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Abstract This paper addresses Henig efficiency of a multi-product network equilibrium

model based on Wardrop’s principle. We show that in both the single and multiple criteria

cases, such proper efficiency can be recast as a vector variational inequality. In the multiple

criteria case, we derive a sufficient and a necessary condition for Henig efficiency in terms

of a vector variational inequality by using the Gerstewitz’s function.

1 Introduction

Consider a supply-demand network that comprises some manufacturers and retailers, as

well as some distributing centers or warehouses. For each pair of manufacturer (an origin)

and retailer (a destination), there may exist many paths connecting them. Assume that

we know the supply and demand between each origin-destination (OD) pair. The network

is considered as functioning properly if all the demands are satisfied and all the suppliers

choose one of the paths leading from the point of origin to the point of destination at the

minimum cost. Decision-making problems in management science and operations research

frequently require that decisions are made based on optimizing several criteria. Vector

optimization provides a systemic approach to addressing these problems. Hence, the cost

may comprise multiple criteria, which embraces tariffs, fuels, time and other relevant cost

factors. Such a phenomenon results when the network follows a natural law known as the

user-optimizing principle or the Wardrop’s equilibrium principle (Wardrop (1952)). This

principle asserts that the traffic flow along a path joining an OD pair is positive only if

the cost for this path is the minimum possible amongst all paths joining the same OD

pair. Examples of traffic flow networks that follow the Wardrop’s equilibrium principle

are telephone networks and the Internet.

1Corresponding author. E-Mail: lgtcheng@polyu.edu.hk.
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After Wardrop, many scholars have studied this kind of network equilibrium model

(see, for example, Patriksson and Labbe (2002)). Until only recently, all these equilibrium

models were based on a single criterion. The assumptions that the network users choose

their paths based on a single criterion may not be reasonable under all circumstances.

It is however more reasonable to assume that no user will choose a path that incurs

both a higher cost and a longer delay than some other path. In other words, a vector

equilibrium should be sought based on the principle that the traffic flow along a path

joining an OD pair is positive only if the vector cost of this path is the minimum possible

amongst all paths joining the same OD pair. That is, the cost function is a vector-valued

one. Recently, equilibrium models based on multi-criterion or a vector cost function have

been proposed, such as Chen and Yen (1993), and Chen, Goh and Yang (1999), among

others. The original Wardrop’s equilibrium principle also applies to the case of a network

involving multiple products. Such models were considered by Nagurney and Dong (2002)

and Nagurney (2000).

In many multi-criterion decision-making problems, the common practice is to obtain the

set of efficient decisions, i.e., decisions that are not dominated by any others. Kuhn and

Tucker, and later Geoffrion, observed that a subset of efficient set may be ”improper”.

Practically, this means that points in the subset cannot be satisfactorily characterized

by a scalar minimization problem, even if the decision set is convex. So, the concept of

proper efficiency was introduced by Kuhn-Tucker (1951), Geoffrion (1968), and modified

and formulated into a more general framework by Borwein (1977), Benson (1979), Henig

(1982), and Borwein and Zhuang (1993), among many other researchers. The motivation

for introducing proper efficiency is that it enables one to eliminate certain anomalous

efficient decisions and to prove the existence of equivalent scalar problems whose solutions

produce most of the efficient decisions at least, namely the proper ones. It has been amply

demonstrated that proper efficiency is a natural concept in vector optimization.

In our paper we combine the above three aspects by considering a kind of proper

efficiency – Henig efficiency of a multi-product network equilibrium model with a vector-

valued cost function. We establish a sufficient and a necessary condition for a Henig

equilibrium pattern flow for a multi-product network equilibrium problem in terms of

vector variational inequalities for the single criterion case and the multiple criteria case.

The organization of the paper is as follows. In Section 2, the relation between Henig

efficiency of a multi-product network equilibrium model with a single criterion and a

vector variational inequality is established. In Section 3, we deduce a sufficient and a

necessary condition for Henig efficiency of a multi-product network equilibrium model

with multiple criteria in terms of a vector variational inequality by using Gerstewitz’s

scalarization function, which has never been considered in the literature. We conclude

the paper in Section 4.
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2 Henig efficiency of a multi-product network equi-

librium model

First of all, we introduce some notations about Henig efficiency. Let Y be a real normed

space ordered by a closed convex cone M ⊂ Y with nonempty interior int M . We denote

the ordering as follows:

x 6 y iff y − x ∈ M ;

x < y iff y − x ∈ int M.

A nonempty convex subset P of the convex cone M is called a base of M if M = cone(P )

and 0 /∈ cl(P ), where cl(P ) is the closure of P and cone(P ) is the cone hull of P , i.e.,

cone(P ) := ∪{λa : λ > 0, a ∈ P}.

Denote the closed unit ball of Y by UM . If M has a base P , let

δM := inf {‖a‖ : a ∈ P}

and

Mε(P ) := cl(cone(P + εUM)), ∀ 0 < ε < δM .

By Gong (2001), we know that for any 0 < ε < δM , Mε(P ) is a closed convex pointed

cone and

int M ⊂ M \ {0} ⊂ int Mε(P ).

If 0 < ε < ε
′
< δM , then

Mε(P ) ⊂ cone(P + ε
′
UM) ⊂ Mε′ (P ).

A point e∗ ∈ E ⊂ Y is said to be an efficient point of E if e − e∗ /∈ −P \ {0} for any

e ∈ E. By Eff E we denote the set of all the efficient points of E. We also need to

introduce the concept of Henig efficient points of a set E. A point e∗ ∈ E ⊂ Y is said

to be a Henig efficient point of E if e− e∗ /∈ −int Mε(P ) for any e ∈ E and e 6= e∗. We

denote the set of all the Henig efficient points of E by Henig E.

We consider a supply-demand network in which there are q products to traverse in the

network with a typical product denoted by j. Consider a general network G = [N, A, I],

where N denotes the set of nodes representing manufacturers and retailers, as well as

distributing centers and warehouses, and A the set of directed arcs. Let a ∈ A denote an

arc connecting a pair of nodes. Let I denote the set of all the OD pairs associated with

each pair of manufacturer and retailer, and |I| = l. We denote by Ki the set of paths

that connect an OD pair i ∈ I associated with a given pair of manufacturer and retailer
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and let m =
∑
i∈I

|Ki|. Let k ∈ Ki denote a path, assumed to be acyclic, consisting of a

sequence of arcs connecting an OD pair i.

