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3

Abstract4

A set S of vertices in a graph H = (V, E) with no isolated vertices is a paired-dominating5

set of H if every vertex of H is adjacent to at least one vertex in S and if the subgraph6

induced by S contains a perfect matching. Let G be a permutation graph and π be its7

corresponding permutation. In this paper we present an O(mn) time algorithm for finding8

a minimum cardinality paired-dominating set for a permutation graph G with n vertices9

and m edges.10
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1 Introduction13

In this paper we in general follow [14] for notation and graph theory terminologies. Specifically,14

let G = (V, E) be a graph with vertex set V and edge set E, and let v be a vertex in V . The15

order of G is given by n = |V | and its size by m = |E|. The open neighborhood of v is defined16
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by N(v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is defined by N [v] = N(v)∪ {v}.1

In general, let N(S) and N [S] denote, respectively, ∪v∈SN(v) and ∪v∈SN [v]. For subsets2

S, T ⊆ V , the set S dominates the set T in G if N [T ] ⊆ N [S]. Each vertex v of G dominates3

itself and every vertex adjacent to v, i.e., all vertices in its closed neighborhood. For S ⊆ V ,4

let 〈S〉 denote the subgraph of G induced by S.5

A set S ⊆ V is a dominating set of G if every vertex not in S is adjacent to at least a vertex6

in S. The domination number of G is the minimum cardinality of a dominating set of G. A7

matching in a graph G is a set of independent edges in G. A perfect matching M in G is a8

matching in G such that every vertex of G is incident to a vertex of M .9

A paired-dominating set of a graph G is a set S of vertices of G such that every vertex is10

adjacent to some vertex in S and the subgraph induced by S contains a perfect matching M11

(not necessarily induced). Two vertices joined by an edge of M are said to be paired and are also12

called partners in S. Every graph without isolated vertices has a paired-dominating set since13

the end-vertices of any maximal matching form such a set. The paired-domination number of14

G, denoted by γpr(G), is the minimum cardinality of a paired-dominating set. The minimum15

paired-dominating set problem, abbreviated as MPDS, is to find a paired-dominating set S of16

G such that |S| is minimized. Paired-domination was introduced by Haynes and Slater [14]17

as a model for assigning backups to guards for security purposes, and has been studied from18

the theoretic point of view, for example, in [2]–[4], [7, 8, 10, 11], [15]–[19], [21], [25]–[27], [29],19

among others.20

The aim of this paper is to investigate the problem of determining γpr(G) for a permutation21

graph G from the algorithmic point of view. The decision problem to determine a minimum22

cardinality paired-dominating set of an arbitrary graph has been known to be NP-complete (see23

[13]). For the special case of trees, Qiao et al. [26] presented a linear time algorithm. Cheng et24

al. [8] proposed an O(m + n) and O(m(m + n)) time algorithms to solve the MPDS problem25

for interval graphs and circular-arc graphs, respectively. The literature on algorithmic aspects26

of domination in graphs has been by surveyed and detailed by Chang [5].27
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Let π = [π1, π2, . . . , πn] be a permutation on the set Vn = {1, 2, . . . , n}. Then the permutation

graph G[π] = (V, E) is the undirected graph such that V = Vn and (i, j) ∈ E if and only if

(i− j)(π−1(i)− π−1(j)) < 0,

where π−1(i) is the position of i in π = [π1, π2, . . . , πn]. Throughout the paper, we assume that1

the input is a permutation π = [π1, π2, . . . , πn], and the given permutation graph G contains no2

isolated vertices.3

A permutation graph is an intersection graph based upon the permutation diagram [1], which4

is defined as follows: Write the number 1, 2, . . . , n horizontally from left to right. Under every5

i, write the number π(i). Draw line segments connecting i in the top row and i in the bottom6

row, for each i. It is easy to see that two vertices i and j of G[π] are adjacent if and only7

if the corresponding line segments of i and j intersect. Fig. 1 shows the permutation graph8

G[π] where its corresponding permutation diagram of a permutation π[3, 1, 5, 7, 4, 2, 6]. The9

permutation graphs are known to have a variety of practical applications [12, 24] and for this10

reason, many algorithms for determining parameters in graph theory have been developed in11

the literature [6, 9, 20, 22, 23, 28, 30].12

In this paper, we propose an efficient O(mn) algorithm for solving the MPDS problem on13

permutation graphs. Our algorithm is based on a recursive formula by using the dynamic14

programming method. In Section 2, we describe our recursive formula of the dynamic program-15

ming. Our algorithm is described in Section 3. Section 5 contains some conclusions.16

2 A dynamic programming approach17

In this section we shall describe our basic approach based upon the dynamic programming18

approach. Essentially, we want to find an MPDS of {π1, π2, . . . , πn} dominating {1, 2, . . . , n}.19

In the following, we may assume that the permutation graph G[π] discussed below is connected;20

otherwise we look at each (connected) component separately.21

For convenience, we introduce more notation as follows:22
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(1). For any 1 ≤ i, j ≤ n, and Vi = {π1, π2, . . . , πi}, denote Vi,j as the subset of Vi containing1

all elements smaller than or equal to j, i.e., Vi,j = {πk ∈ Vi | πk ≤ j}. Clearly, Vi,j ⊆ Vi.2

(2). For each i, 1 ≤ i ≤ n, denote π∗i as the minimum number over the suffix πi, πi+1, . . . , πn,3

i.e., π∗i =min{πi, πi+1, . . . , πn}, and set V ∗
i = Vi ∪ {π∗i }.4

(3). For any vertex set S, define max(S) as the maximum number in S.5

(4). For a family F of sets of vertices, Min(F) denotes a minimum cardinality set S in F6

and max(S) is as large as possible if F is not the empty set; Min(F) denotes a set of infinite7

cardinality otherwise. Min(F) may not be unique. If there are more than one candidate for8

