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Samarium and Manganese-Doped Lead
Titanate Ceramic Fiber/Epoxy 1-3 Composite
for High-Frequency Transducer Application

Kun Li, Helen L. W. Chan, and Chung L. Choy

Abstract—Samarinm- {Sm) and manganese- (Mn} doped
lead titanate cerarmnic fibers with a diameter of 35 pm were
prepared using a sol-gel method. The X-ray diffraction pat-
tern shows that the fibers have a pure perovskite struc-
ture. The 1-3 composite disks with a thickness of 31-41 pm
and with ceramic volume fraction of ~0.68 have been pre-
pared using the samarium and manganese doped lead ti-
tanate (PSmT) fibers. The resonance characteristics of the
poled composite disks were measured. A focused transducer
was fabricated using a concave 1-3 composite disk with
nonuniform thickness in order to enhance its bandwidth.
The insertion loss (IL), pulse-echo response and frequency
spectrum of the composite transducer were measured. The
center frequency of the transducer was ~31 MHz with a
—3 dB bandwidth of ~123% and a low IL of 29.3 dB.

I. INTRODUCTION

HE need to increase the resolution of ultrasonic imag-
Ting (e.g., in the imaging of arteries, in dermatology,
and in ophthalmology) has called for the use of high-
frequency {>20 MHz) ultrasonic transducers [1]-[4]. Piezo-
electric ceramic fiber/epoxy 1-3 composites consisting of
piezoelectric ceramic fibers embedded in an epoxy ma-
trix are excellent materials for fabricating high frequency
transducers as they have high thickness electromechanical
coupling coefficients and low planar coupling coefficients
[5]-[14]. The ceramic/polymer composites are not as brit-
tle as the thin plezoceramic plate and can easily be shaped
into a lens. Very fine scale ceramic fibers can be used, and
the volume fraction ¢ of the ceramic fiber can be varied to
adjust the electrical impedance of the transducer. Doped-
lead zirconate titanate (PZT) has high dss and high thick-
ness electromechanical coupling coefficient k¢; but its pla-
nar mode electromechanical coupling coefficient k;, is also
high. Hence, if the thickness of the PZT fiber inside the
1-3 composite is close to its diameter, the lateral and thick-
ness resonance modes will couple and pure thickness mode
resonance cannot be generated [12], [15]. So when PZT ce-
ramic is used to fabricate 1-3 composites, the aspect (di-
ameter /length) ratio of a single PZT fiber in the 1-3 com-
posite should be at least <0.5. In other words, the length of
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the fiber should be larger than twice the diameter. More-
over, for high-frequency, single element transducers have a
large area compared to their thickness. The high relative
permittivity (1500~4000) of the PZT material results in
an electrical impedance (Z = 1/wC, where w is the angular
frequency and C is the capacitance) that is substantially
lower than 50 €. Samarium- and manganese-modified
lead titanate [Pb@,s‘ssmo‘1Tio_98MIln_0203 (PSIHT)! ceram-
ics exhibit large electromechanical anisotropy [16]-{18] and
will be good candidates for high-frequency 1-3 composite
ultrasonic transducers because of their very low relative
permittivity (~185) and low planar conpling coeflicient
(kp = 0.05). When PSmT fibers are used to fabricate 1—
3 composites, coupling between the planar and thickness
mode can be alleviated, and the aspect ratio of the fiber
can be much closer to 1, which facilitates the fabrication
of high frequency transducers.

Sol-gel methods have been used to prepare PZT and
calcium-doped PT thin films and coatings in microdevice
fabrications [19], [20]. The materials prepared using the
sol-gel methods have good homogeneity, and it is relatively
casy to vary the chemical composition. In recent years,
there are reports on the preparation of PZT and PLZT
ceramic fibers by the sol-gel methods [21i-[26]. Compared
with Ca modified PT (another doped PT composition
that has high electromechanical anisotropy) in which small
quantities of three to four different dopants have to be
added, PSmT has fewer components. Hence, it is easier to
preparé PSmT fibers by using the sol-gel method.

