A polynomial-time algorithm for the paired-domination problem on permutation graphs

T.C.E. Cheng ${ }^{1 *}$ Liying Kang ${ }^{2}$, Erfang Shan ${ }^{1,2}$
${ }^{1}$ Department of Logistics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
${ }^{2}$ Department of Mathematics, Shanghai University, Shanghai 200444, China

Abstract

A set S of vertices in a graph $H=(V, E)$ with no isolated vertices is a paired-dominating set of H if every vertex of H is adjacent to at least one vertex in S and if the subgraph induced by S contains a perfect matching. Let G be a permutation graph and π be its corresponding permutation. In this paper we present an $O(m n)$ time algorithm for finding a minimum cardinality paired-dominating set for a permutation graph G with n vertices and m edges.

MSC: 05C85; 05C69; 68R10; 68W05

Keywords: Algorithm; Permutation graph; Paired-domination

1 Introduction

In this paper we in general follow [14] for notation and graph theory terminologies. Specifically, let $G=(V, E)$ be a graph with vertex set V and edge set E, and let v be a vertex in V. The order of G is given by $n=|V|$ and its size by $m=|E|$. The open neighborhood of v is defined

[^0]by $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is defined by $N[v]=N(v) \cup\{v\}$. In general, let $N(S)$ and $N[S]$ denote, respectively, $\cup_{v \in S} N(v)$ and $\cup_{v \in S} N[v]$. For subsets $S, T \subseteq V$, the set S dominates the set T in G if $N[T] \subseteq N[S]$. Each vertex v of G dominates itself and every vertex adjacent to v, i.e., all vertices in its closed neighborhood. For $S \subseteq V$, let $\langle S\rangle$ denote the subgraph of G induced by S.

A set $S \subseteq V$ is a dominating set of G if every vertex not in S is adjacent to at least a vertex in S. The domination number of G is the minimum cardinality of a dominating set of G. A matching in a graph G is a set of independent edges in G. A perfect matching M in G is a matching in G such that every vertex of G is incident to a vertex of M.

A paired-dominating set of a graph G is a set S of vertices of G such that every vertex is adjacent to some vertex in S and the subgraph induced by S contains a perfect matching M (not necessarily induced). Two vertices joined by an edge of M are said to be paired and are also called partners in S. Every graph without isolated vertices has a paired-dominating set since the end-vertices of any maximal matching form such a set. The paired-domination number of G, denoted by $\gamma_{p r}(G)$, is the minimum cardinality of a paired-dominating set. The minimum paired-dominating set problem, abbreviated as MPDS, is to find a paired-dominating set S of G such that $|S|$ is minimized. Paired-domination was introduced by Haynes and Slater [14] as a model for assigning backups to guards for security purposes, and has been studied from the theoretic point of view, for example, in $[2]-[4],[7,8,10,11],[15]-[19],[21],[25]-[27],[29]$, among others.

The aim of this paper is to investigate the problem of determining $\gamma_{p r}(G)$ for a permutation graph G from the algorithmic point of view. The decision problem to determine a minimum cardinality paired-dominating set of an arbitrary graph has been known to be NP-complete (see [13]). For the special case of trees, Qiao et al. [26] presented a linear time algorithm. Cheng et al. [8] proposed an $O(m+n)$ and $O(m(m+n))$ time algorithms to solve the MPDS problem for interval graphs and circular-arc graphs, respectively. The literature on algorithmic aspects of domination in graphs has been by surveyed and detailed by Chang [5].

Let $\pi=\left[\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right]$ be a permutation on the set $V_{n}=\{1,2, \ldots, n\}$. Then the permutation graph $G[\pi]=(V, E)$ is the undirected graph such that $V=V_{n}$ and $(i, j) \in E$ if and only if

$$
(i-j)\left(\pi^{-1}(i)-\pi^{-1}(j)\right)<0
$$

where $\pi^{-1}(i)$ is the position of i in $\pi=\left[\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right]$. Throughout the paper, we assume that the input is a permutation $\pi=\left[\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right]$, and the given permutation graph G contains no isolated vertices.

A permutation graph is an intersection graph based upon the permutation diagram [1], which is defined as follows: Write the number $1,2, \ldots, n$ horizontally from left to right. Under every i, write the number $\pi(i)$. Draw line segments connecting i in the top row and i in the bottom row, for each i. It is easy to see that two vertices i and j of $G[\pi]$ are adjacent if and only if the corresponding line segments of i and j intersect. Fig. 1 shows the permutation graph $G[\pi]$ where its corresponding permutation diagram of a permutation $\pi[3,1,5,7,4,2,6]$. The permutation graphs are known to have a variety of practical applications [12, 24] and for this reason, many algorithms for determining parameters in graph theory have been developed in the literature $[6,9,20,22,23,28,30]$.

In this paper, we propose an efficient $O(m n)$ algorithm for solving the MPDS problem on permutation graphs. Our algorithm is based on a recursive formula by using the dynamic programming method. In Section 2, we describe our recursive formula of the dynamic programming. Our algorithm is described in Section 3. Section 5 contains some conclusions.

2 A dynamic programming approach

In this section we shall describe our basic approach based upon the dynamic programming approach. Essentially, we want to find an MPDS of $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right\}$ dominating $\{1,2, \ldots, n\}$. In the following, we may assume that the permutation graph $G[\pi]$ discussed below is connected; otherwise we look at each (connected) component separately.

For convenience, we introduce more notation as follows:
(1). For any $1 \leq i, j \leq n$, and $V_{i}=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{i}\right\}$, denote $V_{i, j}$ as the subset of V_{i} containing all elements smaller than or equal to j, i.e., $V_{i, j}=\left\{\pi_{k} \in V_{i} \mid \pi_{k} \leq j\right\}$. Clearly, $V_{i, j} \subseteq V_{i}$.
(2). For each $i, 1 \leq i \leq n$, denote π_{i}^{*} as the minimum number over the suffix $\pi_{i}, \pi_{i+1}, \ldots, \pi_{n}$, i.e., $\pi_{i}^{*}=\min \left\{\pi_{i}, \pi_{i+1}, \ldots, \pi_{n}\right\}$, and set $V_{i}^{*}=V_{i} \cup\left\{\pi_{i}^{*}\right\}$.
(3). For any vertex set S, define $\max (S)$ as the maximum number in S.
(4). For a family \mathcal{F} of sets of vertices, $\operatorname{Min}(\mathcal{F})$ denotes a minimum cardinality set S in \mathcal{F} and $\max (S)$ is as large as possible if \mathcal{F} is not the empty set; $\operatorname{Min}(\mathcal{F})$ denotes a set of infinite cardinality otherwise. $\operatorname{Min}(\mathcal{F})$ may not be unique. If there are more than one candidate for $\operatorname{Min}(\mathcal{F})$, we select arbitrarily one of the candidates.

Lemma 1 For a permutation graph $G[\pi]$ with no isolated vertices, $\left\langle V_{i}^{*}\right\rangle$ has no isolated vertices for each $i, 1 \leq i \leq n$.

Proof. Suppose to the contrary that there exists an $i_{0}\left(1 \leq i_{0} \leq n\right)$ such that $\left\langle V_{i_{0}}^{*}\right\rangle$ has an isolated vertex $\pi_{l}\left(l \leq i_{0}\right)$. Then $\pi_{l} \leq \pi_{i_{0}}^{*}$, for otherwise $\left(\pi_{l}, \pi_{i_{0}}^{*}\right) \in E(G)$. If $\pi_{l}=\pi_{i_{0}}^{*}$ $\left(=\min \left\{\pi_{i_{0}}, \pi_{i_{0}+1}, \ldots, \pi_{n}\right\}\right)$, then $\pi_{l}=\pi_{i_{0}}$. Hence, $\pi_{i_{0}}$ is an isolated vertex in G, contradicting the assumption of the lemma. If $\pi_{l}<\pi_{i_{0}}^{*}$, then $\pi_{l}=l$. Thus, for $1 \leq i<l, \pi_{i}<l$, and for $l<i \leq n, \pi_{i}>l$. This implies that π_{l} is an isolated vertex in G, contradicting our assumption again.

By Lemma 1, we see that $\left\langle V_{i}^{*}\right\rangle$ has no isolated vertices, so it is clear that for each i and j, $1 \leq i, j \leq n$, there exists a subset D of V_{i}^{*} such that D dominates all the vertices of $V_{i, j}$ and $\langle D\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$.

Based on Lemma 1, for each i and $j, 1 \leq i, j \leq n$, we define $P D_{i, j}$ as follows:
(i). $P D_{i, j}$ is a minimum cardinality subset S of V_{i}^{*} such that S is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\langle S\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle ;$
(ii). $\max \left(P D_{i, j}\right)$ is as large as possible.

In particular, we define $P D_{0, j}=\emptyset$ for $1 \leq j \leq n$. Clearly, $P D_{n, n}$ is a desired minimum cardinality paired-dominating set for $G[\pi]$.

We define $X=\left\{S: S \subseteq V_{i}^{*}\right.$ such that S is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\langle S\rangle$ has a perfect matching in $\left.\left\langle V_{i}^{*}\right\rangle\right\}$, and we further partition X into three subsets: $X_{1}=\left\{S \in X: \pi_{i}^{*} \in\right.$ $S\}, X_{2}=\left\{S \in X: \pi_{i}^{*} \notin S, \pi_{i} \in S\right\}$ and $X_{3}=\left\{S \in X: \pi_{i}^{*} \notin S, \pi_{i} \notin S\right\}$.

