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Abstract: A graph G is 3-domination critical if its domination number ~
is 3 and the addition of any edge decreases vy by 1. Let G be a 3-domination
critical graph with toughness more than one. It was proved G is Hamilton-
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1. Introduction

Let G = (V(G), E(G)) be a graph. A graph G is said to be t-tough if for every cutset
S CV(G), |S| > tw(G — S), where w(G — S) is the number of components of G — S.
The toughness of G, denoted by 7(G), is defined to be min{|S|/w(G — S) | S is a
cutset of G}. Let u,v € V(G) be any two distinct vertices. We denote by p(u,v)
the length of a longest path connecting u and v. The codiameter of G, denoted by
d*(@), is defined to be min{p(u,v) | uv,v € V(G)}. A graph G of order n is said to be
Hamilton-connected if d*(G) = n — 1, i.e., every two distinct vertices are joined by a
hamiltonian path. A graph G is called k-domination critical, abbreviated as k-critical,
if v(G) = k and v(G + ¢) = k — 1 holds for any e € E(G), where G is the complement
of G. The concept of domination critical graphs was introduced by Sumner and Blitch
n [11]. Given three vertices u,v and z such that {u,xz} dominates V(G) — {v} but not
v, we will write [u,z] — v. It was observed in [11] that if u, v are any two nonadjacent
vertices of a 3-critical graph G, then since v(G + uv) = 2, there exists a vertex x such
that either [u,x] — v or [v,z] — u. If U,V C V(G) and U dominates V, that is, V is
contained in the closed neighborhood of U, we write U = V; otherwise we write U 3 V.
For notations not defined here, we follow [5].



It was conjectured in [10] that every connected 3-critical graph of order more than 6
has a hamiltonian path. This was proved by Wojcicka [13] who in turn conjectured that
every connected 3-critical graph G with §(G) > 2 has a hamiltonian cycle. Wojcicka’s
conjecture has now been proved completely, see [8, 9, 12] or [2]. It is well known that
if a graph G has a hamiltonian cycle, then 7(G) > 1 and the converse does not hold in
general. However, this is not the case when G is 3-critical. Noting that 7(G) < 1 if G
is a connected 3-critical graph with 6(G) = 1, we see that the following theorem is a
direct consequence of the validity of Wojcicka’s conjecture.

Theorem 1. Let G be a connected 3-critical graph. Then G has a hamiltonian cycle
if and only if 7(G) > 1.

For Hamilton-connectivity, it is known that if a graph G is Hamilton-connected,
then 7(G) > 1 and the converse need not hold. However, motivated by Theorem 1,
Chen et al. [5] posed the following.

Conjecture 1 (Chen et al. [5]). A connected 3-critical graph G is Hamilton-connected
if and only if 7(G) > 1.

In the same paper, they proved that the conjecture is true when a(G) < §(G).

Theorem 2 (Chen et al. [5]). Let G be a connected 3-critical graph with o(G) < §(G).
Then G is Hamilton-connected if and only if 7(G) > 1.

Let G be a 3-connected 3-critical graph. It is shown in [6] that 7(G) > 1 and
7(G) = 1 if and only if G belongs to a special infinite family G described in [6]. Since
a(G) = §(G) = 3 for each G € G, it is easy to obtain that 7(G) > 1 if a(G) > 6(G) + 1.

In [7], Chen et al. showed that the conjecture holds when o(G) = 0(G) + 2.

Theorem 3 (Chen et al. [7]). Let G be a 3-connected 3-critical graph with «(G) =
d(G) + 2. Then G is Hamilton-connected.

By a result of Favaron et al. [8] that a(G) < §(G) + 2 for any connected 3-critical
graph G, we can see the conjecture has only one case a(G) = 0(G) + 1 unsolved. In
this paper, we will show that the conjecture is true when a(G) = 6(G) +1 > 5. The
main result of this paper is the following.

Theorem 4. Let G be a 3-connected 3-critical graph with a(G) = 6(G)+1 > 5. Then
G is Hamilton-connected.

Noting that 7(G) > 1 implies 6(G) > 3, we can see that the conjecture is still open
for the case a(G) = 6(G) + 1 =4.

Now, we restate a result due to Chen et al. for later use.



Theorem 5 (Chen et al. [3]). Let G be a 3-connected 3-critical graph of order n.
Then d*(G) > n — 2.

2. Properties of Maximum Independent Set

In order to prove Theorem 4, we need to use a classical tool — closure operation
in hamiltonian theory. In 1976, Bondy and Chvétal defined a (Hamilton-connected)
closure operation of a graph.

Theorem 6 (Bondy and Chvatal [1]). Let G be a graph of order n. Let a and b be
nonadjacent vertices of G such that d(a) + d(b) > n + 1. Then for any two distinct
vertices z,y, p(z,y) =n — 1 in G if and only if p(z,y) =n —1 in G + ab.

Now, given a graph G of order n, repeat the following recursive operation, named
Bondy-Chvatal closure operation, as long as possible: For each pair of nonadjacent
vertices a and b, if d(a) +d(b) > n+ 1, then add the edge ab to G. We denote by cl(G)
the resulting graph and call it the Bondy-Chvétal (Hamilton-connected) closure of G.
By Theorem 6 we get the following.

Theorem 7 (Bondy and Chvétal [1]). Let G be a graph of order n. Then for any two
distinct vertices z,y, p(z,y) =n — 1 in G if and only if p(z,y) = n — 1 in cl(G).

Let G be a 3-critical graph of order n, o(G) = §(G) + 1 and vy € V(G) with
d(vg) = 6(G) = k > 3. Suppose N(vg) = {v1,...,vx} and I = {vp,w1,...,wg} is an
independent set. In this section, we will give some properties of I in G and G* = cl(G).

The following lemma restates a lemma due to Sumner and Blitch [11], which has
proven to be of considerable use in dealing with 3-critical graphs. In [11] they considered
the case [ > 4, which guarantees P(U) N U = (). For the cases | = 2 and [ = 3, Lemma
2.1 can be easily verified since G is a 3-critical graph.

Lemma 2.1. Let G be a connected 3-critical graph and U an independent set of [ > 2
vertices. Then there exist an ordering w1, us, - - -, u; of the vertices of U and a sequence
PU) = (y1,y2,- -, yi—1) of [ —1 distinct vertices such that [u;, y;] — wir1, 1 <i <[—1.

The next lemma is a useful consequence of Lemma 2.1.

Lemma 2.2 (Favaron et al. [8]). Let U be an independent set of [ > 3 vertices of a
3-critical graph G such that U U{v} is independent for some v ¢ U. Then the sequence
P(U) defined in Lemma 2.1 is contained in N (v).

Since I is an independent set of order at least 4, by Lemmas 2.1 and 2.2, we may
assume without loss of generality that



[wi,vi] — Wi+1 for 1 < ) < k—1. (2—1)
By (2-1), it is easy to obtain the following.
vjvj41 € BE(G) for 1 <j <k —2. (2-2)

Lemma 2.3. If wyv ¢ E(G) with i # 1, then G[N(vg) — {vi—1,vx}] is a clique. If
wivg ¢ E(G), then G[N(vg) — {vx}] is a clique.

