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Magnetoelectric �ME� laminate composite consisting of optimal crystal cut thickness-polarized
piezoelectric 0.7Pb�Mg1/3Nb2/3�O3–0.3PbTiO3 �PMN-PT� single crystal and the length-magnetized
magnetostrictive Tb0.3Dy0.7Fe1.92 �Terfenol-D� alloy has been fabricated. The cut optimization of
PMN-PT crystal greatly enhances the longitudinally magnetized-transversely polarized �L-T� mode
ME effect, which has a superior ME voltage coefficient �E of �3.02 V /cm Oe in low frequency
band. Near the resonance frequency of 95 kHz, the coefficient dramatically increases and reaches
the maximized value of 33.2 V /cm Oe, which is almost two times larger than the previously
reported �001�-oriented PMN-PT crystal based L-T mode laminate composite. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2943267�

I. INTRODUCTION

The magnetoelectric �ME� effect is the polarization P
response to an applied magnetic field H, and the converse
ME effect is a magnetization M response to an applied elec-
tric field E.1 In the past decades, considerable research ef-
forts have been put on the ME effect, first in single-phase
materials, then in two-phase bulk composites, and lately in
two-/three-phase laminate composites.2–9 The magnetic-to-
electric field conversion in ME composite is a magnetoelas-
toelectric coupling.3 The ME coupling in laminate composite
is realized by a stress mediated interaction between the mag-
netostrictive phase �or ferromagnet� and the piezoelectric �or
ferroelectric� phase, which is often referred to as a multifer-
roic composite.4 Some simple architecturally engineered
nanostructured composites, such as CoFe2O4 nanopillars in a
BaTiO3 matrix, have also recently been reported.5 It seems
that these nanocomposites should have potential for high ME
coupling because the two phase materials have a more inti-
mate contact in nanodimension. But these nanostructured
composites suffer from the drawback that the magnetostric-
tive and piezoelectric effects are dramatically decreased in
nanodimension due to substrate’s clamping effect.6 To date,
it is known that laminated composites of piezoelectric
0.7Pb�Mg1/3Nb2/3�O3–0.3PbTiO3 �PMN-PT� single crystal
and magnetostrictive Tb0.3Dy0.7Fe1.92 �Terfenol-D� alloy pos-
sess superior ME effect and ultrahigh magnetic field sensi-
tivity due to their greater product effect of the piezoelectric
effect and the magnetostrictive effect.7 However, the orien-
tation of piezoelectric PMN-PT single crystal was out of
consideration in previous studies. Actually, based on the

working principle of L-T mode laminate composite, the
Terfenol-D mainly vibrates longitudinally when the applied
magnetic field is along the length direction. Due to the me-
chanical coupling, the PMN-PT single crystal has to vibrate
synchronously along the length direction and generates elec-
tric charge along the thickness direction. So the piezoelectric
coefficient d31 and electromechanical coupling factor k31

should contribute greatly to the ME effect.7 Consequently,
designing new optimal cut-types in the single crystal piezo-
electric phase to produce optimized transverse piezoelectric
performance is a new method to enhance the applications of
ME effect.

In this paper, we have developed an L-T mode ME lami-
nate composite by sandwiching a special-oriented piezoelec-
tric PMN-PT single crystal between two longitudinally mag-
netized magnetostrictive Terfenol-D plates.

II. EXPERIMENTS

A. Structure and fabrication

Figure 1 shows schematic diagram of the proposed sand-
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FIG. 1. �Color online� �a� Schematic diagram of the proposed
magnetostrictive/piezoelectric laminated composites. The arrows designate
the magnetization and polarization directions, respectively. �b� The newly

designed special-oriented PMN-PT single crystal. The �001�, �01̄1�, and
�011� crystallographic axes are oriented in the length, width, and thickness
directions, respectively.
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wiched composite structure with the ME effect and the opti-
mal cut-type of PMN-PT plate. The high quality PMN-PT
single crystal was grown directly from the melt by modified
Bridgman technique.10 The as-grown single crystals were

oriented along �001�, �011�, and �01̄1� directions using an
x-ray diffraction meter, and then diced to prepare samples

with the crystal cut and dimensions of 12�001�L�6�01̄1�w

�1�011�T mm3 �L: length, W: width, T: thickness�. It has
been shown in our previous work that PMN-PT plates, with
this specially cut and poled along the �011� thickness direc-
tion, possess ultrahigh transverse piezoelectric performance,
i.e., ultrahigh thickness direction voltage response to length
direction strain deformation.11 The Terfenol-D plates were
commercially supplied �Baotou Research Institute of Rare
Earth, China� with the same dimensions as the PMN-PT
plate and with the length direction along the �112� direction,
which is the highly magnetostrictive crystallographic axis
and the magnetization �M� was relatively easy to achieve.12

B. Measurement setup and procedure

The ME properties of the laminate composite were char-
acterized at room temperature and zero stress bias using an
in-house automated measurement system13 shown in Fig. 2.
The ME voltages �V� induced in the composites were mea-
sured as a function of ac magnetic field �Hac�, dc magnetic
bias �Hbias�, and ac magnetic field frequency �f� in the ranges
of 10−7–10−3 T, 0–1200 Oe, and 1–100 kHz, respectively.
Hac was provided by Helmholtz coils driven by a dynamic
signal analyzer �Ono Sokki CF5220� via a constant-current
supply amplifier �AE Techron 7572�. Hbias was supplied by a
water-cooled, U-shaped electromagnet �Myltem PEM-
8005K� controlled by a dc current supply �Sorensen
DHP200-15�. Hac and Hbias were monitored in situ by a
pick-up coil connected to an integrating fluxmeter �Walker
MF-10D� and a Gaussmeter �F. W. Bell 7030�, respectively.
All quantities were sampled and recorded by the dynamic
signal analyzer and stored in a computer.

III. RESULTS AND DISCUSSION

It is well known that PMN-PT single crystal has superior
piezoelectric effect and electromechanical coupling perfor-

mance. However, the piezoelectric effect of PMN-PT is an-
isotropic, depending significantly on the crystal cut type and
the poling direction. Consequently, optimization of the crys-
tal cut and poling processing of PMN-PT single crystals
should be considered to produce optimal piezoelectric per-
formance for different piezoelectric resonator modes in ver-
satile applications. Figure 3 shows the electric-field induced
strain patterns for the �001�-oriented and newly designed cut-
type 0.70PMN-0.30PT crystal, respectively, using a unipolar
field with amplitude of E�3 kV /cm and frequency of
0.2 Hz. From the slope of the plot, the piezoelectric coeffi-
cients of d31 were determined. The k31 was determined using
the resonance-antiresonance technique by a HP 4194A im-
pedance analyzer following the IEEE standards, and d33 is
directly measured by a quasistatic Berlincourt d33 meter
�50 Hz� �see Table I�. From the comparison in Table I, it is
obviously observed that the newly designed cut-type
PMN-PT crystal is much superior for transverse mode appli-
cation than the �001�-oriented one.

The ME voltage coefficient �E, defined as �dE /dHac�, of
the as-prepared crystal cut optimized laminate composite
was then measured for various Hbias at Hac of 1 Oe peak and
f of 1 kHz, as shown in Fig. 4. �E initially increases rapidly
with Hbias and reaches a maximum value of �3.02 V /cm Oe
at an optimal Hbias of 400 Oe, then decreases with increasing
Hbias. In addition, the laminated composite has almost a lin-
ear response to Hbias in the range of 0�Hbias�200 Oe. Cor-
respondingly, the relationship of the laminated composite can
be used to detect small dc magnetic field.8

Figure 5 illustrates the induced ME voltage V across the
PMN-PT plate as a function of applied Hac over the range of
10−7�Hac�10−3 T at f =1 kHz. It is clear that V has an

FIG. 2. �Color online� Schematic diagram of the ME measurement setup.