Following the above definitions, we have

$$
P D_{i, j}= \begin{cases}\emptyset & \text { if } V_{i, j}=\emptyset \\ \operatorname{Min}(X) & \text { otherwise }\end{cases}
$$

Consider the case $i=1$. If $j<\pi_{1}$, then $V_{1, j}=\left\{\pi_{1}\right\} \cap\{1,2, \ldots, j\}=\emptyset$, and so $P D_{1, j}=\emptyset$. Otherwise, $V_{1, j}=\left\{\pi_{1}\right\}$. According to our assumption that G contains no isolated vertices, we have $\pi_{1} \neq 1$. Then $\pi_{1}^{*}=1$ and $V_{1}^{*}=\left\{1, \pi_{1}\right\}$. Hence $P D_{1, j}=\left\{1, \pi_{1}\right\}$. So we obtain

$$
P D_{1, j}= \begin{cases}\emptyset & \text { if } j<\pi_{1} \\ \left\{1, \pi_{1}\right\} & \text { otherwise }\end{cases}
$$

We first give several basic lemmas that will be useful for the proof of our recursive formula $P D_{i, j}$.

Lemma 2 (Chao et al. [6]) For positive integers i_{1}, i_{2} and j, if $1 \leq i_{1}<i_{2} \leq n$ and $1 \leq j \leq n$, then $V_{i_{1}, j} \subseteq V_{i_{2}, j}$ and $V_{i_{1}}^{*} \subset V_{i_{2}}^{*}$.

Lemma 3 For $1 \leq i<j<k \leq n$ and $\pi_{k}<\pi_{j}<\pi_{i}$, if w is adjacent to π_{j}, then w is adjacent to at least one of π_{k} and π_{i}.

Proof. The proof is straightforward and omitted.

Lemma 4 For $1<l \leq i$, there exists a $P D_{l-1, \pi_{i}^{*}}$ such that $\pi_{i}^{*} \notin P D_{l-1, \pi_{i}^{*}}$.

Proof. Let S be a $P D_{l-1, \pi_{i}^{*}}$. Thus $S \subseteq V_{l-1}^{*}$ is a dominating set of $\left\langle V_{l-1, \pi_{i}^{*}}\right\rangle$ and $\langle S\rangle$ has a perfect matching in $\left\langle V_{l-1}^{*}\right\rangle$. If $\pi_{i}^{*} \notin S$, then the desired result follows. If $\pi_{i}^{*} \in S$, then $\pi_{i}^{*}=\pi_{l-1}^{*}$
as $S \subseteq V_{l-1}^{*}$. Hence, there exists a vertex $\pi_{i^{\prime}} \in S\left(i^{\prime} \leq l-1\right)$ such that π_{i}^{*}, $\pi_{i^{\prime}}$ are paired in S. So, we have $\pi^{-1}\left(\pi_{i}^{*}\right)>i^{\prime}$ and $\left(\pi^{-1}\left(\pi_{i}^{*}\right)-i^{\prime}\right)\left(\pi_{i}^{*}-\pi_{i^{\prime}}\right)<0$. Thus $\pi_{i^{\prime}}>\pi_{i}^{*}$. We claim that $N\left(\pi_{i^{\prime}}\right) \cap V_{l-1}^{*}-S \neq \emptyset$. If this is not so, then $\pi_{i^{\prime}}$ dominates no vertices of $V_{l-1, \pi_{i}^{*}}$, and so does π_{i}^{*} as $\pi_{i^{\prime}}>\pi_{i}^{*}$. This means that $S-\left\{\pi_{i^{\prime}}, \pi_{i}^{*}\right\}\left(\subseteq V_{l-1}^{*}\right)$ is a dominating set of $\left\langle V_{\left.l-1, \pi_{i}^{*}\right\rangle}\right\rangle$ and $\left\langle S-\left\{\pi_{i^{\prime}}, \pi_{i}^{*}\right\}\right\rangle$ has a perfect matching in $\left\langle V_{l-1}^{*}\right\rangle$. Thus $S-\left\{\pi_{i^{\prime}}, \pi_{i}^{*}\right\}$ is a $P D_{l-1, \pi_{i}^{*}}$, which contradicts the minimality of S. Let $\pi_{i^{\prime \prime}} \in N\left(\pi_{i^{\prime}}\right) \cap V_{l-1}^{*}-S$ and $S^{\prime}=S \cup\left\{\pi_{i^{\prime \prime}}\right\}-\left\{\pi_{i}^{*}\right\}$. Then $S^{\prime}\left(\subseteq V_{l-1}^{*}\right)$ is a dominating set of $\left\langle V_{l-1, \pi_{i}^{*}}\right\rangle$ and $\left\langle S^{\prime}\right\rangle$ has a perfect matching in $\left\langle V_{l-1}^{*}\right\rangle$ with $\left|S^{\prime}\right|=|S|$ and $\max \left(S^{\prime}\right) \geq \max (S)$. So S^{\prime} is a $P D_{l-1, \pi_{i}^{*}}$, satisfying $\pi_{i}^{*} \notin S^{\prime}$, as required.

For $1<i \leq n$, we define

$$
P D_{\pi_{i}^{*}}=\operatorname{Min}\left(\left\{P D_{l-1, \pi_{i}^{*}} \cup\left\{\pi_{i}^{*}, \pi_{l}\right\}: \pi_{l} \in N\left(\pi_{i}^{*}\right), \pi_{i}^{*} \notin P D_{l-1, \pi_{i}^{*}}, l \leq i\right\}\right)
$$

and

$$
P D_{\max }= \begin{cases}P D_{i-1, j} \cup\left\{\pi_{i}, \max \left(V_{i}\right)\right\} & \text { if } \pi_{i} \neq \max \left(V_{i}\right), \\ V_{i} & \text { otherwise }\end{cases}
$$

By Lemma 4, $P D_{\pi_{i}^{*}} \neq \emptyset$. The following Lemmas 5 and 6 assert that $P D_{\pi_{i}^{*}}$ and $P D_{\max }$ (if $\max \left(V_{i}\right) \neq \pi_{i}$ and $\left.\max \left(P D_{i-1, j}\right)<\pi_{i}\right)$ are candidates for computing $P D_{i, j}$.

Lemma 5 For any integers i and $j, 1<i \leq n$ and $1 \leq j \leq n, P D_{\pi_{i}^{*}} \in X_{1}(\subseteq X)$.

Proof. By the definition of $P D_{\pi_{i}^{*}}, \pi_{i}^{*} \notin P D_{l-1, \pi_{i}^{*}}$, while $P D_{l-1, \pi_{i}^{*}}$ is a minimum dominating set of $\left\langle V_{l-1, \pi_{i}^{*}}\right\rangle$. We claim $\pi_{l} \notin P D_{l-1, \pi_{i}^{*}}$. If this is not the case, then it is easy to see that $\pi_{l}=\pi_{l-1}^{*} \leq \pi_{i}^{*}$. On the other hand, since $\pi_{l} \in N\left(\pi_{i}^{*}\right)(l \leq i), \pi_{l}>\pi_{i}^{*}$, which is impossible. From Lemma $2, V_{l-1}^{*} \subseteq V_{i}^{*}$ as $l \leq i$. Hence, $P D_{l-1, \pi_{i}^{*}} \cup\left\{\pi_{i}^{*}, \pi_{l}\right\} \subseteq V_{i}^{*}$. We next show that each vertex of $V_{i, j}-V_{l-1, \pi_{i}^{*}}$ is dominated by π^{*} or π_{l}. Let $\pi_{k} \in V_{i, j}-V_{l-1, \pi_{i}^{*}}$. If $\pi_{k}>\pi_{i}^{*}$, then $\left(\pi_{k}-\pi_{i}^{*}\right)\left(k-\pi^{-1}\left(\pi_{i}^{*}\right)\right)<0$, and so $\left(\pi_{k}, \pi_{i}^{*}\right) \in E$. If $\pi_{k}<\pi_{i}^{*}$, then $k \geq l$. Since $\pi_{l} \in N\left(\pi_{i}^{*}\right)$ and $l \leq i, \pi_{l}>\pi_{i}^{*}$, then $\pi_{l}>\pi_{i}^{*}>\pi_{k}$. This implies that $\left(\pi_{k}-\pi_{l}\right)(k-l) \leq 0$, i.e., $\pi_{k}=\pi_{l}$ or $\left(\pi_{k}, \pi_{l}\right) \in E$. Hence, all the vertices in $V_{i, j}$ are dominated by $P D_{l-1, \pi_{i}^{*}} \cup\left\{\pi_{i}^{*}, \pi_{l}\right\}$. Therefore, $P D_{l-1, \pi_{i}^{*}} \cup\left\{\pi_{i}^{*}, \pi_{l}\right\} \in X_{1}$. Note that $P D_{\pi_{i}^{*}}=\operatorname{Min}\left(\left\{P D_{l-1, \pi_{i}^{*}} \cup\left\{\pi_{i}^{*}, \pi_{l}\right\}: \pi_{l} \in N\left(\pi_{i}^{*}\right), l \leq i\right\}\right)$, so $P D_{\pi_{i}^{*}} \in X_{1}$, as desired.

Lemma 6 For any integers i and $j, 1<i \leq n$ and $1 \leq j \leq n$, if $\max \left(V_{i}\right) \neq \pi_{i}$ and $\max \left(P D_{i-1, j}\right)<\pi_{i}$, then $P D_{\max } \in X$.