Proof. Let v, vy, € N(vo) — {vi—1, v} withl <m — 1. If | = m — 1, then v, € E(G)
by (2-2). If I < m — 2, then since wjt1wm+1 ¢ E(G), there is some vertex z such
that [wiy1, 2] — Wmt1 OF [Wit1,2] — wipq. Since k& > 3, by Lemma 2.2 we have
z € N(vp). Since w;vy ¢ E(G), we have z # vi. By (2-1), either [wi1, V] — W1 or
[Win41,v1) — wi41. In both cases, we have vjv,, € E(G) and hence G[N (vg) —{vi—1, vg }]
is a clique. As for the latter part, the proof is similar. 1

Lemma 2.4. If wyvy, ¢ E(G) with i # 1, then [wi,vj—1] — w; for j > 3 and j # i.

Proof. Since wyw; ¢ E(G), by Lemma 2.2, there is some z € N(vg) such that [wi, 2] —
Wjy1 OF [wjt1,2] — wi. By (2-1) and the assumption, we can see that [w;, 2] — wy is
impossible for any z € N(vg) and hence [wy,v;-1] — wj. 1

Lemma 2.5. If [vg, 2] — w; for some ¢ with 1 < i < k — 1, then z ¢ N(vo) and if
[vo, v;] — wy, for some vy € N(vg), then [ =k — 1.

Proof. If i =1 and z € N(vp), then z = vg by (2-1). Thus, we have {vs,vi} > V(G)
by Lemma 2.3, a contradiction. If i > 2 and z € N(vg), then by (2-1) we have
z = vi—1 or v and N(vg) — {vi—1,vi,vx} € N(w;). If z = v_1, then wyvy ¢ E(G)
for otherwise {v;_1,w;} = V(G). Since [wj,v;] — wit1, vivx € E(G). By Lemma 2.4,
we have [wy,v;] — w;y1, which implies v;w; € E(G). Thus by Lemma 2.3, we have
{vi—1,v;} = V(Q), a contradiction. If z = vy and ¢ # 2, then by Lemma 2.3 we have
{vi—2, vk} = V(QG), a contradiction. If z = vy and i = 2, then by Lemma 2.4 we have
[wi,v2] — w3, which implies vowy € F(G) and hence {ve, v} = V(G) by Lemma 2.3,
also a contradiction. Thus, z ¢ N(vp).

If [vg, vi] — wy, for some v; € N(vg), then by (2-1), we have [ =k — 1 or k. If [ =k,

then by Lemma 2.3, we have {vy_o, v} > V(G), a contradiction. 1
Lemma 2.6. If [vg, vp_1] — wy, then N (vg)N{v1,...,v5_1,wr} = 0 and {wy, ..., wx_1}
- N(’Uk)

Proof. By (2-1), we have N(vg) — {vg—1,vr} C N(wg). If wyvr, € E(G), then since
[vo, Vk—1] — wy, we have {vg_1,wi} > V(G) and hence wyvy ¢ F(G). By Lemma 2.3,
G[N(vg) — {vk—1, vk }] is a clique. Thus, if vy_qv; € E(G), then {vg_1,v1} = V(G) and
if v;ur, € E(Q) for some ¢ with 1 <1 <k — 2, then {vx_1,v;} > V(G), a contradiction.
Since N(vg) N{v1,...,vp—1} =0, by (2-1) we have {w1,...,wr_1} C N(vg). 1



Lemma 2.7. If [vg, vg_1] — wy, then G[N(vg) — {vr}] is a clique and N (wy) NN (vg) =
0.

Proof. By Lemma 2.6, vywy, ¢ E(G). By Lemma 2.3, G[N (vo) — {vk—1, vk }] is a clique.
By (2-1), vg—ovk—1 € E(G). For 1 < i < k — 3, there is some z € N(vp) such that
[wit1, 2] — wg or [wg, 2] — wiy1 by Lemma 2.2. By (2-1) and Lemma 2.6, we can see
that {w;t1, vk} ¥ v; and {wg,vr} # vg—1, which implies z # v and hence z = v; or
vg—1. In both cases, we have v;vi_; € E(G), which implies G[N (vg) — {vi}] is a clique.
If N(wg) N N(vg) # 0, then since [vg, vg_1] — wg and G[N(vg) — {vg}] is a clique, we
can see that {vg_1, 2} = V(G) for any z € N(wg) N N(vg), a contradiction. 1

Lemma 2.8. If k > 4, [vg,vp_1] — wy and for each w; with 1 <4 < k — 1, there is no
vertex z such that [vg, z] — w;, then N*[w;] = Ng«[w1] = V(G).

Proof. Let U = V(G) — (I U N(vg)), N(wy) NU = Uy and Uy = U — U;. In order to
prove the result, we need the following claims.

Claim 2.1. N(w;) " N(v;) NU # 0 for 1 <i <k —2.

Proof. By the assumption, there is some vertex z such that [w;t1,2] — vg. Obviously
z € U. By (2-1), we have z € N(w;) N N(v;) and hence z € N(w;) N N(v;) NU. 1

By Lemmas 2.4 and 2.6, we have [w1,v;] — w;;q for 2 < i < k — 2 and hence
wiv; € E(G) for 2 <i <k —2. (2-3)
Claim 2.2. d(wg) > § + 1 and if d(wg) = 0 + 1, then d(ve) > n — 9.

Proof. By the assumption, we may assume [ws, z] — v, which implies z € N(vy) N
N(wz) NU. If d(w2) = 0, then Ny(wz) = {z} by (2-3). Since [ws, 2] — vg, by (2-1)
and Lemma 2.7 we have V(G) — {ws,vx} C Nlvz]. By Lemma 2.6, wsv, € E(G).
Thus, {ve, w3} > V(G), a contradiction. Since k > 4 and [wa, v2] — w3, by (2-1) and
Claim 2.1, we have |N(ws2) N N(v2)| > 2. By (2-3), wove € E(G). Thus, we have
d(ws) + d(v2) > n+ 1 and the conclusion follows. 1

Claim 2.3. For any u € Ny (wy), either uwy € E(G) or uws € E(G).

Proof. Suppose u € Ny(wg) and wy, w3 ¢ N(u). By Lemma 2.2, there is some vertex
z € N(vg) such that [ws,z] — w or [u,z] — ws. If [u,z] — ws, then we must have
z = vy, which is impossible since {u,va} % vp by Lemmas 2.6 and 2.7. If [ws, z] — u,
then since [wa,vs] — w3 and wwy ¢ E(G), we have z # vy. By (2-1) and Lemma 2.6,
we can see z € N(vg) — {ve} is also impossible, a contradiction. 1

Claim 2.4. vi—1 € N*(wy,).

Proof. Since [vg,vk_1] — wg, by Lemma 2.7 we have d(vg_1) = n — 3. Noting that



d(wg) > 6 > 4, we have d(vg_1) + d(wg) > n+ 1 and hence vy_1 € N*(wg). 1
Claim 2.5. If d(wz) = 0 + 1 and d(ws) = ¢, then vy € N*(wy,).

