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Abstract: For two given graphs G1 and G2, the Ramsey number R(G1, G2)
is the smallest integer n such that for any graph G of order n, either G

contains G1 or the complement of G contains G2. Let Cm denote a cycle
of length m and Kn a complete graph of order n. It was conjectured that
R(Cm,Kn) = (m−1)(n−1)+1 for m ≥ n ≥ 3 and (m,n) 6= (3, 3). We show
that R(C6,K7) = 31 and R(C7,K7) = 37, and the latter result confirms the
conjecture in the case when m = n = 7.
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1. Introduction

All graphs considered in this paper are finite simple graphs without loops. For two
given graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest integer n such
that for any graph G of order n, either G contains G1 or G contains G2, where G is the
complement of G. The neighborhood N(v) of a vertex v is the set of vertices adjacent
to v in G and N [v] = N(v) ∪ {v}. The minimum degree of G is denoted by δ(G).
Let V1, V2 ⊆ V (G). We use E(V1, V2) to denote the set of the edges between V1 and
V2. The independence number of a graph G is denoted by α(G). For U ⊆ V (G), we
write α(U) for α(G[U ]), where G[U ] is the subgraph induced by U in G. A cycle and a
path of order n are denoted by Cn and Pn, respectively. A clique or complete graph of
order n is denoted by Kn. We use mKn to denote the union of m vertex disjoint Kn’s.
For two vertex disjoint graphs G and H, G + H denote the graph with its vertex set
V (G)∪ V (H) and edge set E(G)∪E(H)∪ {uv | u ∈ V (G) and v ∈ V (H)}. A wheel of
order n+1 is Wn = K1 +Cn and W−

n is a graph obtained from Wn by deleting a spoke
from Wn. A fan Fn = K1 + nK2 is a graph of order 2n + 1 and a book Bn = K2 + Kn

is a graph of order n + 2. For notations not defined here, we follow [2].
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For the Ramsey number R(Cm,Kn), it has been determined for the cases n ≤ 6;
m = 3 and 7 ≤ n ≤ 9; m = 4 and n = 7, 8; m = 5 and n = 7; and some other cases
such as n ≥ 4m + 2, and so on. For details, see the dynamic survey [8]. In 1978, Erdös
et al. [4] posed the following.

Conjecture 1 (Erdös et al. [4]). R(Cm,Kn) = (m− 1)(n− 1) + 1 for m ≥ n ≥ 3 and
(m,n) 6= (3, 3).

The conjecture was confirmed for n = 3 in early works on Ramsey theory [5] and [9].
Yang et al. [11] proved the conjecture for n = 4.

Theorem 1 (Yang et al. [11]). R(Cm,K4) = 3m− 2 for m ≥ 4.

Bollobás et al. [1] showed that the conjecture is true for n = 5.

Theorem 2 (Bollobás et al. [1]). R(Cm,K5) = 4m− 3 for m ≥ 5.

Recently, Schiermeyer [10] confirmed the conjecture for n = 6.

Theorem 3 (Schiermeyer [10]). R(Cm,K6) = 5m− 4 for m ≥ 6.

Until now, the conjecture is still open. Researchers are interested in determining all
the values of the Ramsey number R(Cm,K7). In this paper our main purpose is to
determine the values of R(Cm,K7) when m = 6, 7, which is our first step towards
calculating the values of R(Cm,K7) for all m. The main results of this paper are as
follows.

Theorem 4. R(C6,K7) = 31.

Theorem 5. R(C7,K7) = 37.

Obviously, Theorem 5 confirms Conjecture 1 for the case when m = n = 7.

2. Some Lemmas

In order to prove Theorems 4 and 5, we need the following lemmas.

Lemma 1 (Graver et al. [6] and Kalbfleisch [7]). R(K3,K7) = 23.

Lemma 2 (Dirac [3]). Let G be a graph of order n. If δ(G) ≥ n/2, then G is
hamiltonian.

The following lemma can be deduced from the known Ramsey numbers, see [8].

Lemma 3. R(B2,K7) ≤ 34.

Lemma 4. Let G be a graph of order 6n− 5 (n ≥ 6) with α(G) ≤ 6. If G contains no
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Cn, then δ(G) ≥ n− 1.

Proof. If there is some vertex v such that d(v) ≤ n− 2, then G′ = G−N [v] is a graph
of order at least 5n− 4. By Theorem 3, α(G′) ≥ 6. Thus, an independent set of order
at least 6 in G′ together with v form an independent set of order at least 7 in G, which
contradicts α(G) ≤ 6.

Lemma 5. Let G be a graph of order 6n− 5 (n ≥ 6) with α(G) ≤ 6. If G contains no
Cn, then G contains no Wn−2.