For a path k ∈ Ki, let vj
k denote the flow of product j on path k. A path flow vj

k induces

a flow vj
a of product j on an arc a ∈ A given by:

vj
a =

∑
i∈I

∑
k∈Ki

δakv
j
k,

where

∆ = [δak] ∈ R|A|×m

is the arc path incidence matrix, with

δak = {
1, if a ∈ k

0, otherwise.

A vector vj = (vj
k : k ∈ Ki, i ∈ I) such that vj

k > 0, ∀k ∈ Ki, i ∈ I, j = 1, 2, · · ·, q, is

said to be a flow of product j on the network and v = (v1, v2, · · ·, vq)T is called a flow of

the network. Let there also be given a vector of demands d = (dj
i : i ∈ I, j = 1, 2, · · ·, q).

Each component dj
i indicates the demand of the OD pair i for product j, that is, the

quantity of product j that needs to go from the manufacturer to the retailer associated

with the OD pair i. We say that a flow of the network v satisfies the demands if∑
k∈Ki

vj
k = dj

i , ∀i ∈ I, j = 1, 2, · · ·, q.

Then, the set D = {v :
∑

k∈Ki

vj
k = dj

i , ∀i ∈ I, j = 1, 2, · · ·, q} is the feasible set. D is

clearly a convex set. In fact, for any v, u ∈ D and any λ ∈ [0, 1], we know∑
k∈Ki

vj
k = dj

i ,
∑
k∈Ki

uj
k = dj

i , ∀i ∈ I, j = 1, 2, · · ·, q.

Thus, we have ∑
k∈Ki

λvj
k = λdj

i ,
∑
k∈Ki

(1− λ)uj
k = (1− λ)dj

i .

Hence, ∑
k∈Ki

(λvj
k + (1− λ)uj

k) = dj
i , ∀i ∈ I, j = 1, 2, · · ·, q.

That is, λv + (1− λ)u ∈ D. Therefore, D is convex.

The function cj
a(v) : Rq×m → R+ is interpreted as the cost of product j on an arc a ∈ A.

Then the cost function of product j on a path k (k ∈ Ki, i ∈ I) depending on the flow of

the network is defined by the formula

cj
k(v) =

∑
a∈k

cj
a(v).
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Then, the vector function cj(v) = (cj
k(v) : k ∈ Ki, i ∈ I) and c(v) = (c1(v), c2(v), · ·

·, cq(v))T are called the cost function of product j on the network and the cost function

of the network, respectively.

For each i ∈ I, we define the minimum cost function of product j for the OD pair i by

putting

mj
i (v) = min

k∈Ki

cj
k(v).

Set mi(v) = (m1
i (v), m2

i (v), · · ·, mq
i (v))T and group the q×m matrix v into a q-dimensional

column vector vk (∀ k ∈ Ki, i ∈ I) with components vk = (v1
k, v

2
k, · · ·, v

q
k)

T , where

v = (vk : k ∈ Ki, i ∈ I). Also, group the vector c(v) into a q-dimensional column

vector ck(v), k ∈ Ki, i ∈ I, with components ck(v) = (c1
k(v), c2

k(v), · · ·, cq
k(v))T , where

c(v) = (ck(v) : k ∈ Ki, i ∈ I). For the q-dimensional Euclidean space Rq, by 6 we

denote the ordering induced by Rq
+ :

x 6 y iff y − x ∈ Rq
+;

x < y iff y − x ∈ int Rq
+,

where int Rq
+ is the interior of Rq

+. The ordering > and > are defined similarly.

Applying Wardrop’s equilibrium principle (Wardrop (1952)), we see that the equilib-

rium principle (user-optimizing principle) in the generalized context of a multi-product

supply-demand network equilibrium problem takes on the following form.

Definition 2.1. A vector v ∈ D is called an equilibrium pattern flow iff

ck(v)−mi(v) {
= 0 if vk ∈ Rq

+ \ {0}
> 0 if vk = 0.

(2.1)

for each i ∈ I and each k ∈ Ki.

The above equilibrium principle involves no explicit optimization concept because the

network users act independently, in a noncooperative manner, until they cannot improve

on their situations unilaterally and, thus, an equilibrium is achieved, governed by the

above equilibrium conditions. Indeed, condition (2.1) means that only those paths con-

necting an OD pair that have minimal user travel costs in terms of vector ordering will

be used. Otherwise, the network users could improve upon their situations by switching

to a path with a lower cost. That is, for any OD pair of manufacturer and retailer i, if

the transportation cost of all the products on a path k ∈ Ki is greater than the minimum

cost of the OD pair i in terms of vector ordering, then the flow of all the products on k

is zero.
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For the sake of convenience, the equilibrium condition (2.1) can be expressed in the

following equivalent form.

Proposition 2.1. (see Cheng and Wu (2005)) The network equilibrium condition (2.1)

is equivalent to the following statement:

cr(v)− ck(v) ∈ Rq
+ \ {0} ⇒ vr = 0, (2.2)

for each i ∈ I and any k, r ∈ Ki.

It seems that the left side of (2.2) is defined in a way similar to the definition of strong

efficiency (see Liu and Gong (2000)). We know weak efficiency and strong efficiency are

two kinds of extremal efficiency in vector optimization. Optimality conditions of these

kinds of efficiency are not complete for vector optimization theory. In vector optimization

problems, several notions of proper efficiency have been proposed, in order to rule out

some situations (tolerated by the definition of efficiency) that are hardly meaningful.

Proper efficiency has been introduced in order to get rid of anomalous efficient points.

Next, we introduce a kind of proper efficiency–Henig efficiency of a network equilibrium

model. For simplicity, we replace Rq
+ with the notation H. By B and UH , we denote the

base of H and the closed unit ball of Rq, respectively. Thus,

Hε(B) = cl(cone(B + εUH)), ∀ 0 < ε < δH ,

where δH = inf {‖a‖ : a ∈ B}.