Min(F), we select arbitrarily one of the candidates.9

Lemma 1 For a permutation graph G[π] with no isolated vertices, 〈V ∗
i 〉 has no isolated vertices10

for each i, 1 ≤ i ≤ n.11

Proof. Suppose to the contrary that there exists an i0 (1 ≤ i0 ≤ n) such that 〈V ∗
i0
〉 has12

an isolated vertex πl (l ≤ i0). Then πl ≤ π∗i0 , for otherwise (πl, π
∗
i0

) ∈ E(G). If πl = π∗i013

(=min{πi0 , πi0+1, . . . , πn}), then πl = πi0 . Hence, πi0 is an isolated vertex in G, contradicting14

the assumption of the lemma. If πl < π∗i0 , then πl = l. Thus, for 1 ≤ i < l, πi < l, and for15

l < i ≤ n, πi > l. This implies that πl is an isolated vertex in G, contradicting our assumption16

again. 217

By Lemma 1, we see that 〈V ∗
i 〉 has no isolated vertices, so it is clear that for each i and j,18

1 ≤ i, j ≤ n, there exists a subset D of V ∗
i such that D dominates all the vertices of Vi,j and19

〈D〉 has a perfect matching in 〈V ∗
i 〉.20

Based on Lemma 1, for each i and j, 1 ≤ i, j ≤ n, we define PDi,j as follows:21

(i). PDi,j is a minimum cardinality subset S of V ∗
i such that S is a dominating set of 〈Vi,j〉22

and 〈S〉 has a perfect matching in 〈V ∗
i 〉;23

(ii). max(PDi,j) is as large as possible.24
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In particular, we define PD0,j = ∅ for 1 ≤ j ≤ n. Clearly, PDn,n is a desired minimum1

cardinality paired-dominating set for G[π].2

We define X = {S : S ⊆ V ∗
i such that S is a dominating set of 〈Vi,j〉 and 〈S〉 has a perfect3

matching in 〈V ∗
i 〉}, and we further partition X into three subsets: X1 = {S ∈ X : π∗i ∈4

S}, X2 = {S ∈ X : π∗i 6∈ S, πi ∈ S} and X3 = {S ∈ X : π∗i 6∈ S, πi 6∈ S}.5

Following the above definitions, we have6

PDi,j =




∅ if Vi,j = ∅,
Min(X) otherwise.

Consider the case i = 1. If j < π1, then V1,j = {π1} ∩ {1, 2, . . . , j} = ∅, and so PD1,j = ∅.7

Otherwise, V1,j = {π1}. According to our assumption that G contains no isolated vertices, we8

have π1 6= 1. Then π∗1 = 1 and V ∗
1 = {1, π1}. Hence PD1,j = {1, π1}. So we obtain9

PD1,j =




∅ if j < π1,

{1, π1} otherwise.

We first give several basic lemmas that will be useful for the proof of our recursive formula10

PDi,j .11

Lemma 2 (Chao et al. [6]) For positive integers i1, i2 and j, if 1 ≤ i1 < i2 ≤ n and 1 ≤ j ≤ n,12

then Vi1,j ⊆ Vi2,j and V ∗
i1
⊂ V ∗

i2
.13

Lemma 3 For 1 ≤ i < j < k ≤ n and πk < πj < πi, if w is adjacent to πj, then w is adjacent14

to at least one of πk and πi.15

Proof. The proof is straightforward and omitted. 216

Lemma 4 For 1 < l ≤ i, there exists a PDl−1,π∗i such that π∗i 6∈ PDl−1,π∗i .17

Proof. Let S be a PDl−1,π∗i . Thus S ⊆ V ∗
l−1 is a dominating set of 〈Vl−1,π∗i 〉 and 〈S〉 has a18

perfect matching in 〈V ∗
l−1〉. If π∗i 6∈ S, then the desired result follows. If π∗i ∈ S, then π∗i = π∗l−119
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as S ⊆ V ∗
l−1. Hence, there exists a vertex πi′ ∈ S (i′ ≤ l − 1) such that π∗i , πi′ are paired1

in S. So, we have π−1(π∗i ) > i′ and (π−1(π∗i ) − i′)(π∗i − πi′) < 0. Thus πi′ > π∗i . We claim2

that N(πi′) ∩ V ∗
l−1 − S 6= ∅. If this is not so, then πi′ dominates no vertices of Vl−1,π∗i , and so3

does π∗i as πi′ > π∗i . This means that S − {πi′ , π
∗
i } (⊆ V ∗

l−1) is a dominating set of 〈Vl−1,π∗i 〉4

and 〈S − {πi′ , π
∗
i }〉 has a perfect matching in 〈V ∗

l−1〉. Thus S − {πi′ , π
∗
i } is a PDl−1,π∗i , which5

contradicts the minimality of S. Let πi′′ ∈ N(πi′) ∩ V ∗
l−1 − S and S′ = S ∪ {πi′′} − {π∗i }. Then6

S′ (⊆ V ∗
l−1) is a dominating set of 〈Vl−1,π∗i 〉 and 〈S′〉 has a perfect matching in 〈V ∗

l−1〉 with7

|S′| = |S| and max(S′) ≥max(S). So S′ is a PDl−1,π∗i , satisfying π∗i 6∈ S′, as required. 28

For 1 < i ≤ n, we define

PDπ∗i = Min({PDl−1,π∗i ∪ {π∗i , πl} : πl ∈ N(π∗i ), π
∗
i 6∈ PDl−1,π∗i , l ≤ i})

and9

PDmax =





PDi−1,j ∪ {πi,max(Vi)} if πi 6= max(Vi),

Vi otherwise.