1I. EXPERIMENT

The precursors used in this study were lead acetate tri-
hydrate, titanium n-butoxide (or titanium iso-propoxide),
manganese acetate dihydrate, and samarium acetate hy-
drate (from Strem Chemicals, Newburyport, MA}).

A. Preparation of PSmT Ceramic Fibers

The nominal composition of the samarium- and
manganese-doped lead titanate ceramic fiber is Pbq g5Smp 1
Tig.gsMng g2 O3 (PSmT). The process of preparing the sol-
gel solution and fabricating the ceramic fibers is shown
in Fig. 1. Due to the large area of the fibers, 2% excess
lead was added in preparing the solution to compensate
for the lead loss in the sintering process. Gel fibers were
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Preparing gel fibers by using a
spinneret
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sintering at 1150°C for 90 minutes
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Fig. 1. The processes of preparing PSmT ceramic fibers.

spun from spinnerets with pinholes of various diameters
using a spinning machine (OneShot IIL, from Alex James
& Assoc., Inc., Greenville) [20], [21}. As the gel fibers have
40-50% shrinkage during subsequent heat treatments, ce-
ramic fibers with 35-100-pm diameter can be prepared by
using different spinnerets with 100-250-um pinholes and
by changing the speed of rotation of the spindle.

The gel fibers were tied together in a bundle and were
hydrolyzed and dried at room temperature for more than 1
week. Then they were dried at 60-80°C for 8-12 hours. The
dried fibers were placed on top of a layer of PSmT ceramic
powder, which has the same composition as the fibers, on
an alumina plate. A spoonful of carbon black was scattered
around the fiber bundle to prevent fiber cracking in the
pyrolysis. They were covered with an alumina crucible,
pyrolyzed at 400°C for 1 hour and at 550°C for 1 hour. The
pyrolyzed fibers were calcinated at 850°C for ~2 hours and
then sintered at 1150°C for 1.5 hours to form the PSmT
ceramic fibers. From the scanning electron micrograph of
the sintered PSmT fiber (not shown here), it is seen that
the grains in the fiber are well grown, and it is relatively
dense. The sintering temperature and time were selected
to control the grain size of the fiber. The ceramic grain
diameter normally should be less than 1/10 of the fiber
diameter to give the fiber appropriate strength.

B. Fabrication of PSmT Ceramic Fiber/Epozy
1-8 Composites

The sintered bundle of PSmT ceramic fibers was in-
serted into a plastic tube with a diameter of ~6 mm. The
tube was then filled with low viscosity epoxy [Spurr hard-
ness B, vinylcyclohexene dioxide (VCD)/diglycidyl ether
of polypropyleneglycol (D.E.R 736)/noneenyl succinic
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TABLE 1
MATERIAL PARAMETERS OF THE SPURR EPOXY AS MEASURED BY
THE ULTRASONIC IMMERSION TECHNIQUE [27].

Spurr
FProperties epoxy
Relative permittivity ¢ {at 1 kHz) 3.27
Density p {kg/m3) 1102
vy, (m/s) 2209
vy {m/s) 978
Stiffness c11 = c22 = ca3 (GPa) 5.377
Stiffness caa = c55 = cgs (GPa) 1.054
Stiffness 12 = ca1 = c23 = c32 = c13 = ca1 (GPa) 3.269
Compliance s11 = s22 = s33 (pm?/N) 344.2
Compliance 844 = 855 = 566 (p1n2/N) 948.8
Compliance si2 = 521 = sg3 = sg2 = s13 = s31 (pm?/N)  130.2
Young's modulus, Y (GPa) 2.905