Definition 2.2. A vector v ∈ D is called a Henig equilibrium pattern flow iff the following

statement holds:

cr(v)− ck(v) /∈ −(int Hε(B) ∪ {0}) ⇒ vr = 0,

for each i ∈ I, any k, r ∈ Ki and some 0 < ε < δH .

The cost functions are asymmetric in the model. Such cost functions are very impor-

tant from an application point of view since they allow for asymmetric cost interactions

in the network. However, given the asymmetry of the cost functions, one cannot compute

the solution to the network equilibrium problem using standard optimization algorithms.

Indeed, variational inequality theory provides a feasible approach to studying such prob-

lems.

Variational inequality theory is a powerful tool in the qualitative analysis of equilibria

theory (see, for example, Nagurney (1999)). Now, let us review the concept of vector
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variational inequality. For a vector space Rq×q, the vector variational inequality is:

To find x̄ ∈ B such that 〈T (x̄), x− x̄〉 ∈ Rq×q
+ , ∀ x ∈ B,

where T : X → L(X, Rq×q), L(X, Rq×q) is the set of all the linear operators from X into

Rq×q, B is a convex subset of X and X is an abstract space.

Next, we establish a sufficient and a necessary conditions for Henig efficiency of a net-

work equilibrium problem with multiple products in terms of vector variational inequality

problems. Specifically, we wish to prove the following two theorems.

Theorem 2.1. Let a vector flow v ∈ D be a Henig equilibrium pattern flow. Then v is

a solution to the vector variational inequality: to find v ∈ D such that

〈c(v), (u− v)T 〉 /∈ −int Rq×q
+ , ∀ u ∈ D.

Proof. Let a vector flow v ∈ D be a Henig equilibrium pattern flow for a multi-product

supply-demand network equilibrium problem. By Definition 2.2, we have the following

statement:

cr(v)− ck(v) /∈ −(int Hε(B) ∪ {0}) ⇒ vr = 0,

for each i ∈ I and any k, r ∈ Ki.

For any u ∈ D, we have

〈c(v), (u− v)T 〉
=(c1(v), c2(v), · · ·, cm(v))(u1 − v1, u2 − v2, · · ·, um − vm)T

=
m∑

t=1

ct(v)(ut − vt)
T

=
l∑

i=1

[
∑
t∈Ki

ct(v)(ut − vt)
T ].

We know ct(v)(ut − vt)
T is a q × q matrix whose components are cα

t (v)(uβ
t − vβ

t ), where

α, β = 1, 2, · · ·, q. Hence, 〈c(v), (u − v)T 〉 is also a q × q matrix whose components are
l∑

i=1

[
∑

t∈Ki

cα
t (v)(uβ

t − vβ
t )], where α, β = 1, 2, · · ·, q.

Set

Ji(v) := {r̄ ∈ Ki : cr̄(v) ∈ Henig{ck(v) : k ∈ Ki}} ⊂ Ki.

Then, for any r̄ ∈ Ji(v) ⊂ Ki,

ck(v)− cr̄(v) /∈ −(int Hε(B) ∪ {0}), ∀ k ∈ Ki, i ∈ I and k 6= r̄.
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By Definition 2.2, we have vk = 0 for any k ∈ Ki, i ∈ I and k 6= r̄. Thus, we obtain

l∑
i=1

[
∑
t∈Ki

cα
t (v)(uβ

t − vβ
t )]

=
l∑

i=1

[
∑

t∈Ki\{r̄}

cα
t (v)(uβ

t − vβ
t ) + cα

r̄ (v)(uβ
r̄ − vβ

r̄ )]

=
l∑

i=1

[
∑

t∈Ki\{r̄}

cα
t (v)uβ

t + cα
r̄ (v)(uβ

r̄ − vβ
r̄ )]

=
l∑

i=1

[
∑
t∈Ki

cα
t (v)uβ

t − cα
r̄ (v)vβ

r̄ ]

>
l∑

i=1

[mα
i (v)

∑
t∈Ki

uβ
t − cα

r̄ (v)vβ
r̄ ]

=
l∑

i=1

[mα
i (v)dβ

i − cα
r̄ (v)vβ

r̄ ].

Since v ∈ D, by vk = 0 for any k ∈ Ki, i ∈ I and k 6= r̄ we know∑
t∈Ki

vβ
k =

∑
t∈Ki\{r̄}

vβ
k + vβ

r̄ = vβ
r̄ = dβ

i .

Hence, we have

l∑
i=1

[
∑
t∈Ki

cα
t (v)(uβ

t − vβ
t )]

>
l∑

i=1

[mα
i (v)dβ

i − cα
r̄ (v)dβ

i ]

=
l∑

i=1

dβ
i [mα

i (v)− cα
r̄ (v)]. (2.3)

For any r̄ ∈ Ji(v), by Liu and Gong (2000), we know cr̄(v) ∈ Eff{ck(v) : k ∈ Ki}. That

is,

ck(v)− cr̄(v) /∈ −H \ {0}), ∀ k ∈ Ki, i ∈ I.

It means that there exists an ᾱ ∈ {1, 2, · · ·, q} such that

cᾱ
k (v)− cᾱ

r̄ (v) > 0, ∀ k ∈ Ki, i ∈ I.

That is,

mᾱ
i (v) = cᾱ

r̄ (v).
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Hence, from (2.3), we derive that there exists an ᾱ ∈ {1, 2, · · ·, q} such that

l∑
i=1

[
∑
t∈Ki

cᾱ
t (v)(uβ

t − vβ
t )] > 0.

Thus, we obtain

〈c(v), (u− v)T 〉 /∈ −int Rq×q
+ , ∀ u ∈ D.

The proof is completed. �

Theorem 2.2. A vector flow v ∈ D is a Henig equilibrium pattern flow if v is a solution

to the vector variational inequality: to find v ∈ D such that

〈c(v), (u− v)T 〉 ∈ Rq×q
+ , ∀ u ∈ D.

Proof. Suppose that v ∈ D is a solution to the following variational inequality:

〈c(v), (u− v)T 〉 ∈ Rq×q
+ , ∀ u ∈ D.

Also, assume that cr(v) − ck(v) /∈ −(int Hε(B) ∪ {0}) for any i ∈ I and k, r ∈ Ki. We

want to deduce that vr = 0.