By Lemma 4, PDπ∗i 6= ∅. The following Lemmas 5 and 6 assert that PDπ∗i and PDmax (if10

max(Vi) 6= πi and max(PDi−1,j) < πi) are candidates for computing PDi,j .11

Lemma 5 For any integers i and j, 1 < i ≤ n and 1 ≤ j ≤ n, PDπ∗i ∈ X1 (⊆ X).12

Proof. By the definition of PDπ∗i , π∗i 6∈ PDl−1,π∗i , while PDl−1,π∗i is a minimum dominating13

set of 〈Vl−1,π∗i 〉. We claim πl 6∈ PDl−1,π∗i . If this is not the case, then it is easy to see that14

πl = π∗l−1 ≤ π∗i . On the other hand, since πl ∈ N(π∗i ) (l ≤ i), πl > π∗i , which is impossible.15

From Lemma 2, V ∗
l−1 ⊆ V ∗

i as l ≤ i. Hence, PDl−1,π∗i ∪ {π∗i , πl} ⊆ V ∗
i . We next show that16

each vertex of Vi,j − Vl−1,π∗i is dominated by π∗ or πl. Let πk ∈ Vi,j − Vl−1,π∗i . If πk > π∗i , then17

(πk − π∗i )(k − π−1(π∗i )) < 0, and so (πk, π
∗
i ) ∈ E. If πk < π∗i , then k ≥ l. Since πl ∈ N(π∗i )18

and l ≤ i, πl > π∗i , then πl > π∗i > πk. This implies that (πk − πl)(k − l) ≤ 0, i.e., πk = πl or19

(πk, πl) ∈ E. Hence, all the vertices in Vi,j are dominated by PDl−1,π∗i ∪ {π∗i , πl}. Therefore,20

PDl−1,π∗i ∪ {π∗i , πl} ∈ X1. Note that PDπ∗i =Min({PDl−1,π∗i ∪ {π∗i , πl} : πl ∈ N(π∗i ), l ≤ i}), so21

PDπ∗i ∈ X1, as desired. 222
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Lemma 6 For any integers i and j, 1 < i ≤ n and 1 ≤ j ≤ n, if max(Vi) 6= πi and1

max(PDi−1,j) < πi, then PDmax ∈ X.2

Proof. Clearly, PDmax ⊆ V ∗
i . Since max(Vi) 6= πi and max(PDi−1,j) < πi, πi 6∈ PDi−1,j and3

πi <max(Vi), and thus max(Vi) 6∈ PDi−1,j and (max(Vi), πi) ∈ E. Note that Vi,j−Vi−1,j ⊆ {πi},4

and we have PDmax = PDi−1,j ∪ {πi,max(Vi)} as a dominating set of 〈Vi,j〉 and 〈PDmax〉 has5

a perfect matching in 〈V ∗
i 〉, the desired result follows. 26

In order to present the recursive formula of PDi,j for the case of 1 < i ≤ n, we further prove7

the following several lemmas.8

Lemma 7 For each S ∈Min(X1), let πl =max(S). Then π∗i < πl and πl ∈ N(π∗i ).9

Proof. By the definition of X1, we have π∗i ∈ S. Suppose π∗i ≥ πl, then max(S) = π∗i . This10

implies that π∗i is an isolated vertex of 〈S〉, which contradicts the assumption that 〈S〉 has a11

perfect matching in 〈V ∗
i 〉. So π∗i < πl. Furthermore, since (πl−π∗i )(l−π−1(π∗i ) < 0, (π∗i , πl) ∈ E,12

and thus πl ∈ N(π∗i ). 213

By the definition of Min(X1), all the candidates S for Min(X1) have the same max(S). Let14

S ∈ Min(X1), πl =max(S) and let M be a perfect matching in 〈S〉.15

Lemma 8 For any integers i and j, 1 < i ≤ n and 1 ≤ j ≤ n, if there exist πi1 (i1 < l) and16

πl′ such that (π∗i , πi1) ∈ M and (πl, πl′) ∈ M , then Min(X1 ∪ {PDπ∗i }) = PDπ∗i .17

Proof. By Lemma 5, it suffices to show that there exits an S∗ ∈ PDπ∗i ∩ X1 such that18

max(S∗) ≥ max(S) = πl. Note that max(S) = πl > πl′ ∈ S and (πl, πl′) ∈ M , so l′ > l. We19

distinguish the following two cases depending on whether or not π∗l−1 is equal to π∗i .20

Case 1. Suppose first π∗l−1 = π∗i . In this case, we claim that N(πi1)∩ Vl − S 6= ∅. Otherwise,21

since π∗i < πl′ < πl and l < l′ < π−1(π∗i ), by Lemma 3, each vertex dominated by πl′ in G is22

adjacent to πl or π∗i . Furthermore, for each t > l, πt ∈ Vi,j , it is dominated by π∗i as πt > π∗i23

(= π∗l−1). This implies that S − {πi1 , πl′} is a dominating set of 〈Vi,j〉 and 〈S − {πi1 , πl′}〉 has24
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a perfect matching M ∪ {(π∗i , πl)} − {(π∗i , πi1), (πl, πl′)} in 〈V ∗
i 〉 by making a pair of πl and π∗i ,1

contradicting the minimality of S. Let πi′1 ∈ N(πi1)∩Vl−S and let S1 = S∪{πi′1}−{πl′}. Then2

S1 ⊆ V ∗
i is a dominating set of 〈Vi,j〉 and M1 = (M ∪{(πi′1 , πi1), (πl, π

∗
i )})−{(π∗i , πi1), (πl, πl′)}3

is a perfect matching in 〈S1〉. So S1 ∈ X1 with |S1| = |S| and max(S1) ≥max(S) such that4

πl′ 6∈ S1 and π∗l−1 ∈ S1.5

For any πk ∈ S1, where l < k ≤ i, there exists πk′ such that (πk, πk′) ∈ M1. We claim that6

k′ < l and N(πk′)∩Vl−S1 6= ∅. Indeed, if k′ > l, then for each vertex πt ∈ N({πk, πk′})∩Vl−S,7

we have πt > πk > π∗l−1 = π∗i or πt > πk′ > π∗l−1 = π∗i , so πt is dominated by π∗i . Moreover, note8

that for each vertex πt ∈ Vi,j , l < t ≤ i, it is also dominated by π∗i as πt ≥ π∗i (= π∗l−1). This9

implies that S1 − {πk, πk′} is a dominating set of 〈Vi,j〉 and 〈S1 − {πk, πk′}〉 still has a perfect10

matching in 〈V ∗
i 〉, which contradicts the minimality of S1. So k′ < l. We further show that11