Proof. Let N(wy) NU = Uz and Uy = U — Us. By (2-1) and Lemma 2.6, we have
vg—1,Vx ¢ N(wg) and hence |Us| > 2. By the assumption, there are some z; € U such
that [w;, z;] — vo for i = 1,2. If 21 # 29, then dy(ws) > 2. If k = 4, then wivs € E(G)
by the assumption and if & > 5, then wsvs € F(G) by (2-3). By (2-1) and Lemma 2.6,
N(vg) — {v2,v3} € N(wsz). Thus we have d(ws) > § + 1 and hence we may assume
z1 = z2 = u1. Obviously, u; € Us. Since d(w2) = § + 1 and d(w3) = §, by Claim 2.3,
we have |Us| = 2 and Ny (wz) = Us. Since [we, u1] — vg, vg—1 € N(wz) N N(up) and
wouy € E(G), we have d(uj)+d(wz) > n, which implies d(u;) > n—3d—1. We now show
[wg, vk] — vg—1. If Uy = 0, then by (2-1) and Lemma 2.6, [wg, vx] — vg_1. If Uy # 0,
then since ujws € E(G) and d(ws) = §, we have N(w3) N Uy = (. For any u € Uy,
by Lemma 2.2, there is some vertex z € N(vg) such that [u, z] — w3 or [ws, z] — wu.
If [ws, z] — u, then since [wg,vs] — w3 and u ¢ N(wsz), we have z # ve. By (2-1)
and Lemma 2.6, z ¢ N(vg) — {va}, a contradiction. If [u,z] — w3, then by (2-1) and
Lemma 2.6, z = va. Since vav, ¢ F(G) by Lemma 2.6, we have viu € E(G) and hence
Uy € N(vg). Thus, [wg,vg] — vg—1. Since d(vg—1) =n — 3, d(va) > n — 4§ by Claim 2.2
and d(ui) > n — 06 — 1, we have vg_1,v2,u1 € N*(vg). By Claim 2.4, vg_1 € N*(wg).
By Lemmas 2.6 and 2.7, vg_1,v9,u1 ¢ N(vg). Thus, we have d*(wy) + d*(vx) > n+1
and hence v, € N*(wy). 1

Claim 2.6. For any u € Uy, we have [u,vi] — w.

Proof. Since uwy ¢ E(G), there exists some vertex z such that [wy,z] — u or [u, z] —
wi. In order to dominate vy, we have z € N[vg]. Thus by (2-1) and Lemma 2.6, it is
easy to see [wy,z] — wu is impossible. If [u,z] — w1, then by the assumption we have
z # vg. By (2-1) and Lemma 2.6, we have z = vy, that is, [u,v1] — wy. 1

Claim 2.7. For any u € Uz, N(vg) € N(u).

Proof. Since [wy,v1] — we and u € U, we have v; € N(u). By Lemmas 2.4 and 2.6,
we have v; € N(u) for 2 < i < k—2. By Lemma 2.6 and Claim 2.6, we have vy, € N(u).
We now show vg_1 € N(u). Since wywy ¢ E(G), by Lemma 2.2, there exists some
vertex z € N(vg) such that [wy, 2] — wy, or [wg, z] — wi. By (2-1) and Lemma 2.6, we
can see [wg, z] — w; is impossible. Thus we have [wy, z] — wg. By Claim 2.6 we have
wiv; ¢ E(G). By Lemma 2.6, we have z # vy, since {wy, v} % vi. By (2-1), we have
z = vp—1 which implies vy € N(u). |

Claim 2.8. If Uy # ), then Ny (wy) € N(wy) N N(ws).

Proof. Let u € Ny(wg) and w € {wy,w2}. If uw ¢ E(G), then there is some vertex
z such that [u,z] — w or [w,z] — u. If [w,z] — wu, then z € N(vg). By Claim 2.6,



viwy ¢ E(G), which implies [w2,v1] — w cannot occur. Thus, by (2-1) and Lemma 2.6
we see that [w, z] — w is impossible. If [u, z] — w, then by the assumption, z # vy.
By Lemma 2.6, z # vg. If 2 € N(vo) — {vi}, then {u, z} # vy by Lemmas 2.6 and 2.7.
Thus, z ¢ N[uvg], a contradiction. 1

We first show that wiv; € E(G¥).

If wivy € E(G), then wiv € E(G*). If 6 > 5, then by Lemma 2.7, Claim 2.1 and
[w,v1] — wa, we have d(wy) + d(vi) > n+ 1 and hence wiv; € E(G*). Thus, we may
assume that wijv; ¢ E(G) and § = 4.

If IN(w1) N N(vy) NU| > 2, then by Lemma 2.7 and [wi,v1] — ws, we have
d(w1) +d(v1) > n+ 1 and hence wyv; € E(G*). Thus by Claim 2.1 we may assume

N(wi) N N(v1) N U = {us}. (2-4)

By the assumption, we let [w1, z] — vo. If z # g, then z € Uy by (2-4). This is
impossible since {w1, z} # wy by Claim 2.8 and hence we have

[wy,u1] — vo. (2-5)

If Uy # 0, we let u € Us. If ' € Uy and ue’ ¢ E(G), then there is some vertex z
such that [u, z] — « or [v/, 2] — u. By symmetry we may assume [u, z] — «'. By Claim
2.7, z ¢ N(vo). If z = v, then {u,z} ¥ wi, a contradiction. Hence Us is a clique. If
v’ € Uy and wu' ¢ E(G), then by Claim 2.6 we have v’ € N(v1), which implies v’ = u
by (2-4). By (2-5), wvju € E(G). Thus, U C NJu] for any u € Us. By Claim 2.6,
Uz € N(wsz). Thus by Claim 2.7, we have d(u) > n — 3 — 1. If d(wy) > § + 2, then
uw; € E(G*), which implies wyv; € E(G*). If d(w1) < §+1, then by (2-1) and Lemma
2.6 we have |U;| < 2. By Lemma 2.6 and the assumption, we have dy(wy) > 2. Thus
by Claim 2.8 we have U; = Ny (wg) € N(wsz) and hence U C N(ws). In this case, we
have [v1,ws] — w;. By Lemma 2.7, Claim 2.7 and (2-4), |N(v1) N N(wz)| > 4. Thus
we have vyjwe € F(G*) and hence wiv, € E(G*).

If Uy = (), then since wivy ¢ E(G), there is some vertex z such that [wy, 2] — v or
[v1, 2] = wy. If [wy, 2] — v1, then z # vp and hence z € N(vp). By Lemma 2.7, z = vy.
This is impossible since {w1, vk} % wy by Lemma 2.6. Thus we have [v1, 2] — wj. Since
Uy = () and N(vg) — {v1} € N(wy), we have z € {wa,...,wi}. In this case, z = wo,
that is, [wa,v1] — wi. By (2-5), uvywe € E(G). Thus by (2-4), we have U C N (w2).
By (2-1) and Lemmas 2.4 and 2.6, v2,v3,vs € N(wy) N N(wz). Thus, if |U| > 4, then
d(wy) + d(w2) > n + 1, which implies wywy € E(G*) and hence wiv; € E(G*). If
|U| < 3, then n < 12. After an easy but tedious check, we can show wiv; € E(G*).