We consider the vector u whose components are such that

ut = {
vt if t 6= r, k

0 if t = r

vr + vk if t = k.

Since v ∈ D, i.e.,
∑

t∈Ki

vj
t = dj

i for any i ∈ I and any j = 1, 2, · · ·, q, we have∑
t∈Ki

uj
t =

∑
t∈Ki\{r,k}

uj
t + uj

r + uj
k

=
∑

t∈Ki\{r,k}

vj
t + 0 + vj

r + vj
k

=
∑
t∈Ki

vj
t

= dj
i .

So, u ∈ D. By the above proof, we know

〈c(v), (u− v)T 〉

=
m∑

t=1

ct(v)(ut − vt)
T

=
∑
t6=r,k

ct(v)(vt − vt)
T − cr(v)vT

r + ck(v)vT
r

=(ck(v)− cr(v))vT
r ∈ Rq×q

+ .
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It is easy to see that 〈c(v), (u − v)T 〉 is a q × q matrix whose components are (cα
k (v) −

cα
r (v))vβ

r , where α, β = 1, 2, · · ·, q. So, we obtain

(cα
k (v)− cα

r (v))vβ
r > 0, ∀ α, β = 1, 2, · · ·, q. (2.4)

If vr 6= 0, there exists a β̄ ∈ {1, 2, · · ·, q} such that vβ̄
r > 0. Since cr(v) − ck(v) /∈

−(int Hε(B) ∪ {0}), we know

cr(v)− ck(v) /∈ −int Hε(B)

and

cr(v)− ck(v) 6= 0. (2.5)

By −H \ {0} ⊂ −int Hε(B), we have cr(v)− ck(v) /∈ −H \ {0}. Combining with (2.5), it

holds that

cr(v)− ck(v) /∈ −H.

That is, there too exists an ᾱ ∈ {1, 2, · · ·, q} such that cᾱ
k (v)− cᾱ

r (v) < 0. Hence,

(cᾱ
k (v)− cᾱ

r (v))vβ̄
r < 0.

It is a contradiction to (2.4). Therefore, vr = 0.

We complete the proof. �

3 Network equilibrium problem with multi-product

products and multi-criterion

The assumption that the network users choose their paths based on a single criterion

may not be reasonable on all occasions. For example, if a path has a rough surface or is

noted for its unsafe road conditions such as ice in winter, users may pay more attention

to transportation time than cost. However, on a general road, they would rather incur

less transportation cost than spend more time. It is more reasonable to assume that no

user will choose a path that incurs both a higher cost and a longer delay than some other

path. Therefore, the cost function is a vector-valued one. In Chen and Yen (1993), a

multi-criterion traffic equilibrium model was proposed, but no attempt was made to solve

the equilibrium problem. Other papers that have considered multi-criterion equilibrium

models are Chen, Goh and Yang (1999), and Yang and Goh (1997), among others.

Let Z be a Hausdorff topological vector space ordered by a pointed, closed convex

cone S ⊂ Z with nonempty interior int S. For the network G = [N, A, I], if we define

the cost function of product j on an arc a ∈ A as a vector-valued function of the flow

v : Cj
a(v) : Rq×m → Z and Cj

a(v) > 0, then the cost function Cj
k(v) of product j
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on a path k ∈ Ki, i ∈ I, is also a vector-valued function, which is defined as above:

Cj
k(v) =

∑
a∈k

Cj
a(v). The vector-valued function Cj(v) = (Cj

k(v) : k ∈ Ki, i ∈ I) ∈ Zm

and Ck(v) = (C1
k(v), C2

k(v), · · ·, Cq
k(v))T ∈ Zq are the cost function of product j in the

network and the cost function on the path k ∈ Ki, i ∈ I, respectively. Then, the vector-

valued cost function of the network is C(v) = (C1(v), C2(v), · · ·, Cq(v))T ∈ Zq×m or

C(v) = (Ck(v) : k ∈ Ki, i ∈ I).

In this section we consider Z as a finite-dimensional Euclidean space Rp with the special

ordering cone S = Rp
+, which is more realistic than an abstract topological vector space

from a practical viewpoint. Also, we replace Rq×p
+ with the notation L. By T and UL we

denote the base of L and the closed unit ball of Rq×p, respectively. Thus,

Lε(T ) = cl(cone(T + εUL)), ∀ 0 < ε < δL,

where δL = inf {‖b‖ : b ∈ T}. Now we can generalize Wardrop’s equilibrium principle to

a multi-product supply-demand network equilibrium problem with a vector-valued cost

function with respect to Henig efficiency.

Definition 3.1. A vector v ∈ D is said to be a Henig equilibrium pattern flow in the

generalized context of a multi-product supply-demand network equilibrium problem with

a vector-valued cost function iff

Cr(v)− Ck(v) /∈ −(int Lε(T ) ∪ {0}) ⇒ vr = 0,

for each i ∈ I, any k, r ∈ Ki and some 0 < ε < δL.

A useful approach to analyzing the vector-valued problem is to reduce it to a scalarized

problem. In general, the linear scalarization method appears to be popular. But such

kind of methods rely heavily on some underlying convexity assumptions, which are hardly

valid for many real problems. In our paper, by using Gerstewitz’s function (see Chen,

Goh and Yang (1999)), we develop another scalarization method for the vector-valued

Wardrop’s network equilibrium problem without any convexity assumptions.

Definition 3.2. Given a fixed e ∈ int Rp
+, the Gerstewitz’s function ξe : Rp → R is

defined by:

ξe(y) = min{λ ∈ R : y ∈ λe−Rp
+}, ∀ y ∈ Rp.

We note that this function was used in Gerth and Weidner (1990) to establish a useful

non-convex separation theorem. Obviously, there are some salient properties of this func-

tion that we will use later.
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Lemma 3.1. (see Chen and Yang (2002)) Let e ∈ int Rp
+, then ξ is positively homoge-

neous and subadditive on Rp. That is, for any µ > 0, y, z ∈ Rp,

ξe(µy) = µξe(y);

ξe(y + z) 6 ξe(y) + ξe(z).