N(πk′)∩Vl−S1 6= ∅. Otherwise, since k′ < l < k and (πk, πk′) ∈ E, πk′ > πk > π∗l−1 = π∗i , then12

πk′ is dominated by π∗i . As above, we deduce that S1 − {πk, πk′} is a dominating set of 〈Vi,j〉13

and 〈S1−{πk, πk′}〉 has a perfect matching in 〈V ∗
i 〉, a contradiction. Let πk′′ ∈ N(πk′)∩Vl−S114

and let S2 = S1∪{πk′′}−{πk}. Then S2 ⊆ V ∗
i is a dominating set of 〈Vi,j〉 with |S2| = |S1| and15

〈S2〉 has a perfect matching in 〈V ∗
i 〉 and max(S2) ≥max(S1). For any πs ∈ S2, where l < k ≤ i,16

continuing the process as above, we can obtain after a finite number of steps a set S∗ ⊆ V ∗
i17

satisfying the following conditions:18

(i). S∗ ∩ ({πl+1, πl+2, . . . , πi} − {π∗i }) = ∅;19

(ii). S∗ ⊆ V ∗
i is a dominating set of 〈Vi,j〉 with |S∗| = |S| and 〈S∗〉 in 〈V ∗

i 〉 has a perfect20

matching in which π∗i and πl are paired;21

(iii). max(S∗) ≥max(S).22

Then S∗ ∈ X1. Since π∗i < πl, it follows that no vertex in Vl−1,π∗i is dominated by π∗i or πl,23

so S∗ − {π∗i , πl} is a dominating set of 〈Vl−1,π∗i 〉 and 〈S∗ − {π∗i , πl}〉 in 〈V ∗
l−1〉 has a perfect24

matching. By the minimality of S∗, we deduce that S∗ − {π∗i , πl} ⊆ V ∗
l−1 is a minimum25

cardinality dominating set of 〈Vl−1,π∗i 〉 and contains a perfect matching. Then S∗ − {π∗i , πl} is26

a PDl−1,π∗i , and thus S∗ is a PDπ∗i . Hence, |S| = |S∗| = |PDl−1,π∗i | + 2. Note that |PDπ∗i | ≤27
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|PDl−1,π∗i | + 2 = |S| and if |PDπ∗i | = |PDl−1,π∗i | + 2, then max(PDπ∗i ) =max(S∗) ≥ max(S).1

So Min(X1 ∪ {PDπ∗i }) = PDπ∗i .2

Case 2. Suppose π∗l−1 6= π∗i . As in Case 1, we first find a set S1 ∈ X1 with |S1| = |S| and3

max(S1) ≥max(S) such that πl′ 6∈ S1 and π∗l−1 ∈ S1.4

Suppose π∗l−1 6∈ S. Since π∗l−1 < π∗i < πi1 , (π−1(πi1) − π−1(π∗l−1))(πi1 − π∗l−1) < 0, then5

(πi1 , π
∗
l−1) ∈ E. Let S1 = S ∪ {π∗l−1} − {πl′}. Clearly, S1 ⊆ V ∗

i . We further show that S16

is a dominating set of 〈Vi,j〉. It suffices to show that all the vertices dominated by πl′ can be7

dominated by S1. Indeed, let πt ∈ N(πl′). If t > l, it follows from πl > π∗i that πt < πl or8

πt > π∗i . Observe that πl′ < πl and l < l′ ≤ i ≤ π−(π∗i ), then πt is dominated by πl or π∗i . If9

t < l (< l′), then πt > πl′ ≥ π∗l−1, and so πt is dominated by π∗l−1. Therefore, S1 is a dominating10

set of 〈Vi,j〉 and M1 = M ∪ {(πi1 , π
∗
l−1), (πl, π

∗
i )} − {(π∗i , πi1), (πl, πl′)} is a perfect matching in11

〈S1〉. So S1 ∈ X1 and max(S1) =max(S) such that πl′ 6∈ S1 and π∗l−1 ∈ S1.12

Suppose π∗l−1 ∈ S. Let (π∗l−1, πl1) ∈ M . We claim that N(πl1) ∩ Vl − S 6= ∅. If this is not so,13

then, for each vertex πt ∈ N(πl1) − S, l < t ≤ i. This implies that πt < πl or πt > πl > π∗i ,14

and thus it is dominated by πl or π∗i . On the other hand, note that all the vertices dominated15

by πl′ can be dominated by π∗i or πl as above. So S − {πl′ , πl1} is a dominating set of 〈Vi,j〉.16

Further, since πi1 > π∗i > π∗l−1, (π∗l−1, πi1) ∈ E, then 〈S − {πl′ , πl1}〉 has a perfect matching in17

〈V ∗
i 〉 by making pairs of πl and π∗i , π∗l−1 and πi1 , which contradicts the minimality of S. Let18

πl′1 ∈ N(πl1) ∩ Vl − S and let S1 = S ∪ {πl′1} − {πl′}. Then S1 is a dominating set of 〈Vi,j〉 and19

M1 = M ∪{(πl1 , πl′1), (πl, π
∗
i ), (πi1 , π

∗
l−1)}−{(π∗i , πi1), (πl, πl′), (πl−1, πl1)} is a perfect matching20

in 〈S1〉. So S1 ∈ X and max(S1) ≥max(S) such that πl′ 6∈ S1 and π∗l−1 ∈ S1.21

For any πk 6= π∗l−1, πk ∈ S1, where l < k ≤ i, there exists a πk′ ∈ S1 such that (πk, πk′) ∈ M1.22

We claim that k′ < l and N(πk′) ∩ Vl − S1 6= ∅. In fact, if k′ > l, then for each vertex23