Proof. Clearly, $P D_{\text {max }} \subseteq V_{i}^{*}$. Since $\max \left(V_{i}\right) \neq \pi_{i}$ and $\max \left(P D_{i-1, j}\right)<\pi_{i}, \pi_{i} \notin P D_{i-1, j}$ and $\pi_{i}<\max \left(V_{i}\right)$, and thus $\max \left(V_{i}\right) \notin P D_{i-1, j}$ and $\left(\max \left(V_{i}\right), \pi_{i}\right) \in E$. Note that $V_{i, j}-V_{i-1, j} \subseteq\left\{\pi_{i}\right\}$, and we have $P D_{\max }=P D_{i-1, j} \cup\left\{\pi_{i}, \max \left(V_{i}\right)\right\}$ as a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\left\langle P D_{\text {max }}\right\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$, the desired result follows.

In order to present the recursive formula of $P D_{i, j}$ for the case of $1<i \leq n$, we further prove the following several lemmas.

Lemma 7 For each $S \in \operatorname{Min}\left(X_{1}\right)$, let $\pi_{l}=\max (S)$. Then $\pi_{i}^{*}<\pi_{l}$ and $\pi_{l} \in N\left(\pi_{i}^{*}\right)$.

Proof. By the definition of X_{1}, we have $\pi_{i}^{*} \in S$. Suppose $\pi_{i}^{*} \geq \pi_{l}$, then $\max (S)=\pi_{i}^{*}$. This implies that π_{i}^{*} is an isolated vertex of $\langle S\rangle$, which contradicts the assumption that $\langle S\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$. So $\pi_{i}^{*}<\pi_{l}$. Furthermore, since $\left(\pi_{l}-\pi_{i}^{*}\right)\left(l-\pi^{-1}\left(\pi_{i}^{*}\right)<0,\left(\pi_{i}^{*}, \pi_{l}\right) \in E\right.$, and thus $\pi_{l} \in N\left(\pi_{i}^{*}\right)$.

By the definition of $\operatorname{Min}\left(X_{1}\right)$, all the candidates S for $\operatorname{Min}\left(X_{1}\right)$ have the same max (S). Let $S \in \operatorname{Min}\left(X_{1}\right), \pi_{l}=\max (S)$ and let M be a perfect matching in $\langle S\rangle$.

Lemma 8 For any integers i and $j, 1<i \leq n$ and $1 \leq j \leq n$, if there exist $\pi_{i_{1}}\left(i_{1}<l\right)$ and $\pi_{l^{\prime}}$ such that $\left(\pi_{i}^{*}, \pi_{i_{1}}\right) \in M$ and $\left(\pi_{l}, \pi_{l^{\prime}}\right) \in M$, then $\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right)=P D_{\pi_{i}^{*}}$.

Proof. By Lemma 5, it suffices to show that there exits an $S^{*} \in P D_{\pi_{i}^{*}} \cap X_{1}$ such that $\max \left(S^{*}\right) \geq \max (S)=\pi_{l}$. Note that $\max (S)=\pi_{l}>\pi_{l^{\prime}} \in S$ and $\left(\pi_{l}, \pi_{l^{\prime}}\right) \in M$, so $l^{\prime}>l$. We distinguish the following two cases depending on whether or not π_{l-1}^{*} is equal to π_{i}^{*}.

Case 1. Suppose first $\pi_{l-1}^{*}=\pi_{i}^{*}$. In this case, we claim that $N\left(\pi_{i_{1}}\right) \cap V_{l}-S \neq \emptyset$. Otherwise, since $\pi_{i}^{*}<\pi_{l^{\prime}}<\pi_{l}$ and $l<l^{\prime}<\pi^{-1}\left(\pi_{i}^{*}\right)$, by Lemma 3, each vertex dominated by $\pi_{l^{\prime}}$ in G is adjacent to π_{l} or π_{i}^{*}. Furthermore, for each $t>l, \pi_{t} \in V_{i, j}$, it is dominated by π_{i}^{*} as $\pi_{t}>\pi_{i}^{*}$ $\left(=\pi_{l-1}^{*}\right)$. This implies that $S-\left\{\pi_{i_{1}}, \pi_{l^{\prime}}\right\}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\left\langle S-\left\{\pi_{i_{1}}, \pi_{l^{\prime}}\right\}\right\rangle$ has contradicting the minimality of S. Let $\pi_{i_{1}^{\prime}} \in N\left(\pi_{i_{1}}\right) \cap V_{l}-S$ and let $S_{1}=S \cup\left\{\pi_{i_{1}^{\prime}}\right\}-\left\{\pi_{l^{\prime}}\right\}$. Then $S_{1} \subseteq V_{i}^{*}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $M_{1}=\left(M \cup\left\{\left(\pi_{i_{1}^{\prime}}, \pi_{i_{1}}\right),\left(\pi_{l}, \pi_{i}^{*}\right)\right\}\right)-\left\{\left(\pi_{i}^{*}, \pi_{i_{1}}\right),\left(\pi_{l}, \pi_{l^{\prime}}\right)\right\}$ is a perfect matching in $\left\langle S_{1}\right\rangle$. So $S_{1} \in X_{1}$ with $\left|S_{1}\right|=|S|$ and $\max \left(S_{1}\right) \geq \max (S)$ such that $\pi_{l^{\prime}} \notin S_{1}$ and $\pi_{l-1}^{*} \in S_{1}$.

For any $\pi_{k} \in S_{1}$, where $l<k \leq i$, there exists $\pi_{k^{\prime}}$ such that $\left(\pi_{k}, \pi_{k^{\prime}}\right) \in M_{1}$. We claim that $k^{\prime}<l$ and $N\left(\pi_{k^{\prime}}\right) \cap V_{l}-S_{1} \neq \emptyset$. Indeed, if $k^{\prime}>l$, then for each vertex $\pi_{t} \in N\left(\left\{\pi_{k}, \pi_{k^{\prime}}\right\}\right) \cap V_{l}-S$, we have $\pi_{t}>\pi_{k}>\pi_{l-1}^{*}=\pi_{i}^{*}$ or $\pi_{t}>\pi_{k^{\prime}}>\pi_{l-1}^{*}=\pi_{i}^{*}$, so π_{t} is dominated by π_{i}^{*}. Moreover, note that for each vertex $\pi_{t} \in V_{i, j}, l<t \leq i$, it is also dominated by π_{i}^{*} as $\pi_{t} \geq \pi_{i}^{*}\left(=\pi_{l-1}^{*}\right)$. This implies that $S_{1}-\left\{\pi_{k}, \pi_{k^{\prime}}\right\}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\left\langle S_{1}-\left\{\pi_{k}, \pi_{k^{\prime}}\right\}\right\rangle$ still has a perfect matching in $\left\langle V_{i}{ }^{*}\right\rangle$, which contradicts the minimality of S_{1}. So $k^{\prime}<l$. We further show that $N\left(\pi_{k^{\prime}}\right) \cap V_{l}-S_{1} \neq \emptyset$. Otherwise, since $k^{\prime}<l<k$ and $\left(\pi_{k}, \pi_{k^{\prime}}\right) \in E, \pi_{k^{\prime}}>\pi_{k}>\pi_{l-1}^{*}=\pi_{i}^{*}$, then $\pi_{k^{\prime}}$ is dominated by π_{i}^{*}. As above, we deduce that $S_{1}-\left\{\pi_{k}, \pi_{k^{\prime}}\right\}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\left\langle S_{1}-\left\{\pi_{k}, \pi_{k^{\prime}}\right\}\right\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$, a contradiction. Let $\pi_{k^{\prime \prime}} \in N\left(\pi_{k^{\prime}}\right) \cap V_{l}-S_{1}$ and let $S_{2}=S_{1} \cup\left\{\pi_{k^{\prime \prime}}\right\}-\left\{\pi_{k}\right\}$. Then $S_{2} \subseteq V_{i}^{*}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ with $\left|S_{2}\right|=\left|S_{1}\right|$ and $\left\langle S_{2}\right\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$ and $\max \left(S_{2}\right) \geq \max \left(S_{1}\right)$. For any $\pi_{s} \in S_{2}$, where $l<k \leq i$, continuing the process as above, we can obtain after a finite number of steps a set $S^{*} \subseteq V_{i}^{*}$ satisfying the following conditions:
(i). $S^{*} \cap\left(\left\{\pi_{l+1}, \pi_{l+2}, \ldots, \pi_{i}\right\}-\left\{\pi_{i}^{*}\right\}\right)=\emptyset$;
(ii). $S^{*} \subseteq V_{i}^{*}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ with $\left|S^{*}\right|=|S|$ and $\left\langle S^{*}\right\rangle$ in $\left\langle V_{i}^{*}\right\rangle$ has a perfect matching in which π_{i}^{*} and π_{l} are paired;
(iii). $\max \left(S^{*}\right) \geq \max (S)$.

Then $S^{*} \in X_{1}$. Since $\pi_{i}^{*}<\pi_{l}$, it follows that no vertex in $V_{l-1, \pi_{i}^{*}}$ is dominated by π_{i}^{*} or π_{l}, so $S^{*}-\left\{\pi_{i}^{*}, \pi_{l}\right\}$ is a dominating set of $\left\langle V_{l-1, \pi_{i}^{*}}\right\rangle$ and $\left\langle S^{*}-\left\{\pi_{i}^{*}, \pi_{l}\right\}\right\rangle$ in $\left\langle V_{l-1}^{*}\right\rangle$ has a perfect matching. By the minimality of S^{*}, we deduce that $S^{*}-\left\{\pi_{i}^{*}, \pi_{l}\right\} \subseteq V_{l-1}^{*}$ is a minimum cardinality dominating set of $\left\langle V_{l-1, \pi_{i}^{*}}\right\rangle$ and contains a perfect matching. Then $S^{*}-\left\{\pi_{i}^{*}, \pi_{l}\right\}$ is a $P D_{l-1, \pi_{i}^{*}}$, and thus S^{*} is a $P D_{\pi_{i}^{*}}$. Hence, $|S|=\left|S^{*}\right|=\left|P D_{l-1, \pi_{i}^{*}}\right|+2$. Note that $\left|P D_{\pi_{i}^{*}}\right| \leq$
$\left|P D_{l-1, \pi_{i}^{*}}\right|+2=|S|$ and if $\left|P D_{\pi_{i}^{*}}\right|=\left|P D_{l-1, \pi_{i}^{*}}\right|+2$, then $\max \left(P D_{\pi_{i}^{*}}\right)=\max \left(S^{*}\right) \geq \max (S)$. So $\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right)=P D_{\pi_{i}^{*}}$.

