Remarks on minus (signed) total domination in graphs

Erfang Shan ${ }^{a, b *}$ T.C.E. Cheng ${ }^{a}$
${ }^{a}$ Department of Logistics, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong
${ }^{b}$ Department of Mathematics, Shanghai University, Shanghai 200444, China

Abstract

A function $f: V(G) \rightarrow\{+1,0,-1\}$ defined on the vertices of a graph G is a minus total dominating function if the sum of its function values over any open neighborhood is at least one. The minus total domination number $\gamma_{t}^{-}(\mathrm{G})$ of G is the minimum weight of a minus total dominating function on G. By simply changing " $\{+1,0-1\}$ " in the above definition to " $\{+1,-1\}$ ", we can define the signed total dominating function and the signed total domination number $\gamma_{t}^{s}(G)$ of G. In this paper we present a sharp lower bound on the signed total domination number for a k-partite graph, which results in a short proof of a result due to Kang et al. on the minus total domination number for a k-partite graph. We also give sharp lower bounds on γ_{t}^{s} and γ_{t}^{-}for triangle-free graphs and characterize the extremal graphs achieving these bounds.

MSC: 05C69

Keywords: Minus total domination; Signed total domination; k-partite graph; Trianglefree graph; Hypergraph;

1 Introduction

Let \mathcal{H} be a hypergraph with vertex set S and edge set $\left\{A_{1}, \ldots, A_{m}\right\}$. Let α be an integer and \mathbf{P} an arbitrary subset of integers \mathbf{Z}. The function $f: S \rightarrow \mathbf{P}$ defines an α-dominating partition of the hypergraph \mathcal{H} with respect to \mathbf{P}, if

$$
f(A):=\sum_{x \in A} f(x) \geq \alpha
$$

[^0]for every edge A in \mathcal{H}. The α-domination number of \mathcal{H} with respect to \mathbf{P} is defined as the minimum of such functions
$$
\operatorname{dom}_{\alpha}(\mathcal{H}):=\min \{f(S): f \text { is } \alpha \text {-dominating partition }\}
$$

In particular, when $\mathbf{P}=\{+1,-1\}$ or $\{+1,0,-1\}$, we obtain the signed α-domination number and minus α-domination number, denoted by $\operatorname{mdom}_{\alpha}$ and $\operatorname{sdom}_{\alpha}$, respectively.

Now we consider a simple graph $G=(V, E)$ with vertex set V and edge set E. Let v be a vertex in V. The open neighborhood of $v, N_{G}(v)$, is defined as the set of vertices adjacent to v, i.e., $N_{G}(v)=\{u \mid u v \in E\}$. The closed neighborhood of v is $N_{G}[v]=N_{G}(v) \cup\{v\}$. For $S \subseteq V(G)$, denote by $G[S]$ the graph induced by S. If $A, B \subseteq V(G), A \cap B=\emptyset$, let $e(A, B)$ be the number of edges between A and B. We write $d_{G}(v)$ for the degree of v in G, and $\Delta(G)$ and $\delta(G)$ denote the maximum degree and the minimum degree of G, respectively. Let $k \geq 2$ be an integer. A graph $G=(V, E)$ is called k-partite if V admits a partition into k classes such that every edge has its ends in different classes: vertices in the same partition class must not be adjacent. Instead of '2-partite' one usually says bipartite. A triangle-free graph is a graph containing no cycles of length three.

A signed total dominating function of a graph G is defined in [12] as a function $f: V(G) \rightarrow$ $\{+1,-1\}$ such that for every vertex $v, \sum_{u \in N(v)} f(u) \geq 1$, and the minimum cardinality of the sum $\sum_{v \in V} f(v)$ over all such functions is called the signed total domination number, denoted by $\gamma_{t}^{s}(G)$, i.e.,

$$
\gamma_{t}^{s}(G)=\min \{f(V(G)): f \text { is a signed dominating function of } G\}
$$

A minus total dominating function is defined in [2] as a function of the form $f: V \rightarrow\{+1,0,-1\}$ such that $\sum_{u \in N(v)} f(u) \geq 1$ for all $v \in V$. The minus total domination number for a graph G is

$$
\gamma_{t}^{-}(G)=\min \{f(V(G)): f \text { is a minus total dominating function of } G\} .
$$

From definitions, every signed total dominating function of G is clearly a minus total dominating function of G, so $\gamma_{t}^{-}(G) \leq \gamma_{t}^{s}(G)$. Using the notation for hypergraphs, we have that $\gamma_{t}^{s}(G)=$ $\operatorname{sdom}_{1}(\mathcal{N}(G))$ and $\gamma_{t}^{-}(G)=\operatorname{mdom}_{1}(\mathcal{N}(G))$, where \mathcal{N} is the neighborhood hypergraph on the vertex set $V(G)$ and its edges are the open neighborhoods $\left\{N_{G}(v): v \in V(G)\right\}$.