anhydride (NSA)/dimethylaminoethanol (DMAE) =

10:4:26:0.4 in weight ratio]. The longitudinal and trans-
verse wave velocity vy, and vt of the Spurr epoxy (hardness
B) were measured using an ultrasonic immersion technique
[27]; other stiffness constants were then calculated using
the measured vy, and vr. The relevant parameters are
listed in Table 1. After evacuation to eliminate the trapped
gas, in order to prepare a composite with a high volume
fraction of ceramics, the tube was tightly wrapped with
a rubber tape so the fibers were packed together closely.
The composite rod then was heated at 80°C for 8 hours
to fully cure the epoxy before it was cut into disks with
a thickness of ~200 pm using a diamond saw. They then
were ground .and polished to the desired thickness. After
chromium/gold layers were evaporated on both sides of the
disks as electrodes, the disks were poled under an electric
field of 4.5 kV/mm at 115-120°C for 15 minutes. In order
to fabricate a concave disk [28{, a composite disk was ad-
hered to a convex lens, then ground and polished carefully
with fine alumina powder to the desired thickness. Then
chromium/gold was evaporated on the polished sides of
the disk as the electrodes. The resonance characteristics
of the disks were measured using an impedance analyzer
HP4294A (Agilent, Palo Alto, CA). The ceramic volume
fraction ¢ of the composite disk was measured by inte-
grating the surface area of ceramic fibers under an elec-
tron scanning microscope (SEM), and it was found to be
~().68.

C. Fabrication of High-Frequency Transducer

A stainless steel tube was screwed onto a standard male
UHF connector to form a transducer housing (Fig. 2). A
piece of fine copper wire with 50-um diameter was soldered
onto the center electrode of the connector, then connected
to the bottom electrode of the composite. The gap be-
tween the screw was sealed with epoxy. The steel tube was
filled with silicone rubber (noncorrosive silicone rubber,
RS Components, Corby, Northants, UK). On the top part
of the tube adjacent to the composite disk, some foam
rubber beads were incorporated to form a porous back-
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Fig. 2. Diagram of a 1-3 compuosite transducer.

ing with a thickness of ~1 mm. This porous backing has a
low acoustic impedance and can reduce the ultrasoenic wave
propagating into the backing. A PSmT 1-3 composite disk
with a diameter of 5 mm was attached to the porous back-
ing. Before the backing was fully cured, a 30-mm diameter
steel ball was used to press on the top to form a concave
surface. After the backing was cured and the top electrode
connected to the steel housing, a focused transducer was
made.

ITI. CHARACTERIZATION OF THE 1-3 COMPOSITE
TRANSDUCERS

The transducer was placed in a water tank with a pla-
nar stainless steel target at the focus to obtain a max-
imized echo. A step electrical pulse was produced from
a Panametrics 5900 (Panametrics, Waltham, MA) pulser-
receiver to drive the transducer. The spatial waveform of
the pulse/echo response was recorded by a digital oscillo-
scope (HP Infinium 548204, Agilent). The frequency spec-
trum was obtained by using the fast Fourier transform
(FFT) function of the oscilloscope. In the frequency spee-
trum, the maximum frequency fhay, fi, and £, (f; and f,
are frequencies at the —6 dB or half amplitude points)
can be obtained. The center frequency (f.) and percent-
age bandwidth (BW) can be calculated by the following
ecuations:

g et} 1)
Loy @

c

BW = x 100%.

The IL {or the relative pulse-echo sensitivity) of the
transducers is defined as the ratio of the received trans-
ducer echo power P, versus the pulse excitation power Py,
which is expressed in decibels as:

P,
IL = 101log (F:) dB. (3)

1373
600
soo]
400 2 -
- e ] &
2300 - = - =
) s * g £ =
5 2 S |
Dopod T 8 8%
= é N
100-‘]\’ ~
ok
‘l T T T T 1 -
20 30 40 50 60

20

Fig. 3. X-ray diffraction pattern of the PSmT ceramic fiber.

To measure the IL, an HP8116A (Agilent) pulsed/function
generator was used to generate a toneburst of 20 cycles
with an amplitude of 1 V peak-to-peak at the center fre-
quency of the transducer. The transducer was immersed in
water facing a flat stainless steel target placed at the focus.
Amplitude of the echo P, was mecasured and as Py =1V,
IL can be calculated by (3).