Next, we show U C N*(wy). If Uy = 0, then U C N(w;) € N*(wp) and hence
we assume Us # 0. Let u € Us. Suppose v/ € V(G) — N[vg] and v ¢ N*(u).
Obviously, uu’ ¢ E(G) and hence there is some z such that [u/, 2] — u or [u,z] — u/.
If [u/, 2] — u, then z ¢ N(vg) by Claim 2.7 and hence z = vg. In this case, v’ € U.



Since [vg,vg—1] — wg, vg—1 € N(v'). By Claim 2.6, vju/ € E(G). Thus we have
d(u') > n —d — 1. By the assumption, there exists some 2’ such that w1, 2'] — vo. By
Lemma 2.7 and Claim 2.7, 2’ € Uy and hence Ny, (u) # 0. By Claim 2.6, wy € N(u).
Thus, by Claim 2.7 we have d(u) > §+2, which implies v’ € N*(u) and hence [v/, 2] — u
is impossible. Thus we always have [u, z] — «/. By Claim 2.8, wy ¢ N(u). Thus we
have z # vy since {u,vo} % {w1,wy} and hence z € N(vg). If V(G) — N[vg] contains §
vertices, say u},uj, ..., u}, that are not adjacent to u in G*, then there are Zu, € N(vp)
such that [u, z,/] — u, for 1 <1 < k. Clearly, if i # j, then 2y, # 2 since u} # u/;. This
is impossible since {u, vi_1} ¥ wi and {u, vg} ¥ wg. Therefore, V(G) — Nuvg] contains
at most § — 1 vertices that are not adjacent to u in G* and hence d*(u) > n —¢§ — 1
since N(vg) € N(u) by Claim 2.7. By Claim 2.6, wjv; ¢ E(G). By Lemma 2.6 and
the assumption, dy(wy) > 2 which implies dy(w1) > 2 by Claim 2.8. Thus by (2-1)
and Lemma 2.6 we have d(w;) > § + 1 and hence d*(w;) > 6 + 2 since wyv; € E(G*).
This implies d*(wy) + d*(u) > n+ 1 and thus U C N*(w;).

Finally, we show N*[w;] = V(G). Since wiv; € E(G*) and U C N*(wy), by (2-1),
we have d*(w1) > n —§ — 1. By Claim 2.2, d(wz) > § + 1. If d(wz) > & + 2, then
by Claim 2.4, we have wa,w;, € N*(w;), which implies d*(w;) > n — § + 1 and hence
N*w1] = V(G). If d(wz) = 6 + 1 and d(ws) > § + 1, then by Claim 2.2 we have
d*(w3) > § + 2. Thus ws,wy € N*(wy) and hence N*[wy] = V(G). If d(wg) =6 + 1
and d(ws3) = ¢, then d*(wy) > 0+ 2 by Claims 2.4 and 2.5. Thus, wy,wy € N*(wy) and
hence N*[w;| = V(G). 1

3. Some Lemmas

Let G be a graph of order n, and x, y vertices of G such that the longest (x,y)-path
is of length n — 2. Let P = P,y be an (z,y)-path of length n — 2 and suppose the
orientation of P is from z to y. We denote by xp the only vertex not in P and let
d(zp) =k > 2 with

N(zp) =X ={z1,29,..., 2}, indices following the orientation of P;
A=XT={ay,as,...,as}, where a; =z, 27 € V(P) and s > k — 1;
B=X"={by,bis1,...,bx}, where b; = 2, , ; € V(P) and t < 2; and
P, = ai?le, where 1 <<k —1.

Furthermore, we let Py = 2 Dby if x ¢ X and P, = ak?y if y ¢ X. In this section, we
will establish some lemmas. It is worth noting that all lemmas in this section except
the last one do not depend on the 3-critical property of G.

Definition. A vertex v € P; (1 < i < k) is called an A-vertex if G[V(P;) U {z41}]
contains a hamiltonian (v, z;4+1)-path, and v € P; (0 < i < k — 1) a B-vertex if
G|V (P;) U{z;}] contains a hamiltonian (z;,v)-path, where z4+1 =y and 29 = x.



From the definition, we can see that each a; is an A-vertex and each b; is a B-
vertex. Let u; € P; be an A-vertex and @); a given hamiltonian (u;,x;41)-path in
G[V(P;) U{x;t1}]. Suppose the orientation of Q; is from wu; to z;11. We have the
following two lemmas.

Lemma 3.1. If u; € P; and u; € P; are two A-vertices (B-vertices, respectively) with
i # j, then zpu; ¢ E(G) and wyu; ¢ E(G). In particular, both AU{zp} and BU{zp}
are independent sets.

Proof. If zpu; € E(G), then xﬁxixpui@xiﬂ ﬁy is a hamiltonian (z,y)-path. Assume
i < j. If wju; € E(G), then the (z,y)-path a:I_D)xia:pa;j?miH(@uiuj@xjHﬁy is
hamiltonian, a contradiction. 1

Lemma 3.2. Let uw; € F;, u; € P; be A-vertices with i < j, Q = Ui@$i+1?xj and
R = uj@:vjﬂﬁy. If v € Ng(u;), then v~ ¢ N(u;) and if v € N(ui)ﬁ(xﬁinR), then
vt & N(u;). In particular, let a;,a; € A with ¢ < j and v € N(a;), then v~ ¢ N(a;) if
NS aiﬁxj and vt ¢ N(aj) ifv e aPx; U ajﬁy.

Proof. If v € Ng(u;) and v~ € N(uj), then the (z,y)-path xﬁximpxjavuiav_ujﬁy
is hamiltonian, a contradiction. As for the latter case, the proof is similar. 1

By symmetry of A and B, Lemma 3.2 still holds if we exchange A and B.

Lemma 3.3. Let u,v € aiﬁbj with j > i+ 1 and G[aiﬁbj] contain a hamiltonian
(u,v)-path Q. Suppose that w € 2 Px; U xjﬁy and vw € E(G). Then w™v ¢ E(G) if
w™ € Px; U xj?y, and whv ¢ E(G) if wt € 2 Pz; U xjﬁy. In particular, let a; € A
and b; € B with j > ¢4 1. Suppose that v € xﬁxz U mjl_jy and a;v € E(G). Then
v7b; ¢ BE(G) if v~ € 2Px; Uz; Py and vtb; ¢ E(G) if vt € 2 Px; Uz Py.

Proof. Suppose that w € 2P fw™ € 2Px; and w v € E(G), then the (x,y)-path
acﬁw_vt_)uwﬁ:mmpxjﬁy is hamiltonian, and if wt € xPz; and whv € E(G), then

the (z,y)-path xﬁwu@vw*?xixpxjﬁy is hamiltonian, a contradiction. As for the
case w € acjﬁy, the proof is similar. |

Lemma 3.4. Let u,u™ € V(P,). If uTa; € E(G) for some | > i+ 1, then bju ¢ E(G)
for all 57 <.

Proof. 1f bju € E(G) for some j < i, then the (z,y)-path xl_jbju?xjxpxl?fralﬁy is
hamiltonian, a contradiction. 1

Lemma 3.5. Let 2 € V(G) — N[zp|. If [IN(2) N A| > 2, then 272" ¢ E(G).