Proof. Suppose to the contrary that G contains a Wn−2 = {w0} + C, where C =
w1 · · ·wn−2 is a cycle of length n − 2. Set U = V (G) − V (Wn−2). By Lemma 4,
δ(G) ≥ n − 1. Thus, we have NU (wi) 6= ∅ for 0 ≤ i ≤ n − 2. Let vi ∈ NU (wi) and
Vi = NU [vi], where 0 ≤ i ≤ n− 2. Since G contains no Cn, we have

N(Vi) ∩ V (Wn−2) = {wi} for 0 ≤ i ≤ n− 2, (1)

Vi ∩ Vj = ∅ for 0 ≤ i < j ≤ n− 2, (2)

and

E(V0, Vi) = ∅ for 1 ≤ i ≤ n− 2. (3)

By (1), we have dWn−2(vi) = 1, which implies |Vi| ≥ n − 1 for 0 ≤ i ≤ n − 2 since
δ(G) ≥ n−1. By (2), we have n(n−1) ≤ |V (Wn−2)∪(∪n−2

i=0 Vi)| ≤ 6n−5, which implies
n ≤ 6, and hence n = 6. In this case, |G| = 31. Thus, by (2), we have 5 ≤ |Vi| ≤ 6
for 0 ≤ i ≤ 4. If there is some Vi such that |Vi| = 6, then V (G) = V (W4) ∪ (∪4

i=0Vi).
By (1) and (3), we have N(V0) ⊆ V0 ∪ {w0}. If |V0| = 6, then since δ(G) ≥ 5, we have
δ(G[V0]) ≥ 4. By Lemma 2, G[V0] contains a C6, a contradiction. If |V0| = 5, then
G[V0 ∪ {w0}] = K6 since δ(G) ≥ 5, a contradiction again. If |Vi| = 5 for 0 ≤ i ≤ 4,
then V (G)− (V (W4)∪ (∪4

i=0Vi)) contains exactly one vertex, say y. By (1) and (3), we
have N(V0) ⊆ V0 ∪ {w0, y}. Noting that δ(G) ≥ 5, we have dV0(w0) ≥ 3 or dV0(y) ≥ 3,
which implies that either G′ = G[V0 ∪ {w0}] or G′′ = G[V0 ∪ {y}] is a graph of order
6 with a minimum degree of at least 3. By Lemma 2, either G′ or G′′ contains a C6,
again a contradiction.

3. Proof of Theorems

Proof of Theorem 4. Let G be a graph of order 31. Suppose to the contrary that
neither G contains a C6 nor G contains a K7. By Lemma 4, we have δ(G) ≥ 5.

Before starting to prove Theorem 4, we first show the following claims.

Claim 1.1. G contains no K4.
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Proof. Suppose to the contrary that G contains a K4 with vertex set {v1, v2, v3, v4}
and U = V (G) − {v1, v2, v3, v4}. Set NU (vi) = Ui for 1 ≤ i ≤ 4. Since δ(G) ≥ 5, we
have |Ui| ≥ 2 for 1 ≤ i ≤ 4. Let ui ∈ Ui and Vi = NU (ui) for 1 ≤ i ≤ 4.

If Ui∩Uj = ∅ for 1 ≤ i < j ≤ 4, then since δ(G) ≥ 5, we have |Vi| ≥ 4 for 1 ≤ i ≤ 4.
By Lemma 5, G[Vi] contains no C4, which implies α(Vi) ≥ 2. On the other hand, since
G contains no C6, we have Vi ∩ Vj = ∅ and E(Vi, Vj) = ∅ for 1 ≤ i < j ≤ 4. Thus, we
have α(∪4

i=1Vi) ≥ 8, a contradiction.
If there are some Ui and Uj with i 6= j such that Ui ∩Uj 6= ∅, we assume without of

loss of generality that U3 ∩U4 6= ∅. Let U0 = U3 ∩U4 and U ′
i = Ui −U0 for i = 3, 4. By

Lemma 5, U0∩ (U1∪U2) = ∅. Thus, noting that G contains no C6, we have Ui∩Uj = ∅
for i = 1, 2 and all j 6= i. This implies that |Vi| ≥ 4 for i = 1, 2. By Lemma 5, we
have α(Vi) ≥ 2 for i = 1, 2. If |U0| ≥ 2, we assume without loss of generality that
u3, u4 ∈ U0. In this case, we have E({v3},∪4

i=1Vi) = ∅, Vi ∩ Vj = ∅ and E(Vi, Vj) = ∅
for 1 ≤ i < j ≤ 4 for otherwise G contains a C6. Thus, we have α({v3}∪ (∪4

i=1Vi)) ≥ 7,
a contradiction. If |U0| = 1, we assume U0 = {u0}. Since |Ui| ≥ 2 for 1 ≤ i ≤ 4, we
may assume ui ∈ U ′

i for i = 3, 4. Let V0 = {u0, u3, u4}. Since G contains no C6, we see
that V0 is an independent set, Vi ∩ Vj = ∅ and E(Vi, Vj) = ∅ for 0 ≤ i < j ≤ 2, which
implies that α(∪2

i=0Vi) ≥ 7, again a contradiction.