πt ∈ N({πk, πk′}) ∩ Vl − S, we have πt > πk > π∗l−1 or πt > πk′ > π∗l−1, so πt is dominated24

by π∗l−1. Moreover, for each vertex πt ∈ Vi,j , l < t ≤ i, we have πt < πl or πt > πl > π∗i , so25

πt is dominated by π∗i or πl. This implies that S1 − {πk, πk′} is a dominating set of 〈Vi,j〉 and26

〈S1 − {πk, πk′}〉 still has a perfect matching in 〈V ∗
i 〉, which contradicts the minimality of S1.27
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So k′ < l. Similar to the discussion in Case 1, we can deduce that N(πk′) ∩ Vl − S1 6= ∅.1

Let πk′′ ∈ N(πk′) ∩ Vl − S′ and let S2 = S1 ∪ {πk′′} − {πk}. Then S2 ⊆ V ∗
i is a dominating2

set of 〈Vi,j〉 with |S2| = |S1| and 〈S2〉 has a perfect matching in 〈V ∗
i 〉 and max(S2) ≥max(S1).3

Proceeding as above, we get a set S∗ ⊆ V ∗
i satisfying the following conditions:4

(i). S∗ ∩ ({πl+1, πl+2, . . . , πi} − {π∗i }) = π∗l−1;5

(ii). S∗ is a dominating set of 〈Vi,j〉 with |S∗| = |S| and 〈S∗〉 in 〈V ∗
i 〉 has a perfect matching6

in which π∗i and πl are paired;7

(iii). max(S∗) ≥max(S).8

Then S∗ ∈ X1. As in Case 1, it can be verified that no vertex in Vl−1,π∗i is dominated by π∗i or πl9

since π∗i < πl, so S∗−{π∗i , πl} is a dominating set of 〈Vl−1,π∗i 〉 and 〈S∗−{π∗i , πl}〉 in 〈V ∗
l−1〉 has10

a perfect matching. By the minimality of S∗, it follows that S∗−{π∗i , πl} ⊆ V ∗
l−1 is a minimum11

cardinality dominating set of 〈Vl−1,π∗i 〉. Then S∗−{π∗i , πl} is a PDl−1,π∗i , and thus S∗ is a PDπ∗i .12

Hence, |S| = |S∗| = |PDl−1,π∗i |+ 2. Note that |PDπ∗i | ≤ |PDl−1,π∗i |+ 2 = |S| and if |PDπ∗i | =13

|PDl−1,π∗i |+2, then max(PDπ∗i ) = max(S∗) ≥ max(S). Therefore, Min(X1∪{PDπ∗i }) = PDπ∗i .14
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Lemma 9 For any integers i and j, 1 < i ≤ n and 1 ≤ j ≤ n, if there exist πi1 (i1 > l) and16

πl′ such that (π∗i , πi1) ∈ M and (πl, πl′) ∈ M , then Min(X1 ∪ {PDπ∗i }) = PDπ∗i .17

Proof. Similar to Lemma 8, we need to show that there exits an S∗ ∈ PDπ∗i ∩X1 such that18

max(S∗) ≥ max(S). We claim that π∗l−1 6= π∗i , π∗l−1 6∈ S, and N(π∗l−1) ∩ {π1, π2, . . . , πl−1} 6= ∅.19

We first show that π∗l−1 6= π∗i . Suppose to the contrary that π∗l−1 = π∗i , then it is easy to see20

that π∗i < πl′ < πl and π∗i < πi1 < πl. Hence, by Lemma 3, S − {πl′ , πi1} is a dominating21

set of 〈Vi,j〉 and 〈S − {πl′ , πi1}〉 has a perfect matching in 〈V ∗
i 〉 by pairing π∗i with πl, which22

contradicts the minimality of S. So π∗l−1 6= π∗i . Second, we show that π∗l−1 6∈ S. Suppose23

this is not the case, π∗l−1 ∈ S. For any vertex πt ∈ N [πi1 ], if t < i1, then πt > πi1 . By our24

assumption that (π∗i , πi1) ∈ M , we have πi1 > π∗i as i1 < π−(π∗i ). Hence, (πt, π
∗
i ) ∈ E. If t ≥ i125

(> l), then πt ≤ πi1 < πl, and thus (πt, πl) ∈ E. So N [πi1 ] ⊆ N [πl] ∪ N [π∗i ]. For any vertex26

10



πt ∈ N [πl′ ], if t ≤ l − 1, then πt > πl′ ≥ π∗l−1 and t ≤ l − 1 ≤ π−(π∗l−1), so (πt, π
∗
l−1) ∈ E. If1

l < t < l′, then πt < πl or πt > πl > π∗i and l′ ≤ π−(π∗i ), and thus (πt, πl) ∈ E or (πt, π
∗
i ) ∈ E.2

If t ≥ l′ (> l), then πl > πl′ ≥ πt, so (πt, πl) ∈ E. So N [πl′ ] ⊆ N [πl]∪N [π∗l−1]∪N [π∗i ]. Let S′ =3

S−{πl′ , πi1}. Then S′ is a dominating set of 〈Vi,j〉 and M ′ = M∪{(πl, π
∗
i )}−{(πl, πl′), (π∗i , πi1)}4

is a perfect matching in 〈S′〉. This contradicts the minimality of S. So π∗l−1 6∈ S. Finally,5

we show that N(π∗l−1) ∩ {π1, π2, . . . , πl−1} 6= ∅. If N(π∗l−1) ∩ {π1, π2, . . . , πl−1} = ∅, then6

N(πl′) ∩ {π1, π2, . . . , πl−1} = ∅, so we have N [πl′ ] ⊆ N [πl] ∪ N [π∗i ]. Hence, S − {πl′ , πi1} is a7

dominating set of 〈Vi,j〉 and 〈S − {πl′ , πi1}〉 has a perfect matching in 〈V ∗
i 〉, contradicting the8

minimality of S.9

Let πl1 ∈ N(π∗l−1) ∩ {π1, π2, . . . , πl−1} and S1 = S ∪ {π∗l−1, πl1} − {πl′ , πi1}. Since N [πi1 ] ⊆10

