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Abstract: A graph G is 3-domination critical if its domination number γ

is 3 and the addition of any edge decreases γ by 1. Let G be a 3-domination
critical graph with toughness more than one. It was proved G is Hamilton-
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α = δ + 2 (European Journal of Combinatorics 23(2002) 777-784). In this
paper, we show G is Hamilton-connected for the case α = δ + 1 ≥ 5.
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1. Introduction

Let G = (V (G), E(G)) be a graph. A graph G is said to be t-tough if for every cutset
S ⊆ V (G), |S| ≥ tω(G − S), where ω(G − S) is the number of components of G − S.
The toughness of G, denoted by τ(G), is defined to be min{|S|/ω(G − S) | S is a
cutset of G}. Let u, v ∈ V (G) be any two distinct vertices. We denote by p(u, v)
the length of a longest path connecting u and v. The codiameter of G, denoted by
d∗(G), is defined to be min{p(u, v) | u, v ∈ V (G)}. A graph G of order n is said to be
Hamilton-connected if d∗(G) = n − 1, i.e., every two distinct vertices are joined by a
hamiltonian path. A graph G is called k-domination critical, abbreviated as k-critical,
if γ(G) = k and γ(G + e) = k − 1 holds for any e ∈ E(G), where G is the complement
of G. The concept of domination critical graphs was introduced by Sumner and Blitch
in [11]. Given three vertices u, v and x such that {u, x} dominates V (G)−{v} but not
v, we will write [u, x]→ v. It was observed in [11] that if u, v are any two nonadjacent
vertices of a 3-critical graph G, then since γ(G + uv) = 2, there exists a vertex x such
that either [u, x] → v or [v, x] → u. If U, V ⊆ V (G) and U dominates V , that is, V is
contained in the closed neighborhood of U , we write U � V ; otherwise we write U 6� V .
For notations not defined here, we follow [5].
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It was conjectured in [10] that every connected 3-critical graph of order more than 6
has a hamiltonian path. This was proved by Wojcicka [13] who in turn conjectured that
every connected 3-critical graph G with δ(G) ≥ 2 has a hamiltonian cycle. Wojcicka’s
conjecture has now been proved completely, see [8, 9, 12] or [2]. It is well known that
if a graph G has a hamiltonian cycle, then τ(G) ≥ 1 and the converse does not hold in
general. However, this is not the case when G is 3-critical. Noting that τ(G) < 1 if G

is a connected 3-critical graph with δ(G) = 1, we see that the following theorem is a
direct consequence of the validity of Wojcicka’s conjecture.

Theorem 1. Let G be a connected 3-critical graph. Then G has a hamiltonian cycle
if and only if τ(G) ≥ 1.

For Hamilton-connectivity, it is known that if a graph G is Hamilton-connected,
then τ(G) > 1 and the converse need not hold. However, motivated by Theorem 1,
Chen et al. [5] posed the following.

Conjecture 1 (Chen et al. [5]). A connected 3-critical graph G is Hamilton-connected
if and only if τ(G) > 1.

In the same paper, they proved that the conjecture is true when α(G) ≤ δ(G).

Theorem 2 (Chen et al. [5]). Let G be a connected 3-critical graph with α(G) ≤ δ(G).
Then G is Hamilton-connected if and only if τ(G) > 1.

Let G be a 3-connected 3-critical graph. It is shown in [6] that τ(G) ≥ 1 and
τ(G) = 1 if and only if G belongs to a special infinite family G described in [6]. Since
α(G) = δ(G) = 3 for each G ∈ G, it is easy to obtain that τ(G) > 1 if α(G) ≥ δ(G)+1.

In [7], Chen et al. showed that the conjecture holds when α(G) = δ(G) + 2.

Theorem 3 (Chen et al. [7]). Let G be a 3-connected 3-critical graph with α(G) =
δ(G) + 2. Then G is Hamilton-connected.

By a result of Favaron et al. [8] that α(G) ≤ δ(G) + 2 for any connected 3-critical
graph G, we can see the conjecture has only one case α(G) = δ(G) + 1 unsolved. In
this paper, we will show that the conjecture is true when α(G) = δ(G) + 1 ≥ 5. The
main result of this paper is the following.

Theorem 4. Let G be a 3-connected 3-critical graph with α(G) = δ(G)+1 ≥ 5. Then
G is Hamilton-connected.

Noting that τ(G) > 1 implies δ(G) ≥ 3, we can see that the conjecture is still open
for the case α(G) = δ(G) + 1 = 4.

Now, we restate a result due to Chen et al. for later use.
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Theorem 5 (Chen et al. [3]). Let G be a 3-connected 3-critical graph of order n.
Then d∗(G) ≥ n− 2.

2. Properties of Maximum Independent Set

In order to prove Theorem 4, we need to use a classical tool — closure operation
in hamiltonian theory. In 1976, Bondy and Chvátal defined a (Hamilton-connected)
closure operation of a graph.

Theorem 6 (Bondy and Chvátal [1]). Let G be a graph of order n. Let a and b be
nonadjacent vertices of G such that d(a) + d(b) ≥ n + 1. Then for any two distinct
vertices x, y, p(x, y) = n− 1 in G if and only if p(x, y) = n− 1 in G + ab.

Now, given a graph G of order n, repeat the following recursive operation, named
Bondy-Chvátal closure operation, as long as possible: For each pair of nonadjacent
vertices a and b, if d(a)+ d(b) ≥ n +1, then add the edge ab to G. We denote by cl(G)
the resulting graph and call it the Bondy-Chvátal (Hamilton-connected) closure of G.
By Theorem 6 we get the following.

Theorem 7 (Bondy and Chvátal [1]). Let G be a graph of order n. Then for any two
distinct vertices x, y, p(x, y) = n− 1 in G if and only if p(x, y) = n− 1 in cl(G).

Let G be a 3-critical graph of order n, α(G) = δ(G) + 1 and v0 ∈ V (G) with
d(v0) = δ(G) = k ≥ 3. Suppose N(v0) = {v1, . . . , vk} and I = {v0, w1, . . . , wk} is an
independent set. In this section, we will give some properties of I in G and G∗ = cl(G).

The following lemma restates a lemma due to Sumner and Blitch [11], which has
proven to be of considerable use in dealing with 3-critical graphs. In [11] they considered
the case l ≥ 4, which guarantees P (U) ∩ U = ∅. For the cases l = 2 and l = 3, Lemma
2.1 can be easily verified since G is a 3-critical graph.

Lemma 2.1. Let G be a connected 3-critical graph and U an independent set of l ≥ 2
vertices. Then there exist an ordering u1, u2, · · · , ul of the vertices of U and a sequence
P (U) = (y1, y2, · · · , yl−1) of l−1 distinct vertices such that [ui, yi]→ ui+1, 1 ≤ i ≤ l−1.

The next lemma is a useful consequence of Lemma 2.1.

Lemma 2.2 (Favaron et al. [8]). Let U be an independent set of l ≥ 3 vertices of a
3-critical graph G such that U ∪{v} is independent for some v /∈ U . Then the sequence
P (U) defined in Lemma 2.1 is contained in N(v).

Since I is an independent set of order at least 4, by Lemmas 2.1 and 2.2, we may
assume without loss of generality that
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[wi, vi]→ wi+1 for 1 ≤ i ≤ k − 1. (2-1)

By (2-1), it is easy to obtain the following.

vjvj+1 ∈ E(G) for 1 ≤ j ≤ k − 2. (2-2)

Lemma 2.3. If wivk /∈ E(G) with i 6= 1, then G[N(v0) − {vi−1, vk}] is a clique. If
w1vk /∈ E(G), then G[N(v0)− {vk}] is a clique.

Proof. Let vl, vm ∈ N(v0)− {vi−1, vk} with l ≤ m− 1. If l = m− 1, then vlvm ∈ E(G)
by (2-2). If l ≤ m − 2, then since wl+1wm+1 /∈ E(G), there is some vertex z such
that [wl+1, z] → wm+1 or [wm+1, z] → wl+1. Since k ≥ 3, by Lemma 2.2 we have
z ∈ N(v0). Since wivk /∈ E(G), we have z 6= vk. By (2-1), either [wl+1, vm]→ wm+1 or
[wm+1, vl]→ wl+1. In both cases, we have vlvm ∈ E(G) and hence G[N(v0)−{vi−1, vk}]
is a clique. As for the latter part, the proof is similar.