Henning [5] and Harris and Hattingh [2] showed that the decision problems for the signed and minus total domination numbers of a graph are NP-complete respectively, even when the graph is restricted to a bipartite graph or a chordal graph. In [5] many bounds on γ_{t}^{s} of graphs were established. Yan et al. [11], and Wang and Shan [10] gave sharp upper bounds on γ_{t}^{-}for small-degree regular graphs. The literature on this topic of dominating functions is detailed in $[3,4]$.

In this paper we first give a sharp lower bound on $\gamma_{t}^{s}(G)$ of a k-partite graph G in terms of its order and minimum degree. This implies a short proof of a previous result due to Kang et al. [8], which gave a sharp lower bound on $\gamma_{t}^{-}(G)$ for a k-partite graph G. Further, we characterize extremal graphs on Kang et al.'s result. We also obtain sharp lower bounds on $\gamma_{t}^{s}(G)$ and $\gamma_{t}^{-}(G)$ for triangle-free graphs and characterize the extremal graphs achieving these bounds.

2 Main results

In this section we start with presenting a lower bound on the signed total domination number for k-partite graphs, where $k \geq 2$.

Theorem 1 Let $G=(V, E)$ be a k-partite graph of order n with $\delta(G) \geq 1$ and let $c=\lceil(\delta(G)+$ 1)/27. Then

$$
\gamma_{t}^{s}(G) \geq \frac{k}{k-1}\left(-(c-1)+\sqrt{(c-1)^{2}+4 \frac{k-1}{k} c n}\right)-n
$$

and this bound is sharp.

Proof. Let $G=(V, E)$ be a k-partite graph of order n with vertex classes $V_{1}, V_{2}, \ldots, V_{k}$ and no isolated vertex. For $n=2,3$ the assertion is trivial, so we may assume that $n \geq 4$. Let $f: V \rightarrow\{+1,-1\}$ be a signed total dominating function on G with $f(V(G))=\gamma_{t}^{s}(G)$ and let P and M be the sets of vertices in V that are assigned the value +1 and -1 , respectively, under f. Further, let $P_{i}=P \cap V_{i}$, for $i=1, \ldots, k$. Then, $n=|P|+|M|$ and $P=\bigcup_{i=1}^{k} P_{i}$. For convenience, let $|P|=p,|M|=m,\left|P_{i}\right|=p_{i}$ and $\delta(G)=\delta$. For every vertex $v \in M, v$ is adjacent to at least $\left\lfloor d_{G}(v) / 2\right\rfloor+1$ in P since $f(N(v)) \geq 1$, so $\left|N_{G}(v) \cap P\right| \geq\lfloor\delta / 2\rfloor+1=\lceil(\delta+1) / 2\rceil=c$. Hence,

$$
\begin{equation*}
e(P, M)=\sum_{v \in M}\left|N_{G}(v) \cap P\right| \geq c(n-p) \tag{1}
\end{equation*}
$$

On the other hand, for every vertex $v \in P_{i}$, it follows that $\left|N_{G}(v) \cap M\right| \leq\left|N_{G}(v) \cap\left(P-P_{i}\right)\right|-1 \leq$ $p-p_{i}-1$. Hence,

$$
\begin{equation*}
e(P, M)=\sum_{v \in P}\left|N_{G}(v) \cap M\right| \leq \sum_{i=1}^{k} \sum_{v \in P_{i}}\left(\left|N_{G}(v) \cap\left(P-P_{i}\right)\right|-1\right) \leq \sum_{i=1}^{k} p_{i}\left(p-p_{i}-1\right) \tag{2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
k \sum_{i=1}^{k} p_{i}^{2} \geq p^{2} \tag{3}
\end{equation*}
$$

