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Finite Element Analysis on Piezoelectric
Ring Transformer

Hing Leung Li, Jun Hui Hu, Member, IEEE, and Helen Lai Wah Chan

Abstract—The use of a piezoelectric ring as transformer
is reported and studied in this paper. By using a concen-
tric electrode pattern, a ring-shaped transformer can be de-
signed to operate at its high order extensional modes. Lead
zirconate titanate (PZT) ceramic rings with 12.7-mm outer
diameter, 5.1-mm inner diameter and 1.2-mm thickness
were used to fabricate the prototypes. Three-dimensional
(3-D) finite element models are built to study and ana-
lyze the vibration characteristics of the piezoelectric trans-
formers (PTs) using higher order modes (�3). The reso-
nant frequencies, mean coupling effect, mode shapes, and
other open-circuit characteristics are simulated and com-
pared with experimental measurements. Prototypes of PTs
using mode order three and four were fabricated and char-
acterized. Good agreement can be obtained between experi-
mental results and finite element model (FEM) simulations.
The dimensions for the PTs using higher order symmetric
extensional modes are optimized by FEM. To avoid mode
coupling with the thickness mode, the ideal ring thickness
has to be less than or equal to 0.6 mm. The ring PT offers
advantages of simple structure and small size. It has a good
potential in making low cost PT for low-voltage applica-
tions.

I. Introduction

The idea of a piezoelectric transformer (PT) was first
implemented by Rosen in 1956 [1]. It used the cou-

pling effect between electrical and mechanical energy of
piezoelectric materials. A sinusoidal signal is used to ex-
cite mechanical vibrations by the inverse piezoelectric ef-
fect via the driver section. Due to the direct piezoelectric
effect, an output voltage can be induced in the generator
part. The PT offers many advantages over the conventional
electromagnetic transformer such as high power-to-volume
ratio, electromagnetic field immunity, and nonflammable.
Due to the demand on miniaturization of power supply-
ing systems of electrical equipment, the study of PTs has
become a very active research area in engineering. In the
literature [2], [3], many PTs have been proposed and a few
of them found practical applications. Apart from switching
power supply system, a Rosen-type PT has been adopted
in cold cathode fluorescent lamp inverters for liquid-crystal
displays [2]. The PT with multilayer structure to provide
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high-output power may be used in various kinds of power
supply units [3]. Recently, PTs of ring or disk shapes have
been proposed and investigated [4]–[9]. Their main advan-
tages are simple structure and small size. In comparing
with the structure of a ring and a disk, the PZT ring of-
fers higher electromechanical coupling in the radial direc-
tion [8]. The high-electromechanical coupling implies that
a ring structure is more efficient in converting mechanical
energy to electrical energy, and vice versa, which is es-
sential for a high performance PT. Therefore, ring-shaped
PTs are very suitable in making low-cost PTs for low-
voltage applications.

In a previous study [6], [9], a ring transformer oper-
ated at the third symmetric extensional mode was pro-
posed and developed. Different from all the conventional
PTs, the ring PT proposed only required a single poling
process and a proper electrode pattern. The PT was fab-
ricated by a PZT ring by dividing one of the electrodes
into two concentric circular regions. The third symmetric
extensional mode was used as the operation mode. Pro-
totypes were fabricated, and a maximum efficiency and
power density of 92.3% and 14.3 W/m3, respectively, could
be achieved. With a similar approach, PTs using higher-
order modes also could be designed by using proper elec-
trode patterns. Because of the mode coupling effect and
the complexity of vibration modes at high frequency, the
conventional lumped-equivalent circuit method may not
accurately predict the dynamic behaviors of the PTs. In
this study, a commercial finite-element code (ANSYS, AN-
SYS, Inc., Houston, TX) was used as a computational tool
to analyze and study the ring piezoelectric transformer.
The purpose of using FEM is to predict the actual phys-
ical behaviors of the PT without going through the ex-
pensive prototyping processes. It can help to manipulate
and analyze the effects of various design variables. In this
study, different electrode patterns were designed to excite
the higher-order extensional modes of a PZT ring. Three-
dimensional FEM were built to study the dynamic behav-
ior at its resonance. Laser vibrometer measurement was
performed to verify that the required extensional modes
were excited. Good agreements were obtain between laser
measurement and the FEM simulation. The performances
of PTs using various vibration modes have been studied.
The performance of the PT was evaluated by the mean
coupling factor of input and output sections (km). The
open-circuit characteristics were simulated and compared
with measurement results. The dimensions of the ring were
optimized to avoid mode coupling effect.
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Fig. 1. Displacement loci of (a) radial and (b) wall-thickness mode
of a ring. — Shape at rest, - - - deformed shape.