Lemma 2.4. If wivk /∈ E(G) with i 6= 1, then [w1, vj−1]→ wj for j ≥ 3 and j 6= i.

Proof. Since w1wj /∈ E(G), by Lemma 2.2, there is some z ∈ N(v0) such that [w1, z]→
wj+1 or [wj+1, z]→ w1. By (2-1) and the assumption, we can see that [wj , z]→ w1 is
impossible for any z ∈ N(v0) and hence [w1, vj−1]→ wj .

Lemma 2.5. If [v0, z] → wi for some i with 1 ≤ i ≤ k − 1, then z /∈ N(v0) and if
[v0, vl]→ wk for some vl ∈ N(v0), then l = k − 1.

Proof. If i = 1 and z ∈ N(v0), then z = vk by (2-1). Thus, we have {v2, vk} � V (G)
by Lemma 2.3, a contradiction. If i ≥ 2 and z ∈ N(v0), then by (2-1) we have
z = vi−1 or vk and N(v0) − {vi−1, vi, vk} ⊆ N(wi). If z = vi−1, then wivk /∈ E(G)
for otherwise {vi−1, wi} � V (G). Since [wi, vi] → wi+1, vivk ∈ E(G). By Lemma 2.4,
we have [w1, vi] → wi+1, which implies viwi ∈ E(G). Thus by Lemma 2.3, we have
{vi−1, vi} � V (G), a contradiction. If z = vk and i 6= 2, then by Lemma 2.3 we have
{vi−2, vk} � V (G), a contradiction. If z = vk and i = 2, then by Lemma 2.4 we have
[w1, v2] → w3, which implies v2w2 ∈ E(G) and hence {v2, vk} � V (G) by Lemma 2.3,
also a contradiction. Thus, z /∈ N(v0).

If [v0, vl]→ wk for some vl ∈ N(v0), then by (2-1), we have l = k− 1 or k. If l = k,
then by Lemma 2.3, we have {vk−2, vk} � V (G), a contradiction.

Lemma 2.6. If [v0, vk−1]→ wk, then N(vk)∩{v1, . . . , vk−1, wk} = ∅ and {w1, . . . , wk−1}
⊆ N(vk).

Proof. By (2-1), we have N(v0) − {vk−1, vk} ⊆ N(wk). If wkvk ∈ E(G), then since
[v0, vk−1]→ wk, we have {vk−1, wk} � V (G) and hence wkvk /∈ E(G). By Lemma 2.3,
G[N(v0)−{vk−1, vk}] is a clique. Thus, if vk−1vk ∈ E(G), then {vk−1, v1} � V (G) and
if vivk ∈ E(G) for some i with 1 ≤ i ≤ k − 2, then {vk−1, vi} � V (G), a contradiction.
Since N(vk) ∩ {v1, . . . , vk−1} = ∅, by (2-1) we have {w1, . . . , wk−1} ⊆ N(vk).
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Lemma 2.7. If [v0, vk−1]→ wk, then G[N(v0)−{vk}] is a clique and N(wk)∩N(vk) =
∅.

Proof. By Lemma 2.6, vkwk /∈ E(G). By Lemma 2.3, G[N(v0)−{vk−1, vk}] is a clique.
By (2-1), vk−2vk−1 ∈ E(G). For 1 ≤ i ≤ k − 3, there is some z ∈ N(v0) such that
[wi+1, z]→ wk or [wk, z]→ wi+1 by Lemma 2.2. By (2-1) and Lemma 2.6, we can see
that {wi+1, vk} 6� vi and {wk, vk} 6� vk−1, which implies z 6= vk and hence z = vi or
vk−1. In both cases, we have vivk−1 ∈ E(G), which implies G[N(v0)−{vk}] is a clique.
If N(wk) ∩N(vk) 6= ∅, then since [v0, vk−1] → wk and G[N(v0) − {vk}] is a clique, we
can see that {vk−1, z} � V (G) for any z ∈ N(wk) ∩N(vk), a contradiction.

Lemma 2.8. If k ≥ 4, [v0, vk−1]→ wk and for each wi with 1 ≤ i ≤ k − 1, there is no
vertex z such that [v0, z]→ wi, then N∗[w1] = NG∗ [w1] = V (G).

Proof. Let U = V (G) − (I ∪ N(v0)), N(w1) ∩ U = U1 and U2 = U − U1. In order to
prove the result, we need the following claims.

Claim 2.1. N(wi) ∩N(vi) ∩ U 6= ∅ for 1 ≤ i ≤ k − 2.

Proof. By the assumption, there is some vertex z such that [wi+1, z] → v0. Obviously
z ∈ U . By (2-1), we have z ∈ N(wi) ∩N(vi) and hence z ∈ N(wi) ∩N(vi) ∩ U .

By Lemmas 2.4 and 2.6, we have [w1, vi]→ wi+1 for 2 ≤ i ≤ k − 2 and hence

wivi ∈ E(G) for 2 ≤ i ≤ k − 2. (2-3)

Claim 2.2. d(w2) ≥ δ + 1 and if d(w2) = δ + 1, then d(v2) ≥ n− δ.

Proof. By the assumption, we may assume [w3, z] → v0, which implies z ∈ N(v2) ∩
N(w2) ∩ U . If d(w2) = δ, then NU (w2) = {z} by (2-3). Since [w3, z] → v0, by (2-1)
and Lemma 2.7 we have V (G) − {w3, vk} ⊆ N [v2]. By Lemma 2.6, w3vk ∈ E(G).
Thus, {v2, w3} � V (G), a contradiction. Since k ≥ 4 and [w2, v2] → w3, by (2-1) and
Claim 2.1, we have |N(w2) ∩ N(v2)| ≥ 2. By (2-3), w2v2 ∈ E(G). Thus, we have
d(w2) + d(v2) ≥ n + 1 and the conclusion follows.

Claim 2.3. For any u ∈ NU (wk), either uw2 ∈ E(G) or uw3 ∈ E(G).

Proof. Suppose u ∈ NU (wk) and w2, w3 /∈ N(u). By Lemma 2.2, there is some vertex
z ∈ N(v0) such that [w3, z] → u or [u, z] → w3. If [u, z] → w3, then we must have
z = v2, which is impossible since {u, v2} 6� vk by Lemmas 2.6 and 2.7. If [w3, z] → u,
then since [w2, v2] → w3 and uw2 /∈ E(G), we have z 6= v2. By (2-1) and Lemma 2.6,
we can see z ∈ N(v0)− {v2} is also impossible, a contradiction.

Claim 2.4. vk−1 ∈ N∗(wk).

Proof. Since [v0, vk−1] → wk, by Lemma 2.7 we have d(vk−1) = n − 3. Noting that
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d(wk) ≥ δ ≥ 4, we have d(vk−1) + d(wk) ≥ n + 1 and hence vk−1 ∈ N∗(wk).

Claim 2.5. If d(w2) = δ + 1 and d(w3) = δ, then vk ∈ N∗(wk).