Thus, combining with inequalities (1) and (2), we obtain

$$
\begin{equation*}
c(n-p) \leq e(P, M) \leq \frac{k-1}{k} p^{2}-p \tag{4}
\end{equation*}
$$

or equivalently,

$$
\frac{k-1}{k} p^{2}+(c-1) p-c n \geq 0
$$

Hence,

$$
p \geq\left(-(c-1)+\sqrt{(c-1)^{2}+4 \frac{k-1}{k} c n}\right) / 2\left(\frac{k-1}{k}\right)
$$

Therefore,

$$
\gamma_{t}^{s}(G)=2 p-n \geq \frac{k}{k-1}\left(-(c-1)+\sqrt{(c-1)^{2}+4 \frac{k-1}{k} c n}\right)-n
$$

That the bound is sharp may be seen as follows: For integers $k \geq 2$, let H_{i} be a complete bipartite graph with vertex classes V_{i} and U_{i}, where $\left|V_{i}\right|=k$ and $\left|U_{i}\right|=k^{2}-k-1$, for $i=1,2, \ldots, k$. We let $H(k)$ be the graph obtained from the disjoint union of $H_{1}, H_{2}, \ldots, H_{k}$ by joining each vertex of V_{i} in H_{i} with all the vertices of $\bigcup_{j=1, j \neq i}^{k} V_{j}$, and adding $(k-1)\left(k^{2}-k-1\right)$ edges between U_{i} with $\bigcup_{j=1, j \neq i}^{k} U_{j}$ so that each vertex of U_{i} has exactly $k-1$ neighbors in $\bigcup_{j=1, j \neq i}^{k} U_{j}$ while each vertex of $\bigcup_{j=1, j \neq i}^{k} U_{j}$ has exactly one neighbor in U_{i} for all $i=1,2, \ldots, k$. Let $Y_{i}=V_{i} \cup U_{i+1}$, where $i+1(\bmod k)$. Then $H(k)$ is a k-partite graph of order $n=k\left(k^{2}-1\right)$ with vertex classes $Y_{1}, Y_{2}, \ldots, Y_{k}$ and $\left|Y_{i}\right|=k^{2}-1$. The graph $H(3)$ is shown in Fig. 1. Note that each vertex of U_{i} has minimum degree $2 k-1$. Assigning to each vertex of $\bigcup_{i=1}^{k} V_{i}$ the value +1 and to each vertex of $\bigcup_{i=1}^{k} U_{i}$ the value -1 , we produce a total signed dominating function f of H with weight

$$
\begin{aligned}
f(V(H(k)) & =k^{2}-k\left(k^{2}-k-1\right) \\
& =k\left(-k^{2}+2 k+1\right) \\
& =\frac{k}{k-1}\left(-(c-1)+\sqrt{(c-1)^{2}+4 \frac{k-1}{k} c n}\right)-n
\end{aligned}
$$

Consequently,

$$
\gamma_{t}^{s}(H(k))=\frac{k}{k-1}\left(-(c-1)+\sqrt{(c-1)^{2}+4 \frac{k-1}{k} c n}\right)-n
$$

Henning [5] showed that for a bipartite graph $G, \gamma_{t}^{s}(G) \geq 2 \sqrt{2 n}-n$. From Theorem 1, we can easily extend the result to k-partite graphs and characterize the extremal graphs achieving this bound. For this purpose, we recall a family \mathcal{T} of graphs due to Kang et al. [8] as follows.

Figure 1: The graph $H(3)$.
For integers $r \geq 1, k \geq 2$, let $H_{i}(i=1,2, \ldots, k)$ be the graph obtained from the disjoint union of r stars $K_{1,(k-1) r-1}$ (the graph $K_{1,0}$ is regarded as K_{1} when $r=1$ and $k=2$) with centers $V_{i}=\left\{x_{i, j} \mid j=1,2, \ldots, r\right\}$. Furthermore, let U_{i} denote the set of vertices of degree 1 in H_{i} that are not central vertices of stars and write $X_{i}=V_{i} \cup U_{i+1}$, where $i+1(\bmod k)$. We let $G_{k, r}$ be the k-partite graph obtained from the disjoint union of $H_{1}, H_{2}, \ldots, H_{k}$ by joining each center of $H_{i}(i=1,2, \ldots, k)$ with all the centers of $\bigcup_{j=1, j \neq i}^{k} H_{j}$. By construction, we know that $G_{k, r}$ is a k-partite graph of order $n=k(k-1) r^{2}$ with vertex classes $X_{1}, X_{2}, \ldots, X_{k}$ and $\left|X_{i}\right|=(k-1) r^{2}$. Let $\mathcal{T}=\left\{G_{k, r} \mid r \geq 1, k \geq 2\right\}$.