Claim 1.2. G contains no K1 + P4.

Proof. Suppose G contains K1+P4, say, P = v1v2v3v4 is a path and V (P ) ⊆ N(v0). Set
U = V (G)−{vi | 0 ≤ i ≤ 4} and Ui = NU (vi) for 1 ≤ i ≤ 4. By Lemma 5, v1v4 /∈ E(G).
By Claim 1.1, v1v3, v2v4 /∈ E(G). Thus, noting that δ(G) ≥ 5, we have |Ui| ≥ 3 for
i = 1, 4 and |Ui| ≥ 2 for i = 2, 3. Since G contains no C6, we have Ui ∩ Uj = ∅ and
E(Ui, Uj) = ∅ for 1 ≤ i < j ≤ 4. By Claim 1.1, α(Ui) ≥ 2 for i = 1, 4. If α(U2) ≥ 2 or
α(U3) ≥ 2, then we have α(∪4

i=1Ui) ≥ 7, a contradiction. If α(U2) = α(U3) = 1, then
by Claim 1.1, we have G[U2] = G[U3] = K2. In this case, we have E({v0},∪4

i=1Ui) = ∅
for otherwise G contains a C6. This implies that α({v0} ∪ (∪4

i=1Ui)) ≥ 7, again a
contradiction.

Claim 1.3. G contains no B3.

Proof. Assume that G contains a B3, say, v1v2 ∈ E(G) and v3, v4, v5 ∈ N(v1) ∩N(v2).
Set U = V (G) − {vi | 1 ≤ i ≤ 5} and Ui = NU (vi) for 3 ≤ i ≤ 5. By Claim 1.1,
vivj /∈ E(G) for 3 ≤ i < j ≤ 5. Thus, noting that δ(G) ≥ 5, we have |Ui| ≥ 3 for
3 ≤ i ≤ 5. Since G contains no C6, we have Ui ∩ Uj = ∅ and E(Ui, Uj) = ∅ for
3 ≤ i < j ≤ 5. By Claim 1.1, we have α(Ui) ≥ 2 for 3 ≤ i ≤ 5. By Claim 1.2, we have
E({v1},∪5

i=3Ui) = ∅. Thus we obtain that α({v1} ∪ (∪5
i=3Ui)) ≥ 7, a contradiction.

Claim 1.4. G contains no W−
4 .

Proof. Suppose that G contains a W−
4 , say, W−

4 = {v5} + C − {v1v5}, where C =
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v1v2v3v4 is a cycle. Set U = V (G) − {vi | 1 ≤ i ≤ 5} and Ui = NU (vi) for 1 ≤ i ≤ 5.
Since G contains no C6, we have U1 ∩ (∪5

i=2Ui) = ∅. By Claims 1.2 and 1.3, we see
that U3, U4, U5 are pairwise disjoint and U2, U3, U5 are pairwise disjoint. Thus we have
U4 ∩ (U1 ∪ U3 ∪ U5) = ∅ and Ui ∩ (∪1≤j≤5 and j 6=iUj) = ∅ for i = 3, 5. Let ui ∈ Ui for
i = 3, 4, 5. Set V3 = NU (u3) − {u5}, V4 = NU (u4) and V5 = NU (u5) − {u3}. Since
δ(G) ≥ 5, by the arguments above, we have |Vi| ≥ 3 for i = 3, 4, 5. By Claim 1.1,
α(Vi) ≥ 2 for 3 ≤ i ≤ 5. Note that G contains no C6, we see that E({v1},∪5

i=3Vi) = ∅,
Vi∩Vj = ∅ and E(Vi, Vj) = ∅ for 3 ≤ i < j ≤ 5. This implies that α({v1}∪(∪5

i=3Vi)) ≥ 7,
a contradiction.

Claim 1.5. G contains no B2.

Proof. Suppose G contains a B2, say v1v2v3v4 is a cycle with diagonal v2v4. Set
U = V (G) − {v1, v2, v3, v4} and NU (vi) = Ui for 1 ≤ i ≤ 4. By Claim 1.2, U1 ∩ U2 =
U2 ∩ U3 = U3 ∩ U4 = U4 ∩ U1 = ∅. By Claim 1.3, U2 ∩ U4 = ∅. By Claim 1.4,
U1 ∩ U3 = ∅. Thus, we have Ui ∩ Uj = ∅ for 1 ≤ i < j ≤ 4. Let ui ∈ Ui for i = 2, 4,
V2 = NU (u2)− {u4} and V4 = NU (u4)− {u2}. Noting that δ(G) ≥ 5, we have |Ui| ≥ 3
for i = 1, 3 and |Vi| ≥ 3 for i = 2, 4. Since G contains no C6, it is easy to check that
U1, V2, U3, V4 are pairwise disjoint and there is no edge between any two of them. By
Claim 1.1, we have α(Ui) ≥ 2 for i = 1, 3 and α(Vi) ≥ 2 for i = 2, 4. Thus, we obtain
that α(U1 ∪ V2 ∪ U3 ∪ V4) ≥ 8, a contradiction.