Case 2. Suppose $\pi_{l-1}^{*} \neq \pi_{i}^{*}$. As in Case 1, we first find a set $S_{1} \in X_{1}$ with $\left|S_{1}\right|=|S|$ and $\max \left(S_{1}\right) \geq \max (S)$ such that $\pi_{l^{\prime}} \notin S_{1}$ and $\pi_{l-1}^{*} \in S_{1}$.

Suppose $\pi_{l-1}^{*} \notin S$. Since $\pi_{l-1}^{*}<\pi_{i}^{*}<\pi_{i_{1}},\left(\pi^{-1}\left(\pi_{i_{1}}\right)-\pi^{-1}\left(\pi_{l-1}^{*}\right)\right)\left(\pi_{i_{1}}-\pi_{l-1}^{*}\right)<0$, then $\left(\pi_{i_{1}}, \pi_{l-1}^{*}\right) \in E$. Let $S_{1}=S \cup\left\{\pi_{l-1}^{*}\right\}-\left\{\pi_{l^{\prime}}\right\}$. Clearly, $S_{1} \subseteq V_{i}^{*}$. We further show that S_{1} is a dominating set of $\left\langle V_{i, j}\right\rangle$. It suffices to show that all the vertices dominated by $\pi_{l^{\prime}}$ can be dominated by S_{1}. Indeed, let $\pi_{t} \in N\left(\pi_{l^{\prime}}\right)$. If $t>l$, it follows from $\pi_{l}>\pi_{i}^{*}$ that $\pi_{t}<\pi_{l}$ or $\pi_{t}>\pi_{i}^{*}$. Observe that $\pi_{l^{\prime}}<\pi_{l}$ and $l<l^{\prime} \leq i \leq \pi^{-}\left(\pi_{i}^{*}\right)$, then π_{t} is dominated by π_{l} or π_{i}^{*}. If $t<l\left(<l^{\prime}\right)$, then $\pi_{t}>\pi_{l^{\prime}} \geq \pi_{l-1}^{*}$, and so π_{t} is dominated by π_{l-1}^{*}. Therefore, S_{1} is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $M_{1}=M \cup\left\{\left(\pi_{i_{1}}, \pi_{l-1}^{*}\right),\left(\pi_{l}, \pi_{i}^{*}\right)\right\}-\left\{\left(\pi_{i}^{*}, \pi_{i_{1}}\right),\left(\pi_{l}, \pi_{l^{\prime}}\right)\right\}$ is a perfect matching in $\left\langle S_{1}\right\rangle$. So $S_{1} \in X_{1}$ and $\max \left(S_{1}\right)=\max (S)$ such that $\pi_{l^{\prime}} \notin S_{1}$ and $\pi_{l-1}^{*} \in S_{1}$.

Suppose $\pi_{l-1}^{*} \in S$. Let $\left(\pi_{l-1}^{*}, \pi_{l_{1}}\right) \in M$. We claim that $N\left(\pi_{l_{1}}\right) \cap V_{l}-S \neq \emptyset$. If this is not so, then, for each vertex $\pi_{t} \in N\left(\pi_{l_{1}}\right)-S, l<t \leq i$. This implies that $\pi_{t}<\pi_{l}$ or $\pi_{t}>\pi_{l}>\pi_{i}^{*}$, and thus it is dominated by π_{l} or π_{i}^{*}. On the other hand, note that all the vertices dominated by $\pi_{l^{\prime}}$ can be dominated by π_{i}^{*} or π_{l} as above. So $S-\left\{\pi_{l^{\prime}}, \pi_{l_{1}}\right\}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$. Further, since $\pi_{i_{1}}>\pi_{i}^{*}>\pi_{l-1}^{*},\left(\pi_{l-1}^{*}, \pi_{i_{1}}\right) \in E$, then $\left\langle S-\left\{\pi_{l^{\prime}}, \pi_{l_{1}}\right\}\right\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$ by making pairs of π_{l} and $\pi_{i}^{*}, \pi_{l-1}^{*}$ and $\pi_{i_{1}}$, which contradicts the minimality of S. Let $\pi_{l_{1}^{\prime}} \in N\left(\pi_{l_{1}}\right) \cap V_{l}-S$ and let $S_{1}=S \cup\left\{\pi_{l_{1}^{\prime}}\right\}-\left\{\pi_{l^{\prime}}\right\}$. Then S_{1} is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $M_{1}=M \cup\left\{\left(\pi_{l_{1}}, \pi_{l_{1}^{\prime}}\right),\left(\pi_{l}, \pi_{i}^{*}\right),\left(\pi_{i_{1}}, \pi_{l-1}^{*}\right)\right\}-\left\{\left(\pi_{i}^{*}, \pi_{i_{1}}\right),\left(\pi_{l}, \pi_{l^{\prime}}\right),\left(\pi_{l-1}, \pi_{l_{1}}\right)\right\}$ is a perfect matching in $\left\langle S_{1}\right\rangle$. So $S_{1} \in X$ and $\max \left(S_{1}\right) \geq \max (S)$ such that $\pi_{l^{\prime}} \notin S_{1}$ and $\pi_{l-1}^{*} \in S_{1}$.

For any $\pi_{k} \neq \pi_{l-1}^{*}, \pi_{k} \in S_{1}$, where $l<k \leq i$, there exists a $\pi_{k^{\prime}} \in S_{1}$ such that $\left(\pi_{k}, \pi_{k^{\prime}}\right) \in M_{1}$. We claim that $k^{\prime}<l$ and $N\left(\pi_{k^{\prime}}\right) \cap V_{l}-S_{1} \neq \emptyset$. In fact, if $k^{\prime}>l$, then for each vertex $\pi_{t} \in N\left(\left\{\pi_{k}, \pi_{k^{\prime}}\right\}\right) \cap V_{l}-S$, we have $\pi_{t}>\pi_{k}>\pi_{l-1}^{*}$ or $\pi_{t}>\pi_{k^{\prime}}>\pi_{l-1}^{*}$, so π_{t} is dominated by π_{l-1}^{*}. Moreover, for each vertex $\pi_{t} \in V_{i, j}, l<t \leq i$, we have $\pi_{t}<\pi_{l}$ or $\pi_{t}>\pi_{l}>\pi_{i}^{*}$, so π_{t} is dominated by π_{i}^{*} or π_{l}. This implies that $S_{1}-\left\{\pi_{k}, \pi_{k^{\prime}}\right\}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\left\langle S_{1}-\left\{\pi_{k}, \pi_{k^{\prime}}\right\}\right\rangle$ still has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$, which contradicts the minimality of S_{1}.

Let $\pi_{k^{\prime \prime}} \in N\left(\pi_{k^{\prime}}\right) \cap V_{l}-S^{\prime}$ and let $S_{2}=S_{1} \cup\left\{\pi_{k^{\prime \prime}}\right\}-\left\{\pi_{k}\right\}$. Then $S_{2} \subseteq V_{i}^{*}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ with $\left|S_{2}\right|=\left|S_{1}\right|$ and $\left\langle S_{2}\right\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$ and $\max \left(S_{2}\right) \geq \max \left(S_{1}\right)$. Proceeding as above, we get a set $S^{*} \subseteq V_{i}^{*}$ satisfying the following conditions:
(i). $S^{*} \cap\left(\left\{\pi_{l+1}, \pi_{l+2}, \ldots, \pi_{i}\right\}-\left\{\pi_{i}^{*}\right\}\right)=\pi_{l-1}^{*}$;
(ii). S^{*} is a dominating set of $\left\langle V_{i, j}\right\rangle$ with $\left|S^{*}\right|=|S|$ and $\left\langle S^{*}\right\rangle$ in $\left\langle V_{i}^{*}\right\rangle$ has a perfect matching in which π_{i}^{*} and π_{l} are paired;
(iii). $\max \left(S^{*}\right) \geq \max (S)$.
 since $\pi_{i}^{*}<\pi_{l}$, so $S^{*}-\left\{\pi_{i}^{*}, \pi_{l}\right\}$ is a dominating set of $\left\langle V_{l-1, \pi_{i}^{*}}\right\rangle$ and $\left\langle S^{*}-\left\{\pi_{i}^{*}, \pi_{l}\right\}\right\rangle$ in $\left\langle V_{l-1}^{*}\right\rangle$ has a perfect matching. By the minimality of S^{*}, it follows that $S^{*}-\left\{\pi_{i}^{*}, \pi_{l}\right\} \subseteq V_{l-1}^{*}$ is a minimum cardinality dominating set of $\left\langle V_{l-1, \pi_{i}^{*}}\right\rangle$. Then $S^{*}-\left\{\pi_{i}^{*}, \pi_{l}\right\}$ is a $P D_{l-1, \pi_{i}^{*}}$, and thus S^{*} is a $P D_{\pi_{i}^{*}}$. Hence, $|S|=\left|S^{*}\right|=\left|P D_{l-1, \pi_{i}^{*}}\right|+2$. Note that $\left|P D_{\pi_{i}^{*}}\right| \leq\left|P D_{l-1, \pi_{i}^{*}}\right|+2=|S|$ and if $\left|P D_{\pi_{i}^{*}}\right|=$ $\left|P D_{l-1, \pi_{i}^{*}}\right|+2$, then $\max \left(P D_{\pi_{i}^{*}}\right)=\max \left(S^{*}\right) \geq \max (S)$. Therefore, $\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right)=P D_{\pi_{i}^{*}}$.