Theorem 2 If $G=(V, E)$ is a k-partite graph of order n with no isolated vertex, then

$$
\gamma_{t}^{s}(G) \geq 2 \sqrt{\frac{k}{k-1} n}-n
$$

where equality holds if and only if $G \in \mathcal{T}$.
Proof. Let $g(x)=\frac{k}{k-1}\left(-x+\sqrt{x^{2}+4 \frac{k-1}{k}(x+1) n}\right)-n$. It is easy to check that $g^{\prime}(x)>0$ if $n \geq 2$, so $g(x)$ is a strictly monotone increasing function when $x \geq 0$. Note that $c \geq 1$, hence $\gamma_{t}^{s}(G) \geq g(c-1) \geq g(0)$, which implies the desired bound.

If $\gamma_{t}^{s}(G)=2 \sqrt{k n /(k-1)}-n$, then $c=1$ as $g(x)$ is a strictly monotone function, and thus $\delta=1$. Further, all the equalities hold in (1), (2) and (3). The equality in (3) implies that
$p_{1}=p_{2}=\ldots=p_{k}:=r$. The equalities in (1) and (2) imply that each vertex of M has degree 1 and is exactly adjacent to a vertex of P, while each vertex of P_{i} has degree $p-p_{i}=k r-r$ in $G[P]$ and has exactly $p-p_{i}-1=r(k-1)-1$ neighbors in M. It follows that $G \in \mathcal{T}$.

On the other hand, suppose $G \in \mathcal{T}$. Thus, there exist integers $r \geq 1, k \geq 2$ such that $G=G_{k, r}$. Assigning to all $k r$ central vertices of the stars the value +1 , and to all other vertices the value -1 , we produce a signed total dominating function f of weight $f(V(G))=$ $k r-k r(2 k-1)=2 k r-2 k^{2} r=2 \sqrt{k n /(k-1)}-n$.

Now we present a short proof of a result due to Kang et al. [8] and here we further give a characterization of the extremal graphs.

Corollary 3 If $G=(V, E)$ is a k-partite graph of order n with no isolated vertex, then

$$
\gamma_{t}^{-}(G) \geq 2 \sqrt{\frac{k}{k-1} n}-n
$$

where equality holds if and only if $G \in \mathcal{T}$.

Proof. Let $f: V \rightarrow\{+1,0,-1\}$ be a minus total dominating function on G with $f(V(G))=$ $\gamma_{t}^{-}(G)$ and let Q be the set of vertices in $V(G)$ that are assigned the value 0 . Further, Let $G^{\prime}=G-Q$ and suppose that G^{\prime} is a k^{\prime}-partite graph of order n^{\prime}. Then $2 \leq k^{\prime} \leq k$ and $2 \leq n^{\prime} \leq n$. Clearly, $f^{\prime}=\left.f\right|_{G^{\prime}}$ is a signed total dominating function on G^{\prime}, so $\gamma_{t}^{s}\left(G^{\prime}\right) \leq$ $f^{\prime}\left(V\left(G^{\prime}\right)\right)=f(V(G))$. By Theorem 2, we have

$$
\gamma_{t}^{-}(G) \geq \gamma_{t}^{s}\left(G^{\prime}\right) \geq 2 \sqrt{\frac{k^{\prime}}{k^{\prime}-1} n^{\prime}}-n^{\prime}
$$

Let $h(x, y)=2 \sqrt{y x /(y-1)}-x$. It is easy to see that $\partial h(x, y) / \partial x<0$ and $\partial h(x, y) / \partial y<0$ for $x, y \geq 2$, so $h(x, y)$ is a strictly monotone decreasing function on variables x and y, respectively. This implies that

$$
\gamma_{t}^{-}(G) \geq \gamma_{t}^{s}\left(G^{\prime}\right) \geq 2 \sqrt{\frac{k}{k-1} n}-n
$$

The following theorem implies the fact that the equality holds if and only if $G \in \mathcal{T}$.
Finally, by Theorem 2 and Corollary 3, we obtain the following extremal result on the minus total domination and signed total domination of a k-partite graph.