Lemma 3.2. (also see Chen and Yang (2002)) Let e ∈ int Rp
+. For each η ∈ R and

y ∈ Rp, we have the following results:

(i) ξe (y) < η ⇔ y ∈ ηe− int Rp
+;

(ii) ξe (y) 6 η ⇔ y ∈ ηe−Rp
+;

(iii) ξe (y) > η ⇔ y /∈ ηe− int Rp
+;

(iv) ξe (y) > η ⇔ y /∈ ηe−Rp
+;

(v) ξe (y) = η ⇔ y ∈ ηe− ∂Rp
+, where ∂Rp

+ is the topological boundary of Rp
+.

Lemma 3.3. (see Cheng and Wu (2005)) Let e ∈ int Rp
+. For any y ∈ Rp, we have

ξe(−y) > −ξe(y).

Then, for any η ∈ R,

ξe(−ηy) > −ξe(ηy).

Lemma 3.4. (also see Cheng and Wu (2005)) For an e ∈ int Rp
+ and η ∈ R,

ξe(−ηe) = −ξe(ηe) = −η.

Similar to Section 2, we want to find an equivalence relation between Henig efficiency

of a vector-valued network equilibrium problem with multiple products and a vector vari-

ational inequality. Since we have proved that the necessary and sufficient conditions for

a vector flow v ∈ D to be an equilibrium pattern flow in a scalar-valued network equi-

librium problem are that it is a solution to a vector variational inequality in Theorem

2.1, by applying the Gerstewitz’s function, we suppose that the equivalence relation must

hold between the vector-valued network equilibrium problem and the vector variational

inequality without any convexity assumptions. We prove this result in the following.

First, we denote

ξe ◦ Cj
k(v) = ξe(C

j
k(v)) = min{λ ∈ R : Cj

k(v) ∈ λe−Rp
+},

12



for any v ∈ D, k ∈ Ki, i ∈ I, j = 1, 2, · · ·, q;

ξe ◦ Ck(v) = (ξe ◦ Cj
k(v) : j = 1, 2, · · ·, q)T ∈ Rq;

and

ξe(v) = ξe ◦ C(v) = (ξe ◦ Ck(v) : k ∈ Ki, i ∈ I) ∈ Rq×m.

Definition 3.3. A vector v ∈ D is said to be an ξe-Henig equilibrium pattern flow in

a vector-valued network equilibrium problem with multiple products if there exists an

e ∈ int Rp
+ such that

ξe ◦ Cr(v)− ξe ◦ Ck(v) /∈ −(int Hε(B) ∪ {0}) ⇒ vr = 0,

for each i ∈ I, any k, r ∈ Ki and some 0 < ε < δH .

Set Cj
k(v) : Rq×m → Rp

+ in the following form:

Cj
k(v) = f j

k(v)k0, ∀ k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}. (3.1)

where f j
k(v) : Rq×m → R+ and k0 ∈ int Rp

+. It is realistic from a practical viewpoint

since the transportation cost function is made up of elementary costs. We see that k0

is a vector of elementary costs, i.e., it is vector-valued, and each Cj
k(v) is its real-valued

multiple, i.e., the multiple f j
k(v) is a real-valued function of flow v.

Now we will scalarize the vector-valued network equilibrium problem with multiple

products. It is important to note that we do not require any convexity assumptions since

we use Gerstewitz’s function in our scalarization method.

Theorem 3.1. Let Cj
k(v) be defined as (3.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}.

A vector v ∈ D is a Henig equilibrium pattern flow in the generalized context of a multi-

product supply-demand network equilibrium problem with a vector-valued cost function

if and only if v is an ξk0-Henig equilibrium pattern flow in a vector-valued network equi-

librium problem with multiple products.

Proof. Necessity: Let v ∈ D be a Henig equilibrium pattern flow in the generalized

context of a multi-product supply-demand network equilibrium problem with a vector-

valued cost function. That is, for some 0 < ε < δL,

Cr(v)− Ck(v) /∈ −(int Lε(T ) ∪ {0}) ⇒ vr = 0, (3.2)

for each i ∈ I and any k, r ∈ Ki. Next we will prove for a j ∈ {1, 2, · · ·, q},

ξk0(C
j
k(v))− ξk0(C

j
r (v)) < 0

Cr(v)− Ck(v) 6= 0
} ⇒ Cr(v)− Ck(v) /∈ −(int Lε(T ) ∪ {0}).

13



By (3.1) and Lemma 3.4, we obtain

ξk0(C
j
k(v))− ξk0(C

j
r (v)) = ξk0(C

j
k(v)− Cj

r (v)) = f j
k(v)− f j

r (v).

Hence, we get

ξk0(C
j
k(v))− ξk0(C

j
r (v)) < 0 ⇒ ξk0(C

j
k(v)− Cj

r (v)) < 0.

By Lemma 3.2, we get

Cj
k(v)− Cj

r (v) ∈ −int Rp
+.

Thus,

Ck(v)− Cr(v) /∈ Rq×p
+ = L. (3.3)

If not, it holds that

Cj
k(v)− Cj

r (v) ∈ Rp
+, ∀ j = 1, 2, · · ·, q.

We assume that for any ε ∈ (0, δL),

Cr(v)− Ck(v) ∈ −int Lε(T ). (3.4)

We know that Lε(T ) = cone(T + εU). By Gong (2001), L \ {0} ⊂ Lε(T ) ⊂ Lε′ (T ), if

0 < ε < ε
′
< δL. Hence, by the arbitrariness of ε ∈ (0, δL) in (3.4), we deduce

Cr(v)− Ck(v) ∈ −L \ {0}.

That is,

Ck(v)− Cr(v) ∈ L \ {0}.

It is a contradiction to (3.3). So, we see that for some ε ∈ (0, δL),

Cr(v)− Ck(v) /∈ −(int Lε(T ) ∪ {0}).

Thus, by (3.2) it holds that for an e ∈ int Rp
+ and a j ∈ {1, 2, · · ·, q},

ξk0(C
j
k(v))− ξk0(C

j
r (v)) < 0,

Cr(v)− Ck(v) 6= 0
} ⇒ vr = 0,

for each i ∈ I and any k, r ∈ Ki.