IV. RESULTS AND DISCUSSION

Fig. 3 shows the X-ray diffraction pattern of the PSmT
fiber sintered at 1150°C for 1.5 hours. The {002) and (200)
peaks are clearly separated showing that the PSmT ce-
ramic fiber has a tetragonal crystal phase. The parameters
of the unit cell are a = 3.8991 A and ¢ = 4.0543 A. Accord-
ing to the formula weight of Phyg gsSmg 1 Tip.geMng 0203,
the theoretical density of the PSmT ceramic fiber is
7730 kg/m®. The density of the fiber was measured using
the Archimedes principle and was found to be 7650 kg/m3,
showing that some pinholes may still exist in the interior
of the fibers.

Fig. 4 shows the SEM micrograph of a PSmT ceramic
fiber /epoxy 1-3 composite. The PSmT fibers, prepared by
using a 100-pm pinhole, were used in fabricating the 1-3
composites. The diameter of the ceramic fibers determined
from an enlarged SEM micrograph is ~35 pm. The ceramic
volume fraction ¢ is ~0.68, as estimated by integrating the
surface area of the ceramic fibers.

From the impedance and phase spectra of a 34-pm thick
1-3 composite disk with a diameter of 4.5 mm, only a weak
lateral resonance peak can be observed in the phase spec-
trum {Fig. 5}, which indicates that the composite has very
weak planar resonance. Fig. 6 shows the impedance and
phase spectra of this sample in the 10-100 MHz frequency
range, and a clean thickness mode resonance (k, ~ 0.51)
is observed at ~50 MHz; even the fiber has a diame-
ter /thickness ratic of ~1 indicating that the coupling be-
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Fig. 4. SEM micrograph of P8mT ceramic fiber fepoxy 1-3 composite
with ¢ = 0.68.
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Fig. 5. The impedance spectra of a 1-3 composite disk (thick-
ness = 31 um) in the low-frequency region. The upper solid line
represents the impedance, the lower line represents the phage,

tween the planar and thickness modes in the ceramic fiber
has been alleviated by using the anisotropic PSmT ceram-
ics. According to the IEEFE standards [29], other parame-
ters of the PSmT 1-3 composites were measured and cal-
culated. The results listed in Table IT were obtained by
averaging over ~10 composite samples.

Fig. 7 shows the impedance and phase spectra of a
5-mm diameter disk.-This concave composite disk has a
thickness (tcenter) Of 35 um at the center and teqge of
41 pm at the edge. The value of Af(Af = f, — ) of the
concave disk is larger than that of a uniform disk and
ki ~ 0.56. The value of k; increases from 0.51 to 0.56
as At = tedge — toonter varies from 0 to 6 pm. However,
when At was increased further, both the impedance and
the phase peaks split into two or more peaks. This is be-
cause each fiber has its own thickness resonance, and the
thickness resonance of the 1-3 composite is a resultant of
the collective resonance of all the fibers. If the length of
the fibers wag nearly the same, their resonances have sim-
ilar values, which result in a sharper thickness resonance.
If the length of the pillars are slightly different, their res-
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Fig. 6. The impedance spectra of a 1-3 compeosite disk (thick-
ness = 31 pm) in the high-frequency region. The solid and detted
lines represent the impedance and phase, respectively.

TABLE 11
MEASURED PARAMETERS OF THE PSMT FIBER/Epoxy 1-3
COMPOSITE WITH 35-uM DIAMETER FIBERS AND ¢ = 0.68.

PSmT fiber/epoxy
1-3 composite
(35-um fiber, ¢ = 0.68)

Relative permittivity & (at 1 kHz)} 120
Density (kg/m?3) 5480
ky 0.51
das (pC/N) 18
tané 0.013
N {mHz) 1695

Property

224
204
184

impedance

® o D N R @

L 1 1 1 1 Il
Phase

4-

-00
1.0x10°

T T
6.0x10° 8.0x107

fequency (Hz)

2.0x107 a.0x10"

Fig. 7. The impedance and phase spectra of a nonuniform concave
1-3 composite disk (tconter = 35 pm, tegge = 41 pm). The solid and
dotted lines represent the impedance and phase, respectively.
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Fig. 8. Comparison between the spectra of a nonuniform disk
(tconter = 32 pm, teqye = 35 pm) and the transducer made from
this disk.
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Fig. 9. The pulse/echo response and frequency spectrum of the 1-3
composite transducer with nonuniform thickness.

onance peaks appear at slightly different frequencies, and
a broader resonance peak with larger Af will be observed.
Using this observed phenomenon, a broadband transducer
may be fabricated [30].