N [πl] ∪ N [π∗i ] and N [πl′ ] ⊆ N [πl] ∪ N [π∗l−1] ∪ N [π∗i ], S1 is a dominating set of 〈Vi,j〉 and 〈S1〉11

has a perfect matching in 〈V ∗
i 〉 by pairing {πl, π

∗
i } and {π∗l−1, πl1}. So S1 ∈ X1 with |S1| = |S|12

and max(S1) ≥max(S) such that πl′ 6∈ S1 and π∗l−1 ∈ S1. Using analogous arguments as in13

Lemma 8, we can get a set S∗ ∈ X1 such that S∗ − {π∗i , πl} is a PDl−1,π∗i and S∗ is a PDπ∗i .14

Hence, |S| = |S∗| = |PDl−1,π∗i |+ 2. Note that |PDπ∗i | ≤ |PDl−1,π∗i |+ 2 = |S| and if |PDπ∗i | =15

|PDl−1,π∗i |+2, then max(PDπ∗i ) = max(S∗) ≥ max(S). Therefore, Min(X1∪{PDπ∗i }) = PDπ∗i .16
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Lemma 10 For any integers i and j, 1 < i ≤ n and 1 ≤ j ≤ n, if (π∗i , πl) ∈ M , then18

Min(X1 ∪ {PDπ∗i }) = PDπ∗i .19

Proof. Similar to Lemma 8, we again need to show that there exits an S∗ ∈ PDπ∗i ∩X1 such20

that max(S∗) ≥ max(S). We consider the following two cases depending on whether or not21

π∗l−1 is equal to π∗i .22

Case 1. Suppose π∗l−1 = π∗i . Then, for any πk ∈ S for l < k < i, there exists πk′ ∈ S such23

that (πk, πk′) ∈ M . Similar to the discussion for S1 in Case 1 of Lemma 8, we can obtain a24

set S∗ ∈ X1 satisfying the conditions (i)–(iii) in Case 1 of Lemma 8 and S∗ is a PDπ∗i with25

max(PDπ∗i ) ≥max(S). Therefore, Min(X1 ∪ {PDπ∗i }) = PDπ∗i .26

11



Case 2. Suppose π∗l−1 6= π∗i . If π∗l−1 ∈ S, then we deal with S as in Case 2 of Lemma 8 for1

S1. Finally, we can obtain a set S∗ ∈ X1 satisfying the conditions (i)–(iii) in Case 2 of Lemma2

8 and S∗ is a PDπ∗i with max(PDπ∗i ) ≥max(S). Hence, Min(X1 ∪ {PDπ∗i }) = PDπ∗i , thus the3

assertion holds. In what follows, we may assume that π∗l−1 6∈ S. As in Case 1 of Lemma 8, we4

first find a set S1 ∈ X1 with |S1| = |S| and max(S1) ≥max(S) such that π∗l−1 ∈ S1.5

Suppose S ∩ ({πl+1, . . . , πi} − {π∗i }) = ∅. Since π∗i < πl, it follows that no vertex in Vl−1,π∗i6

is dominated by π∗i or πl, so S − {π∗i , πl} is a dominating set of 〈Vl−1,π∗i 〉 and 〈S − {π∗i , πl}〉7

in 〈V ∗
l−1〉 has a perfect matching. By minimality of S, we deduce that S − {π∗i , πl} ⊆ V ∗

l−18

is a minimum cardinality dominating set of 〈Vl−1,π∗i 〉 and contains a perfect matching. Then9

S − {π∗i , πl} is a PDl−1,π∗i , and thus S is a PDπ∗i . Hence, |S| = |PDl−1,π∗i | + 2. Note that10

|PDπ∗i | ≤ |PDl−1,π∗i |+ 2 = |S|, it follows that Min(X1 ∪ {PDπ∗i }) = PDπ∗i .11

Suppose S ∩ ({πl+1, . . . , πi}−{π∗i }) 6= ∅. Choosing a vertex πk0 ∈ S (l < k0 < i), there exists12

πk′0 such that (πk0 , πk′0) ∈ M . If k′0 < l, then πk′0 > πk0 > π∗l−1, and so (πk′0 , π
∗
l−1) ∈ E. We claim13

that all the vertices in N [πk0 ] are dominated by π∗l−1, π∗i and π∗l . Indeed, for any πt ∈ N [πk0 ],14

if t < l, then πt > πk0 > π∗l−1, so (πt, π
∗
l−1) ∈ E; if l ≤ t ≤ k0, then πt ≤ πl or πt > πl > π∗i , so15

πt = πl, (πt, πl) ∈ E or (πt, π
∗
i ) ∈ E; if t > k0, then πt < πk0 < πl, so (πt, πl) ∈ E. The claim16

follows. Let S1 = S ∪ {π∗l−1} − {πk0}. Then S1 is a dominating set of 〈Vi,j〉 and 〈S1〉 has a17

perfect matching in 〈V ∗
i 〉 by pairing πk′0 and π∗l−1 and removing the edge (πk0 , πk′0). We obtain18

a set S1 ∈ X1 with |S1| = |S| and max(S1) ≥max(S) such that π∗l−1 ∈ S1. If k′0 > l, then19

there exists πk1 (k1 < l) such that (πk1 , πk′0) ∈ E or (πk1 , πk0) ∈ E. Otherwise, since all the20

vertices in {πl, . . . , πi} are dominated by πl and π∗i , S − {πk0 , πk′0} is a dominating set of 〈Vi,j〉21

and 〈S − {πk0 , πk′0}〉 has a perfect matching in 〈V ∗
i 〉 by removing (πk0 , πk′0), contradicting the22

minimality of S. Hence, πk1 > πk0 > π∗l−1 or πk1 > πk′0 > π∗l−1. This means that (πk1 , π
∗
l−1) ∈ E.23