Proof. Let N(wk) ∩ U = U3 and U4 = U − U3. By (2-1) and Lemma 2.6, we have
vk−1, vk /∈ N(wk) and hence |U3| ≥ 2. By the assumption, there are some zi ∈ U such
that [wi, zi]→ v0 for i = 1, 2. If z1 6= z2, then dU (w3) ≥ 2. If k = 4, then w3v3 ∈ E(G)
by the assumption and if k ≥ 5, then w3v3 ∈ E(G) by (2-3). By (2-1) and Lemma 2.6,
N(v0) − {v2, v3} ⊆ N(w3). Thus we have d(w3) ≥ δ + 1 and hence we may assume
z1 = z2 = u1. Obviously, u1 ∈ U3. Since d(w2) = δ + 1 and d(w3) = δ, by Claim 2.3,
we have |U3| = 2 and NU (w2) = U3. Since [w2, u1] → v0, vk−1 ∈ N(w2) ∩ N(u1) and
w2u1 ∈ E(G), we have d(u1)+d(w2) ≥ n, which implies d(u1) ≥ n−δ−1. We now show
[wk, vk] → vk−1. If U4 = ∅, then by (2-1) and Lemma 2.6, [wk, vk] → vk−1. If U4 6= ∅,
then since u1w3 ∈ E(G) and d(w3) = δ, we have N(w3) ∩ U4 = ∅. For any u ∈ U4,
by Lemma 2.2, there is some vertex z ∈ N(v0) such that [u, z] → w3 or [w3, z] → u.
If [w3, z] → u, then since [w2, v2] → w3 and u /∈ N(w2), we have z 6= v2. By (2-1)
and Lemma 2.6, z /∈ N(v0) − {v2}, a contradiction. If [u, z] → w3, then by (2-1) and
Lemma 2.6, z = v2. Since v2vk /∈ E(G) by Lemma 2.6, we have vku ∈ E(G) and hence
U4 ⊆ N(vk). Thus, [wk, vk]→ vk−1. Since d(vk−1) = n− 3, d(v2) ≥ n− δ by Claim 2.2
and d(u1) ≥ n − δ − 1, we have vk−1, v2, u1 ∈ N∗(vk). By Claim 2.4, vk−1 ∈ N∗(wk).
By Lemmas 2.6 and 2.7, vk−1, v2, u1 /∈ N(vk). Thus, we have d∗(wk) + d∗(vk) ≥ n + 1
and hence vk ∈ N∗(wk).

Claim 2.6. For any u ∈ U2, we have [u, v1]→ w1.

Proof. Since uw1 /∈ E(G), there exists some vertex z such that [w1, z]→ u or [u, z]→
w1. In order to dominate v0, we have z ∈ N [v0]. Thus by (2-1) and Lemma 2.6, it is
easy to see [w1, z] → u is impossible. If [u, z] → w1, then by the assumption we have
z 6= v0. By (2-1) and Lemma 2.6, we have z = v1, that is, [u, v1]→ w1.

Claim 2.7. For any u ∈ U2, N(v0) ⊆ N(u).

Proof. Since [w1, v1] → w2 and u ∈ U2, we have v1 ∈ N(u). By Lemmas 2.4 and 2.6,
we have vi ∈ N(u) for 2 ≤ i ≤ k−2. By Lemma 2.6 and Claim 2.6, we have vk ∈ N(u).
We now show vk−1 ∈ N(u). Since w1wk /∈ E(G), by Lemma 2.2, there exists some
vertex z ∈ N(v0) such that [w1, z]→ wk or [wk, z]→ w1. By (2-1) and Lemma 2.6, we
can see [wk, z]→ w1 is impossible. Thus we have [w1, z]→ wk. By Claim 2.6 we have
w1v1 /∈ E(G). By Lemma 2.6, we have z 6= vk since {w1, vk} 6� v1. By (2-1), we have
z = vk−1 which implies vk−1 ∈ N(u).

Claim 2.8. If U2 6= ∅, then NU (wk) ⊆ N(w1) ∩N(w2).

Proof. Let u ∈ NU (wk) and w ∈ {w1, w2}. If uw /∈ E(G), then there is some vertex
z such that [u, z] → w or [w, z] → u. If [w, z] → u, then z ∈ N(v0). By Claim 2.6,
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v1w1 /∈ E(G), which implies [w2, v1]→ u cannot occur. Thus, by (2-1) and Lemma 2.6
we see that [w, z] → u is impossible. If [u, z] → w, then by the assumption, z 6= v0.
By Lemma 2.6, z 6= vk. If z ∈ N(v0)− {vk}, then {u, z} 6� vk by Lemmas 2.6 and 2.7.
Thus, z /∈ N [v0], a contradiction.

We first show that w1v1 ∈ E(G∗).
If w1v1 ∈ E(G), then w1v1 ∈ E(G∗). If δ ≥ 5, then by Lemma 2.7, Claim 2.1 and

[w1, v1]→ w2, we have d(w1) + d(v1) ≥ n + 1 and hence w1v1 ∈ E(G∗). Thus, we may
assume that w1v1 /∈ E(G) and δ = 4.

If |N(w1) ∩ N(v1) ∩ U | ≥ 2, then by Lemma 2.7 and [w1, v1] → w2, we have
d(w1) + d(v1) ≥ n + 1 and hence w1v1 ∈ E(G∗). Thus by Claim 2.1 we may assume

N(w1) ∩N(v1) ∩ U = {u1}. (2-4)

By the assumption, we let [w1, z] → v0. If z 6= u1, then z ∈ U2 by (2-4). This is
impossible since {w1, z} 6� wk by Claim 2.8 and hence we have

[w1, u1]→ v0. (2-5)

If U2 6= ∅, we let u ∈ U2. If u′ ∈ U2 and uu′ /∈ E(G), then there is some vertex z

such that [u, z]→ u′ or [u′, z]→ u. By symmetry we may assume [u, z]→ u′. By Claim
2.7, z /∈ N(v0). If z = v0, then {u, z} 6� w1, a contradiction. Hence U2 is a clique. If
u′ ∈ U1 and uu′ /∈ E(G), then by Claim 2.6 we have u′ ∈ N(v1), which implies u′ = u1

by (2-4). By (2-5), u1u ∈ E(G). Thus, U ⊆ N [u] for any u ∈ U2. By Claim 2.6,
U2 ⊆ N(w2). Thus by Claim 2.7, we have d(u) ≥ n − δ − 1. If d(w1) ≥ δ + 2, then
uw1 ∈ E(G∗), which implies w1v1 ∈ E(G∗). If d(w1) ≤ δ+1, then by (2-1) and Lemma
2.6 we have |U1| ≤ 2. By Lemma 2.6 and the assumption, we have dU (wk) ≥ 2. Thus
by Claim 2.8 we have U1 = NU (wk) ⊆ N(w2) and hence U ⊆ N(w2). In this case, we
have [v1, w2] → w1. By Lemma 2.7, Claim 2.7 and (2-4), |N(v1) ∩ N(w2)| ≥ 4. Thus
we have v1w2 ∈ E(G∗) and hence w1v1 ∈ E(G∗).

If U2 = ∅, then since w1v1 /∈ E(G), there is some vertex z such that [w1, z]→ v1 or
[v1, z]→ w1. If [w1, z]→ v1, then z 6= v0 and hence z ∈ N(v0). By Lemma 2.7, z = vk.
This is impossible since {w1, vk} 6� wk by Lemma 2.6. Thus we have [v1, z]→ w1. Since
U2 = ∅ and N(v0) − {v1} ⊆ N(w1), we have z ∈ {w2, . . . , wk}. In this case, z = w2,
that is, [w2, v1] → w1. By (2-5), u1w2 ∈ E(G). Thus by (2-4), we have U ⊆ N(w2).
By (2-1) and Lemmas 2.4 and 2.6, v2, v3, v4 ∈ N(w1) ∩N(w2). Thus, if |U | ≥ 4, then
d(w1) + d(w2) ≥ n + 1, which implies w1w2 ∈ E(G∗) and hence w1v1 ∈ E(G∗). If
|U | ≤ 3, then n ≤ 12. After an easy but tedious check, we can show w1v1 ∈ E(G∗).