Claim 1.6. G contains no F2.

Proof. Suppose that G contains an F2, say, v0v1v2 and v0v3v4 are two triangles with
v0 in common. Let U = V (G) − {vi | 0 ≤ i ≤ 4} and Ui = NU (vi) for 0 ≤ i ≤ 4. By
Claim 1.2, we have E({v1, v2}, {v3, v4}) = ∅, which implies that |Ui| ≥ 3 for 1 ≤ i ≤ 4
since δ(G) ≥ 5. By Claim 1.1, α(Ui) ≥ 2 for 1 ≤ i ≤ 4. By Claim 1.5, U1 ∩ U2 =
U3 ∩ U4 = ∅ and U0 ∩ Ui = ∅ for 1 ≤ i ≤ 4. Since G contains no C6, we see that
(U1 ∪ U2) ∩ (U3 ∪ U4) = ∅ and E(U1 ∪ U2, U3 ∪ U4) = ∅. If E(U1, U2) or E(U3, U4)
contains a 2K2, then G contains a C6, a contradiction. Thus, noting that α(Ui) ≥ 2
for 1 ≤ i ≤ 4, we have α(U1 ∪ U2) ≥ 3 and α(U3 ∪ U4) ≥ 3, and hence α(∪4

i=1Ui) ≥ 6.
By Claim 1.5, we get that α({v0} ∪ (∪4

i=1Ui)) ≥ 7, again a contradiction.

We now begin to prove Theorem 4.

By Lemma 1, G contains a triangle v1v2v3. Let U = V (G) − {v1, v2, v3} and
Ui = NU (vi) for 1 ≤ i ≤ 3. Since δ(G) ≥ 5, we have |Ui| ≥ 3 for 1 ≤ i ≤ 3. By Claim
1.5, Ui∩Uj = ∅ for 1 ≤ i < j ≤ 3. By Claim 1.6, Ui is an independent set for 1 ≤ i ≤ 3.
If E(Ui, Uj) = ∅ for 1 ≤ i < j ≤ 3, then α(∪3

i=1Ui) ≥ 9, a contradiction. Hence, we
may assume without loss of generality that v4 ∈ U2, v5 ∈ U3 and v4v5 ∈ E(G). Let
X = {vi | 1 ≤ i ≤ 5}, Y = V (G)−X and Yi = NY (vi) for 1 ≤ i ≤ 5. By Claim 1.5, we
have v1v4, v1v5, v2v5, v3v4 /∈ E(G), which implies that |Yi| ≥ 3 for i = 1, 4, 5. By Claim

5



1.1, α(Yi) ≥ 2 for i = 4, 5. By Claim 1.6, α(Y1) ≥ 3. Since G contains no C6, it is easy
to obtain that Yi ∩ Yj = ∅ and E(Yi, Yj) = ∅ for i, j ∈ {1, 4, 5} and i 6= j. Thus, we
have α(Y1 ∪ Y4 ∪ Y5) ≥ 7, again a contradiction.

Up to now, we have shown that R(C6,K7) ≤ 31. On the other hand, since 6K5

contains no C6 and its complement contains no K7, we have R(C6,K7) ≥ 31, and hence
R(C6,K7) = 31.

Proof of Theorem 5. Let G be a graph of order 37. Suppose to the contrary that
neither G contains a C7 nor G contains a K7. By Lemma 4, we have δ(G) ≥ 6.

In order to prove Theorem 5, we need the following claims.

Claim 2.1. G contains no K1 + P5.

Proof. Suppose that G contains K1 + P5, say, P = v1 · · · v5 and V (P ) ⊆ N(v0). Let
U = V (G)− {vi | 0 ≤ i ≤ 5} and NU (vi) = Ui for 0 ≤ i ≤ 5. Because of δ(G) ≥ 6, we
have Ui 6= ∅ for 0 ≤ i ≤ 5.

If U2∩U4 6= ∅, then we let v6 ∈ U2∩U4, X = {vi | 0 ≤ i ≤ 6} and Y = V (G)−X. Set
Yi = NY (vi), zi ∈ Yi and Zi = NY (zi) for 0 ≤ i ≤ 6. Since G contains no C7, it is easy
to check that Yi ∩ Yj = ∅ for i = 1, 5, 6 and j 6= i, and E(Yi, Yj) = ∅ for i, j ∈ {1, 5, 6}
and i 6= j, which implies that |Zi| ≥ 5 for i = 1, 5, 6. For the same reason, we have
E({v0}, Z1 ∪ Z5 ∪ Z6) = ∅, Zi ∩ Zj = ∅ and E(Zi, Zj) = ∅ for i, j ∈ {1, 5, 6} and i 6= j.
By Lemma 5, α(Zi) ≥ 2 for i = 1, 5, 6. Thus, we have α({v0} ∪ Z1 ∪ Z5 ∪ Z6) ≥ 7, a
contradiction. Hence, we have U2 ∩ U4 = ∅.