If v is not an ξk0-Henig equilibrium pattern flow for a vector-valued network equilibrium

problem with multiple products, then there exists an ī ∈ I and a pair of k̄, r̄ ∈ Kī satisfying

ξk0◦Cr̄(v)−ξk0◦Ck̄(v) /∈ −(int Hε(B)∪{0}) such that vr̄ 6= 0. By ξk0◦Cr̄(v)−ξk0◦Ck̄(v) /∈
−(int Hε(B) ∪ {0}), we know that Cr̄(v)− Ck̄(v) 6= 0 and

ξk0 ◦ Cr̄(v)− ξk0 ◦ Ck̄(v) /∈ −int Hε(B).
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Since H \ {0} ⊂ int Hε(B), we obtain

ξk0 ◦ Cr̄(v)− ξk0 ◦ Ck̄(v) /∈ −H \ {0}.

Since ξk0 ◦ Cr̄(v)− ξk0 ◦ Ck̄(v) 6= 0, we see that there exists j̄ such that

ξk0(C
j̄
r̄ (v))− ξk0(C

j̄

k̄
(v)) > 0.

Combining with Cr̄(v)−Ck̄(v) 6= 0, we obtain vr̄ = 0. It is a contradiction. So v is also an

ξk0-Henig equilibrium pattern flow in a vector-valued network equilibrium problem with

multiple products.

Sufficiency: Suppose that v is an ξk0-Henig equilibrium pattern flow for a vector-valued

network equilibrium problem with multiple products. That is, for some ε ∈ (0, δH),

ξk0 ◦ Cr(v)− ξk0 ◦ Ck(v) /∈ −(int Hε(B) ∪ {0}) ⇒ vr = 0,

for each i ∈ I and any k, r ∈ Ki. Next, we will prove that for a j ∈ {1, 2, · · ·, q},

ξk0(C
j
r (v))− ξk0(C

j
k(v)) > 0

Cr(v)− Ck(v) 6= 0
} ⇒ ξk0 ◦ Cr(v)− ξk0 ◦ Ck(v) /∈ −(int Hε(B) ∪ {0}).

It is easy to see that ξk0 ◦Cr(v)− ξk0 ◦Ck(v) 6= 0. So, we only need to prove ξk0 ◦Cr(v)−
ξk0 ◦Ck(v) /∈ −int Hε(B). We assume that for any ε ∈ (0, δH), ξk0 ◦Cr(v)− ξk0 ◦Ck(v) ∈
−int Hε(B). By an analogous analysis with the proof of Necessary, we derive

ξk0 ◦ Cr(v)− ξk0 ◦ Ck(v) ∈ −H \ {0}.

That is, for any j ∈ {1, 2, · · ·, q}, it holds that

ξk0(C
j
r (v))− ξk0(C

j
k(v)) 6 0.

It is a contradiction to ξk0(C
j
r (v)) − ξk0(C

j
k(v)) > 0. Thus, we obtain that for some

ε ∈ (0, δH),

ξk0 ◦ Cr(v)− ξk0 ◦ Ck(v) /∈ −int Hε(B).

Hence, we deduce that for a j ∈ {1, 2, · · ·, q},

ξk0(C
j
r (v))− ξk0(C

j
k(v)) > 0

Cr(v)− Ck(v) 6= 0
} ⇒ ξk0 ◦ Cr(v)− ξk0 ◦ Ck(v) /∈ −(int Hε(B) ∪ {0}).

Thus, we also deduce that for a j ∈ {1, 2, · · ·, q},

ξk0(C
j
r (v))− ξk0(C

j
k(v)) > 0

Cr(v)− Ck(v) 6= 0
} ⇒ vr = 0 (3.5)

for each i ∈ I and any k, r ∈ Ki.
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If for any i ∈ I and k, r ∈ Ki, Cr(v)− Ck(v) /∈ −(int Lε(T ) ∪ {0}), we want to derive

vr = 0. By Cr(v)− Ck(v) /∈ −(int Lε(T ) ∪ {0}), we know Cr(v)− Ck(v) 6= 0 and

Cr(v)− Ck(v) /∈ −int Lε(T ).

Since int L ⊂ L \ {0} \ int Lε(T ), we obtain

Cr(v)− Ck(v) /∈ −L.

That is, there exists a j̄ ∈ {1, 2, · · ·, q} such that

C j̄
r (v)− C j̄

k(v) /∈ −Rp
+.

Thus, by Lemma 3.2, we obtain

ξk0(C
j̄
r (v)− C j̄

k(v)) > 0.

By (3.1) and Lemma 3.4, it holds that

ξk0(C
j̄
r (v))− ξk0(C

j̄
k(v)) > 0.

Hence, by (3.5), we know vr = 0. Therefore, v ∈ D is a Henig equilibrium pattern flow in

the generalized context of a multi-product supply-demand network equilibrium problem

with a vector-valued cost function. �

From Theorem 2.1, we obtain the following two corollaries.

Corollary 3.1. Let Cj
k(v) be defined as (3.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}.

If a vector flow v ∈ D is a Henig equilibrium pattern flow in the generalized context of

a multi-product supply-demand network equilibrium problem with a vector-valued cost

function, then v is a solution to a vector variational inequality: to find v ∈ D such that

〈ξk0(v), (u− v)T 〉 /∈ −int Rq×q
+ , ∀ u ∈ D.

Corollary 3.2. Let Cj
k(v) be defined as (3.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}.

A vector flow v ∈ D is a Henig equilibrium pattern flow in the generalized context of

a multi-product supply-demand network equilibrium problem with a vector-valued cost

function if v is a solution to a vector variational inequality: to find v ∈ D such that

〈ξk0(v), (u− v)T 〉 ∈ Rq×q
+ , ∀ u ∈ D.

We know that the Gerstewitz’s function is difficult to compute. So the best way to

16



proceed is to convert two vector variational inequality above to the following vector forms:

to find v ∈ D such that

〈C(v), (u− v)T 〉 /∈ −int (Rp
+)q×q, ∀ u ∈ D.

and to find v ∈ D such that

〈C(v), (u− v)T 〉 ∈ (Rp
+)q×q, ∀ u ∈ D.

In Cheng and Wu (2005), they proved the following theorem.