II. Vibration Characteristics of PZT Rings

To understand the working principle of the proposed
PT, it should start with the resonance characteristics of a
PZT ring. For a fully electroded PZT ring, several main
resonances would be identified in the frequency domain.
It includes the radial, wall-thickness, thickness, and other
complex modes [8]. The radial and wall-thickness modes
are also referred to as the first and second order extensional
modes of a ring, respectively. The loci of the motions are
shown in Fig. 1. The inner and outer walls move in phase
in the first order extensional mode, and two walls move
out-of-phase in the second order mode. However, exten-
sional modes with higher order modes are often very weak
or even vanished in the frequency spectrum. It is because
radial tensile and compressive stresses cancel each other
at the high-order modes. A 3-D finite-element analysis was
performed to understand the phenomena. Consider the de-
formation and radial stress profile of the cross section of
a ring at its extensional modes in Fig. 2. For mode order
(m) equals to 1 and 2, the radial stress distributions are
of the same sign. The whole ring is under either radial
compression or tension; hence, it results in a maximum
net stress level. The high stress implies a strong coupling
mode could be excited electrically. However, when m be-
comes larger, the radial stress profile contains a number
of positive and negative regions. Therefore, the resultant
stress level is reduced or even totally cancelled each other.
Hence, only a very weak coupling can be identified in the
electrical impedance spectrum. To excite the higher-order
radial extensional modes of a PZT ring, the compressive
and tensile stress regions have to be decoupled by splitting
the electrode according to the stress distribution. For ex-
ample, the third radial extensional mode could be excited
by splitting the electrode at its nodal line of the radial
stress as shown in Fig. 3. By driving the PZT ring at ei-
ther the positive or negative stress region, the third order
mode could be excited. Similarly, higher-order modes could
be excited by using more concentric electrodes.

A commercial PZT ring, (Fuji 213, Fuji Ceramics Ltd.,
Shizuoka, Japan), with an outer diameter of 12.7 mm, in-
ner diameter of 5.1 mm, and a thickness of 1.2 mm is used
to demonstrate this idea. The PZT ring has sliver elec-
trodes on two main surfaces and is poled along its thick-
ness direction. The materials properties provided by the

Fig. 2. Radial stress profiles of a cross-sectional deformation ring by
FEM.

Fig. 3. Electrode configuration for the third radial extensional mode
of a PZT ring.
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TABLE I
Material Properties of PZT Ring.

Elastic modulus E11 (GPa) 72
E33 (GPa) 6.0

Density ρ (kgm3) 7700
Poisson’s ratio σ 0.29
Permittivity εT

11 1450
Piezoelectric constant d33 (10−12 m/V) 330

d31 (10−12 m/V) −145
Mechanical quality factor Qm 2000

supplier are listed in Table I. Two rings were designed to
excite resonance modes with m equal to 3 and 4. One of
the electrodes of the PZT ring is split into two concentric
regions to excite the m = 3 mode. Other PZT rings have
three concentric electrodes in order to excite the fourth
order mode. All the allowable modes of the two rings to-
gether with one full electrode sample were measured by
a HP 4149A Impedance/Gain Phase Analyzer (Hewlett-
Packard, Palo Alto, CA), and results are shown in Fig. 4.
The measurement also was compared with the FEM pre-
diction. Good agreement could be obtained. For Fig. 4(a),
the fully electroded ring could excite two strong coupling
modes at 120 kHz (m = 1) and 453 kHz (m = 2). With
splitting the driving electrode into two concentric rings,
the strongest coupling occurred at 818 kHz (m = 3). Upon
further splitting the electrode into three parts, the main
resonance was shifted to 1073 kHz (m = 4). The analytical
approximation of the resonance frequencies of the exten-
sional modes of a ring is given by [6]:
for m = 1,

fr =
1

2ro

√
CE

11

ρ
, (1)

for m = 2,

fr =
2

π (ro − ri)