Noting that U2 ∩U4 = ∅ and G contains no C7, it is easy to check that Ui ∩Uj = ∅
and E(Ui, Uj) = ∅ for 1 ≤ i < j ≤ 5. Let ui ∈ Ui and Vi = NU (ui) for i = 1, 5, then we
have |Vi| ≥ 5. By Lemma 5, α(Vi) ≥ 2 for i = 1, 5. Since G contains no C7, we have
V1 ∩ V5 = ∅, E(V1, V5) = ∅, Vi ∩ (∪4

i=2Ui) = ∅ and E(Vi,∪4
i=2Ui) = ∅ for i = 1, 5. This

implies that α(V1 ∪ V5 ∪ (∪4
i=2Ui)) ≥ 7, a contradiction.

Claim 2.2. G contains no W−
5 .

Proof. Suppose that G contains a W−
5 , say, C = v1 · · · v5 and W−

5 = {v0}+C−{v0v1}.
Let U = V (G) − {vi | 0 ≤ i ≤ 5} and Ui = NU (vi) for 0 ≤ i ≤ 5. Since δ(G) ≥ 6, we
have Ui 6= ∅. Noting that G contains no C7, we have Ui ∩ Uj = ∅ and E(Ui, Uj) = ∅
for 2 ≤ i < j ≤ 4, and Ui ∩ Uj = ∅ and E(Ui, Uj) = ∅ for i = 0, 1 and all j 6= i. Take
ui ∈ Ui and set Vi = NU (ui) for i = 0, 1, then since δ(G) ≥ 6, we have |Vi| ≥ 5 for
i = 0, 1. By Lemma 5, α(Vi) ≥ 2. Since G contains no C7, we have V0 ∩ V1 = ∅ and
E(V0, V1) = ∅. For the same reason, we have Vi ∩Uj = ∅ and E(Vi, Uj) = ∅ for i = 0, 1
and j = 2, 3, 4. Thus, by the arguments above, we have α(V0 ∪ V1 ∪ (∪4

i=2Ui)) ≥ 7, a
contradiction.
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Claim 2.3. G contains no W4.

Proof. Suppose that G contains a W4, say C = v1 · · · v4 is a cycle and V (C) ⊆ N(v0).
Let U = V (G)−{vi | 0 ≤ i ≤ 4} and set Ui = NU (vi) for 0 ≤ i ≤ 4. Obviously, Ui 6= ∅.
By Claim 2.1, U0 ∩Ui = ∅ for 1 ≤ i ≤ 4. By Claim 2.2, U1 ∩U2 = U2 ∩U3 = U3 ∩U4 =
U4 ∩ U1 = ∅. Since G contains no C7, we have E(Ui, Uj) = ∅ for 0 ≤ i < j ≤ 4.
If U1 ∩ U3 6= ∅, then U2 ∩ U4 = ∅ for otherwise there is a C7 in G. By symmetry,
we may assume U1 ∩ U3 = ∅. Let ui ∈ Ui and Vi = NU (ui) for i = 0, 1, 3. By the
arguments above, we have |Vi| ≥ 5 for i = 0, 1, 3. Since G contains no C7, we see
that E({v2}, V0 ∪ V1 ∪ V3) = ∅, V0, V1 and V3 are pairwise disjoint and there is no edge
between any two of them. By Lemma 5, we have α(Vi) ≥ 2 for i = 0, 1, 3, which implies
that α({v2} ∪ V0 ∪ V1 ∪ V3) ≥ 7, a contradiction.

Claim 2.4. G contains no K4.

Proof. Suppose that G contains a K4, say S = {v1, v2, v3, v4} is a clique. Set U =
V (G)− S and Ui = NU (vi) for 1 ≤ i ≤ 4. Since δ(G) ≥ 6, we have |Ui| ≥ 3.

If there are Ui and Uj with i 6= j such that Ui ∩ Uj 6= ∅, we assume without loss
of generality that v5 ∈ U3 ∩ U4. Let X = S ∪ {v5}, Y = V (G) − X and Yi = NY (vi)
for 1 ≤ i ≤ 5. By Claim 2.1, we have (Y3 ∪ Y4) ∩ (Y1 ∪ Y2 ∪ Y5) = ∅. By Claim 2.2,
Y5 ∩ (Y1 ∪ Y2) = ∅. Since G contains no C7, we have E(Yi, Yj) = ∅ for i, j ∈ {2, 3, 5}
and i 6= j. Let zi ∈ Yi and Zi = NY (zi) for i = 2, 3, 5, then by the arguments above, we
have |Zi| ≥ 4 for i = 2, 3, 5. By Claim 2.3, α(Zi) ≥ 2. Noting that G contains no C7,
we see that E({v1}, Z2 ∪Z3 ∪Z5) = ∅, Zi ∩Zj = ∅ and E(Zi, Zj) = ∅ for i, j ∈ {2, 3, 5}
and i 6= j, which implies that α({v1} ∪ Z2 ∪ Z3 ∪ Z5) ≥ 7, a contradiction. Hence, we
have Ui ∩ Uj = ∅ for 1 ≤ i < j ≤ 4.