Next, we show U ⊆ N∗(w1). If U2 = ∅, then U ⊆ N(w1) ⊆ N∗(w1) and hence
we assume U2 6= ∅. Let u ∈ U2. Suppose u′ ∈ V (G) − N [v0] and u′ /∈ N∗(u).
Obviously, uu′ /∈ E(G) and hence there is some z such that [u′, z] → u or [u, z] → u′.
If [u′, z] → u, then z /∈ N(v0) by Claim 2.7 and hence z = v0. In this case, u′ ∈ U .
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Since [v0, vk−1] → wk, vk−1 ∈ N(u′). By Claim 2.6, v1u
′ ∈ E(G). Thus we have

d(u′) ≥ n− δ − 1. By the assumption, there exists some z′ such that [w1, z
′]→ v0. By

Lemma 2.7 and Claim 2.7, z′ ∈ U1 and hence NU1(u) 6= ∅. By Claim 2.6, w2 ∈ N(u).
Thus, by Claim 2.7 we have d(u) ≥ δ+2, which implies u′ ∈ N∗(u) and hence [u′, z]→ u

is impossible. Thus we always have [u, z] → u′. By Claim 2.8, wk /∈ N(u). Thus we
have z 6= v0 since {u, v0} 6� {w1, wk} and hence z ∈ N(v0). If V (G)−N [v0] contains δ

vertices, say u′1, u
′
2, . . . , u

′
k, that are not adjacent to u in G∗, then there are zu′

i
∈ N(v0)

such that [u, zu′
i
]→ u′i for 1 ≤ i ≤ k. Clearly, if i 6= j, then zu′

i
6= zu′

j
since u′i 6= u′j . This

is impossible since {u, vk−1} 6� wk and {u, vk} 6� wk. Therefore, V (G)−N [v0] contains
at most δ − 1 vertices that are not adjacent to u in G∗ and hence d∗(u) ≥ n − δ − 1
since N(v0) ⊆ N(u) by Claim 2.7. By Claim 2.6, w1v1 /∈ E(G). By Lemma 2.6 and
the assumption, dU (wk) ≥ 2 which implies dU (w1) ≥ 2 by Claim 2.8. Thus by (2-1)
and Lemma 2.6 we have d(w1) ≥ δ + 1 and hence d∗(w1) ≥ δ + 2 since w1v1 ∈ E(G∗).
This implies d∗(w1) + d∗(u) ≥ n + 1 and thus U ⊆ N∗(w1).

Finally, we show N∗[w1] = V (G). Since w1v1 ∈ E(G∗) and U ⊆ N∗(w1), by (2-1),
we have d∗(w1) ≥ n − δ − 1. By Claim 2.2, d(w2) ≥ δ + 1. If d(w2) ≥ δ + 2, then
by Claim 2.4, we have w2, wk ∈ N∗(w1), which implies d∗(w1) ≥ n − δ + 1 and hence
N∗[w1] = V (G). If d(w2) = δ + 1 and d(w3) ≥ δ + 1, then by Claim 2.2 we have
d∗(w3) ≥ δ + 2. Thus w3, w2 ∈ N∗(w1) and hence N∗[w1] = V (G). If d(w2) = δ + 1
and d(w3) = δ, then d∗(wk) ≥ δ +2 by Claims 2.4 and 2.5. Thus, wk, w2 ∈ N∗(w1) and
hence N∗[w1] = V (G).

3. Some Lemmas

Let G be a graph of order n, and x, y vertices of G such that the longest (x, y)-path
is of length n − 2. Let P = Pxy be an (x, y)-path of length n − 2 and suppose the
orientation of P is from x to y. We denote by xP the only vertex not in P and let
d(xP ) = k ≥ 2 with

N(xP ) = X = {x1, x2, . . . , xk}, indices following the orientation of P ;
A = X+ = {a1, a2, . . . , as}, where ai = x+

i , x+
i ∈ V (P ) and s ≥ k − 1;

B = X− = {bt, bt+1, . . . , bk}, where bi = x−i , x−i ∈ V (P ) and t ≤ 2; and
Pi = ai

−→
P bi+1, where 1 ≤ i ≤ k − 1.

Furthermore, we let P0 = x
−→
P b1 if x /∈ X and Pk = ak

−→
P y if y /∈ X. In this section, we

will establish some lemmas. It is worth noting that all lemmas in this section except
the last one do not depend on the 3-critical property of G.

Definition. A vertex v ∈ Pi (1 ≤ i ≤ k) is called an A-vertex if G[V (Pi) ∪ {xi+1}]
contains a hamiltonian (v, xi+1)-path, and v ∈ Pi (0 ≤ i ≤ k − 1) a B-vertex if
G[V (Pi) ∪ {xi}] contains a hamiltonian (xi, v)-path, where xk+1 = y and x0 = x.
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From the definition, we can see that each ai is an A-vertex and each bi is a B-
vertex. Let ui ∈ Pi be an A-vertex and Qi a given hamiltonian (ui, xi+1)-path in
G[V (Pi) ∪ {xi+1}]. Suppose the orientation of Qi is from ui to xi+1. We have the
following two lemmas.

Lemma 3.1. If ui ∈ Pi and uj ∈ Pj are two A-vertices (B-vertices, respectively) with
i 6= j, then xP ui /∈ E(G) and uiuj /∈ E(G). In particular, both A∪{xP } and B ∪{xP }
are independent sets.

Proof. If xP ui ∈ E(G), then x
−→
P xixP ui

−→
Qixi+1

−→
P y is a hamiltonian (x, y)-path. Assume

i < j. If uiuj ∈ E(G), then the (x, y)-path x
−→
P xixP xj

←−
P xi+1

←−
Qiuiuj

−→
Qjxj+1

−→
P y is

hamiltonian, a contradiction.

Lemma 3.2. Let ui ∈ Pi, uj ∈ Pj be A-vertices with i < j, Q = ui
−→
Qixi+1

−→
P xj and

R = uj
−→
Qjxj+1

−→
P y. If v ∈ NQ(ui), then v− /∈ N(uj) and if v ∈ N(ui)∩(x−→P xi∪R), then

v+ /∈ N(uj). In particular, let ai, aj ∈ A with i < j and v ∈ N(ai), then v− /∈ N(aj) if
v ∈ ai

−→
P xj and v+ /∈ N(aj) if v ∈ x

−→
P xi ∪ aj

−→
P y.

Proof. If v ∈ NQ(ui) and v− ∈ N(uj), then the (x, y)-path x
−→
P xixP xj

←−
Qvui

−→
Qv−uj

−→
Ry

is hamiltonian, a contradiction. As for the latter case, the proof is similar.

By symmetry of A and B, Lemma 3.2 still holds if we exchange A and B.

Lemma 3.3. Let u, v ∈ ai
−→
P bj with j ≥ i + 1 and G[ai

−→
P bj ] contain a hamiltonian

(u, v)-path Q. Suppose that w ∈ x
−→
P xi ∪ xj

−→
P y and uw ∈ E(G). Then w−v /∈ E(G) if

w− ∈ x
−→
P xi ∪ xj

−→
P y, and w+v /∈ E(G) if w+ ∈ x

−→
P xi ∪ xj

−→
P y. In particular, let ai ∈ A

and bj ∈ B with j ≥ i + 1. Suppose that v ∈ x
−→
P xi ∪ xj

−→
P y and aiv ∈ E(G). Then

v−bj /∈ E(G) if v− ∈ x
−→
P xi ∪ xj

−→
P y and v+bj /∈ E(G) if v+ ∈ x

−→
P xi ∪ xj

−→
P y.

Proof. Suppose that w ∈ x
−→
P xi. If w− ∈ x

−→
P xi and w−v ∈ E(G), then the (x, y)-path

x
−→
P w−v

←−
Quw

−→
P xixP xj

−→
P y is hamiltonian, and if w+ ∈ x

−→
P xi and w+v ∈ E(G), then

the (x, y)-path x
−→
P wu

−→
Qvw+−→P xixP xj

−→
P y is hamiltonian, a contradiction. As for the

case w ∈ xj
−→
P y, the proof is similar.

Lemma 3.4. Let u, u+ ∈ V (Pi). If u+al ∈ E(G) for some l ≥ i + 1, then bju /∈ E(G)
for all j ≤ i.

Proof. If bju ∈ E(G) for some j ≤ i, then the (x, y)-path x
−→
P bju

←−
P xjxP xl

←−
P u+al

−→
P y is

hamiltonian, a contradiction.

Lemma 3.5. Let z ∈ V (G)−N [xP ]. If |N(z) ∩A| ≥ 2, then z−z+ /∈ E(G).

Proof. Let al, am ∈ N(z) with l < m and z ∈ Pj . If z−z+ ∈ E(G), then the (x, y)-path
x
−→
P z−z+−→P xlxP xm

←−
P alzam

−→
P y is hamiltonian if j < l, x

−→
P xlxP xm

←−
P z+z−

←−
P alzam

−→
P y

is hamiltonian if l ≤ j < m, and x
−→
P xlxP xm

←−
P alzam

−→
P z−z+−→P y is hamiltonian if m ≤ j,
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a contradiction.