Lemma 9 For any integers i and $j, 1<i \leq n$ and $1 \leq j \leq n$, if there exist $\pi_{i_{1}}\left(i_{1}>l\right)$ and $\pi_{l^{\prime}}$ such that $\left(\pi_{i}^{*}, \pi_{i_{1}}\right) \in M$ and $\left(\pi_{l}, \pi_{l^{\prime}}\right) \in M$, then $\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right)=P D_{\pi_{i}^{*}}$.

Proof. Similar to Lemma 8, we need to show that there exits an $S^{*} \in P D_{\pi_{i}^{*}} \cap X_{1}$ such that $\max \left(S^{*}\right) \geq \max (S)$. We claim that $\pi_{l-1}^{*} \neq \pi_{i}^{*}, \pi_{l-1}^{*} \notin S$, and $N\left(\pi_{l-1}^{*}\right) \cap\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{l-1}\right\} \neq \emptyset$. We first show that $\pi_{l-1}^{*} \neq \pi_{i}^{*}$. Suppose to the contrary that $\pi_{l-1}^{*}=\pi_{i}^{*}$, then it is easy to see that $\pi_{i}^{*}<\pi_{l^{\prime}}<\pi_{l}$ and $\pi_{i}^{*}<\pi_{i_{1}}<\pi_{l}$. Hence, by Lemma 3, $S-\left\{\pi_{l^{\prime}}, \pi_{i_{1}}\right\}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\left\langle S-\left\{\pi_{l^{\prime}}, \pi_{i_{1}}\right\}\right\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$ by pairing π_{i}^{*} with π_{l}, which contradicts the minimality of S. So $\pi_{l-1}^{*} \neq \pi_{i}^{*}$. Second, we show that $\pi_{l-1}^{*} \notin S$. Suppose this is not the case, $\pi_{l-1}^{*} \in S$. For any vertex $\pi_{t} \in N\left[\pi_{i_{1}}\right]$, if $t<i_{1}$, then $\pi_{t}>\pi_{i_{1}}$. By our assumption that $\left(\pi_{i}^{*}, \pi_{i_{1}}\right) \in M$, we have $\pi_{i_{1}}>\pi_{i}^{*}$ as $i_{1}<\pi^{-}\left(\pi_{i}^{*}\right)$. Hence, $\left(\pi_{t}, \pi_{i}^{*}\right) \in E$. If $t \geq i_{1}$ ($>l$), then $\pi_{t} \leq \pi_{i_{1}}<\pi_{l}$, and thus $\left(\pi_{t}, \pi_{l}\right) \in E$. So $N\left[\pi_{i_{1}}\right] \subseteq N\left[\pi_{l}\right] \cup N\left[\pi_{i}^{*}\right]$. For any vertex
$\pi_{t} \in N\left[\pi_{l^{\prime}}\right]$, if $t \leq l-1$, then $\pi_{t}>\pi_{l^{\prime}} \geq \pi_{l-1}^{*}$ and $t \leq l-1 \leq \pi^{-}\left(\pi_{l-1}^{*}\right)$, so $\left(\pi_{t}, \pi_{l-1}^{*}\right) \in E$. If $l<t<l^{\prime}$, then $\pi_{t}<\pi_{l}$ or $\pi_{t}>\pi_{l}>\pi_{i}^{*}$ and $l^{\prime} \leq \pi^{-}\left(\pi_{i}^{*}\right)$, and thus $\left(\pi_{t}, \pi_{l}\right) \in E$ or $\left(\pi_{t}, \pi_{i}^{*}\right) \in E$. If $t \geq l^{\prime}(>l)$, then $\pi_{l}>\pi_{l^{\prime}} \geq \pi_{t}$, so $\left(\pi_{t}, \pi_{l}\right) \in E$. So $N\left[\pi_{l^{\prime}}\right] \subseteq N\left[\pi_{l}\right] \cup N\left[\pi_{l-1}^{*}\right] \cup N\left[\pi_{i}^{*}\right]$. Let $S^{\prime}=$ $S-\left\{\pi_{l^{\prime}}, \pi_{i_{1}}\right\}$. Then S^{\prime} is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $M^{\prime}=M \cup\left\{\left(\pi_{l}, \pi_{i}^{*}\right)\right\}-\left\{\left(\pi_{l}, \pi_{l^{\prime}}\right),\left(\pi_{i}^{*}, \pi_{i_{1}}\right)\right\}$ is a perfect matching in $\left\langle S^{\prime}\right\rangle$. This contradicts the minimality of S. So $\pi_{l-1}^{*} \notin S$. Finally, we show that $N\left(\pi_{l-1}^{*}\right) \cap\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{l-1}\right\} \neq \emptyset$. If $N\left(\pi_{l-1}^{*}\right) \cap\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{l-1}\right\}=\emptyset$, then $N\left(\pi_{l^{\prime}}\right) \cap\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{l-1}\right\}=\emptyset$, so we have $N\left[\pi_{l^{\prime}}\right] \subseteq N\left[\pi_{l}\right] \cup N\left[\pi_{i}^{*}\right]$. Hence, $S-\left\{\pi_{l^{\prime}}, \pi_{i_{1}}\right\}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\left\langle S-\left\{\pi_{l^{\prime}}, \pi_{i_{1}}\right\}\right\rangle$ has a perfect matching in $\left\langle V_{i}{ }^{*}\right\rangle$, contradicting the minimality of S.

Let $\pi_{l_{1}} \in N\left(\pi_{l-1}^{*}\right) \cap\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{l-1}\right\}$ and $S_{1}=S \cup\left\{\pi_{l-1}^{*}, \pi_{l_{1}}\right\}-\left\{\pi_{l^{\prime}}, \pi_{i_{1}}\right\}$. Since $N\left[\pi_{i_{1}}\right] \subseteq$ $N\left[\pi_{l}\right] \cup N\left[\pi_{i}^{*}\right]$ and $N\left[\pi_{l^{\prime}}\right] \subseteq N\left[\pi_{l}\right] \cup N\left[\pi_{l-1}^{*}\right] \cup N\left[\pi_{i}^{*}\right], S_{1}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\left\langle S_{1}\right\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$ by pairing $\left\{\pi_{l}, \pi_{i}^{*}\right\}$ and $\left\{\pi_{l-1}^{*}, \pi_{l_{1}}\right\}$. So $S_{1} \in X_{1}$ with $\left|S_{1}\right|=|S|$ and $\max \left(S_{1}\right) \geq \max (S)$ such that $\pi_{l^{\prime}} \notin S_{1}$ and $\pi_{l-1}^{*} \in S_{1}$. Using analogous arguments as in Lemma 8, we can get a set $S^{*} \in X_{1}$ such that $S^{*}-\left\{\pi_{i}^{*}, \pi_{l}\right\}$ is a $P D_{l-1, \pi_{i}^{*}}$ and S^{*} is a $P D_{\pi_{i}^{*}}$. Hence, $|S|=\left|S^{*}\right|=\left|P D_{l-1, \pi_{i}^{*}}\right|+2$. Note that $\left|P D_{\pi_{i}^{*}}\right| \leq\left|P D_{l-1, \pi_{i}^{*}}\right|+2=|S|$ and if $\left|P D_{\pi_{i}^{*}}\right|=$ $\left|P D_{l-1, \pi_{i}^{*}}\right|+2$, then $\max \left(P D_{\pi_{i}^{*}}\right)=\max \left(S^{*}\right) \geq \max (S)$. Therefore, $\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right)=P D_{\pi_{i}^{*}}$. 17

Lemma 10 For any integers i and $j, 1<i \leq n$ and $1 \leq j \leq n$, if $\left(\pi_{i}^{*}, \pi_{l}\right) \in M$, then $\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right)=P D_{\pi_{i}^{*}}$.

Proof. Similar to Lemma 8, we again need to show that there exits an $S^{*} \in P D_{\pi_{i}^{*}} \cap X_{1}$ such that $\max \left(S^{*}\right) \geq \max (S)$. We consider the following two cases depending on whether or not π_{l-1}^{*} is equal to π_{i}^{*}.

Case 1. Suppose $\pi_{l-1}^{*}=\pi_{i}^{*}$. Then, for any $\pi_{k} \in S$ for $l<k<i$, there exists $\pi_{k^{\prime}} \in S$ such that $\left(\pi_{k}, \pi_{k^{\prime}}\right) \in M$. Similar to the discussion for S_{1} in Case 1 of Lemma 8, we can obtain a set $S^{*} \in X_{1}$ satisfying the conditions (i)-(iii) in Case 1 of Lemma 8 and S^{*} is a $P D_{\pi_{i}^{*}}$ with $\max \left(P D_{\pi_{i}^{*}}\right) \geq \max (S)$. Therefore, $\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right)=P D_{\pi_{i}^{*}}$.