Theorem 4 If $G=(V, E)$ is a k-partite graph of order n with no isolated vertex, then the following statements are equivalent.
(i) $\gamma_{t}^{S}(G)=2 \sqrt{\frac{k}{k-1} n}-n$;
(ii) $\gamma_{t}^{-}(G)=2 \sqrt{\frac{k}{k-1} n}-n$;
(iii) $G \in \mathcal{T}$.

Proof. By Theorem 2 and Corollary 3, we have $\gamma_{t}^{s}(G)=\gamma_{t}^{-}(G) \geq 2 \sqrt{k n /(k-1)}-n$, so it suffices to prove that $(\mathrm{ii}) \Rightarrow$ (iii). We use the notation introduced in the proof of Corollary 3. If $\gamma_{t}^{-}(G)=2 \sqrt{k n /(k-1)}-n$, then $h\left(k^{\prime}, n^{\prime}\right)=h(k, n)$. Observe the fact that $h(x, y)$ is a strictly monotone function on variables x and y, respectively, when $x, y \geq 2$, which implies $k^{\prime}=k, n^{\prime}=n$. Hence $Q=\emptyset$. Thus f is also a minimum signed total dominating function, i.e., $\gamma_{t}^{s}(G)=2 \sqrt{k n /(k-1)}-n$. The result immediately follows from Theorem 2.

Recall a subclass $\mathcal{F}=\left\{G_{2, r} \mid r \geq 1\right\}$, constructed by Henning [5], of \mathcal{T}. Clearly, each $G_{2, r}$ of \mathcal{F} is a bipartite graph of order $n=2 r^{2}$ with vertex classes X_{1}, X_{2} and $\left|X_{i}\right|=r^{2}$. As a special case of Theorem 4, we obtain the following result due to Henning [5].

Corollary 5 ([5]) If G is a bipartite graph of order n with $\delta(G) \geq 1$, then $\gamma_{t}^{s}(G) \geq 2 \sqrt{2 n}-n$, where equality holds if and only if $G \in \mathcal{F}$.

We recall that $\gamma_{t}^{s}(G) \geq \gamma_{t}^{-}(G)$ for any graph G. Next we show that the minus total domination number of a triangle-free graph has the above lower bound and we characterize the extremal graphs attaining this bound.

The following result is well-known and useful.

Lemma 6 ([1]) For any triangle-free graph G of order $p,|E(G)| \leq p^{2} / 4$, where equality holds if and only if $G=K_{\frac{p}{2}, \frac{p}{2}}$ and $K_{\frac{p}{2}, \frac{p}{2}}$ is a balance complete bipartite graph.

To achieve our goal, we first give a sharp lower bound on $\gamma_{t}^{s}(G)$ for a triangle-free graph G.

Theorem 7 Let G be a triangle-free graph of order n with $\delta(G) \geq 1$ and let $c=\lceil(\delta(G)+1) / 2\rceil$. Then

$$
\gamma_{t}^{s}(G) \geq 2\left(-(c-1)+\sqrt{(c-1)^{2}+2 c n}\right)-n
$$

Proof. We first prove that $\gamma_{t}^{s}(G) \geq 2\left(-(c-1)+\sqrt{(c-1)^{2}+2 c n}\right)-n$ for a triangle-free graph G. Let $f: V \rightarrow\{+1,-1\}$ be a signed total dominating function of G with $f(V(G))=\gamma_{t}^{s}(G)$
and let $P=\{v \in V(G) \mid f(v)=+1\}, M=\{v \in V(G) \mid f(v)=-1\}$. Further, let $|P|=p$ and $|M|=m$. Obviously, $P \cup M$ is a partition of $V(G)$. Then $\gamma_{t}^{s}(G)=|P|-|M|=2 p-m$. Similar to the argument given in Theorem 1, by estimating the number of edges between P and M, we get

$$
\begin{equation*}
e(P, M)=\sum_{v \in M}\left|N_{G}(v) \cap P\right| \geq c m \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
e(P, M)=\sum_{v \in P}\left|N_{G}(v) \cap M\right| \leq \sum_{v \in P}\left(\left|N_{G}(v) \cap P\right|-1\right)=\sum_{v \in P} d_{G[P]}(v)-p . \tag{6}
\end{equation*}
$$