Lemma 3.6. Let z, z− ∈ Pi, w,w− ∈ Pj with i, j ≥ 1 and k ≥ 4. If |A − N(z)| ≤ 1
and A ⊆ N(w), then z−w− /∈ E(G).

Proof. Suppose to the contrary z−w− ∈ E(G). If i = j and w ∈ x
−→
P z, then aiz /∈

E(G) for otherwise w is an A-vertex, which contradicts Lemma 3.1 since A ⊆ N(w).
Hence we have A − {ai} ⊆ N(z). Noting that A ⊆ N(w) and k ≥ 4, we have
w 6= z− by Lemma 3.2. Thus, the (x, y)-path x

−→
P w−z−

←−
P wa2

−→
P x3xP x2

←−
P za3

−→
P y is

hamiltonian if i = 1, x
−→
P x1xP x3

←−
P za1

−→
P w−z−

←−
P wa3

−→
P y is hamiltonian if i = 2, and

x
−→
P x1xP x2

←−
P a1w

−→
P z−w−←−P a2z

−→
P y is hamiltonian if i ≥ 3, a contradiction. If i = j

and z ∈ x
−→
P w, then since aiw ∈ E(G), z is an A-vertex, which contradicts Lemma

3.1 since |A − N(z)| ≤ 1. If i 6= j, then since ajw ∈ E(G), w− is an A-vertex. Since
z−w− ∈ E(G), by Lemma 3.1, zai /∈ E(G). Thus, x

−→
P xixP xj

←−
P zaj

−→
P w−z−

←−
P aiw

−→
P y is

a hamiltonian (x, y)-path if i < j, and x
−→
P xjxP xi

←−
P wai

−→
P z−w−←−P ajz

−→
P y is a hamilto-

nian (x, y)-path if i > j, also a contradiction.

Lemma 3.7. Let z−, z ∈ Pi, w−, w ∈ Pj with i, j ≥ 1 and k ≥ 4. If |A∪B−N(z)| ≤ 1
and |A−N(w)| ≤ 1, then w−z− /∈ E(G).

Proof. We first show the following claim.

Claim 3.1. Let u−, u ∈ Pl, v−, v ∈ Pm and h 6= l, m. If u−v− ∈ E(G), then either
uah /∈ E(G) or vbh+1 /∈ E(G).

Proof. Assume without loss of generality v ∈ u
−→
P y. If uah, vbh+1 ∈ E(G), then u 6= v−

by Lemma 3.3. Thus the (x, y)-path x
−→
P xhxP xh+1

−→
P u−v−

←−
P uah

−→
P bh+1v

−→
P y is hamilto-

nian if h < l, x
−→
P u−v−

←−
P xh+1xP xh

←−
P uah

−→
P bh+1v

−→
P y is hamiltonian if l < h < m, and

x
−→
P u−v−

←−
P uah

−→
P bh+1v

−→
P xhxP xh+1

−→
P y is hamiltonian if m < h, a contradiction.

By Lemma 3.6, we may assume B ⊆ N(z). If w−z− ∈ E(G), then by Claim 3.1,
alw /∈ E(G) for l 6= i, j. Noting k ≥ 4 and |A − N(w)| ≤ 1, we have i 6= j and
wai, waj ∈ E(G). Since waj ∈ E(G), w− is an A-vertex. If zai ∈ E(G), then z− is
also an A-vertex which contradicts Lemma 3.1 since i 6= j and w−z− ∈ E(G). Hence,
zai /∈ E(G), which implies zaj ∈ E(G) since |A ∪ B − N(z)| ≤ 1. If j < k, then
w−←−P ajw

−→
P bj+1 is a hamiltonian path in G[V (Pj)], which contradicts Lemma 3.3 since

w−z−, zbj+1 ∈ E(G), and hence we have i < j and j = k by Lemma 3.3. In this case,
the (x, y)-path x

−→
P xixP xj

←−
P zaj

−→
P w−z−

←−
P aiw

−→
P y is hamiltonian, a contradiction.

Lemma 3.8 (Chen et al. [4]). Let z ∈ V (P )−X and v ∈ A∪B. If d(xP ) = k ≥ 4 and
A ∪B − {v} ⊆ N(z), then A ∪ {z+} is an independent set if z+ ∈ V (P ) and B ∪ {z−}
is an independent set if z− ∈ V (P ).

Lemma 3.9 (Chen et al. [5]). Let u, v /∈ V (Pi) and {u, v} � V (Pi). If uai, vbi+1 ∈
E(G), where bk+1 = y if i = k, then there is some w ∈ V (Pi) such that uw, vw+ ∈ E(G).
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Let z ∈ Pj and [ai, z]→ xP . We have the following five lemmas (3.10-3.14).

Lemma 3.10. If 2 ≤ i ≤ j and z+ ∈ V (P ), then A ∪ {xP , z+} is an independent set.

Proof. Since za1 ∈ E(G), we have alz
+ /∈ E(G) for 2 ≤ l ≤ j by Lemma 3.2. If

a1z
+ ∈ E(G) or alz

+ ∈ E(G) for some l ≥ j + 1, then by Lemmas 3.3 or 3.4 we
have b2z /∈ E(G) and hence b2ai ∈ E(G). By Lemma 3.9, there is some w ∈ P1

such that wz,w+ai ∈ E(G). Thus, the (x, y)-path x
−→
P x1xP xi

←−
P w+ai

−→
P zw

←−
P a1z

+−→P y

is hamiltonian if a1z
+ ∈ E(G), and x

−→
P wz

←−
P aiw

+−→P xixP xl
←−
P z+al

−→
P y is hamiltonian

if alz
+ ∈ E(G) for some l ≥ j + 1, a contradiction. If z ∈ B, then z = bj+1. By

Lemma 3.1 we have a1bj+1, b2ai ∈ E(G). By Lemma 3.9, there is some w ∈ P1 such
that wbj+1, w

+ai ∈ E(G), which contradicts Lemma 3.3. Thus, z /∈ B and hence
z+xP /∈ E(G), which implies A ∪ {xP , z+} is an independent set.

Lemma 3.11. If 2 ≤ i ≤ j and |A| ≥ 3, then B ∪ {z−, xP } is an independent set.

Proof. Since A− {ai} ⊆ N(z) and 2 ≤ i ≤ j, we have blz
− /∈ E(G) for l 6= 1, j + 1 by

Lemma 3.3. If b1z
− ∈ E(G) or z−bj+1 ∈ E(G), then by Lemmas 3.2 or 3.1, we have

b2 /∈ N(z). Since [ai, z]→ xP , we have b2ai ∈ E(G). By Lemma 3.9, there is some u ∈
P1 such that uz, u+ai ∈ E(G). Thus the (x, y)-path x

−→
P b1z

−←−P aiu
+−→P xixP x1

−→
P uz
−→
P y is

hamiltonian if b1z
− ∈ E(G), and x

−→
P uz
−→
P bj+1z

−←−P aiu
+−→P xixP xj+1

−→
P y is hamiltonian

if bj+1z
− ∈ E(G), a contradiction. Since |A| ≥ 3 and [ai, z] → xP , by Lemma 3.1

we have z /∈ A which implies z−xP /∈ E(G). Thus, by Lemma 3.1 we can see that
B ∪ {z−, xP } is an independent set.

Lemma 3.12. If j + 1 < i, then A ∪ {z+, xP } is an independent set.

Proof. Since aj+1z ∈ E(G), by Lemma 3.2 we have alz
+ /∈ E(G) for all l with l 6= j +1.

If aj+1z
+ ∈ E(G), then by Lemma 3.3 we have bj+2z /∈ E(G) and hence aibj+2 ∈ E(G).

By Lemma 3.9, there is some u ∈ Pj+1 such that uz, u+ai ∈ E(G). Thus, the (x, y)-
path x

−→
P zu
←−
P aj+1z

+−→P xj+1xP xi
←−
P u+ai

−→
P y is hamiltonian, a contradiction. If z ∈ B,

then z = bj+1. Since [ai, z] → xP and j + 1 < i, there is some u ∈ Pj+1 such
that uz, u+ai ∈ E(G), which contradicts Lemma 3.4. Hence z /∈ B which implies
z+xP /∈ E(G). Thus, A ∪ {z+, xP } is an independent set by Lemma 3.1.