Take ui ∈ Ui for 1 ≤ i ≤ 4. Set T = {u1, u2, u3, u4}, U ′ = U − T and NU ′(ui) = Vi

for 1 ≤ i ≤ 4. If ∆(G[T ]) ≥ 2, then G contains a C7, and hence we may assume
∆(G[T ]) ≤ 1. Thus, noting that Ui ∩ Uj = ∅ for 1 ≤ i < j ≤ 4, we have |Vi| ≥ 4 for
1 ≤ i ≤ 4. By Claim 2.3, α(Vi) ≥ 2. Since G contains no C7, it is easy to see that
Vi ∩ Vj = ∅ and E(Vi, Vj) = ∅ for 1 ≤ i < j ≤ 4, which implies that α(∪4

i=1Vi) ≥ 8, a
contradiction.

Claim 2.5. G contains no K1 + P4.

Proof. Suppose that G contains K1+P4, say P = v1v2v3v4 is a path and V (P ) ⊆ N(v0).
Set S = {vi | 0 ≤ i ≤ 4}, U = V (G)− S and Ui = NU (vi) for 0 ≤ i ≤ 4.

We first show that U1 ∩ U2 = U3 ∩ U4 = ∅. By symmetry, we need only to show
U3 ∩ U4 = ∅. If not, we let v5 ∈ U3 ∩ U4. Set X = S ∪ {v5}, Y = V (G) − X and
Yi = NY (vi) for 0 ≤ i ≤ 5. Since G contains no C7, we have Y1 ∩ Yi = ∅ for i 6= 1,
Y2 ∩ Yi = ∅ for i 6= 0, 2 and Y4 ∩ Yi = ∅ for i 6= 3, 4. For the same reason, we have
E(Yi, Yj) = ∅ for i, j ∈ {1, 2, 4} and i 6= j. Let zi ∈ Yi and Zi = NY (zi) for i = 1, 2, 4.
By the arguments above, we have |Z1| ≥ 5 and |Zi| ≥ 4 for i = 2, 4. Noting that G
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contains no C7, we see that Z1, Z2 and Z4 are pairwise disjoint and there is no edge
between any of them. By Claims 2.1, 2.3 and 2.4, we have α(Z1) ≥ 3 and α(Zi) ≥ 2
for i = 2, 4, which implies that α(Z1 ∪ Z2 ∪ Z4) ≥ 7, a contradiction. Hence, we have
U1 ∩ U2 = U3 ∩ U4 = ∅.

Next we show that U1 ∩ U3 = U2 ∩ U4 = ∅. By symmetry, we need only to show
U2 ∩ U4 = ∅. If not, we let v5 ∈ U2 ∩ U4. Set X = S ∪ {v5}, Y = V (G) − X and
Yi = NY (vi) for 0 ≤ i ≤ 5. Since G contains no C7, we have Yi ∩Yj = ∅ for i = 1, 5 and
all j 6= i. Let zi ∈ Yi and Zi = NY (zi) for i = 1, 5, then by the arguments above, we
have |Zi| ≥ 5 for i = 1, 5. By Claims 2.1, 2.3 and 2.4, we have α(Zi) ≥ 3 for i = 1, 5.
If Z1 ∩ Z5 6= ∅ or E(Z1, Z5) 6= ∅ or E({v0}, Z1 ∪ Z5) 6= ∅, then G contains a C7, a
contradiction. Thus, we have α({v0} ∪ Z1 ∪ Z5) ≥ 7, a contradiction. Hence, we have
U1 ∩ U3 = U2 ∩ U4 = ∅.

By the arguments above, we have (U1 ∪ U4) ∩ (U2 ∪ U3) = ∅. By Claim 2.1,
U0 ∩ (U1 ∪ U4) = ∅. By Claim 2.2, U1 ∩ U4 = ∅. Thus, we have Ui ∩ Uj = ∅ for i = 1, 4
and all j 6= i. Let ui ∈ Ui and Vi = NU (ui) for i = 1, 4, then we have |Vi| ≥ 5 for
i = 1, 4. By Claims 2.1, 2.3 and 2.4, we have α(Vi) ≥ 3 for i = 1, 4. Since G contains
no C7, it is easy to see that E({v0}, V1 ∪V4) = ∅, V1 ∩V4 = ∅ and E(V1, V4) = ∅. Thus,
we have α({v0} ∪ V1 ∪ V4) ≥ 7, again a contradiction.