Case 2. Suppose $\pi_{l-1}^{*} \neq \pi_{i}^{*}$. If $\pi_{l-1}^{*} \in S$, then we deal with S as in Case 2 of Lemma 8 for S_{1}. Finally, we can obtain a set $S^{*} \in X_{1}$ satisfying the conditions (i)-(iii) in Case 2 of Lemma 8 and S^{*} is a $P D_{\pi_{i}^{*}}$ with $\max \left(P D_{\pi_{i}^{*}}\right) \geq \max (S)$. Hence, $\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right)=P D_{\pi_{i}^{*}}$, thus the assertion holds. In what follows, we may assume that $\pi_{l-1}^{*} \notin S$. As in Case 1 of Lemma 8, we first find a set $S_{1} \in X_{1}$ with $\left|S_{1}\right|=|S|$ and $\max \left(S_{1}\right) \geq \max (S)$ such that $\pi_{l-1}^{*} \in S_{1}$.

Suppose $S \cap\left(\left\{\pi_{l+1}, \ldots, \pi_{i}\right\}-\left\{\pi_{i}^{*}\right\}\right)=\emptyset$. Since $\pi_{i}^{*}<\pi_{l}$, it follows that no vertex in $V_{l-1, \pi_{i}^{*}}$ is dominated by π_{i}^{*} or π_{l}, so $S-\left\{\pi_{i}^{*}, \pi_{l}\right\}$ is a dominating set of $\left\langle V_{\left.l-1, \pi_{i}^{*}\right\rangle}\right.$ and $\left\langle S-\left\{\pi_{i}^{*}, \pi_{l}\right\}\right\rangle$ in $\left\langle V_{l-1}^{*}\right\rangle$ has a perfect matching. By minimality of S, we deduce that $S-\left\{\pi_{i}^{*}, \pi_{l}\right\} \subseteq V_{l-1}^{*}$ is a minimum cardinality dominating set of $\left\langle V_{l-1, \pi_{i}^{*}}\right\rangle$ and contains a perfect matching. Then $S-\left\{\pi_{i}^{*}, \pi_{l}\right\}$ is a $P D_{l-1, \pi_{i}^{*}}$, and thus S is a $P D_{\pi_{i}^{*}}$. Hence, $|S|=\left|P D_{l-1, \pi_{i}^{*}}\right|+2$. Note that $\left|P D_{\pi_{i}^{*}}\right| \leq\left|P D_{l-1, \pi_{i}^{*}}\right|+2=|S|$, it follows that $\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right)=P D_{\pi_{i}^{*}}$.

Suppose $S \cap\left(\left\{\pi_{l+1}, \ldots, \pi_{i}\right\}-\left\{\pi_{i}^{*}\right\}\right) \neq \emptyset$. Choosing a vertex $\pi_{k_{0}} \in S\left(l<k_{0}<i\right)$, there exists $\pi_{k_{0}^{\prime}}$ such that $\left(\pi_{k_{0}}, \pi_{k_{0}^{\prime}}\right) \in M$. If $k_{0}^{\prime}<l$, then $\pi_{k_{0}^{\prime}}>\pi_{k_{0}}>\pi_{l-1}^{*}$, and so $\left(\pi_{k_{0}^{\prime}}, \pi_{l-1}^{*}\right) \in E$. We claim that all the vertices in $N\left[\pi_{k_{0}}\right]$ are dominated by $\pi_{l-1}^{*}, \pi_{i}^{*}$ and π_{l}^{*}. Indeed, for any $\pi_{t} \in N\left[\pi_{k_{0}}\right]$, if $t<l$, then $\pi_{t}>\pi_{k_{0}}>\pi_{l-1}^{*}$, so $\left(\pi_{t}, \pi_{l-1}^{*}\right) \in E$; if $l \leq t \leq k_{0}$, then $\pi_{t} \leq \pi_{l}$ or $\pi_{t}>\pi_{l}>\pi_{i}^{*}$, so $\pi_{t}=\pi_{l},\left(\pi_{t}, \pi_{l}\right) \in E$ or $\left(\pi_{t}, \pi_{i}^{*}\right) \in E$; if $t>k_{0}$, then $\pi_{t}<\pi_{k_{0}}<\pi_{l}$, so $\left(\pi_{t}, \pi_{l}\right) \in E$. The claim follows. Let $S_{1}=S \cup\left\{\pi_{l-1}^{*}\right\}-\left\{\pi_{k_{0}}\right\}$. Then S_{1} is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\left\langle S_{1}\right\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$ by pairing $\pi_{k_{0}^{\prime}}$ and π_{l-1}^{*} and removing the edge $\left(\pi_{k_{0}}, \pi_{k_{0}^{\prime}}\right)$. We obtain a set $S_{1} \in X_{1}$ with $\left|S_{1}\right|=|S|$ and $\max \left(S_{1}\right) \geq \max (S)$ such that $\pi_{l-1}^{*} \in S_{1}$. If $k_{0}^{\prime}>l$, then there exists $\pi_{k_{1}}\left(k_{1}<l\right)$ such that $\left(\pi_{k_{1}}, \pi_{k_{0}^{\prime}}\right) \in E$ or $\left(\pi_{k_{1}}, \pi_{k_{0}}\right) \in E$. Otherwise, since all the vertices in $\left\{\pi_{l}, \ldots, \pi_{i}\right\}$ are dominated by π_{l} and $\pi_{i}^{*}, S-\left\{\pi_{k_{0}}, \pi_{k_{0}^{\prime}}\right\}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\left\langle S-\left\{\pi_{k_{0}}, \pi_{k_{0}^{\prime}}\right\}\right\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$ by removing $\left(\pi_{k_{0}}, \pi_{k_{0}^{\prime}}\right)$, contradicting the minimality of S. Hence, $\pi_{k_{1}}>\pi_{k_{0}}>\pi_{l-1}^{*}$ or $\pi_{k_{1}}>\pi_{k_{0}^{\prime}}>\pi_{l-1}^{*}$. This means that $\left(\pi_{k_{1}}, \pi_{l-1}^{*}\right) \in E$. Let $S_{1}=S \cup\left\{\pi_{k_{1}}, \pi_{l-1}^{*}\right\}-\left\{\pi_{k_{0}}, \pi_{k_{0}^{\prime}}\right\}$. Note that all the vertices in $N\left(\left\{\pi_{k_{0}}, \pi_{k_{0}^{\prime}}\right\}\right)$ are dominated by π_{l}, π_{i}^{*} and π_{l-1}^{*}, so S_{1} is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\left\langle S_{1}\right\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$ by pairing $\pi_{k_{1}}, \pi_{l-1}^{*}$, and removing the edge $\left(\pi_{k_{0}}, \pi_{k_{0}^{\prime}}\right)$. We again obtain a set $S_{1} \in X_{1}$ with $\left|S_{1}\right|=|S|$ and $\max \left(S_{1}\right) \geq \max (S)$ such that $\pi_{l-1}^{*} \in S_{1}$. As before, by adding to S_{1} the vertices in $\left\{\pi_{1}, \ldots, \pi_{l-1}\right\}$ and removing all the vertices of S_{1} in $\left\{\pi_{l}, \ldots, \pi_{i}\right\}-\left\{\pi_{l-1}^{*}, \pi_{i}^{*}\right\}$, we can obtain $\max \left(P D_{\pi_{i}^{*}}\right)=\max \left(S^{*}\right) \geq \max (S)$. Hence, $\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right)=P D_{\pi_{i}^{*}}$.

By Lemmas 8-10, we obtain the following result.

Lemma 11 For any integers i, j, if $1<i \leq n$ and $1 \leq j \leq n, \operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right)=P D_{\pi_{i}^{*}}$.

Lemma 12 For any integers i and $j, 1<i \leq n$ and $\pi_{i} \leq j \leq n$, if $\max \left(V_{i}\right)=\pi_{i}$, then $X_{3}=\emptyset$.

Proof. Suppose to the contrary that $X_{3} \neq \emptyset$. Let $S \in X_{3}$. Then $\pi_{i}, \pi_{i}^{*} \notin S$ and $S\left(\subset V_{i}^{*}\right)$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\langle S\rangle$ has a perfect matching in $\left\langle V_{i}^{*}\right\rangle$. Since $\pi_{i} \leq j \leq n, \pi_{i} \in V_{i, j}$, so π_{i} is dominated by a vertex $\pi_{l}(l<i)$ in S. Then $\left(\pi_{i}, \pi_{l}\right) \in E$, i.e., $\left(\pi_{i}-\pi_{l}\right)(i-l)<0$. This implies that $\pi_{l}>\pi_{i}$, contradicting the assumption of $\max \left(V_{i}\right)=\pi_{i}$.

Lemma 13 For any integers i and $j, 1<i \leq n$ and $\pi_{i} \leq j \leq n$, if $\max \left(P D_{i-1, j}\right)<\pi_{i}$, then $\operatorname{Min}\left(X_{3} \cup\left\{P D_{\max }\right\}\right)=P D_{\max }$.