Proof. Let aj, am € N(z) with I < m and z € P;. If 272" € E(G), then the (z, y)-path
xﬁz_z+ﬁxlxpxm(]_3alzamﬁy is hamiltonian if j < [, x?azla:pxm(]?z“‘z_(palzaml_jy
is hamiltonian if | < j < m, and x?xlxpxm?alzamﬁz_ﬁ?y is hamiltonian if m < j,



a contradiction. |

Lemma 3.6. Let 2,27 € P, w,w™ € Pj withi,j >1and k> 4. If |[A—-N(z)| <1
and A C N(w), then z~w™~ ¢ E(G

Proof. Suppose to the contrary z~w~ € E(G). If i = j and w € xﬁz, then a;z ¢
E(G) for otherwise w is an A-vertex, which contradicts Lemma 3.1 since A C N(w).
Hence we have A — {a;} C N(z). Noting that A C N(w) and k > 4, we have
w # 2z~ by Lemma 3.2. Thus, the (z,y)-path s Pw 2~ Pwazﬁxgxp:):ngagﬁy is
hamiltonian if ¢ = 1, xﬁmlxpmngalﬁw z~ Pwagﬁy is hamiltonian if ¢ = 2, and
mﬁajlmpxg Palw?z w™ Pagzﬁy is hamiltonian if ¢ > 3, a contradiction. If i = j
and z € x?w, then since a;w € E(G), z is an A-vertex, which contradicts Lemma
3.1 since |A — N(z)| < 1. If i # j, then since ajw € E(G), w™ is an A-vertex. Since
z~w~ € E(G), by Lemma 3.1, za; ¢ E(G). Thus, x?xixp:zj(]?zajﬁw_z_(]?aiw?y is
a hamiltonian (z,y)-path if i < j, and x?mjxpxiﬁwai?z_w_(ﬁajz?y is a hamilto-
nian (x,y)-path if i > j, also a contradiction. 1

Lemma 3.7. Let 27,z € P, w™,w € Pj withi,j >1and k > 4. If [AUB—N(z)| <1
and |[A — N(w)| <1, then w™ 2z~ ¢ E(G).

Proof. We first show the following claim.

Claim 3.1. Let u=,u € P, v_,v € Py, and h # I,m. If uwv™ € E(G), then either
uap, ¢ E(G) or vby41 ¢ E(G).

Proof. Assume without loss of generality v € uﬁy. If wap, vbp 1 € E(G), then u # v~
by Lemma 3.3. Thus the (z,y)-path .’Ifﬁl'hxpxh+1 f’)u*v*?uahﬁbhﬂvﬁy is hamilto-
nian if h <1, xﬁu‘v‘?whﬂxpxh?uah]_jbhﬂvﬁy is hamiltonian if [ < h < m, and
x?u‘v_?uahﬁbhﬂvﬁxhxp:chﬂ]_jy is hamiltonian if m < h, a contradiction. |

By Lemma 3.6, we may assume B C N(z). If w™z2~ € E(G), then by Claim 3.1,
aqw ¢ E(G) for | # i,j. Noting k > 4 and |A — N(w)| < 1, we have i # j and
wa;, wa; € E(G). Since wa; € E(G), w™ is an A-vertex. If za; € E(G), then 2z~ is
also an A-vertex which contradicts Lemma 3.1 since ¢ # j and w™z~ € E(G). Hence,
za; ¢ E(G), which implies za; € E(G) since |[AU B — N(z)| < 1. If j < k, then
w” Pa]wﬁbﬁl is a hamiltonian path in G[V(P;)], which contradicts Lemma 3.3 since
w27, 2bj41 € E(G), and hence we have i < j and j = k by Lemma 3.3. In this case,
the (z,y)-path x?ximpxjﬁzaj?w_z_?aiw?y is hamiltonian, a contradiction. |

Lemma 3.8 (Chen et al. [4]). Let z € V(P)— X and v € AUB. If d(zp) = k > 4 and
AUB —{v} C N(z), then AU{z"} is an independent set if 2™ € V(P) and BU {27}
is an independent set if 2~ € V(P).

Lemma 3.9 (Chen et al. [5]). Let w,v ¢ V(F;) and {u,v} = V(F;). If ua;,vbiy; €
E(G), where by 1 = yif i = k, then there is some w € V(F;) such that vw, vw™ € E(G).
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Let z € P;j and [a;, 2] — xp. We have the following five lemmas (3.10-3.14).
Lemma 3.10. If 2 <4 < j and 21 € V(P), then AU {xp, 2"} is an independent set.

Proof. Since za; € F(G), we have q;z* ¢ E(G) for 2 < | < j by Lemma 3.2. If
a127 € E(G) or izt € E(G) for some [ > j + 1, then by Lemmas 3.3 or 3.4 we
have bez ¢ E(G) and hence bea; € E(G). By Lemma 3.9, there is some w € P
such that wz,wta; € E(G). Thus, the (z,y)-path ¢ Pryxpr; Pwta; PzwParzt Py
is hamiltonian if a;2™ € E(G), and xﬁwz?aiw+ﬁxi:ppxl<ﬁz+alﬁy is hamiltonian
if @zt € E(G) for some | > j + 1, a contradiction. If z € B, then z = bj;;. By
Lemma 3.1 we have aibj1,b2a; € E(G). By Lemma 3.9, there is some w € P; such
that wbj11,wta; € E(G), which contradicts Lemma 3.3. Thus, z ¢ B and hence
ztxp ¢ E(G), which implies AU {xp, 2"} is an independent set. 1

Lemma 3.11. If 2 < i < j and |A| > 3, then BU {z7,zp} is an independent set.

Proof. Since A —{a;} C N(z) and 2 <1 < j, we have bjz~ ¢ E(G) for [ #1,j+ 1 by
Lemma 3.3. If biz~ € E(G) or 27 bj+1 € E(G), then by Lemmas 3.2 or 3.1, we have
by ¢ N(z). Since [a;, z] — xp, we have bea; € E(G). By Lemma 3.9, there is some u €
P such that uz,uta; € E(G). Thus the (x,y)-path x?blz_?aiu“‘ﬁmixpxl?uz?y is
hamiltonian if b1z~ € E(G), and x?uz?bﬁlz_?aiquﬁxixpijﬁy is hamiltonian
if bj;12~ € E(G), a contradiction. Since |A| > 3 and [a;,2] — xp, by Lemma 3.1
we have z ¢ A which implies z"zp ¢ E(G). Thus, by Lemma 3.1 we can see that
BU{z",zp} is an independent set. 1

Lemma 3.12. If j +1 < i, then AU {z",zp} is an independent set.

Proof. Since a;y1z € E(G), by Lemma 3.2 we have a;z* ¢ E(G) for all [ with [ # j+1.
Ifaj112t € E(G), then by Lemma 3.3 we have bj 192 ¢ E(G) and hence a;bj12 € E(G).
By Lemma 3.9, there is some u € Pji such that uz,uta; € E(G). Thus, the (z,y)-
= - . - o
path 2P 2uPa; 12" Pajzpr; Puta; Py is hamiltonian, a contradiction. If z € B,
then z = bjy1. Since [a;,2] — xp and j + 1 < 4, there is some u € Pj41 such
that uz,u"a; € E(G), which contradicts Lemma 3.4. Hence z ¢ B which implies
2Tzp ¢ E(G). Thus, AU{z",zp} is an independent set by Lemma 3.1. 1

Lemma 3.13. Let |[A| > 3. If j+1 < i and z= € V(P), then BU{z7,zp} is an
independent set.