Claim 2.6. G contains no B3.

Proof. Assume that G contains a B3, say, v1v2 ∈ E(G) and v3, v4, v5 ∈ N(v1) ∩N(v2).
Set U = V (G)− {vi | 1 ≤ i ≤ 5} and Ui = NU (vi) for i = 3, 4, 5.

We first show that Ui ∩ Uj = ∅ for 3 ≤ i < j ≤ 5. If not, we assume v6 ∈ U3 ∩ U4.
Set X = {vi | 1 ≤ i ≤ 6}, Y = V (G) − X and Yi = NY (vi) for 1 ≤ i ≤ 6. Since G

contains no C7, we see that Y5 ∩ Yi = ∅ for i 6= 5 and Yi ∩ Yj = ∅ for i = 3, 4 and all
j 6= 3, 4. By Claim 2.4, vivj /∈ E(G) for 3 ≤ i < j ≤ 5, which implies |Yi| ≥ 3 since
δ(G) ≥ 6. Thus, we can take zi ∈ Yi for 3 ≤ i ≤ 5 such that z3 6= z4. Note that G

contains no C7, zizj /∈ E(G) for 3 ≤ i < j ≤ 5. Set Zi = NY (zi) for 3 ≤ i ≤ 5. By
the arguments above, we have |Z5| ≥ 5 and |Zi| ≥ 4 for i = 3, 4. By Claims 2.1, 2.3
and 2.4, we have α(Z5) ≥ 3 and α(Zi) ≥ 2 for i = 3, 4. Because G contains no C7, we
have Zi ∩ Zj = ∅ and E(Zi, Zj) = ∅ for 3 ≤ i < j ≤ 5. Thus we get α(∪5

i=3Zi) ≥ 7, a
contradiction. Hence, we have Ui ∩ Uj = ∅ for 3 ≤ i < j ≤ 5.

By Claim 2.4, vivj /∈ E(G) for 3 ≤ i < j ≤ 5. Since G contains no C7, we have
E(Ui, Uj) = ∅ for 3 ≤ i < j ≤ 5. Thus, noting that δ(G) ≥ 6, we have |Ui| ≥ 4 for
3 ≤ i ≤ 5. By Claim 2.3, α(Ui) ≥ 2 for 3 ≤ i ≤ 5. By Claim 2.5, E({v1},∪5

i=3Ui) = ∅.
Thus, noting that Ui ∩Uj = ∅ for 3 ≤ i < j ≤ 5, we have α({v1}∪ (∪5

i=3Ui)) ≥ 7, again
a contradiction.

Claim 2.7. G contains no W−
4 .

Proof. Suppose G contains a W−
4 , say, W−

4 = {v5}+ C − {v1v5}, where C = v1v2v3v4
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is a cycle. Set S = {vi | 1 ≤ i ≤ 5}, U = V (G)− S and Ui = NU (vi) for 1 ≤ i ≤ 5.
We first show that U1 ∩ (U3 ∪ U5) = ∅. By symmetry, we need only to show that

U1 ∩ U5 = ∅. If not, we let v6 ∈ U1 ∩ U5. Set X = S ∪ {v6}, Y = V (G) − X and
Yi = NY (vi) for 1 ≤ i ≤ 6. Since G contains no C7, we have E(Y4, Y6) = ∅ and
Yi ∩ Yj = ∅ for i = 4, 6 and all j 6= i. Let zi ∈ Yi and Zi = NY (zi) for i = 4, 6. By
the arguments above, we have |Zi| ≥ 5. By Claims 2.1, 2.3 and 2.4, we have α(Zi) ≥ 3
for i = 4, 6. Because G contains no C7, we have Z4 ∩ Z6 = ∅, E(Z4, Z6) = ∅ and
E({v1}, Z4∪Z6) = ∅, which implies that α({v1}∪Z4∪Z6) ≥ 7, a contradiction. Hence,
we have U1 ∩ (U3 ∪ U5) = ∅.

Next we show that U1 ∩ (U2 ∪ U4) = ∅. By symmetry, we need only to show that
U1 ∩ U4 = ∅. If not, we let v6 ∈ U1 ∩ U4. Set X = S ∪ {v6}, Y = V (G) − X and
Yi = NY (vi) for 1 ≤ i ≤ 6. Since G contains no C7, we have E(Y3, Y6) = ∅ and
Y6 ∩ Yi = ∅ for i 6= 6. By Claim 2.5, Y3 ∩ (Y2 ∪ Y4) = ∅. By Claim 2.6, Y3 ∩ Y5 = ∅. If
Y3∩Y1 6= ∅, then G contains a C7, a contradiction. Thus, we have Y3∩Yi = ∅ for i 6= 3.
Let zi ∈ Yi and Zi = NY (zi) for i = 3, 6, then |Zi| ≥ 5. By Claims 2.1, 2.3 and 2.4, we
have α(Zi) ≥ 3 for i = 3, 6. Note that since G contains no C7, we have Z3 ∩ Z6 = ∅,
E(Z3, Z6) = ∅ and E({v4}, Z3 ∪ Z6) = ∅. Thus, we have α({v4} ∪ Z3 ∪ Z6) ≥ 7, a
contradiction. Hence, we have U1 ∩ (U2 ∪ U4) = ∅.