Lemma 3.13. Let |A| ≥ 3. If j + 1 < i and z− ∈ V (P ), then B ∪ {z−, xP } is an
independent set.

Proof. Since aj+1z ∈ E(G), we have blz
− /∈ E(G) for l 6= j + 1 by Lemmas 3.3 and 3.4.

If bj+1z
− ∈ E(G), then z is a B-vertex. By Lemma 3.1 we have zbj+2 /∈ E(G), which

implies aibj+2 ∈ E(G). By Lemma 3.9, there is some w ∈ Pj+1 such that zw,w+ai ∈
E(G). Thus, the (x, y)-path x

−→
P z−bj+1

←−
P zw

←−
P xj+1xP xi

←−
P w+ai

−→
P y is hamiltonian, a

contradiction. Since |A| ≥ 3 and [ai, z]→ xP , we have z /∈ A by Lemma 3.1 and hence
z−xP /∈ E(G). Thus, B ∪ {z−, xP } is an independent set.
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The following two lemmas can be extracted from [5]: Lemma 3.14 is extracted from
the Case 2 of Lemma 2.8(2) and Lemma 3.15 from Lemma 2.9 in [5].

Lemma 3.14 (Chen et al. [5]). If j = i − 1 ≥ 1, d(xP ) = k ≥ 4 and {x, y} ⊆ N(xQ)
for any longest (x, y)-path Q, then B ∪ {z−, xP } is an independent set.

Lemma 3.15 (Chen et al. [5]). Suppose that P is a longest (x, y)-path such that
|X ∩ {x, y}| is as small as possible and that for this path, d(xP ) = k ≥ 4. If G is
3-critical, then there exists an independent set I such that either {xP } ∪ A ⊆ I or
{xP } ∪B ⊆ I and |I| ≥ k + 1.

4. Proof of Theorem 4

Let G be a 3-connected 3-critical graph with α(G) = δ(G) + 1 ≥ 5. If G is not
Hamilton-connected, then by Theorem 5, there are two vertices x, y ∈ V (G) such
that p(x, y) = n − 2. Among all the longest (x, y)-paths, we choose P such that
|{x, y}∩N(xP )| is as small as possible. Choose an orientation of P such that |A| ≥ |B|.
Assume without loss of generality that the orientation is from x to y. We still use the
notations given in Section 3.

Since α(G) = δ(G)+1 ≥ 5, by the choice of P and Lemma 3.15, d(xP ) = k = δ ≥ 4.
We first show the following claims.

Claim 4.1. Let z ∈ Pj and [ai, z]→ xP . If |A| = k and j = i−1 ≥ 1, then B∪{z−, xP }
is an independent set.

Proof. Let U = N [xP ] ∪ A. By Lemmas 2.1 and 2.2, we may assume that [ail , xjl
] →

ail+1
for 1 ≤ l ≤ k − 1. Thus, noting that |A| = k, we have

dU (xl) ≥ δ for any xl ∈ N(xP ). (4-1)

Assume bl ∈ B and blz
− ∈ E(G). Since A − {ai} ⊆ N(z), by Lemma 3.3, l ∈

{1, j + 1, i + 1}. If j = 1, then i = 2. Since a3z ∈ E(G), by Lemma 3.4, l 6= 1
and hence l ∈ {2, 3}. If l = 2 or 3, then by Lemma 3.2 we have b4z /∈ E(G) and hence
a2b4 ∈ E(G). Since za3, a2b4 ∈ E(G), by Lemma 3.1 we have |P1| ≥ 2 and |P2| ≥ 2,
which implies b2, b3 /∈ U . Thus we have d(x2) ≥ δ + 1 and d(x3) ≥ δ + 1 by (4-1).
If l = 2, then Q = x

−→
P z−b2

←−
P za3

−→
P b4a2

−→
P x3xP x4

−→
P y is an (x, y)-path of length n − 2

with d(xQ) = d(x2) ≥ δ + 1 and if l = 3, then R = x
−→
P z−b3

←−
P a2b4

←−
P a3z

−→
P x2xP x4

−→
P y

is an (x, y)-path of length n − 2 with d(xR) = d(x3) ≥ δ + 1. Since α(G) = δ(G) + 1,
by Lemma 3.1 we have y ∈ N(x2) if l = 2 and y ∈ N(x3) if l = 3. If y 6= ak, then
d(x2) ≥ δ + 2 if l = 2 and d(x3) ≥ δ + 2 if l = 3, which implies α(G) ≥ δ(G) + 2 by
Lemma 3.1, a contradiction. Hence y = ak. Thus, x

−→
P z−b2

←−
P za3

−→
P xkxP x3

←−
P x2ak is a

hamiltonian (x, y)-path if l = 2 and x
−→
P z−b3

←−
P za3

−→
P xkxP x3ak is a hamiltonian (x, y)-

path if l = 3, a contradiction. Hence we have j ≥ 2. Since l ∈ {1, j + 1, i + 1}, we have
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b2z /∈ E(G) by Lemma 3.2 and hence b2ai ∈ E(G). If l = 1, then since [ai, z] → xP ,
we have zx1 ∈ E(G) or aix1 ∈ E(G). Thus, x

−→
P b1z

−←−P x2xP xi
←−
P zx1

−→
P b2ai

−→
P y is a

hamiltonian (x, y)-path if zx1 ∈ E(G) and x
−→
P b1z

−←−P a1z
−→
P xixP x1ai

−→
P y is a hamilto-

nian (x, y)-path if aix1 ∈ E(G). If j + 1, then Q = x
−→
P x1xP x2

−→
P z−bj+1

←−
P za1

−→
P b2ai

−→
P y

is an (x, y)-path of length n − 2 with xQ = xj+1. Since |Pj | ≥ 2, bj+1 /∈ U which
implies d(xj+1) ≥ δ + 1 by (4-1). Since α(G) = δ(G) + 1, by Lemma 3.1 we have
xxj+1 ∈ E(G) and x = x1. In this case, xxj+1xP x2

−→
P z−bj+1

←−
P za1

−→
P b2ai

−→
P y is a hamil-

tonian (x, y)-path. If l = i + 1, then since [ai, z] → xP , we have zxi+1 ∈ E(G) or
aixi+1 ∈ E(G). Thus, x

−→
P b2ai

−→
P bi+1z

−←−P x2xP xi
←−
P zxi+1

−→
P y in the former case and

x
−→
P x1xP xi

←−
P za1

−→
P z−bi+1

←−
P aixi+1

−→
P y in the latter case, is a hamiltonian (x, y)-path, a

contradiction. Therefore, B ∪ {z−} is an independent set. On the other hand, since
k ≥ 4 and [ai, z]→ xP , by Lemma 3.1, we have z /∈ A and hence z−xP /∈ E(G). Thus
by Lemma 3.1, B ∪ {z−, xP } is an independent set.

Claim 4.2. Let I = {xP }∪W with |I| = k +1 ≥ 5 be an independent set. If W = A or
I is obtained by one of the Lemmas 3.8 and 3.10-3.15, then [xP , xl]→ w is impossible
for any xl ∈ X and w ∈W .

Proof. If [xP , xl] → w for some w ∈ W and xl ∈ X, then by Lemmas 2.5 and 2.8,
W contains a vertex w′ such that V (G) ⊆ N∗[w′]. If W = A, then by Lemma 3.1,
G∗ contains a hamiltonian (x, y)-path and hence p(x, y) = n − 1 by Theorem 7, a
contradiction. If I is obtained by one of the Lemmas 3.8 and 3.10-3.15, then by the
proofs of these lemmas, we can see that G∗ contains a hamiltonian (x, y)-path, which
implies p(x, y) = n− 1 by Theorem 7, also a contradiction.

If N(xP ) ∩ {x, y} = ∅, then |A| = |B| = k. By Lemmas 2.1 and 2.2, we may
assume [ail , xjl

] → ail+1
for 1 ≤ l ≤ k − 1. Since k ≥ 4, by Lemma 2.5 there is some

ai with i ≥ 2 and a vertex z ∈ V (G) − N [xP ] such that [xP , z] → ai or [ai, z] → xP .
If [xP , z] → ai, then α ≥ δ + 2 by Lemma 3.8 and if [ai, z] → xP , then α ≥ δ + 2 by
Lemmas 3.10-3.14 and Claim 4.1, a contradiction. Thus, |N(xP ) ∩ {x, y}| ≥ 1. By the
choice of the orientation of P , we have x = x1.