√
CE

11

ρ
, (2)

for m > 3,

fm =
αm

2πro

√
Y11

ρ(1 − σ2)
, αm ≈ m − 1

1 − ri

/
ro

π, (3)

where ri and ro are the inner and outer radius of the PZT
ring, and CE

11, Y11, ρ, and σ are the stiffness, Young’s mod-
ulus, density and Poisson’s ratio of the PZT materials, re-
spectively. The resonance frequencies found by analytical,
finite-element simulation and measurement are listed in
Table II.

In order to identify that the correct extensional modes
of a ring are excited, a Polytec laser vibrometer (Physik
Instruments, Inc., Karlsruhe, Germany) was used to scan
the out-plane displacement on the major surface along the
radial direction. The scanning path starts from the inner
radius to the outer radius. The mode shapes predicted by

Fig. 4. Electrical impedance spectrum of a PZT ring at higher or-
der modes excitation (a) Fully electroded ring. (b) Two concentric
electrodes. (c) Three concentric electrodes.
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TABLE II
Comparison on Resonant Frequencies of PZT Ring at Higher

Order Extensional Modes.

Analytical Experiment FEM
Order (kHz) (kHz) (kHz)

m = 1 103.2 119.7 118.2
m = 2 463.5 453.3 446.8
m = 3 838.2 818.0 815.2
m = 4 1141.1 1073.0 1087.1

Fig. 5. Laser measurement results. (a) Laser scanning path. (b)–(e)
Out-plane displacement profiles for m = 1 to 4.

the FEM and found by laser measurement are plotted in
Fig. 5. Fig. 5(a) shows a 3-D FEM with the scanning path
of the laser measurement. The first and second order ex-
tensional modes excited by a full electrode ring are shown
in Figs. 5(b) and (c). As the laser measurement cannot
detect the direction of motion, the absolute displacement
from FEM is plotted as comparison. The deformed shape
of the cross section of a ring is used to illustrate the actual
vibration profile of the ring. From Figs. 5(d) and (e), the
vibration profiles for m = 3 and 4 excited using concentric
electrodes were plotted and compared with simulations.
Again, good agreements were obtained from the FEM pre-
diction and laser measurements. The results have experi-
mentally verified that the higher-order extensional modes
could be excited using the concentric electrode patterns.

III. Construction and Operation Principle

The construction of the PT using higher-order exten-
sional modes of a ring is to divide the top electrode into
concentric regions. For example, to make use of the third
order mode, two concentric electrodes have to be used.

And three concentric electrodes will be used for m = 4,
and so on. According to the radial stress distribution, the
compressive regions are connected together as the input
section. Similarly, the tensile stress areas are connected as
the output section. The bottom electrode served as a com-
mon ground for both input and output. The constructions
of PTs using the third and fourth order modes are shown
in Fig. 6. To minimize the disturbance on the resonance
characteristics of the ring, the solder joints are applied at
the displacement nodal lines as represented by the dotted
lines in Fig. 6. The displacement nodal lines also can be
used as the supporting positions for the PTs. The proto-
types of a PT using third and fourth extensional modes
are shown in Fig. 7. The characteristics of PTs are mea-
sured with an HP 4194A impedance gain/phase analyzer
(Hewlett-Packard, Palo Alto, CA) and listed in Table III.
The input characteristics were measured with the output
section grounded. Similarly, the input section is grounded
during the output characteristics measurements. The PT
characteristics were measured under a free condition by
placing the PTs on a soft foam. However, for practical
applications, the PTs can be fixed either by mechanical
clamping or solder joints at the displacement nodal lines.