Let S1 = S ∪{πk1 , π
∗
l−1}−{πk0 , πk′0}. Note that all the vertices in N({πk0 , πk′0}) are dominated24

by πl, π∗i and π∗l−1, so S1 is a dominating set of 〈Vi,j〉 and 〈S1〉 has a perfect matching in 〈V ∗
i 〉25

by pairing πk1 , π∗l−1, and removing the edge (πk0 , πk′0). We again obtain a set S1 ∈ X1 with26

|S1| = |S| and max(S1) ≥max(S) such that π∗l−1 ∈ S1. As before, by adding to S1 the vertices27

in {π1, . . . , πl−1} and removing all the vertices of S1 in {πl, . . . , πi} − {π∗l−1, π
∗
i }, we can obtain28

12



a set S∗ ∈ X1 satisfying the conditions (i)–(iii) in Case 2 of Lemma 8 and S∗ is a PDπ∗i with1

max(PDπ∗i ) = max(S∗) ≥ max(S). Hence, Min(X1 ∪ {PDπ∗i }) = PDπ∗i . 22

By Lemmas 8–10, we obtain the following result.3

Lemma 11 For any integers i, j, if 1 < i ≤ n and 1 ≤ j ≤ n, Min(X1 ∪ {PDπ∗i }) = PDπ∗i .4

Lemma 12 For any integers i and j, 1 < i ≤ n and πi ≤ j ≤ n, if max(Vi) = πi, then X3 = ∅.5

Proof. Suppose to the contrary that X3 6= ∅. Let S ∈ X3. Then πi, π
∗
i 6∈ S and S (⊂ V ∗

i ) is a6

dominating set of 〈Vi,j〉 and 〈S〉 has a perfect matching in 〈V ∗
i 〉. Since πi ≤ j ≤ n, πi ∈ Vi,j , so7

πi is dominated by a vertex πl (l < i) in S. Then (πi, πl) ∈ E, i.e., (πi − πl)(i − l) < 0. This8

implies that πl > πi, contradicting the assumption of max(Vi) = πi. 29

Lemma 13 For any integers i and j, 1 < i ≤ n and πi ≤ j ≤ n, if max(PDi−1,j) < πi, then10

Min(X3 ∪ {PDmax}) = PDmax.11

Proof. If max(Vi) = πi, by Lemma 12, X3 = ∅. The result follows. So we may assume12

that max(Vi) 6= πi. Let Z denote the set {S : S ⊆ V ∗
i−1 and S is a dominating set of13

〈Vi−1,j〉 and 〈S〉 has a perfect matching in 〈V ∗
i−1〉}. Let A be any set of X3. Since πi 6∈ A14

and π∗i 6∈ A, A ⊆ V ∗
i−1. By Lemma 2, we have Vi−1,j ⊆ Vi,j , so A ∈ Z. Since πi ≤ j,15

πi ∈ Vi,j , max(A) > πi. Thus max(A) > πi >max(PDi−1,j). Note that PDi−1,j =Min(Z)16

and, by our definition, max(PDi−1,j) is as large as possible. Then it must be the case that17

|A| > |PDi−1,j |. Hence, |A| ≥ |PDi−1,j | + 2 = |PDi−1,j ∪ {max(Vi), πi}|. Furthermore,18

max(A) ≤max(Vi) =max(PDi−1,j ∪ {max(Vi), πi}). Therefore, Min(X3 ∪ PDmax) = PDmax.19
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Lemma 14 For any integers i and j, if 1 < i ≤ n and 1 ≤ j ≤ n, then Min(X3∪{PDi−1,j}) =21

PDi−1,j.22

Proof. Define Z as in Lemma 13. Let A be any set of X3. As in the proof of Lemma 13, we23

can verify that A ∈ Z. Note that PDi−1,j =Min(Z). So Min(X3 ∪ {PDi−1,j}) = PDi−1,j . 224
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Lemma 15 For any integers i and j, if 1 < i ≤ n and 1 ≤ j ≤ n, then Min{X1∪X2} =Min{X1}.1

Proof. Let S1 =Min{X2}. According to the definition of X2, π∗i 6∈ X2, πi ∈ X2 and 〈S1〉 has2

a perfect matching M . So there exists a vertex πl ∈ X2 (l < i) such that (πi, πl) ∈ M . Then3

(πl − πi)(l − i) < 0, and thus πl > πi. Hence4

π∗i < πi < πl and l < i < π−(π∗i ). (1)

This means that (π∗i −πl)(π−(π∗i )− l) < 0, i.e., (πl, π
∗
i ) ∈ E. Let S2 = (S1−{πi})∪{π∗i }. From5

(1) and Lemma 3, it follows that S2 ⊆ V ∗
i is a dominating set of 〈Vi,j〉 and 〈S2〉 has a perfect6

matching by pairing πl and π∗i . So S2 ∈ X1, |S2| = |S1| and max(S2) ≥max(S1). Consequently,7

Min{X1 ∪X2} = Min{Min(X1),Min(X2)} = Min{Min(X1), S1} = Min(X1). 28

In the following, we present the recursive formula of our dynamic programming.9

Theorem 16 For any integers i, j, if 1 < i ≤ n and 1 ≤ j ≤ n, then the following recursive10

formula correctly computes PDi,j,11

PDi,j =





Min({PDπ∗i , PDmax}) if j ≥ πi and max(PDi−1,j) < πi,

Min({PDπ∗i , PDi−1,j}) otherwise.

Proof. According to our definitions, X = X1 ∪ X2 ∪ X3. By Lemmas 5 and 6, we have12

PDπ∗i ∈ X1 ⊆ X, PDmax ∈ X. To complete our proof, we distinguish the following two cases.13

Case 1. Suppose that j ≥ πi and max(PDi,j) < πi. If max(Vi) = πi, then, by Lemmas 11,14

12 and 15, we have15

Min(X) = Min(X1 ∪X2 ∪ {PDπ∗i , PDmax})

= Min(X1 ∪ {PDπ∗i , PDmax})

= Min(Min(X1 ∪ {PDπ∗i }), PDmax)

= Min{PDπ∗i , PDmax}.