Proof. Since aj412 € E(G), we have bz~ ¢ E(G) for | # j+ 1 by Lemmas 3.3 and 3.4.
If bj112~ € E(G), then z is a B-vertex. By Lemma 3.1 we have zb; o ¢ E(G), which
implies a;bj+2 € E(G). By Lemma 3.9, there is some w € Pjy1 such that zw,w"a; €
E(G). Thus, the (x,y)-path xﬁz‘bjﬂ?zw?xﬁlxpxi(]?erail_jy is hamiltonian, a
contradiction. Since |A| > 3 and [a;, 2] — zp, we have z ¢ A by Lemma 3.1 and hence
z-xp ¢ E(G). Thus, BU{z ,zp} is an independent set. 1
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The following two lemmas can be extracted from [5]: Lemma 3.14 is extracted from
the Case 2 of Lemma 2.8(2) and Lemma 3.15 from Lemma 2.9 in [5].

Lemma 3.14 (Chen et al. [5]). If j =i—1>1, d(zp) =k >4 and {z,y} C N(zq)
for any longest (z,y)-path @, then BU {2z~ ,xp} is an independent set.

Lemma 3.15 (Chen et al. [5]). Suppose that P is a longest (x,y)-path such that
|X N {z,y}| is as small as possible and that for this path, d(zp) = k > 4. If G is
3-critical, then there exists an independent set I such that either {xp} UA C I or
{rp}UBCTIand |I| > k+1. 1

4. Proof of Theorem 4

Let G be a 3-connected 3-critical graph with a(G) = §(G) +1 > 5. If G is not
Hamilton-connected, then by Theorem 5, there are two vertices z,y € V(G) such
that p(x,y) = n — 2. Among all the longest (z,y)-paths, we choose P such that
{z,y} NN (zp)| is as small as possible. Choose an orientation of P such that |A| > |B|.
Assume without loss of generality that the orientation is from x to y. We still use the
notations given in Section 3.

Since a(G) = 6(G)+1 > 5, by the choice of P and Lemma 3.15, d(zp) =k =6 > 4.
We first show the following claims.

Claim 4.1. Let z € Pj and [a;, 2] — xp. If |[A|=kand j =i—12> 1, then BU{z,zp}
is an independent set.

Proof. Let U = N[zp] U A. By Lemmas 2.1 and 2.2, we may assume that [a;,,z;,] —

aj,,, for 1 <1 <k —1. Thus, noting that |A| = k, we have

dy(z;) > 6 for any z; € N(zp). (4-1)

Assume b; € B and bz~ € E(G). Since A — {a;} C N(z), by Lemma 3.3, [ €
{1,j+1,i+1}. If j = 1, then ¢ = 2. Since a3z € E(G), by Lemma 3.4, [ # 1
and hence | € {2,3}. If [ = 2 or 3, then by Lemma 3.2 we have byz ¢ E(G) and hence
asby € E(G). Since zas,asby € E(G), by Lemma 3.1 we have |P;| > 2 and |P| > 2,
which implies by,b3 ¢ U. Thus we have d(z2) > 0 + 1 and d(z3) > § + 1 by (4-1).
If ] =2, then Q = xﬁz*bgﬁzagl_:’)bz;agﬁxgwpmﬁy is an (z,y)-path of length n — 2
with d(zg) = d(x2) > 6 + 1 and if [ = 3, then R = $ﬁ2_b3<pagb4(ﬁa32ﬁ$gxp$4?y
is an (z,y)-path of length n — 2 with d(zg) = d(z3) > § + 1. Since a(G) = §(G) + 1,
by Lemma 3.1 we have y € N(x2) if l = 2 and y € N(x3) if | = 3. If y # ag, then
d(xe) > 0+ 21if I = 2 and d(z3) > § + 2 if [ = 3, which implies a(G) > 6(G) + 2 by
Lemma 3.1, a contradiction. Hence y = a;. Thus, CB?Z_Z)Q(FZCLQ,?CL%IEP%?,(?Q?QCL]C is a
hamiltonian (z,y)-path if [ = 2 and azﬁz_bgﬁzagﬁazk:ﬁpxgak is a hamiltonian (z,y)-
path if | = 3, a contradiction. Hence we have j > 2. Since [ € {1,j + 1,7+ 1}, we have
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baz ¢ E(G) by Lemma 3.2 and hence bea; € E(G). If | = 1, then since [a;, 2] — xp,
we have zzy; € E(G) or a;x1 € E(G). Thus, x?blz_?xgxpxi(ﬁleﬁbwiﬁy is a
hamiltonian (z,y)-path if zzq € E(G) and xﬁblz_?alzﬁxixpxlai?y is a hamilto-
nian (z,y)-path if a;z1 € E(G). If j+ 1, then Q = $?$1$P$2?Z_bj+1?ZCLlﬁbQ(Ii?y
is an (x,y)-path of length n — 2 with g = x;41. Since |Pj| > 2, bj41 ¢ U which
implies d(zj11) > 6 + 1 by (4-1). Since o(G) = §(G) + 1, by Lemma 3.1 we have
zxjy1 € E(G) and & = z1. In this case, xxjﬂxpa:gﬁz*bﬂl(]_:’zal?bgai?y is a hamil-
tonian (z,y)-path. If [ = i + 1, then since [a;, 2] — zp, we have zz;11 € E(G) or
a;zi+1 € E(G). Thus, .fl:?bgaz‘ﬁbzq_lz_?.CCQ.TPJIZ‘(FZ.TZ‘_A,_l?y in the former case and
x?xla}pxiﬁzal?z_bi+1<ﬁaix,~+1l_3)y in the latter case, is a hamiltonian (z,y)-path, a
contradiction. Therefore, B U {2z~ } is an independent set. On the other hand, since
k > 4 and [a;, 2] — xp, by Lemma 3.1, we have z ¢ A and hence z~zp ¢ E(G). Thus
by Lemma 3.1, BU{z",zp} is an independent set. 1

Claim 4.2. Let I = {xp} UW with |I| = k+1 > 5 be an independent set. If W = A or
I is obtained by one of the Lemmas 3.8 and 3.10-3.15, then [zp,x;] — w is impossible
for any z; € X and w € W.

Proof. 1f [xp,x;] — w for some w € W and z; € X, then by Lemmas 2.5 and 2.8,
W contains a vertex w’ such that V(G) C N*[w']. If W = A, then by Lemma 3.1,
G* contains a hamiltonian (z,y)-path and hence p(z,y) = n — 1 by Theorem 7, a
contradiction. If I is obtained by one of the Lemmas 3.8 and 3.10-3.15, then by the
proofs of these lemmas, we can see that G* contains a hamiltonian (z,y)-path, which
implies p(x,y) = n — 1 by Theorem 7, also a contradiction. 1

If N(zp) N{z,y} = 0, then |A| = |B| = k. By Lemmas 2.1 and 2.2, we may
assume [a;,, z;] — a;,, for 1 <1 <k —1. Since k > 4, by Lemma 2.5 there is some
a; with ¢ > 2 and a vertex z € V(G) — N[zp] such that [zp, z] — a; or [a;, 2] — zp.
If [zp, z] — a;, then @ > ¢ + 2 by Lemma 3.8 and if [a;, 2] — xp, then o > § + 2 by
Lemmas 3.10-3.14 and Claim 4.1, a contradiction. Thus, |N(xp) N {z,y}| > 1. By the
choice of the orientation of P, we have x = x.