Theorem 3.2. Let Cj
k(v) be defined as (3.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}.

v ∈ D is a solution to the following vector variational inequality:

finding v ∈ D such that

〈ξk0(v), (u− v)T 〉 ∈ Rq×q
+ , ∀ u ∈ D,

if and only if v is also a solution to vector variational inequality:

〈C(v), (u− v)T 〉 ∈ (Rp
+)q×q, ∀ u ∈ D.

Now we prove another equivalent relation.

Theorem 3.3. If v ∈ D is the solution to the vector variational inequality: finding v ∈ D

such that

〈C(v), (u− v)T 〉 /∈ −int (Rp
+)q×q, ∀ u ∈ D,

then v is also a solution to the following vector variational inequality: finding v ∈ D such

that for an e ∈ int Rp
+,

〈ξe(v), (u− v)T 〉 /∈ −int Rq×q
+ , ∀ u ∈ D.

Proof. For any u ∈ D, we know that 〈C(v), (u − v)T 〉 =
m∑

t=1

Ct(v)(ut − vt)
T . By the

above proof, it is a q × q matrix whose components are
m∑

t=1

[Cα
t (v)(uβ

t − vβ
t )] ∈ Rp, where

α, β = 1, 2, · · ·, q. Since 〈C(v), (u − v)T 〉 /∈ −int (Rp
+)q×q, we obtain that there exist

ᾱ, β̄ ∈ {1, 2, · · ·, q} such that

m∑
t=1

[C ᾱ
t (v)(uβ̄

t − vβ̄
t )] /∈ −int Rp

+, ∀ u ∈ D.
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By Lemma 3.2 we obtain

ξe(
m∑

t=1

[C ᾱ
t (v)(uβ̄

t − vβ̄
t )]) > 0, ∀ u ∈ D.

By Lemma 3.1, it holds that

m∑
t=1

[ξe(C
ᾱ
t (v)(uβ̄

t − vβ̄
t ))] > 0, ∀ u ∈ D.

For any given u ∈ D, set

N1 = {t ∈ {1, 2, · · ·, m} : uβ̄
t − vβ̄

t > 0}

and

N2 = {t ∈ {1, 2, · · ·, m} : uβ̄
t − vβ̄

t < 0}.

Therefore, |N1| + |N2| = m, and the following formula also holds by Lemma 3.1 and

Lemma 3.3:

m∑
t=1

[ξe(C
ᾱ
t (v)(uβ̄

t − vβ̄
t ))]

=
∑
t∈N1

[ξe(C
ᾱ
t (v)(uβ̄

t − vβ̄
t ))] +

∑
t∈N2

[ξe(C
ᾱ
t (v)(uβ̄

t − vβ̄
t ))]

>
∑
t∈N1

[(ξe(C
ᾱ
t (v)))(uβ̄

t − vβ̄
t )]−

∑
t∈N2

[(ξe(C
ᾱ
t (v)))(vβ̄

t − uβ̄
t )]

=
∑
t∈N1

[(ξe(C
ᾱ
t (v)))(uβ̄

t − vβ̄
t )] +

∑
t∈N2

[(ξe(C
ᾱ
t (v)))(uβ̄

t − vβ̄
t )]

=
m∑

t=1

[(ξe(C
ᾱ
t (v)))(uβ̄

t − vβ̄
t )]

> 0. (3.6)

We also know for an e ∈ int Rp
+,

〈ξe(v), (u− v)T 〉 =
m∑

t=1

[(ξe ◦ Ct(v))(ut − vt)
T ].

It is also a q × q matrix whose components are
m∑

t=1

[(ξe(C
α
t (v)))(uβ

t − vβ
t )] ∈ R, α, β =

1, 2, · · ·, q. We assume that there exists a ū ∈ D such that 〈ξe(v), (ū− v)T 〉 ∈ −int Rq×q
+ ,

i.e., for any α, β ∈ {1, 2, · · ·, q} we have

m∑
t=1

[(ξe(C
α
t (v)))(ūβ

t − vβ
t )] < 0.
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This contadicts (3.6). Therefore, we obtain

〈ξe(v), (u− v)T 〉 /∈ −int Rq×q
+ , ∀ u ∈ D. �

Next, we deduce Theorem 3.4.

Theorem 3.4. Let Cj
k(v) be defined as (3.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}.

If v ∈ D is a solution to the vector variational inequality: finding v ∈ D such that

〈ξk0(v), (u− v)T 〉 /∈ −int Rq×q
+ , ∀ u ∈ D,

then v is also a solution to the following vector variational inequality:

〈C(v), (u− v)T 〉 /∈ −int (Rp
+)q×q, ∀ u ∈ D.

Proof. For any u ∈ D, since 〈ξk0(v), (u − v)T 〉 is a q × q matrix whose components are
m∑

t=1

[(ξk0(C
α
t (v)))(uβ

t − vβ
t )] (α, β = 1, 2, · · ·, q), by 〈ξk0(v), (u− v)T 〉 /∈ −int Rq×q

+ , we know

that there exist ᾱ, β̄ ∈ {1, 2, · · ·, q} such that

m∑
t=1

[(ξk0(C
ᾱ
t (v)))(uβ̄

t − vβ̄
t )] > 0, ∀ u ∈ D.

Similar to the proof above, we group the set {1, 2, · · ·, q} into two parts, N1 and N2, where

N1 = {t ∈ {1, 2, · · ·, m} : uβ̄
t − vβ̄

t > 0},

and

N2 = {t ∈ {1, 2, · · ·, m} : uβ̄
t − vβ̄

t < 0},

for any given u ∈ D. Then, by Lemma 3.1 and Lemma 3.3,

m∑
t=1

[(ξk0(C
ᾱ
t (v)))(uβ̄

t − vβ̄
t )]

=
∑
t∈N1

[(ξk0(C
ᾱ
t (v)))(uβ̄

t − vβ̄
t )] +

∑
t∈N2

[(ξk0(C
ᾱ
t (v)))(uβ̄

t − vβ̄
t )]

=
∑
t∈N1

[ξk0(C
ᾱ
t (v)(uβ̄

t − vβ̄
t ))] +

∑
t∈N2

[−ξk0(C
ᾱ
t (v)(vβ̄

t − uβ̄
t ))]

6
∑
t∈N1

[ξk0(C
ᾱ
t (v)(uβ̄

t − vβ̄
t ))] +

∑
t∈N2

[ξk0(C
ᾱ
t (v)(uβ̄

t − vβ̄
t ))]

=
m∑

t=1

[ξk0(C
ᾱ
t (v)(uβ̄

t − vβ̄
t ))].
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Therefore,
m∑

t=1

[ξk0(C
ᾱ
t (v)(uβ̄

t − vβ̄
t ))] > 0, ∀ u ∈ D.