Claim 4.3. For any ai ∈ A and any z ∈ V (G)−N [xP ], [xP , z]→ ai is impossible.

Proof. Suppose to the contrary there is some z ∈ V (G)−N [xP ] such that [xP , z]→ ai.
Since x = x1, by Lemma 3.8, B ∪ {xP , z−} is an independent set, and if |A| = k − 1,
then A ∪ {xP , z+} is also an independent set. Noting that A ∪ {xP } or A ∪ {xP , z+}
is a maximum independent set and k ≥ 4, by Claim 4.2, there are some aj ∈ A with
j 6= 1, i and w ∈ V (G)−N [xP ] such that [xP , w]→ aj or [aj , w]→ xP . In both cases,
we have w 6= z and |A − N(w)| ≤ 1. By Lemma 3.8 or Lemmas 3.11, 3.13, 3.14 and
Claim 4.1, B ∪ {xP , w−} is an independent set. By Lemma 3.7, w−z− /∈ E(G). Thus,
B ∪ {xP , z−, w−} is an independent set of order k + 2, a contradiction.
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If |A| = k−1, then Lemma 3.15 and the symmetry of A and B, we may assume that
G contains an independent set I such that A∪{xP } ⊆ I and |I| = k+1. If |A| = k, then
A∪{xP } is a maximum independent set. Thus, by Claim 4.2, [xP , xl]→ a is impossible
for any a ∈ A and xl ∈ X. Since A ∪ {xP } is an independent set by Lemma 3.1 and G

is 3-critical, by Claim 4.3 we may assume in the following proof that [ai, zi] → xP for
all ai ∈ A.

We now consider the following two cases separately.

Case 1. |N(xP ) ∩ {x, y}| = 1

Let w ∈ Pi and wai ∈ E(G). If ai
−→
P w 6⊆ N [ai], say, v ∈ ai

−→
P w is the last vertex

that is not adjacent to ai along ai
−→
P w, then since wai ∈ E(G), v is an A-vertex. Thus,

A ∪ {xP , v} is an independent set of order k + 2 by Lemma 3.1 and hence we have

ai
−→
P w ⊆ N [ai] if w ∈ Pi and wai ∈ E(G). (4-2)

Since α = δ + 1, by Lemmas 3.10-3.14 and Claim 4.1, we have zi ∈ Pi−1 or zi = y

for 2 ≤ i ≤ k. If there are two vertices zi and zj such that zi ∈ Pi−1 and zj ∈ Pj−1,
then both B ∪ {xP , z−i } and B ∪ {xP , z−j } are independent sets by Claim 4.1. Since
ai−1zi, aj−1zj ∈ E(G), z−i and z−j are A-vertices and hence z−i z−j /∈ E(G) by Lemma
3.1, which implies B∪{xP , z−i , z−j } is an independent set of order k+2, a contradiction.
Thus, noting that k ≥ 4, there exist at least two vertices zi, zj with i, j 6= 1 such that
zi = zj = y, which implies A ⊆ N(y) and B ∪ {y−} is an independent set by Lemma
3.11. If there is some zi with i ≥ 2 such that zi 6= y, then z−y− /∈ E(G) by Lemma
3.6 and hence B ∪ {xP , z−i , y−} is an independent set of order k + 2, a contradiction.
Thus, we have zi = y for 2 ≤ i ≤ k. By (4-2), Pk ⊆ N [ak], which implies each vertex of
Pk − {y} is an A-vertex. Let z1 ∈ Pj . If z1 6= y, then j ≤ k − 1. Since aj+1z1 ∈ E(G),
we have blz

−
1 /∈ E(G) for l 6= j +1 by Lemmas 3.3 and 3.4. Since z1ak, a1y ∈ E(G) and

[a1, z1]→ xP , by Lemma 3.9 there is some vertex w ∈ Pk such that wz1, w
+a1 ∈ E(G),

which implies z−1 bj+1 ∈ E(G) by Lemma 3.3. By Lemma 3.6, z−1 y− /∈ E(G) and hence
B ∪ {xP , z−1 , y−} is an independent set of order k + 2, a contradiction. Thus, z1 = y

and hence we have

zi = y for 1 ≤ i ≤ k. (4-3)

Since A ⊆ N(y), by Lemma 3.1, we have y 6= ak and hence y−xP /∈ E(G). If
there is some z ∈ V (G) − N [xP ] such that [xP , z] → y−, then z 6= y. By Lemma 3.8,
A∪ {xP , z+} is an independent set of order k + 2, a contradiction. Since B ∪ {y−, xP }
is a maximum independent set, by Claim 4.2, there is no vertex xl ∈ X such that
[xP , xl] → y−. Thus, there is some vertex z ∈ Pi such that [y−, z] → xP . If z 6= y,
then since aky ∈ E(G), all vertices of ak

−→
P y− are A-vertices by (4-2), which implies

z /∈ Pk since otherwise {y−, z} 6� A− {ak} by Lemma 3.1. Since y− is an A-vertex, we
have A − {ak} ⊆ N(z), which implies blz

− /∈ E(G) for l 6= i + 1. If z−bi+1 ∈ E(G),
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then z is a B-vertex. Thus, noting that B ∪ {y−} is an independent set, we can see
{y−, z} 6� B − {bi+1}, a contradiction. Thus we have z−bl /∈ E(G) for 2 ≤ l ≤ k. Since
y− is an A-vertex, k ≥ 4 and [y−, z] → xP , we have z /∈ A and hence z−xP /∈ E(G).
By Lemma 3.6, y−z− /∈ E(G). Thus, B ∪ {xP , y−, z−} is an independent set of order
k + 2, also a contradiction. Thus we have z = y, that is,

[y, y−]→ xP . (4-4)

By Lemma 3.1, (4-2) and (4-3), Pk ⊆ N [y]. By Lemma 3.11, (4-3) and (4-4),
A ∪ B ⊆ N(y). For 1 ≤ i ≤ k − 1, if there is some u ∈ Pi such that uy /∈ E(G),
then u+, u− ∈ Pi since A ∪ B ⊆ N(y). By (4-3), A ⊆ N(u). By Lemma 3.5, we have
u−u+ /∈ E(G). By Lemma 3.6, u−y− /∈ E(G). If u+y− ∈ E(G), then the (x, y)-path
x
−→
P xixP xk

←−
P u+y−

←−
P aku

←−
P aiy is hamiltonian and hence u+y− /∈ E(G). By Lemma

3.3, u−bl, u
+bl /∈ E(G) for l 6= i + 1, which implies B ∪ {xP , u−, u+, y−} − {bi+1}

is an independent set of order k + 2, a contradiction. Thus, we have Pi ⊆ N [y] for
1 ≤ i ≤ k − 1 and hence {xP , y} � V (G), a contradiction.

Case 2. |N(xP ) ∩ {x, y}| = 2

In this case, we let z2 ∈ Pi.

Suppose i = 1, l ≥ 3 and zl ∈ Pj . Assume zl 6= z2. If j 6= 1, then z−2 z−l /∈ E(G) for
otherwise the (x, y)-path xxP x2

←−
P z2a1

−→
P z−2 z−l

←−
P a2zl

−→
P y is hamiltonian. If j = 1 and

z−2 z−l ∈ E(G), then zl is an A-vertex if zl ∈ x
−→
P z2 and z2 an A-vertex if z2 ∈ x

−→
P zl. By

Lemma 3.1, zla2, z2al /∈ E(G), which is impossible since [a2, z2]→ xP and [al, zl]→ xP .
Thus, z−2 z−l /∈ E(G) and hence B ∪ {xP , z−2 , z−l } is an independent set of order k + 2
by Lemmas 3.11, 3.13 and 3.14. Therefore, we have

zl = z2 for 3 ≤ l ≤ k − 1 if i = 1. (4-5)

If i ≥ 2, then A ∪ {xP , z+
2 } is an independent set by Lemma 3.10. If i = 1, then

by (4-5) and Lemma 3.12, A ∪ {xP , z+
2 } is an independent set. By Lemmas 3.11 and

3.14, B ∪ {xP , z−2 } is an independent set. Thus, both B ∪ {xP , z−2 } and A ∪ {xP , z+
2 }

are independent sets.

