCMC method 
(Metropolis-Hasting) is adopted for 10,000 iterations. 
Figures 1 and 2 show the observed flow, forecasted 
flow by XAJ model and posterior mean flow with 
prediction periods (n = 1, 2) during the entire process 
of the flooding event no. 20000416, respectively. It can 
be observed that the use of the BFS based on BP ANN 
will enhance the accuracy of flood forecasting to 
different degree at different prediction period. In this 
regard, the accuracy of Bayesian probabilistic 
forecasting generally decreases when the prediction 
period becomes longer. This can be explained by the 
increasing uncertainty of the prior density when the 
prediction period is longer. 

 
Fig.1 The observed flow, forecasted flow (by XAJ 
model) and posterior mean flow (n = 1) 
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Fig.2 The observed flow, forecasted flow (by XAJ 
model) and posterior mean flow (n = 2) 
     Table 1 lists the results of certainty coefficient, 
RMSE and quantity balance coefficient by both the 
deterministic XAJ model and the Bayesian 
probabilistic forecasting for various flooding events 
with a prediction period (n) of 1. In the Bayesian 
probabilistic forecasting, the parameters are 
determined such that the flood forecasting value is 
taken as the mean value of the posterior probability 
density. It can be noted from Table 1 that, with the use 
of Bayesian probabilistic forecasting, there are obvious 
improvement to the accuracy in flood forecasting for 
each flooding event. 
 
5. Conclusions 
 
     BFS is independent of a specific deterministic 
hydrologic forecasting model and can be integrated 
with any deterministic models without attaching any 
additional assumptions. In this way, this method 
furnishes a framework for various types of 
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probabilistic 
Table 1 Statistics of outputs by XAJ Model and probabilistic forecasting (n=1) 

Deterministic forecasting Probabilistic forecasting 

Flooding event number Certainty 
coefficient 

(%) 
RMSE 

Quantity 
balance 

coefficient 

Certainty coefficient 
 (%) RMSE Quantity balance 

coefficient 

19900530 91.7 204.5 1.046 94.8 162.4 1.096 

19940421 93.9 357.6 0.978 95.4 212.3 1.018 

19950614 85.2 179.3 0.922 89.3 145.4 1.006 

19990526 96.4 258.0 1.001 97.2 229.2 0.958 

19990618 83.9 157.6 0.961 91.3 124.5 1.025 

19990831 90.1 163.5 1.051 93.7 129.0 1.031 

20000416 91.2 103.6 0.883 97.5 55.0 0.985 

20010402 87.3 170.7 0.990 91.9 135.9 1.007 

20010606 84.5 528.1 1.154 96.4 252.9 1.049 

20020513 82.1 303.2 1.132 96.6 132.9 1.064 

 
hydrologic forecasting system. The prior density and 
likelihood function BP ANN model presented in this 
paper is capable of simulating the attributes of 
hydrologic and water resources systems such as 
randomness, non-linearity, and so forth. Through the 
application of this model and the use of MCMC 
method, the posterior density function of the actual 
flow attains significant enhancement in results over its 
counterparts by the XAJ forecasting model. The 
Bayesian probability flood forecasting system is able to 
fine-tune the deterministic hydrologic models in real-
time, by describing quantitatively the uncertainty of 
hydrologic forecasting with a probability distribution. 
In addition, it furnishes the posterior density function 
of the actual flow Hn for different prediction periods. It 
provides more information in making flood operation 
decisions, so that the decision makers can consider 
different types of uncertainty and estimate risks and 
consequences of various alternatives quantitatively. In 
this way, the optimal integration of forecast and 
decision can be realized. 
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