By Lemma 6, we further obtain

$$
\begin{equation*}
c(n-p) \leq e(P, M) \leq 2|E(G[P])|-p \leq \frac{p^{2}}{2}-p \tag{7}
\end{equation*}
$$

this implies that $p \geq-(c-1)+\sqrt{(c-1)^{2}+2 c n}$. Hence,

$$
\gamma_{t}^{s}(G)=2 p-n \geq 2\left(-(c-1)+\sqrt{(c-1)^{2}+2 c n}\right)-n
$$

That the bound is sharp may be seen as follows: For integers $k \geq 2$, let $K_{k, k}$ be a complete graph with bipartition $\left(X_{1}, X_{2}\right)$ and J a $(k-2)$-regular bipartite graph with bipartition $\left(Y_{1}, Y_{2}\right)$. Let G_{k} be the graph obtained from the disjoint union of $K_{k, k}$ and J by adding $k(k-1)$ edges between X_{i} and Y_{i} for $i=1,2$ so that each vertex of X_{i} is adjacent to $k-1$ vertices of Y_{i} while each vertex of Y_{i} is also adjacent to $k-1$ vertices of X_{i}. Then G_{k} is a bipartite graph of order $n=4 k$ with bipartition $\left(X_{1} \cup Y_{2}, X_{2} \cup Y_{1}\right)$. The graph G_{3} is shown in Fig. 2. Note that G_{k} has minimum degree $2 k-3$, so $c=k-1$. Let $f: V\left(G_{k}\right) \rightarrow\{+1,-1\}$ be defined as follows: Let $f(v)=1$ if $v \in X_{1} \cup X_{2}$ and let $f(v)=+1$ otherwise. Then f is a signed total dominating function of G_{k} with weight $0=2\left(-(c-1)+\sqrt{(c-1)^{2}+2 c n}\right)-n$. So $\gamma_{t}^{s}(G)=2\left(-(c-1)+\sqrt{(c-1)^{2}+2 c n}\right)-n$.

Applying Theorem 7, we obtain the following result.

Theorem 8 If G is a triangle-free graph of order n with $\delta(G) \geq 1$, then

$$
\gamma_{t}^{-}(G) \geq 2 \sqrt{2 n}-n
$$

where equality holds if and only if $G \in \mathcal{F}$.

Proof. Define

$$
h_{1}(x)=2\left(-x+\sqrt{x^{2}+2(x+1) n}\right)-n .
$$

Figure 2: The graph G_{3}.
It is easy to check that $h_{1}(x)$ is a strictly monotone increasing function when $x \geq 0$ and $n \geq 2$. Since $c \geq 1, h_{1}(c-1) \geq h_{1}(0)$. Thus, by Theorem 7 , we have $\gamma_{t}^{s}(G) \geq 2 \sqrt{2 n}-n$.

We now show that $\gamma_{t}^{-}(G) \geq 2 \sqrt{2 n}-n$. Let $f: V \rightarrow\{+1,0,-1\}$ be a minus total dominating function on G with $f(V(G))=\gamma_{t}^{-}(G)$ and let Q be the set of vertices in $V(G)$ that are assigned the value 0 . Further, Let $G^{\prime}=G-Q$ and $\left|V\left(G^{\prime}\right)\right|=n^{\prime}$. Then G^{\prime} is triangle-free. Clearly, $f^{\prime}=\left.f\right|_{G^{\prime}}$ is a signed total dominating function on G^{\prime}, so $\gamma_{t}^{s}\left(G^{\prime}\right) \leq f^{\prime}\left(V\left(G^{\prime}\right)\right)=f(V(G))$. Observe that $h_{2}(x)=2 \sqrt{2 x}-x$ is a strictly monotone decreasing function when $x>1$. Hence,

$$
\gamma_{t}^{-}(G) \geq \gamma_{t}^{s}\left(G^{\prime}\right) \geq 2 \sqrt{2 n^{\prime}}-n^{\prime} \geq 2 \sqrt{2 n}-n
$$