Claim 4.3. For any a; € A and any z € V(G) — N|zp]|, [zp, 2] — a; is impossible.

Proof. Suppose to the contrary there is some z € V(G) — N[zp] such that [zp, z] — a;.
Since x = x1, by Lemma 3.8, BU {zp, 2"} is an independent set, and if |A| = k — 1,
then AU {xp, 2"} is also an independent set. Noting that AU {zp} or AU {zp,2}
is a maximum independent set and k > 4, by Claim 4.2, there are some a; € A with
j#1,iand w € V(G) — N[zp] such that [zp,w] — a; or [aj,w] — zp. In both cases,
we have w # z and |A — N(w)| < 1. By Lemma 3.8 or Lemmas 3.11, 3.13, 3.14 and
Claim 4.1, BU {zp,w™} is an independent set. By Lemma 3.7, w™ 2~ ¢ E(G). Thus,
BU{zp,z7,w™} is an independent set of order k + 2, a contradiction. 1
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If |A| = k—1, then Lemma 3.15 and the symmetry of A and B, we may assume that
G contains an independent set I such that AU{zp} C I and |I| = k+1. If |A| = k, then
AU{zp} is a maximum independent set. Thus, by Claim 4.2, [zp, 2;] — a is impossible
for any a € A and x; € X. Since AU {xp} is an independent set by Lemma 3.1 and G
is 3-critical, by Claim 4.3 we may assume in the following proof that [a;, z;] — zp for
all a; € A.

We now consider the following two cases separately.
Case 1. |[N(zp)N{z,y} =1

Let w € P; and wa; € E(G). If ai?w Z Nla;], say, v € ai?w is the last vertex
that is not adjacent to a; along aiﬁw, then since wa; € E(G), v is an A-vertex. Thus,
AU {zp,v} is an independent set of order k + 2 by Lemma 3.1 and hence we have

a; Pw C Nla] if w € P; and wa; € E(G). (4-2)

Since o« = § + 1, by Lemmas 3.10-3.14 and Claim 4.1, we have z; € P,_1 or z; = y
for 2 <@ < k. If there are two vertices z; and z; such that z; € P and z; € Pj_q,
then both B U {zp,z; } and BU {zp,2; } are independent sets by Claim 4.1. Since
ai—1%i, @j—125 € E(G), z:

; and z; are A-vertices and hence z; z; ¢ E(G) by Lemma

3.1, which implies BU{zp, z; , z; } is an independent set of order ]k—i—Q, a contradiction.
Thus, noting that £ > 4, there exist at least two vertices z;, z; with 4,7 # 1 such that
zj = zj =y, which implies A C N(y) and BU {y~} is an independent set by Lemma
3.11. If there is some z; with ¢ > 2 such that z; # y, then 27y~ ¢ E(G) by Lemma
3.6 and hence B U {xp,z; ,y~} is an independent set of order k + 2, a contradiction.
Thus, we have z; = y for 2 <i < k. By (4-2), Py C N/ag], which implies each vertex of
P, —{y} is an A-vertex. Let z; € P;. If 21 # y, then j < k — 1. Since aj1121 € E(G),
we have bjz; ¢ E(G) for | # j+1 by Lemmas 3.3 and 3.4. Since zjax, a1y € E(G) and
[a1,21] — xp, by Lemma 3.9 there is some vertex w € Py, such that wz1,w"a; € F(G),
which implies 21 bj+1 € E(G) by Lemma 3.3. By Lemma 3.6, z; ¥y~ ¢ E(G) and hence
BU{xp,z;,y"} is an independent set of order k + 2, a contradiction. Thus, z; =y
and hence we have

zi=yforl1<i<k. (4-3)

Since A C N(y), by Lemma 3.1, we have y # a, and hence y~zp ¢ E(G). If
there is some z € V(G) — N[z p] such that [xp,z] — y~, then z # y. By Lemma 3.8,
AU{zp,z"} is an independent set of order k + 2, a contradiction. Since BU{y~,zp}
is a maximum independent set, by Claim 4.2, there is no vertex x; € X such that
[xp,z;] — y~. Thus, there is some vertex z € P; such that [y~,z] — xp. If z # y,
then since arpy € E(G), all vertices of ap Py~ are A-vertices by (4-2), which implies
z ¢ Py since otherwise {y~, 2z} ¥ A — {ax} by Lemma 3.1. Since y~ is an A-vertex, we
have A — {ar} C N(z), which implies bz~ ¢ E(G) for | # 1+ 1. If 27bi41 € E(G),
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then z is a B-vertex. Thus, noting that B U {y~} is an independent set, we can see
{y~,2z} # B —{biy1}, a contradiction. Thus we have z~b; ¢ E(G) for 2 <1 < k. Since
y~ is an A-vertex, k > 4 and [y, 2] — xp, we have z ¢ A and hence z"zp ¢ E(G).
By Lemma 3.6, y~ 2~ ¢ E(G). Thus, BU{zp,y ,2"} is an independent set of order
k 4+ 2, also a contradiction. Thus we have z = y, that is,

[y, y7] — zp. (4-4)

By Lemma 3.1, (4-2) and (4-3), P, € NJy]. By Lemma 3.11, (4-3) and (4-4),
AUB C N(y). For 1 <i <k —1, if there is some u € P; such that uy ¢ E(G),
then u*,u~ € P; since AUB C N(y). By (4-3), A C N(u). By Lemma 3.5, we have

uut ¢ E( ). By Lemma 3.6, u"y” ¢ E(GQ). futy™ € E(G) then the (z,y)-path
T xlxpkau Y- PakuPaly is hamiltonian and hence u™y~ ¢ FE(G). By Lemma
3.3, u"b,uth ¢ E(G) for I # i+ 1, which implies B U {zp,u",ut,y~} — {bi11}
is an independent set of order k + 2, a contradiction. Thus, we have P; C NJy| for
1 <i<k—1and hence {zp,y} = V(G), a contradiction.

Case 2. |N(zp) N{z,y} =2
In this case, we let z9 € P;.