If max(Vi) 6= πi, then, by Lemmas 11, 13 and 15, we have16

Min(X) = Min(X ∪ {PDπ∗i , PDmax})

14



= Min(X1 ∪X2 ∪X3 ∪ {PDπ∗i , PDmax})

= Min(X1 ∪X3 ∪ {PDπ∗i , PDmax})

= Min(Min(X1 ∪ {PDπ∗i }),Min(X3 ∪ {PDmax}))

= Min(PDπ∗i , PDmax).

Case 2. Suppose that j < πi or max(PDi−1,j) ≥ πi. We first show that PDi−1,j ∈ X. If1

j < πi, then Vi,j = Vi−1,j , so PDi−1,j ∈ X. If max(PDi,j) ≥ πi, then πi is dominated by2

PDi−1,j , so PDi−1,j ∈ X. Note that PDi−1,j ⊂ PDmax. From Lemmas 11, 14 and 15, it3

follows that4

Min(X) = Min(X ∪ {PDπ∗i , PDi−1,j})

= Min(X1 ∪X2 ∪X3 ∪ {PDπ∗i , PDi−1,j})

= Min(X1 ∪X3 ∪ {PDπ∗i , PDi−1,j})

= Min(Min(X1 ∪ {PDπ∗i }),Min(X3 ∪ {PDi−1,j}))

= Min(PDπ∗i , PDi−1,j).
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3 An algorithm for MPDS on permutation graphs6

Based on the recursive formula in Section 2, we next present the algorithmic steps to solve7

MPDS on permutation graphs. The overall structure of our algorithm is outlined as follows:8

Algorithm: Finding an MPDS on a Permutation Graph.9

Input: A permutation π = [π1, π2, . . . , πn].10

Output: A minimum cardinality paired-dominating set of G[π].11

Step 1. Initialize PD0,j = ∅.12

15



1

PD1,j =




∅ if j < π1,

{1, π1} otherwise.

for j = 1, 2, . . . , n.2

Step 2. for i ← 2 to n do3

Step 3. PDπ∗i =Min{PDl−1,π∗i ∪ {π∗i , πl} : πl ∈ N(π∗i ), π∗i 6∈ PDl−1,π∗i , l ≤ i}4

Step 4. for j ← 1 to n do5

Step 5.6

PDmax =





PDi−1,j ∪ {πi,max(Vi)} if πi 6= max(Vi),

Vi otherwise.

Step 6.7

PDi,j =





Min({PDπ∗i , PDmax}) if j ≥ πi and max(PDi−1,j) < πi,

Min({PDπ∗i , PDi−1,j}) otherwise.

Step 7. END8

Step 8. END9

Step 9. Output PDn,n.10

The time complexity of the above algorithm can be analyzed as follows. The time required11

in Step 3 is at most d(π∗i ). The operations of Steps 5 and 6 can be performed in constant time.12

The time required in the loop from Step 4 to Step 7 is at most O(n). Consequently, the overall13

running time of the algorithm is O(mn) in an amortized sense.14

Theorem 17 Given any permutation π, the algorithm finds a minimum cardinality paired-15

dominating set of the permutation graph G[π].16

Example. To illustrate our algorithm, we compute the example shown in Fig. 1. as follows:17

1. PD0,j = ∅;18

16



π− = 2 6 1 5 3 7 4
1 2 3 4 5 6 7

3 1 5 7 4 2 6

u u

u u u

u u

Fig. 1. (a) The permutation diagram. (b) A permutation graph.

2. PDmax = V1, PD1,1 = PD1,2 = ∅, PD1,3 = · · · = PD1,7 = {1, 3};1

3. π∗2 = 2, PDπ∗2 = {3, 2}, PDmax = {1, 3}, PD2,1 = · · · = PD2,7 = {3, 2} or {1, 3};2

4. π∗3 = 2, PDπ∗3 = {3, 2}, PDmax = V3, PD3,1 = · · · = PD3,4 = {3, 2} or {1, 3}, PD3,5 = · · · =3

PD3,7 = {3, 2};4

5. π∗4 = 2, PDπ∗4 = {3, 2}, PDmax = V4, PD4,1 = · · · = PD4,4 = {3, 2} or {1, 3}, PD4,5 = · · · =5

PD4,7 = {3, 2};6

6. π∗5 = 2, PDπ∗5 = {3, 2}, PDmax = {2, 3, 7, 4} or {1, 3, 7, 4}, PD5,1 = · · · = PD5,3 = {3, 2} or7

{1, 3}, PD5,4 = · · · = PD5,7 = {3, 2};8

7. π∗6 = 2, PDπ∗6 = {3, 2}, PDmax = {1, 3, 2, 7}, PD6,1 = · · · = PD6,3 = {3, 2} or {1, 3},9

PD6,4 = · · · = PD6,7 = {3, 2};10

8. π∗7 = 6, PDπ∗7 = {3, 2, 7, 6}, PDmax = {3, 2, 7, 6} or {1, 3, 7, 6}, PD7,1 = · · · = PD7,3 =11

{3, 2, 7, 6} or {1, 3, 7, 6}, PD7,4 = · · · = PD7,7 = {3, 2, 7, 6}.12

In light of our algorithm, PD7,7 = {3, 2, 7, 6} is a minimum cardinality paired-dominating set13

of the graph.14

17



4 Conclusions1

In this paper we presented an O(mn) algorithm for finding a minimum cardinality paired-2

dominating set for a permutation graph with order n and size m. Our algorithm is based3

on a recursive formula in conjunction with applying the dynamic programming method. The4

idea was previously used by Chao et al [7] for finding the minimum cardinality dominating5

set on permutation graphs. We speculate that the time complexity of the MPDS problem on6

permutation graphs can be reduced to O(n log n) and we suggest that researchers investigate7

such a possibility. It is also interesting to determine whether there exist some other classes of8

graphs in which the minimum paired-domination problem is polynomially solvable.9
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