By the arguments above, we have U1 ∩ Ui = ∅ for i 6= 1. By Claim 2.5, U3 ∩ (U2 ∪
U4) = ∅. By Claim 2.6, U3 ∩ U5 = ∅. Thus we have U3 ∩ Ui = ∅ for i 6= 3. Let ui ∈ Ui

and Vi = NU (ui) for i = 1, 3. Then |Vi| ≥ 5. By Claims 2.1, 2.3 and 2.4, we have
α(Vi) ≥ 3 for i = 1, 3. Note that G contains no C7, we have V1 ∩ V3 = ∅, E(V1, V3) = ∅
and E({v4}, V1 ∪ V3) = ∅. This implies that α({v4} ∪ V1 ∪ V3) ≥ 7, a contradiction.

We now begin to prove Theorem 5.

By Lemma 3, G contains a B2. Let v1v2v3v4 be a cycle with diagonal v2v4. Set
U = V (G)− {v1, v2, v3, v4} and Ui = NU (vi) for 1 ≤ i ≤ 4.

We first show that E(U1, U3) = ∅. Otherwise, we let v5 ∈ U1, v6 ∈ U3 and v5v6 ∈
E(G). Let X = {vi | 1 ≤ i ≤ 6}, Y = V (G) − X and Yi = NY (vi) for 1 ≤ i ≤ 6.
Since G contains no C7, it is easy to see that Yi ∩ Yj = ∅ for i = 2, 4 and j 6= i, and
Y5 ∩ (Y1 ∪Y6) = ∅. Thus, let zi ∈ Yi and Zi = NY (zi) for i = 2, 5, we have |Z2| ≥ 5 and
|Z5| ≥ 4. By Claims 2.1, 2.3 and 2.4, we have α(Z2) ≥ 3 and α(Z5) ≥ 2. Noting that
G contains no C7, we see that E({v1, v3}, Z2∪Z5) = ∅, Z2∩Z5 = ∅ and E(Z2, Z5) = ∅.
By Claim 2.4, v1v3 /∈ E(G). Thus, we have α({v1, v3} ∪ Z2 ∪ Z5) ≥ 7, a contradiction.
Hence, we have E(U1, U3) = ∅.

Next we show that E(U1 ∪ U3, U2 ∪ U4) = ∅. By symmetry, we need only to
show that E(U3, U4) = ∅. If not, we let v5 ∈ U3, v6 ∈ U4 and v5v6 ∈ E(G). Let
X = {vi | 1 ≤ i ≤ 6}, Y = V (G)−X and Yi = NY (vi) for 1 ≤ i ≤ 6. Since G contains
no C7, we have Y1 ∩Yi = ∅ for i 6= 1, Y3 ∩ (Y2 ∪Y5) = ∅ and Y6 ∩ (Y2 ∪Y4 ∪Y5) = ∅. By
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Claim 2.5, Y3 ∩ Y4 = ∅. Let zi ∈ Yi and Zi = NY (zi) for i = 1, 3, 6. Since v3v6 /∈ E(G)
by Claim 2.5 and δ(G) ≥ 6, we have |Yi| ≥ 2 for i = 3, 6. Thus, we may assume z3 6= z6.
By the arguments above, we have |Z1| ≥ 5 and |Zi| ≥ 4 for i = 3, 6. By Claims 2.1,
2.3 and 2.4, we have α(Z1) ≥ 3 and α(Zi) ≥ 2 for i = 3, 6. Noting that G contains no
C7, we see that Z1, Z3, Z6 are pairwise disjoint and there is no edge between any two of
them. This implies that α(Z1∪Z3∪Z6) ≥ 7, and hence we have E(U1∪U3, U2∪U4) = ∅.

By Claims 2.5, 2.6 and 2.7, we have Ui ∩ Uj = ∅ for 1 ≤ i < j ≤ 4. Since δ(G) ≥ 6,
we have |Ui| ≥ 3 for 1 ≤ i ≤ 3. By Claim 2.4, we have α(Ui) ≥ 2 for 1 ≤ i ≤ 3.
By Claims 2.5 and 2.6, E({v4},∪3

i=1Ui) = ∅. Thus, noting that E(U1, U3) = ∅ and
E(U2, U1 ∪ U3) = ∅, we have α({v4} ∪ (∪3

i=1Ui) ≥ 7, a contradiction.

By the arguments above, we have R(C7,K7) ≤ 37. On the other hand, since 6K6

contains no C7 and its complement contains no K7, we have R(C7,K7) ≥ 37, and hence
R(C7,K7) = 37.
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