Fig. 8 shows the impedance and phase specira of a con-
cave 1-3 composite disk and the transducer made from a
disk with a thickness of 32 um at the center and 35 pm
at the edge. It is seen that even a light porous polymer
backing was used, the peak impedance of the transducer is
lower than that of the free disk, indicating that the backing
has absorbed some ultrasenic energy. The resonance fre-
quency has shifted to a lower frequency hecause the back
surface of the disk is slightly constrained by the backing.

Fig. 9 shows the spatial pulse/echo responsec of this fo-
cused 1-3 composite transducer. The measuring conditions
were: repetition rate = 10 kHz, energy = 2 uJ, damp-
ing = 50 {1, attenuation = 25 dB, gain = 40 dB, low-pass
filter = 200 MHz, high-pass filter = 1.0 MHz. The un-
corrected frequency spectrum of the transducer was ob-
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tained by using the FFT option built-in to the HP In-
finium 54820A (Agilent) oscilloscope and shown in Fig. 9.
If the data were downloaded and FFT was performed af-
ter patching zeros, the bandwidth decreased by ~15%. The

. composite transducer has a center frequency at ~31 MHz

and a broad bandwidth of ~123% at —3 dB {~105% af-
ter patching zeros) and ~139% at —6 dB (~118% after
patching zeros), which is higher than the reported values
for PZT fiber/epoxy 1-3 composite transducers. The 1L is
29.3 dB, which also is better that the reported IL of PZT
fiber/epoxy transducers [31], [32], presumably due to the
high volume fraction of PSmT fiber ¢ used in the present
work. In the present work, ¢ ~ 68 while in {31] and [32]
¢ = 0.21 (IL = 47 dB) and 0.45 (34.4 dB), respectively.
The focal length of the transducer was ~17.5 mm, which
was determined by the diameter of the steel ball used to
form the curvature in the composite disk; and it can be var-
ied if a steel ball of a different diameter is used. For such a
broad bandwidth transducer, the ringdown time should be
very short. However, several wavelengths were observed in
the pulse-echo time domain waveform. This may be due to
the fact that the fibers in the composites have slightly dif-
ferent length and resonance frequencies, and they are not
equidistance from the reflector. Hence, echoes from differ-
ent parts of the transducer occur at slightly different time
scale and form several cycles in the resultant time domain
waveform. If we examine these several cycles in the wave-
form carecfully, we can see that the first cycle has a longer
period and, hence, is of lower frequency compared to the
subsequent ones. It is expected that the performance of the
transducer can be further enhanced if a suitable front-face
matching layer could be used.

V. CONCLUSIONS

The PSmT ceramic fibers with diameter ~35 um have
been fabricated using a sol-gel method. The ceramic fibers
were found to have a perovskite crystal phase and good
piezoelectric properties. The PSmT ceramic fiber/epoxy
1-3 composites with 0.68 ceramic volume fraction were
fabricated. The impedance and phase spectra showed that
the lateral resonance peaks almost disappeared, and a
clean thickness resonance peak can be observed at 31 MHz
with a fiber aspect ratio close to 1, which shows the ad-
vantage of using the anisotropic PSmT fibers. By using
a concave disk with nonuniform thickness, the resonance
peak can be broadened, which results in a higher ki, and
a broadband transducer can be fabricated. Broad band-
widths of ~123% at —3 dB (~105% after patching zeros)
and 139% at —6 dB (~118% after patching zeros) and a
low IL of 29.3 dB were obtained.
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