If $\gamma_{t}^{-}(G)=2 \sqrt{2 n}-n$, then $n^{\prime}=n$ as $h_{2}(x)$ is a strictly monotone function. This implies that $Q=\emptyset$. Hence f is a signed total dominating function on G, and thus $\gamma_{t}^{s}(G) \leq \gamma_{t}^{-}(G)$. So $\gamma_{t}^{s}(G)=\gamma_{t}^{-}(G)=2 \sqrt{2 n}-n$. This means that $\gamma_{t}^{s}(G)=h_{1}(0)$, so $c=1$ and equalities hold for the inequalities (5), (6) and (7) in the proof of Theorem 7. The chain of equalities in (7) implies that $|E(G[P])|=p^{2} / 4$. By Lemma $6, G[P]$ is a (balance) complete bipartite graph $K_{\frac{p}{2}, \frac{p}{2}}$. Further, the chain of equalities implies that each vertex of M has degree 1 and is precisely adjacent to a vertex of P, while each vertex of P has degree $p-1$ and is precisely adjacent to $p / 2-1$ vertices of M. Then G is a bipartite graph. By Corollary $5, G \in \mathcal{F}$. On the other hand, suppose $G \in \mathcal{F}$. Then, by Corollary 5 again, $\gamma_{t}^{s}(G)=2 \sqrt{2 n}-n$. Since $\gamma_{t}^{s}(G) \geq \gamma_{t}^{-}(G) \geq 2 \sqrt{2 n}-n$, we have $\gamma_{t}^{-}(G)=2 \sqrt{2 n}-n$.

As an immediate consequence of Corollary 5 and Theorems 7 and 8 , we have

Theorem 9 If G is a triangle-free graph of order n with $\delta(G) \geq 1$, then the following statements are equivalent.
(i) $\gamma_{t}^{s}(G)=2 \sqrt{2 n}-n$,
(ii) $\gamma_{t}^{-}(G)=2 \sqrt{2 n}-n$,
(iii) $G \in \mathcal{F}$.

3 Conclusion

The minus (reps. signed) total domination problem can be seen as a proper generalization of the classical total domination problem and minus (reps. signed) domination problem. In this paper we studied lower bounds on minus and signed total domination numbers of k-partite graphs and triangle-free graphs and extremal graphs achieving these bounds. We do not know whether the minus total domination number of a triangle-free graph has the same lower bound as described in Theorem 7. Moreover, Kang et al. [7] and Wang et al. [9] independently gave sharp lower bound on the minus domination number for bipartite graphs. Kang et al. [6] further extented the result to k-partite graphs. The method in this paper may be used to characterize the extremal graphs of k-partite graphs attaining the lower bound.

Acknowledgements

This research was partially supported by The Hong Kong Polytechnic University under grant number G-YX69, the National Nature Science Foundation of China under grant 10571117 and the Development Foundation of Shanghai Education Committee under grant 05AZ04.

References

[1] B. Bollobás, Modern Graph Theory, Springer, New York, 1998.
[2] L. Harris, J.H. Hattingh, The algorithm complexity of certain functional variations of total domination in graphs, Australasian J. Combinatorics 29 (2004) 143-156.
[3] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[4] M.A. Henning, Dominating function in graphs, Domination in Graphs: Advanced Topics, Vol.II, Marcel Dekker Inc., New York, 1998, pp. 31-62.
[5] M.A. Henning, Signed total domination in graphs, Discrete Math. 278 (2004) 109-125.
[6] Liying Kang, Hye Kyung Kim, Moo Young Sohn, Minus domination number in k-partite graphs, Discrete Math. 277 (2004) 295-300.
[7] Liying Kang, H. Qiao, Erfang Shan, and D.Z. Du, Lower bounds on the minus domination and k-subdomination numbers, Theoret. Comput. Sci. 296 (2003) 89-98.
[8] Liying Kang, Erfang Shan, L. Caccett, Total minus domination in k-partite graphs, Discrete Math. 306 (2006) 1771-1775.
[9] C. Wang, J. Mao, A proof of a conjecture of minus domination in graphs, Discrete Math. 256 (2002) 519-521.
[10] Haichao Wang, Erfang Shan, Upper minus total domination of a 5-regular graph, Ars Combin. (accepted).
[11] H. Yan, X.Q. Yang, Erfang Shan, Upper minus total domination in small-degree regular graphs, Discrete Math. (accepted).
[12] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001) 225-229.

[^0]: ${ }^{*}$ Corresponding author. Email address: efshan@shu.edu.cn (E.F. Shan), lgtcheng@inet.polyu.edu.hk (T.C.E. Cheng)