By Cα
t (v) = fα

t (v)k0 and Lemma 3.4, for all u ∈ D, we get

m∑
t=1

[ξk0(f
ᾱ
t (v)k0(u

β̄
t − vβ̄

t ))]

=
m∑

t=1

[f ᾱ
t (v)(uβ̄

t − vβ̄
t )]

> 0. (3.7)

If there exists a ū ∈ D such that

〈C(v), (ū− v)T 〉 ∈ −int (Rp
+)q×q,

i.e., for any α, β ∈ {1, 2, · · ·, q}, we obtain that the component of 〈C(v), (ū−v)T 〉 belongs

to −int Rp
+, i.e.,

m∑
t=1

[Cα
t (v)(ūβ

t − vβ
t )] ∈ −int Rp

+.

By Lemma 3.2,

ξk0(
m∑

t=1

[Cα
t (v)(ūβ

t − vβ
t )]) < 0.

By Cα
t (v) = fα

t (v)k0 and Lemma 3.4, we obtain

ξk0(
m∑

t=1

[Cα
t (v)(ūβ

t − vβ
t )])

=ξk0(k0

m∑
t=1

(fα
t (v)(ūβ

t − vβ
t ))

=
m∑

t=1

(fα
t (v)(ūβ

t − vβ
t ))

< 0.

This is a contradiction to (3.7). Therefore, for any u ∈ D,

〈C(v), (u− v)T 〉 /∈ −int (Rp
+)q×q.

The proof is completed. �

Corollary 3.3. Let Cj
k(v) be defined as (3.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}.

v ∈ D is a solution to the vector variational inequality: finding v ∈ D such that

〈ξk0(v), (u− v)T 〉 /∈ −int Rq×q
+ , ∀ u ∈ D,
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if and only if v is also a solution to the following vector variational inequality:

〈C(v), (u− v)T 〉 /∈ −int (Rp
+)q×q, ∀ u ∈ D.

Combining with Corollary 3.1, Corollary 3.2 and Theorem 3.2 above, we have derived

the following Theorem 3.5 and Theorem 3.6.

Theorem 3.5. Let Cj
k(v) be defined as (3.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}.

If a vector flow v ∈ D is a Henig equilibrium pattern flow in the generalized context of

a multi-product supply-demand network equilibrium problem with a vector-valued cost

function, then v is a solution to a vector variational inequality: to find v ∈ D such that

〈C(v), (u− v)T 〉 /∈ −int (Rp
+)q×q, ∀ u ∈ D.

Theorem 3.6. Let Cj
k(v) be defined as (3.1) for all k ∈ Ki, i ∈ I and j ∈ {1, 2, · · ·, q}.

A vector flow v ∈ D is a Henig equilibrium pattern flow in the generalized context of

a multi-product supply-demand network equilibrium problem with a vector-valued cost

function if v is a solution to a vector variational inequality: to find v ∈ D such that

〈C(v), (u− v)T 〉 ∈ (Rp
+)q×q, ∀ u ∈ D.

It is instructive to summarize all of the relations we have derived so far. We denote

them by (i)∼(vi):

(i) v ∈ D is an ξk0-Henig equilibrium pattern flow in a vector-valued network equilibrium

problem with multiple products;

(ii) v ∈ D is a Henig equilibrium pattern flow in the generalized context of a multi-

product supply-demand network equilibrium problem with a vector-valued cost function;

(iii) v ∈ D is a solution to the vector variational inequality: finding v ∈ D such that

〈ξk0(v), (u− v)T 〉 /∈ −int Rq×q
+ , ∀ u ∈ D;

(iv) v ∈ D is a solution to the vector variational inequality: finding v ∈ D such that

〈ξk0(v), (u− v)T 〉 ∈ Rq×q
+ , ∀ u ∈ D;

(v) v is a solution to a vector variational inequality: to find v ∈ D such that

〈C(v), (u− v)T 〉 /∈ −int (Rp
+)q×q, ∀ u ∈ D;
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(vi) v ∈ D is a solution to a vector variational inequality: to find v ∈ D such that

〈C(v), (u− v)T 〉 ∈ (Rp
+)q×q, ∀ u ∈ D.

Then, we have the following relations:

(iii) ⇐⇒
Corollary 3.3

(v)

Theorem 2.1 ⇑ ⇑ Theorem 3.5

(i) ⇐⇒
Theorem 3.1

(ii)

Theorem 2.2 ⇑ ⇑ Theorem 3.6

(iv) ⇐⇒
Theorem 3.2

(vi)

4 Conclusions

The focus of the paper is to decide on the delivery paths of shipping q products between

manufacturers and retailers in a supply-demand network based on a single criterion and

multiple criteria, respectively. Based on Wardrop’s equilibrium principle, we have consid-

ered Henig efficiency of a scalar multi-product network equilibrium model and a vector

one for the supply-demand network. We have also derived a sufficient and a necessary con-

dition for a Henig equilibrium pattern flow for multi-product network equilibrium models

in terms of vector variational inequalities when the cost function is defined in a certain

form. Given that vector variational inequalities have been proven useful for algorithm de-

sign, these results provide a viable approach to solving Henig efficiency of a multi-product

network equilibrium problem.

In this paper we have established a sufficient and a necessary condition for a Henig

equilibrium pattern flow for multi-product network equilibrium models in terms of vector

variational inequalities. We have not been able to derive a condition that are both nec-

essary and sufficient. It is worth noting that there exists no such result in the literature.

That is, the question of a solution to what kind of vector variation inequalities is also a

Henig equilibrium pattern flow for multi-product network equilibrium models is yet to be

answered.
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