Suppose i = 1, 1 > 3 and 2 € Pj. Assume 2 # zp. If j # 1, then 2z, 2,7 ¢ E(G) for
otherwise the (z,y)-path xa:pxzﬁ@alf’)z;zl_(]?azzll_jy is hamiltonian. If j = 1 and
2y 2, € E(G), then 2 is an A-vertex if 2 € ZE?ZQ and z9 an A-vertex if zo € x?zl. By
Lemma 3.1, zjaz, z2a; ¢ E(G), which is impossible since [a2, z2] — zp and [a;, z1] — zp.
Thus, 25 2, ¢ E(G) and hence BU {zp,2;,% } is an independent set of order k + 2
by Lemmas 3.11, 3.13 and 3.14. Therefore, we have

=z for3<[<k—-1ifi=1. (4-5)

If i > 2, then AU {xp, 25} is an independent set by Lemma 3.10. If i = 1, then
by (4-5) and Lemma 3.12, AU {zp, z3 } is an independent set. By Lemmas 3.11 and
3.14, BU{xp,2; } is an independent set. Thus, both B U {xp, 2, } and AU {xp, 25}
are independent sets.

If there is some w € V(G) — N[zp] such that [zp,w] — 25 ([zp,w] — 2, , respec-
tively), then w # z3. By Lemma 3.8, BU{xp,w™ } is an independent set. By Lemma 3.7
we have z; w™ ¢ E(G) and hence BU{zp,w™, 25 } is an independent set of order k+2,
a contradiction. Thus, noting that both BU {zp,z; } and AU {zp, 25 } are maximum
independent sets, by Claim 4.2, we may assume [z5,w1] — xp and [z5 ,wa] — xp.

Let wy € P;. If wy # 2o, then since k > 4, AU {2} is an independent set and
[25,w1] — zp, we have wy ¢ A, which implies w; xp ¢ E(G), and A C N(w), which
implies w; by ¢ E(G) for [ # j + 1 by Lemma 3.3. If wj bj41 € E(G), then wy is a
B-vertex. Thus by Lemma 3.1 we have B—{b;11} C N(25). If j = 2, then since k > 4,
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there is some [ with [ # 2,7 such that z0a; € E(G), which implies 25 b;41 ¢ E(G) by
Lemma 3.3, a contradiction. If j # 2, then by Lemma 3.5 we have z) z, ¢ E(G), which
implies w12, € E(G). Since ajzy € E(G), by Lemma 3.3 we have ¢ = j. Thus, since
k > 4, there is some [ with [ # 2, j such that zeaq; € E(G), which implies z5 b, 11 ¢ E(G)
by Lemma 3.3, also a contradiction. Hence, B U {zp,w; } is an independent set. By
Lemma 3.6, z, w; ¢ E(G). Thus by Lemma 3.1, BU {xp, z, ,w; } is an independent
set of order k + 2, a contradiction. Hence we have wy = 23, that is,

(25, 22] = @p. (4-6)

If wg # 29, then since BU {2, ,zp} is an independent set, we have B C N(wz). By
(4-6), we have A C N(z2) € E(G), which implies z;, is an A-vertex. Thus, A — {a;} C
N (w3), which implies |AU B — N(w2)| < 1. By Lemmas 3.7 and 3.8, we can see that
BU{zp, 2, ,w; } is an independent set of order k + 2, a contradiction. Hence we have
Wy = 29, that iS,

[2’2_, 2’2] — Ip. (4—7)

By (4-6) and (4-7), AU B C N(z2). If there is some vertex v € a; Pz such that
va; ¢ F(G) and vta; € E(G), then v is an A-vertex. If vz € E(G), then z is an
A-vertex, which contradicts Lemma 3.1. Thus, AU {zp,v, 25} is an independent set
of order k + 2, a contradiction. Noting that 22 € N(a;), we have aiﬁzg C Nla;]. By
symmetry, we have zzﬁbiH C N[bjt1]. If N(z;) N aif’)zg # (), then since aiﬁzg C
Nla;], z2 is A-vertex and if N(z; )N z;ﬁbiﬂ # (), then since ZQﬁbi_A'_l C Nbit1], 22 is
a B-vertex, which contradicts Lemma 3.1 since AU B C N(z2). Thus, we have

N(z)N ai?zg =0 and N(z,) N z;ﬁbiﬂ = 0. (4-8)

Assume z; € P; and z; # z2. Since [a1,21] — zp and k > 4, by Lemma 3.1 we
have z; ¢ A, which implies z; 2p ¢ E(G). If j # k — 1, then since z1a;41 € E(G),
we have bjz; ¢ E(G) for | # j + 1 by Lemmas 3.3 and 3.4. If bj112; € E(G),
then z; is a B-vertex. Thus, by Lemmas 3.1 and 3.9, there is some vertex w € Pj_1
such that wtay,z1w € E(G), which contradicts Lemma 3.3. Hence, B U {zp, 2] }
is an independent set. If j = k — 1, then i # k — 1 for otherwise {a1,21} ¥ z3 if
21 € ak_lﬁzg by Lemma 3.10 and (4-8), and {a1, 21} # 2, if 21 € z;ﬁbk by (4-8)
and Lemma 3.1 since z, is an A-vertex. Since agz; € E(G), we have bjz; ¢ E(G)
for I # 2,k by Lemma 3.3. If byz; € E(G), then b3z; ¢ E(G) by Lemma 3.2 which
implies a1bs € E(G). Since [a1,21] — xp, we can see that either a;zz € E(G) or
z1z3 € E(G). Thus, the (z,y)-path xxpxgﬁxgalﬁbng?agzlﬁy is hamiltonian in
the former case, and zx Pﬂfgﬁbgalﬁbng <]3x3211_3)y is hamiltonian in the latter case,
a contradiction. If z; by € F(G), then 21 is a B-vertex. By (4-8), z5 is a B-vertex,
which implies z3 21 ¢ E(G) by Lemma 3.1 and hence {a1, 21} % 25, a contradiction.
Thus, BU{zp, 2] } is an independent set. By (4-6) and (4-7), we have AUB C N(z2),
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which implies 2] z5 ¢ E(G) by Lemma 3.7. Thus, BU{zp, 2], 2, } is an independent
set of order k + 2 and hence we have z; = z3. By (4-5), we have z; = 29 for [ > 3 if
i =1. If i > 2 and there is some z; with [ > 3 such that z; # 22, then BU {zp, 2 }
is an independent set by Lemmas 3.11, 3.13 and 3.14. By (4-6), A C N(z2) and hence
2y 2z, ¢ E(G) by Lemma 3.6. Thus, BU {xp,2;,2 } is an independent set of order
k + 2, a contradiction. Thus we have

21 = 2o for | # 2. (4-9)

By (4-6), (4-7) and (4-8), we have P; C N[z9] and AU B C N(z2). Let | # i.
If there is some u € P, such that uze ¢ E(G), then ut,u™ ¢ N(zp) and A C
N(u) by (4-9). By Lemma 3.3, bpu®,bpu~ ¢ E(G) for m # [ + 1. By Lemma
3.5, utu™ ¢ E(G). By Lemma 3.7, u 25 ¢ E(G). If utz; € E(G), then the
(z,y)-path x?azla;pxiﬁu+z2_<]3aiu(]3a122?y is hamiltonian if [ < 4 and if { > 1,
then x?xﬂ: le(FZQGI?UGi?Z; u+?y is hamiltonian, a contradiction. Thus, we have
utzy ¢ E(G), which implies BU {zp,u™,u™, 25 } — {b41} is an independent set of
order k + 2, a contradiction. Therefore, we have P, C N[z for | # i, which implies
{zp, 2} > V(Q), a contradiction.

The proof of Theorem 4 is complete. 1
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