If there is some w ∈ V (G)−N [xP ] such that [xP , w] → z+
2 ([xP , w] → z−2 , respec-

tively), then w 6= z2. By Lemma 3.8, B∪{xP , w−} is an independent set. By Lemma 3.7
we have z−2 w− /∈ E(G) and hence B∪{xP , w−, z−2 } is an independent set of order k+2,
a contradiction. Thus, noting that both B ∪ {xP , z−2 } and A ∪ {xP , z+

2 } are maximum
independent sets, by Claim 4.2, we may assume [z+

2 , w1]→ xP and [z−2 , w2]→ xP .

Let w1 ∈ Pj . If w1 6= z2, then since k ≥ 4, A ∪ {z+
2 } is an independent set and

[z+
2 , w1] → xP , we have w1 /∈ A, which implies w−

1 xP /∈ E(G), and A ⊆ N(w1), which
implies w−

1 bl /∈ E(G) for l 6= j + 1 by Lemma 3.3. If w−
1 bj+1 ∈ E(G), then w1 is a

B-vertex. Thus by Lemma 3.1 we have B−{bj+1} ⊆ N(z+
2 ). If j = 2, then since k ≥ 4,
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there is some l with l 6= 2, i such that z2al ∈ E(G), which implies z+
2 bl+1 /∈ E(G) by

Lemma 3.3, a contradiction. If j 6= 2, then by Lemma 3.5 we have z+
2 z−2 /∈ E(G), which

implies w1z
−
2 ∈ E(G). Since ajz2 ∈ E(G), by Lemma 3.3 we have i = j. Thus, since

k ≥ 4, there is some l with l 6= 2, j such that z2al ∈ E(G), which implies z+
2 bl+1 /∈ E(G)

by Lemma 3.3, also a contradiction. Hence, B ∪ {xP , w−
1 } is an independent set. By

Lemma 3.6, z−2 w−
1 /∈ E(G). Thus by Lemma 3.1, B ∪ {xP , z−2 , w−

1 } is an independent
set of order k + 2, a contradiction. Hence we have w1 = z2, that is,

[z+
2 , z2]→ xP . (4-6)

If w2 6= z2, then since B ∪ {z−2 , xP } is an independent set, we have B ⊆ N(w2). By
(4-6), we have A ⊆ N(z2) ∈ E(G), which implies z−2 is an A-vertex. Thus, A− {ai} ⊆
N(w2), which implies |A ∪ B −N(w2)| ≤ 1. By Lemmas 3.7 and 3.8, we can see that
B ∪ {xP , z−2 , w−

2 } is an independent set of order k + 2, a contradiction. Hence we have
w2 = z2, that is,

[z−2 , z2]→ xP . (4-7)

By (4-6) and (4-7), A ∪ B ⊆ N(z2). If there is some vertex v ∈ ai
−→
P z2 such that

vai /∈ E(G) and v+ai ∈ E(G), then v is an A-vertex. If vz+
2 ∈ E(G), then z2 is an

A-vertex, which contradicts Lemma 3.1. Thus, A ∪ {xP , v, z+
2 } is an independent set

of order k + 2, a contradiction. Noting that z2 ∈ N(ai), we have ai
−→
P z2 ⊆ N [ai]. By

symmetry, we have z2
−→
P bi+1 ⊆ N [bi+1]. If N(z+

2 ) ∩ ai
−→
P z−2 6= ∅, then since ai

−→
P z2 ⊆

N [ai], z2 is A-vertex and if N(z−2 ) ∩ z+
2
−→
P bi+1 6= ∅, then since z2

−→
P bi+1 ⊆ N [bi+1], z2 is

a B-vertex, which contradicts Lemma 3.1 since A ∪B ⊆ N(z2). Thus, we have

N(z+
2 ) ∩ ai

−→
P z−2 = ∅ and N(z−2 ) ∩ z+

2
−→
P bi+1 = ∅. (4-8)

Assume z1 ∈ Pj and z1 6= z2. Since [a1, z1] → xP and k ≥ 4, by Lemma 3.1 we
have z1 /∈ A, which implies z−1 xP /∈ E(G). If j 6= k − 1, then since z1aj+1 ∈ E(G),
we have blz

−
1 /∈ E(G) for l 6= j + 1 by Lemmas 3.3 and 3.4. If bj+1z

−
1 ∈ E(G),

then z1 is a B-vertex. Thus, by Lemmas 3.1 and 3.9, there is some vertex w ∈ Pk−1

such that w+a1, z1w ∈ E(G), which contradicts Lemma 3.3. Hence, B ∪ {xP , z−1 }
is an independent set. If j = k − 1, then i 6= k − 1 for otherwise {a1, z1} 6� z+

2 if
z1 ∈ ak−1

−→
P z−2 by Lemma 3.10 and (4-8), and {a1, z1} 6� z−2 if z1 ∈ z+

2
−→
P bk by (4-8)

and Lemma 3.1 since z−2 is an A-vertex. Since a2z1 ∈ E(G), we have blz
−
1 /∈ E(G)

for l 6= 2, k by Lemma 3.3. If b2z
−
1 ∈ E(G), then b3z1 /∈ E(G) by Lemma 3.2 which

implies a1b3 ∈ E(G). Since [a1, z1] → xP , we can see that either a1x3 ∈ E(G) or
z1x3 ∈ E(G). Thus, the (x, y)-path xxP x2

−→
P x3a1

−→
P b2z

−
1
←−
P a3z1

−→
P y is hamiltonian in

the former case, and xxP x2
−→
P b3a1

−→
P b2z

−
1
←−
P x3z1

−→
P y is hamiltonian in the latter case,

a contradiction. If z−1 bk ∈ E(G), then z1 is a B-vertex. By (4-8), z+
2 is a B-vertex,

which implies z+
2 z1 /∈ E(G) by Lemma 3.1 and hence {a1, z1} 6� z+

2 , a contradiction.
Thus, B ∪{xP , z−1 } is an independent set. By (4-6) and (4-7), we have A∪B ⊆ N(z2),
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which implies z−1 z−2 /∈ E(G) by Lemma 3.7. Thus, B ∪ {xP , z−1 , z−2 } is an independent
set of order k + 2 and hence we have z1 = z2. By (4-5), we have zl = z2 for l ≥ 3 if
i = 1. If i ≥ 2 and there is some zl with l ≥ 3 such that zl 6= z2, then B ∪ {xP , z−l }
is an independent set by Lemmas 3.11, 3.13 and 3.14. By (4-6), A ⊆ N(z2) and hence
z−2 z−l /∈ E(G) by Lemma 3.6. Thus, B ∪ {xP , z−2 , z−l } is an independent set of order
k + 2, a contradiction. Thus we have

zl = z2 for l 6= 2. (4-9)

By (4-6), (4-7) and (4-8), we have Pi ⊆ N [z2] and A ∪ B ⊆ N(z2). Let l 6= i.
If there is some u ∈ Pl such that uz2 /∈ E(G), then u+, u− /∈ N(xP ) and A ⊆
N(u) by (4-9). By Lemma 3.3, bmu+, bmu− /∈ E(G) for m 6= l + 1. By Lemma
3.5, u+u− /∈ E(G). By Lemma 3.7, u−z−2 /∈ E(G). If u+z−2 ∈ E(G), then the
(x, y)-path x

−→
P xlxP xi

←−
P u+z−2

←−
P aiu

←−
P alz2

−→
P y is hamiltonian if l < i and if l > i,

then x
−→
P xixP xl

←−
P z2al

−→
P uai

−→
P z−2 u+−→P y is hamiltonian, a contradiction. Thus, we have

u+z−2 /∈ E(G), which implies B ∪ {xP , u+, u−, z−2 } − {bl+1} is an independent set of
order k + 2, a contradiction. Therefore, we have Pl ⊆ N [z2] for l 6= i, which implies
{xP , z2} � V (G), a contradiction.

The proof of Theorem 4 is complete.
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