From the characteristics of the PTs, it is obvious that
the frequency of the PT changes as the order of mode
number varies. In addition, when m increases from 3 to
4, apart from the frequency increases from 818 kHz to
1073 kHz, the matching load also reduces from 916 Ω to
360 Ω. Without changing the physical dimensions of the
PT, the PT properties could be tailored design by using
different mode order. It makes the ring PT most adapt-
able to various electronic devices. The higher order PTs
also could provide ideal electromagnetic isolation in high-
frequency circuits.

IV. Finite-Element Analysis on Higher-Order

Extensional Modes

Due to the size limitation, PT using fifth order or higher
modes is difficult to fabricate. To study the characteris-
tics of PTs using higher-order modes, a commercial finite-
element code, ANSYS, was used as the computational tool.
In past studies, the analysis of PTs were mostly based on
the well-accepted equivalent circuit [10]. However, most of
the equivalent circuits are derived from 1-D models or as-
sumption, the vibration of the PT is actually on all three
dimensions. At higher order modes, the activities of all the
directions are comparable and should not be neglected.
Therefore, the equivalent circuits may no longer be useful.
The use of a 3-D FEM analysis is valuable in such cases.
In ANSYS1, couple-field elements that can include both
a mechanical and electrical degree of freedom (DOF) are
used to construct the PT models. The element matrix is
derived from the linear piezoelectric equations:

{T} = [C]{S} − [e]{E}
{D} = [e]T {S} + [ε]{E}

(4)

1ANSYS 5.6 Manual, ANSYS. Ltd.
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Fig. 6. Construction of piezoelectric transformer at (a) third and (b) fourth radial extensional mode.

where {T}, {S}, {D}, and {E} are the stress, strain,
electric flux density and electric field vector, respectively.
[C], [e], and [ε] represent the elastic, piezoelectric, and
dielectric matrix, respectively. By the variational princi-
ple and finite-element discretization, the coupled finite-
element matrix equations can be derived. It can allow the
element to take into account both direct and inverse piezo-
electric effects at the same time in one model.

The 3-D FEM was constructed by 8-nodes brick cou-
ple field elements. The silver electrode was neglected in
the model because it is much thinner than the thickness
of the PZT ring. The equipotential boundary condition
was applied to all the nodal points covered by a single
electrode. It can simulate the physical conductive behav-
iors of the silver electrodes. Except for the geometry of
PT, the characteristics also depended on the loading con-
dition. The efficiency of PT will reach a maximum when
the loading, RL, is equal to 1/(ωCd2), which is called the
matching load of the PT [11]. However, the loading con-
dition cannot be implemented into the present FEM. The
open-circuit characteristics of PT will be investigated.

A PT uses the direct piezoelectric effect at the driver
section to excite the whole structure in resonance. Electri-
cal charges will be built up at the output section by the
inverse piezoelectric effect. Hence, the performance of a
PT will be determined by the effective electromechanical
coupling factors at both input and output sections, repre-
sented by kin and kout hereafter. To evaluate the perfor-
mance of a PT, the mean effective coupling factor will be
used as a figure-of-merit, and it is given by:

km =
√

kin × kout, (5)

Fig. 7. Prototypes of piezoelectric ring transformers.

TABLE III
Characteristics of Prototypes.

m = 3 m = 4
Input Output Input Output

Fr (kHz) 818.0 818.0 1073.0 1073.0
Fa (kHz) 859.1 857.4 1127.6 1106.8

R (Ω) 9.4 16.0 15.3 81.4
L (mH) 1.2 1.9 0.3 1.7
Ca (pF) 33.2 19.8 68.5 13.2
Cb (pF) 342.4 213.2 675.2 381.8

Qm 626.3 616.4 141.6 137.5
keff 0.31 0.3 0.31 0.24
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Fig. 8. Transformation ratio of the third order PT versus driving
frequency under different damping ratios.

where kin

/
kout =

√
(F 2

a − F 2
r )

/
F 2

a , Fa and Fr are the
resonance and antiresonance frequencies.