Proof. If $\max \left(V_{i}\right)=\pi_{i}$, by Lemma $12, X_{3}=\emptyset$. The result follows. So we may assume that $\max \left(V_{i}\right) \neq \pi_{i}$. Let Z denote the set $\left\{S: S \subseteq V_{i-1}^{*}\right.$ and S is a dominating set of $\left\langle V_{i-1, j}\right\rangle$ and $\langle S\rangle$ has a perfect matching in $\left.\left\langle V_{i-1}^{*}\right\rangle\right\}$. Let A be any set of X_{3}. Since $\pi_{i} \notin A$ and $\pi_{i}^{*} \notin A, A \subseteq V_{i-1}^{*}$. By Lemma 2, we have $V_{i-1, j} \subseteq V_{i, j}$, so $A \in Z$. Since $\pi_{i} \leq j$, $\pi_{i} \in V_{i, j}, \max (A)>\pi_{i}$. Thus $\max (A)>\pi_{i}>\max \left(P D_{i-1, j}\right)$. Note that $P D_{i-1, j}=\operatorname{Min}(Z)$ and, by our definition, $\max \left(P D_{i-1, j}\right)$ is as large as possible. Then it must be the case that $|A|>\left|P D_{i-1, j}\right|$. Hence, $|A| \geq\left|P D_{i-1, j}\right|+2=\left|P D_{i-1, j} \cup\left\{\max \left(V_{i}\right), \pi_{i}\right\}\right|$. Furthermore, $\max (A) \leq \max \left(V_{i}\right)=\max \left(P D_{i-1, j} \cup\left\{\max \left(V_{i}\right), \pi_{i}\right\}\right)$. Therefore, $\operatorname{Min}\left(X_{3} \cup P D_{\max }\right)=P D_{\max }$ 20
a set $S^{*} \in X_{1}$ satisfying the conditions (i)-(iii) in Case 2 of Lemma 8 and S^{*} is a $P D_{\pi_{i}^{*}}$ with

Lemma 14 For any integers i and j, if $1<i \leq n$ and $1 \leq j \leq n$, then $\operatorname{Min}\left(X_{3} \cup\left\{P D_{i-1, j}\right\}\right)=$ $P D_{i-1, j}$.

Proof. Define Z as in Lemma 13. Let A be any set of X_{3}. As in the proof of Lemma 13, we can verify that $A \in Z$. Note that $P D_{i-1, j}=\operatorname{Min}(Z)$. So $\operatorname{Min}\left(X_{3} \cup\left\{P D_{i-1, j}\right\}\right)=P D_{i-1, j}$. ${ }_{4} \quad\left(\pi_{l}-\pi_{i}\right)(l-i)<0$ ，and thus $\pi_{l}>\pi_{i}$ ．Hence

$$
\begin{equation*}
\pi_{i}^{*}<\pi_{i}<\pi_{l} \text { and } l<i<\pi^{-}\left(\pi_{i}^{*}\right) \tag{1}
\end{equation*}
$$

This means that $\left(\pi_{i}^{*}-\pi_{l}\right)\left(\pi^{-}\left(\pi_{i}^{*}\right)-l\right)<0$ ，i．e．，$\left(\pi_{l}, \pi_{i}^{*}\right) \in E$ ．Let $S_{2}=\left(S_{1}-\left\{\pi_{i}\right\}\right) \cup\left\{\pi_{i}^{*}\right\}$ ．From （1）and Lemma 3，it follows that $S_{2} \subseteq V_{i}^{*}$ is a dominating set of $\left\langle V_{i, j}\right\rangle$ and $\left\langle S_{2}\right\rangle$ has a perfect matching by pairing π_{l} and π_{i}^{*} ．So $S_{2} \in X_{1},\left|S_{2}\right|=\left|S_{1}\right|$ and $\max \left(S_{2}\right) \geq \max \left(S_{1}\right)$ ．Consequently， $\operatorname{Min}\left\{X_{1} \cup X_{2}\right\}=\operatorname{Min}\left\{\operatorname{Min}\left(X_{1}\right), \operatorname{Min}\left(X_{2}\right)\right\}=\operatorname{Min}\left\{\operatorname{Min}\left(X_{1}\right), S_{1}\right\}=\operatorname{Min}\left(X_{1}\right)$.

In the following，we present the recursive formula of our dynamic programming．

Theorem 16 For any integers i, j ，if $1<i \leq n$ and $1 \leq j \leq n$ ，then the following recursive formula correctly computes $P D_{i, j}$ ，

$$
P D_{i, j}= \begin{cases}\operatorname{Min}\left(\left\{P D_{\pi_{i}^{*}}, P D_{\max }\right\}\right) & \text { if } j \geq \pi_{i} \text { and } \max \left(P D_{i-1, j}\right)<\pi_{i} \\ \operatorname{Min}\left(\left\{P D_{\pi_{i}^{*}}, P D_{i-1, j}\right\}\right) & \text { otherwise }\end{cases}
$$

Proof．According to our definitions，$X=X_{1} \cup X_{2} \cup X_{3}$ ．By Lemmas 5 and 6，we have $P D_{\pi_{i}^{*}} \in X_{1} \subseteq X, P D_{\max } \in X$ ．To complete our proof，we distinguish the following two cases．

Case 1．Suppose that $j \geq \pi_{i}$ and $\max \left(P D_{i, j}\right)<\pi_{i}$ ．If $\max \left(V_{i}\right)=\pi_{i}$ ，then，by Lemmas 11， 12 and 15 ，we have

$$
\begin{aligned}
\operatorname{Min}(X) & =\operatorname{Min}\left(X_{1} \cup X_{2} \cup\left\{P D_{\pi_{i}^{*}}, P D_{\max }\right\}\right) \\
& =\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}, P D_{\max }\right\}\right) \\
& =\operatorname{Min}\left(\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right), P D_{\max }\right) \\
& =\operatorname{Min}\left\{P D_{\pi_{i}^{*}}, P D_{\max }\right\} .
\end{aligned}
$$

Proof．Let $S_{1}=\operatorname{Min}\left\{X_{2}\right\}$ ．According to the definition of $X_{2}, \pi_{i}^{*} \notin X_{2}, \pi_{i} \in X_{2}$ and $\left\langle S_{1}\right\rangle$ has a perfect matching M ．So there exists a vertex $\pi_{l} \in X_{2}(l<i)$ such that $\left(\pi_{i}, \pi_{l}\right) \in M$ ．Then

Lemma 15 For any integers i and j ，if $1<i \leq n$ and $1 \leq j \leq n$ ，then $\operatorname{Min}\left\{X_{1} \cup X_{2}\right\}=\operatorname{Min}\left\{X_{1}\right\}$ ．路埗

[^1]都

 ．
\[

$$
\begin{aligned}
& =\operatorname{Min}\left(X_{1} \cup X_{2} \cup X_{3} \cup\left\{P D_{\pi_{i}^{*}}, P D_{\max }\right\}\right) \\
& =\operatorname{Min}\left(X_{1} \cup X_{3} \cup\left\{P D_{\pi_{i}^{*}}, P D_{\max }\right\}\right) \\
& =\operatorname{Min}\left(\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right), \operatorname{Min}\left(X_{3} \cup\left\{P D_{\max }\right\}\right)\right) \\
& =\operatorname{Min}\left(P D_{\pi_{i}^{*}}, P D_{\text {max }}\right) .
\end{aligned}
$$
\] 4 follows that

$$
\begin{aligned}
\operatorname{Min}(X) & =\operatorname{Min}\left(X \cup\left\{P D_{\pi_{i}^{*}}, P D_{i-1, j}\right\}\right) \\
& =\operatorname{Min}\left(X_{1} \cup X_{2} \cup X_{3} \cup\left\{P D_{\pi_{i}^{*}}, P D_{i-1, j}\right\}\right) \\
& =\operatorname{Min}\left(X_{1} \cup X_{3} \cup\left\{P D_{\pi_{i}^{*}}, P D_{i-1, j}\right\}\right) \\
& =\operatorname{Min}\left(\operatorname{Min}\left(X_{1} \cup\left\{P D_{\pi_{i}^{*}}\right\}\right), \operatorname{Min}\left(X_{3} \cup\left\{P D_{i-1, j}\right\}\right)\right) \\
& =\operatorname{Min}\left(P D_{\pi_{i}^{*}}, P D_{i-1, j}\right) .
\end{aligned}
$$

Case 2. Suppose that $j<\pi_{i}$ or $\max \left(P D_{i-1, j}\right) \geq \pi_{i}$. We first show that $P D_{i-1, j} \in X$. If $j<\pi_{i}$, then $V_{i, j}=V_{i-1, j}$, so $P D_{i-1, j} \in X$. If $\max \left(P D_{i, j}\right) \geq \pi_{i}$, then π_{i} is dominated by $P D_{i-1, j}$, so $P D_{i-1, j} \in X$. Note that $P D_{i-1, j} \subset P D_{\text {max }}$. From Lemmas 11, 14 and 15, it

3 An algorithm for MPDS on permutation graphs

Based on the recursive formula in Section 2, we next present the algorithmic steps to solve MPDS on permutation graphs. The overall structure of our algorithm is outlined as follows:

Algorithm: Finding an MPDS on a Permutation Graph.

Input: A permutation $\pi=\left[\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right]$.

Output: A minimum cardinality paired-dominating set of $G[\pi]$.
Step 1. Initialize $P D_{0, j}=\emptyset$.

$$
P D_{1, j}= \begin{cases}\emptyset & \text { if } j<\pi_{1} \\ \left\{1, \pi_{1}\right\} & \text { otherwise }\end{cases}
$$

$$
\text { for } j=1,2, \ldots, n \text {. }
$$

Step 2. for $i \leftarrow 2$ to n do

Step 3. $P D_{\pi_{i}^{*}}=\operatorname{Min}\left\{P D_{l-1, \pi_{i}^{*}} \cup\left\{\pi_{i}^{*}, \pi_{l}\right\}: \pi_{l} \in N\left(\pi_{i}^{*}\right), \pi_{i}^{*} \notin P D_{l-1, \pi_{i}^{*}}, l \leq i\right\}$
Step 4. for $j \leftarrow 1$ to n do

Step 5.

$$
P D_{\max }= \begin{cases}P D_{i-1, j} \cup\left\{\pi_{i}, \max \left(V_{i}\right)\right\} & \text { if } \pi_{i} \neq \max \left(V_{i}\right) \\ V_{i} & \text { otherwise }\end{cases}
$$

Step 6.

$$
P D_{i, j}= \begin{cases}\operatorname{Min}\left(\left\{P D_{\pi_{i}^{*}}, P D_{\max }\right\}\right) & \text { if } j \geq \pi_{i} \text { and } \max \left(P D_{i-1, j}\right)<\pi_{i} \\ \operatorname{Min}\left(\left\{P D_{\pi_{i}^{*}}, P D_{i-1, j}\right\}\right) & \text { otherwise. }\end{cases}
$$

Step 7. END

Step 8. END

Step 9. Output $P D_{n, n}$.