FIG. 3. �Color online� Strain vs E-field �unipolar� curves in the �001�-
oriented and newly designed cut-type PMN-PT crystals.

TABLE I. Piezoelectric parameters for �001�-oriented and newly designed
cut-type PMN-PT crystals.

d31 ��10−12 C /N� d33 ��10−12 C /N� k31 �33
T /�0

�001�-oriented −1126 2420 0.62 4276

�001�L� �1̄10�W�

�110�I-oriented

−2645 2060 0.95 6200
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excellent linear response to Hac in the whole measured range
for various Hbias. A higher detection sensitivity of
10−10–10−11 T could be obtained if shielding magnetic noise
could be adopted and composite fabrication could be
improved.7 From the slope the plot, the ME voltage coeffi-
cient �E for various Hbias can also be determined, which
coincides reasonably well with �E versus Hbias, as shown in
Fig. 4.

The dependence of �E on f at various Hbias is shown in
Fig. 6�a�. It is noted that no remarkable dispersion of �E is
observed for all cases apart from the variations associated
with the ME resonances. The largest �E is observed at
Hbias=400 Oe for the whole frequency range. In particular,
the maximal resonance �E located at the ME resonances fre-
quency �fMER� of 95.25 kHz under this optimal Hbias is as
large as 33.2 V /cm Oe. This resonance �E at fMER is over 13
times larger than its nonresonance �E of �3.02 V /cm Oe.
Figure 6�b� shows Hbias dependence of fMER and �E at fMER.
The results clearly demonstrate that the variation of �E at
fMER is similar to the �E at nonresonant frequency, as shown
in Fig. 4. However, fMER decreases with increasing Hbias,

reaching the smallest value of 95.25 kHz at Hbias=400 Oe,
and then increasing with increasing Hbias. Physically, the ini-
tial change in both �E �at fMER� and fMER with increasing
Hbias can be explained by the Hbias-induced motion of the
available non-180° domain walls in the Terfenol-D plates.13

That is, as Hbias increases to the 400 Oe critical value, the
compliance associated with increased deformation contribu-
tion from this non-180° domain-wall motion is maximized,
resulting in a maximum in strain �and hence �E at nonreso-
nant frequency and �E at fMER� and a minimum in stiffness
�and hence fMER�. Beyond this optimal and also critical value
of Hbias, constraining of non-180° domain-wall motion due to
interaction with Hbias gives rise to a decrease in strain and an
increase in stiffness. It is noted that the deformation contri-
bution from the motion of 180° domain walls is insignificant
as it produces changes in magnetization without accompany-
ing strain.9

IV. SUMMARY

In summary, our specially designed L-T mode ME lami-
nate composite by sandwiching PMN-PT plate with the op-

timal cut type of �001�L� �01̄1�w� �011�T between two
Terfenol-D plates enhances the elastoelectric coupling in the
magnetic-to-electric field conversion, which results in a sig-
nificantly increased ME voltage coefficient, approximately
two times larger than the previous L-T mode laminate com-

FIG. 4. ME voltage coefficient �E of the new laminated composite as a
function of Hbias. These data were taken using Hac=1 Oe peak at f =1 kHz.

FIG. 5. �Color online� Induced ME voltage V as a function of applied Hac

over the range of 10−7�Hac�10−3 T at f =1 kHz for various Hbias.

FIG. 6. �Color online� �a� Frequency response of ME voltage coefficient �E

for various Hbias, and �b� Hbias dependence of ME voltage coefficient at ME
resonances �E

fr and ME resonances frequency fr.
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posite of �001�-oriented PMN-PT single crystal. This reveals
a new method to enhance the ME effect of the ME compos-
ite.
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