The input and output characteristics of Fr and Fa could
be determined by a modal analysis of ANSYS. In a har-
monic analysis, the open-circuit characteristics such as
transformation ratio (R) also could be predicted. However,
the actual transformation ratio value will be determined by
the loss factor of the PT. In this analysis, we have made an
assumption that the damping ratio at a narrow frequency
range, from 1 MHz to 2 MHz to be constant. The actual
loss factor is found by fitting a constant damping ratio (ζ),
which is defined as the percentage of critical damping, to
match with the voltage response of a third order mode of
the PT. The transformation ratio of a third order PT is
compared with FEM simulation as shown in Fig. 8. It is
found that R highly depended on the value of ζ. By com-
paring different damping values, ζ equal to 1.5% gives the
best fitting with the experimental results. The PT could
reach a maximum open-circuit transformation ratio of 6.2
at 851 kHz. A loss factor of 1.5% of critical damping will
be used in all the FEM analysis.

The FEM prediction on the characteristics of PT using
higher order modes (up to m = 7) of a ring is shown in
Fig. 9. The resonance frequencies of the PT increases as
the mode order increases. It is also noticed that both km

and R decrease at higher mode order. In the higher or-
der modes, the wavelength decreases as the resonant fre-
quency increases. The wavelength propagates in the radial
direction and is comparable to the ring thickness. Hence,
other complex modes in the thickness direction also could
be excited simultaneously. Mode couplings will occur and
reduce the km and R of the PT and the efficiency of the
transformer. From the FEM results in Fig. 9, km of the PT
reduced from 0.26 to 0.14 as m increases from 3 to 7. In
addition, R also reduces from 6.2 to 3.2. To demonstrate
the mode coupling in higher-order modes, the resonance

Fig. 9. Relationship among the mean electromechanical coupling
factor, transformation ratio, resonant frequency with the order of
modes.

Fig. 10. Relationship of the resonant frequency with the ring thick-
ness.

frequencies of the radial extensional modes and thickness
mode are plotted against the ring thickness in Fig. 10.
When the ring thickness varies from 0.8 to 1.2 mm, the
thickness mode falls into the range of the operation fre-
quencies of PT with mode orders 5 to 7. The mode cou-
pling between thickness and radial modes could happen.
When the ring thickness is less than 0.6 mm, mode cou-
pling with thickness mode will no longer exist. The km of
the PT in higher-order modes are shown in Fig. 11. In gen-
eral, km decreases as the ring thickness increases. However,
for a 0.8 to 1.2-mm thick ring, km drops significantly, and
the trend also was distorted. It is the evidence of mode-
coupling effect with the thickness mode that reduces km

of the PT. As the thickness approaches to zero, the value
of km will be similar at all mode orders. Therefore, when
the ring thickness becomes very small, the performance of
the PT will be independent of the mode order.
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Fig. 11. Relationship of the mean electromechanical coupling factors
with the ring thickness.

V. Conclusions

The use of PZT ring as a transformer was studied. The
PT was designed to operate at the extensional mode of
a ring. With proper designed concentric electrodes, the
higher-order extensional modes could be excited, and PTs
using higher order modes could be fabricated. Prototypes
of PT of mode numbers 3 and 4 were fabricated to prove
the proposed idea. Three-dimensional FEM were used to
predict the characteristics such as resonant frequencies,
transformation ratio, and mean electromechanical cou-
pling factor of PT using higher order modes. It was found
that, for a PZT ring with outer and inner diameter of
13.5 and 5.1 mm, the ring thickness has to be less than or
equal to 0.6 mm to avoid mode coupling with the thickness
mode. It also was found that, when the ring thickness be-
comes very small, the mean coupling factor will no longer
depend on the mode number. Hence, the proposed PT will
be ideal for a very thin structure, such that the operating
frequency can be tuned without affecting the performance
significantly. This study helps to optimize the ring-shape
transformers for practical applications.
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