The time complexity of the above algorithm can be analyzed as follows. The time required in Step 3 is at most $d\left(\pi_{i}^{*}\right)$. The operations of Steps 5 and 6 can be performed in constant time. The time required in the loop from Step 4 to Step 7 is at most $O(n)$. Consequently, the overall running time of the algorithm is $O(m n)$ in an amortized sense.

Theorem 17 Given any permutation π, the algorithm finds a minimum cardinality paireddominating set of the permutation graph $G[\pi]$.

Example. To illustrate our algorithm, we compute the example shown in Fig. 1. as follows:

1. $P D_{0, j}=\emptyset$;

Fig. 1. (a) The permutation diagram. (b) A permutation graph.

1 2. $P D_{\max }=V_{1}, P D_{1,1}=P D_{1,2}=\emptyset, P D_{1,3}=\cdots=P D_{1,7}=\{1,3\} ;$
3. $\pi_{2}^{*}=2, P D_{\pi_{2}^{*}}=\{3,2\}, P D_{\max }=\{1,3\}, P D_{2,1}=\cdots=P D_{2,7}=\{3,2\}$ or $\{1,3\} ;$
4. $\pi_{3}^{*}=2, P D_{\pi_{3}^{*}}=\{3,2\}, P D_{\max }=V_{3}, P D_{3,1}=\cdots=P D_{3,4}=\{3,2\}$ or $\{1,3\}, P D_{3,5}=\cdots=$ ${ }_{4} P D_{3,7}=\{3,2\} ;$
5. $\pi_{4}^{*}=2, P D_{\pi_{4}^{*}}=\{3,2\}, P D_{\max }=V_{4}, P D_{4,1}=\cdots=P D_{4,4}=\{3,2\}$ or $\{1,3\}, P D_{4,5}=\cdots=$
${ }_{6} P D_{4,7}=\{3,2\} ;$
6. $\pi_{5}^{*}=2, P D_{\pi_{5}^{*}}=\{3,2\}, P D_{\max }=\{2,3,7,4\}$ or $\{1,3,7,4\}, P D_{5,1}=\cdots=P D_{5,3}=\{3,2\}$ or ${ }^{8}\{1,3\}, P D_{5,4}=\cdots=P D_{5,7}=\{3,2\}$;

9
10

11
8. $\pi_{7}^{*}=6, P D_{\pi_{7}^{*}}=\{3,2,7,6\}, P D_{\max }=\{3,2,7,6\}$ or $\{1,3,7,6\}, P D_{7,1}=\cdots=P D_{7,3}=$ 12 $\{3,2,7,6\}$ or $\{1,3,7,6\}, P D_{7,4}=\cdots=P D_{7,7}=\{3,2,7,6\}$.
${ }_{13}$ In light of our algorithm, $P D_{7,7}=\{3,2,7,6\}$ is a minimum cardinality paired-dominating set 14 of the graph.

4 Conclusions

In this paper we presented an $O(m n)$ algorithm for finding a minimum cardinality paireddominating set for a permutation graph with order n and size m. Our algorithm is based on a recursive formula in conjunction with applying the dynamic programming method. The idea was previously used by Chao et al [7] for finding the minimum cardinality dominating set on permutation graphs. We speculate that the time complexity of the MPDS problem on permutation graphs can be reduced to $O(n \log n)$ and we suggest that researchers investigate such a possibility. It is also interesting to determine whether there exist some other classes of graphs in which the minimum paired-domination problem is polynomially solvable.

Acknowledgments

We are grateful to the referees for their valuable comments, which have led to improvements in the presentation of the paper. This research was supported in part by The Hong Kong Polytechnic University under grant number G-YX69, the National Natural Sciences Foundation of China under grant number 10571117, Shu Guang Plan of the Shanghai Education Development Foundation under grant number 06SG42, and the Development Foundation of Shanghai Education Committee under grant number 05AZ04.

References

[1] K. Arvind, C.P. Regan, Connected domination and steiner set on weighted permutation graphs, Information Processing Letters 41 (1992) 215-220.
[2] M. Blidia, M. Chellali, T.W. Haynes, Characterizations of trees with equal paired and double domination numbers, Discrete Mathematics 306 (2006) 1840-1845.
[3] B. Brešar, M.A. Henning, D.F. Rall, Paired-domination of Cartesian products of graphs and rainbow domination, Electronic Notes in Discrete Mathematics 22 (2005) 233-237.
[4] B. Brešar, S. Klavžar and D. F. Rall, Dominating direct products of graphs, Discrete Mathematics 307 (2007) 1636-1642.
[5] G.J. Chang, Algorithmic aspects of domination in graphs, in: D.-Z. Du, P.M. Pardalos (Eds.), Handbook of Combinatorial Optimization, Kluwer Academic Pub., Boston, Vol. 3, 1998, pp. 339-405.
[6] H.S. Chao, F.R. Hsu, R.C.T. Lee, An optimal algorithm for finding the minimum cardinality dominating set on permutation graphs, Discrete Applied Mathematics 102 (2000) 159-173.
[7] M. Chellali, T.W. Haynes, Total and paired-domination numbers of a tree, AKCE International Journal of Graphs and Combinatorics 1 (2004) 69-75.
[8] T.C.E. Cheng, L.Y. Kang, C.T. Ng, Paired domination on interval and circular-arc graphs, Discrete Applied Mathematics 155 (2007) 2077-2086.
[9] M. Farber, J.M. Keil, Domination in permutation graphs, Journal of Algorithms 6 (1985) 309-321.
[10] O. Favaron, M.A. Henning, Paired-domination in claw-free cubic graphs, Graphs and Combinatorics 20 (2004) 447-456.
[11] S. Fitzpatrick, B. Hartnell, Paired-domination, Discussiones Mathematicae. Graph Theory 18 (1998) 63-72.
[12] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[13] T.W. Haynes, P.J. Slater, Paired-domination in graphs, Networks 32 (1998) 199-206.
[14] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamendals of Domination in Graphs, Marcel Dekker, New York, 1998.
[15] T.W. Haynes, M.A. Henning, Trees with large paired-domination number, Utilitas Mathematica 71 (2006) 3-12.
[16] T.W. Haynes, M.A. Henning and P.J. Slater, Trees with equal domination and paireddomination numbers, Ars Combinatoria 76 (2005) 169-175.
[17] M.A. Henning, Trees with equal total domination and paired-domination numbers, Utilitas Mathematica 69 (2006) 207-218.
[18] M.A. Henning, Graphs with large paired-domination number, Journal of Combinatorial Optimization 13 (2007) 61-78.
[19] M.A. Henning, M.D. Plummer, Vertices contained in all or in no minimum paired- dominating set of a tree, Journal of Combinatorial Optimization 10 (2005) 283-294.
[20] O.H. Ibarra, Q. Zhang, Some efficient algorithms for permutation graphs, Journal of Algorithms 16 (1994) 453-469.
[21] L.Y. Kang, M.Y. Sohn, T.C.E. Cheng, Paired-domination in inflated graphs, Theoretical Computer Science 320 (2004) 485-494.
[22] D. Kratsch, R.M. McConnell, K. Mehlhorn, J.P. Spinrad, Certifying algorithms for recognizing interval graphs and permutation graphs, SIAM Journal on Computing 36 (2006) 326-353.
[23] Y. Liang, C. Rhee, S.K. Dhall, S. Lakshmivarahan, A new approach for the domination problem on permutation graphs, Information Processing Letters 37 (1991) 219-224.
[24] A. Pnueli, A. Lempel, S. Even, Transitive orientation of graphs and identification of permutation graphs, Canadian Journal of Mathematics 23 (1971) 160-175.
[25] K.E. Proffitt, T.W. Haynes, P.J. Slater, Paired-domination in grid graphs, Congressus Numerantium 150 (2001) 161-172.
[26] H. Qiao, L.Y. Kang, M. Cardei, D.Z. Du, Paired-domination of trees, Journal of Global Optimization 25 (2003) 43-54.
[27] J. Raczek, Lower bound on the paired domination number of a tree, The Australasian Journal of Combinatorics 34 (2006) 343-347.
[28] A. Saha, M. Pal, T.K. Pal, An efficient PRAM algorithm for maximum-weight independent set on permutation graphs, Journal of Applied Mathematics \& Computing 19 (2005) 77-92.
[29] E.F. Shan, L.Y. Kang, M.A. Henning, A characterization of trees with equal total domination and paired-domination numbers, Australasian Journal of Combinatorics 30 (2004) 31-39.
[30] J. Spinrad, On comparability and permutation graphs, SIAM Journal on Computing 14 (1985) 658-670.
[31] K.H. Tsai, W.L. Hsu, Fast algorithms for the dominating set problem on permutation graphs, Algorithmica 9 (1993) 601-614.
[32] G.J. Xu, L.Y. Kang, E.F. Shan, Acyclic domination on bipartite permutation graphs, Information Processing Letters 99 (2006) 139-144.

[^0]: * Corresponding author. Email address: lgtcheng@polyu.edu.hk

[^1]:

