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Abstract—Many frustrating experiences have been encountered
when the training of neural networks by local search methods
becomes stagnant at local optima. This calls for the development
of more satisfactory search methods such as evolutionary search.
However, training by evolutionary search can require a long com-
putation time. In certain situations, using Lamarckian evolution,
local search and evolutionary search can complement each other
to yield a better training algorithm. This paper demonstrates
the potential of this evolutionary–learning synergy by applying
it to train recurrent neural networks in an attempt to resolve
a long-term dependency problem and the inverted pendulum
problem. This work also aims at investigating the interaction
between local search and evolutionary search when they are
combined. It is found that the combinations are particularly
efficient when the local search is simple. In the case where no
teacher signal is available for the local search to learn the desired
task directly, the paper proposes introducing a related local task
for the local search to learn, and finds that this approach is able to
reduce the training time considerably.

Index Terms—Evolutionary computation, Lamarckian evolu-
tion, recurrent neural networks.

I. INTRODUCTION

USING gradient-based local search methods to train neural
networks has difficulties in: 1) escaping from local optima

when the search surface is rugged, 2) finding better solutions
when the surface has many plateaus (gradient is zero, for ex-
ample), and 3) deciding the search direction when gradient in-
formation is not readily available (lack of teacher signals, for
example). To alleviate the above deficiencies, Tang and Koehler
[28] proposed a global optimization algorithm that subdivides
the search space into subregions, and the subregions not con-
taining the global optimum are excluded from searching. How-
ever, the complexity of the algorithm grows exponentially with
the number of nodes in the networks. Another global optimiza-
tion algorithm [27] uses a user-defined trace function to lead
the search away from local optima, but it is doubtful that a suit-
able trace can easily be found. Gradient-based algorithms with
multistarts [12] can also be used, but the appropriate number of
restarts is difficult to derivea priori, and the computation time
can be very long. It is widely believed that evolutionary search
(see [3], [10], [32], [37], and [38] for a review) and simulated
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annealing [7] can overcome the above difficulties, but these al-
gorithms may require a large number of iterations in order to
obtain an acceptable solution.

Recurrent neural networks (RNN’s) have closed paths in their
topology that enable them to preserve their past states. There-
fore, RNN’s have the capability of dealing with spatiotemporal
tasks that have been found to be difficult for feedforward net-
works [23]. Bianchiniet al. [6] observed that the cost function
of a feedforward network for any learning task is closely related
to that of an equivalent RNN.1 As a result, any occurrence of
local optima in the feedforward network can also be found in
the equivalent RNN case. However, an RNN could have addi-
tional local optima that may not exist in the feedforward net-
work. Therefore, Bianchiniet al. [6] argue that local optima
occur more frequently in RNN’s and that the training of RNN’s
is more difficult. However, this difficulty could be overcome by
combining the efforts of local search (learning) and evolutionary
search as they could complement each other.

There are two approaches to embedding learning in an evo-
lutionary search, namely Lamarckian evolution [1], [34] and
evolution based on the Baldwin effect [4], [29]. In this paper,
we focus on the former approach since we found that it outper-
forms the latter approach in our previous studies [16], [18].2 We
conjecture that the inefficiency of the latter approach is due to
the fact that too many weights in the networks can be changed
by learning, and the changes can be substantial [18]. As a re-
sult, it is difficult for the evolutionary operations to produce the
genotypic changes that match the phenotypic changes due to
learning. Further evidence for supporting this argument can be
found in [17].

Lamarckian evolution is based on the inheritance of acquired
characteristics—an individual can pass the characteristics (ob-
served in the phenotype) acquired through lifetime learning to
its offspring genetically (encoded in the genotype). As learning
takes place in phenotype space, Lamarckian evolution requires
an inverse mapping from the phenotype space to the genotype
space, which is impossible in biological systems. However,
when there is a simple relationship between the genotypes and
the phenotypes (as in our case of evolving RNN’s) such that the
new phenotypes acquired through learning can be mapped onto
the corresponding genotypes, Lamarckian evolution is possible
and potentially beneficial.

When Lamarckian learning is embedded in evolutionary
search, the change in phenotypes by learning is transformed

1An RNN can be unfolded in time to form a feedforward network with equiv-
alent temporal characteristics [30].

2The performance comparisons were based on evolving neural networks for
sequence recognition.
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to the corresponding change in genotypes. The transformed
genotypes are used in subsequent reproduction. When the same
concept is applied to the training of neural networks, the inborn
weights (weights as a result of evolutionary operations) are
replaced by the weights obtained through learning for further
evolutionary operations. Therefore, the acquired knowledge
through learning is coded directly in the genotypes, resulting in
a transfer of knowledge to the offspring.

This paper proposes and compares different approaches
to embedding Lamarckian learning in a special type of evo-
lutionary search method, referred to as the cellular genetic
algorithm (GA). The resulting hybrid algorithms were applied
to train RNN’s. The performance of these networks has been
evaluated through a sequence recognition problem and a neu-
rocontrol problem. The results show that the hybrid algorithms
are not only able to reduce training time, but also are able to
improve solution quality significantly. The paper also provides
detailed analyses on the interaction between the local search
and evolutionary search. These analyzes help to explain why
the hybrid algorithms achieve better performance.

The rest of this paper is organized as follows. The cellular ge-
netic algorithm is described in Section II. In Section III, the local
search methods used in our experiments are explained. Perfor-
mance evaluation and analysis of these evolutionary–learning
synergy approaches in the sequence recognition problem and
the neurocontrol problem are provided in Sections IV and V.
The implications of these experiments are summarized and dis-
cussed in Section VI.

II. CELLULAR GENETIC ALGORITHM

Cellular GA’s [8], [9], [31] are a special form of GA in which
the population of chromosomes are organized as a toroidal, two-
dimensional square grid, with each grid point representing a
chromosome. In cellular GA’s, reproduction can only occur be-
tween neighboring chromosomes. This local reproduction has
the effect of reducing selection pressure to achieve more explo-
ration of the search space [20]. Therefore, cellular GA’s have
been used in our experiments in order to reduce the risk of get-
ting stuck in local optima, especially when Lamarckian learning
is embedded [1]. In this study, each weight in an RNN is en-
coded as a gene of a chromosome in the form of a floating-point
number. A chromosome, in which the number of genes is equal
to the number of weights, represents an RNN. The simple rela-
tionship between the phenotype and the genotype makes Lamar-
ckian learning possible. Fig. 1 illustrates the procedure of the
cellular GA used in our experiments.

III. L OCAL SEARCH

Local methods search for better solutions in the neighborhood
of the current solution. Most of them rely on the availability of
gradient information to find better solutions. Their major draw-
back is that they are easily trapped in local optima. Despite this
drawback, they have been applied widely to train RNN’s. Typ-
ical examples include the real-time recurrent learning algorithm
[36] and the backpropagation-through-time algorithm [30].

A. Real-Time Recurrent Learning (RTRL)

The real-time recurrent learning (RTRL) algorithm [36] cal-
culates the instantaneous error gradient by

(1)

where is the instantaneous squared
error at time step and are, respectively, the actual
output and the desired output of output nodeat time step, and

is the weight connecting nodeto node . The sensitivity
is obtained by the recursion

(2)

with , where is either the signal ap-
plied to input node at time step or the actual output of pro-
cessing node at time step is the net input to processing
node : is the derivative of the
sigmoidal function , and is the Kronecker delta.

The RTRL algorithm is a gradient-based algorithm in which
all of the weights are changed at every time step in a direc-
tion opposite to the instantaneous error gradient. It is computa-
tionally intensive because it has a computational complexity of

for each time step, whereis the number of processing
nodes.

B. Delta Rule

The running time of the RTRL algorithm scales poorly with
the network size. In order to reduce computational complexity,
we propose to update only the weights that connect to the
output nodes. Specifically, we only compute the gradient

in (1) whenever node is an output node.
Therefore, (2) is simplified to

when is an output node
otherwise.

(3)
This is equivalent to the delta rule for feedforward networks.
The dynamics of the network remain unchanged; however, the
updates of weights are based on a feedforward architecture. The
philosophy behind this approach is to lower the computational
complexity by eliminating the term in
(2).

C. Limitations of Local Search

If gradient-based algorithms are able to train RNN’s, there
will be little incentive to use evolutionary search methods. How-
ever, there are situations in which gradient-based algorithms
have difficulties in finding an appropriate neural network. The
problems used in our experiments are typical examples. The first
one is a sequence recognition problem where gradient-based al-
gorithms frequently become stuck in undesirable regions in the
search space. The second is a neurocontrol problem, where gra-
dient-based algorithms are not appropriate because teacher sig-
nals are not available. The cellular GA was found to be suc-
cessful in finding an acceptable solution to these two problems.
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Fig. 1. Procedure of the cellular GA.

Further improvement in training speed and solution quality can
also be obtained by embedding local search in the cellular GA.

IV. THE LONG-TERM DEPENDENCYPROBLEM

Many sequence recognition tasks such as speech recognition,
handwriting recognition, and grammatical inference involve
long-term dependencies—the output depends on inputs that
occurred a long time ago. The sequences involved in these tasks
are characterized typically by different time scales. In terms of
short time scales, they can be characterized by the dynamics
that generate the sequences, while in terms of long time scales,
they may have syntactic and semantic structures. For example,
speech recognition involves the processing of short-term
speech signals, as well as the processing of phonemic features
spanning a much longer interval. In grammatical inference
[19], a single word at the beginning of a sentence may affect the
grammatical correctness or alter the meaning of the sentence.

The performance of these applications depends mainly on
whether or not the long-term dependencies can be represented
accurately; however, extracting these dependencies from data
is not an easy task. While recurrent neural networks provide a
promising solution to this problem, previous research [5] has
shown that the commonly used gradient descent algorithms have
difficulty in learning the long-term dependencies. To overcome
this difficulty, we propose to combine the cellular GA’s and local
search for training RNN’s.

The long-term dependency problem is defined as follows. It
is required to learn a temporal relationship from a sequence of
symbols such that the output at time depends on the in-
puts from time to time . The input sequences contain
symbols drawn from a symbol set, and each symbol is repre-
sented by a binary number. There are only two possible input
sequences: and .
The first symbol in an input sequence can be eitheror , but
the next input symbols are fixed. When the first input symbol
is at time , the output at time is ; when the first input
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TABLE I
EXAMPLE OF INPUT AND OUTPUT SEQUENCES FOR THELONG-TERM DEPENDENCYPROBLEM

Note: For the output patterns, the last two bits determine whether the output symbol after five time steps isx or y .

symbol is at time , the output at time is . For other
time intervals, the output predicts the next input. Table I shows
an example of input and output sequences withequal to 5.

In this study, an RNN with three input nodes (a three-bit bi-
nary coding was used) and 12 processing nodes (five of them
were used as the output nodes) was used to learn the long-term
dependency problem with equal to 5. Therefore, there are a
total of weights required to
be optimized. The population size of the cellular GA is 100,
and each random walk has four steps. The fitness of a chromo-
some is determined by the network error function, which is the
mean-squared error (MSE) between the actual outputs and the
desired outputs for the whole training set. In this case, the better
the input sequence is recognized, the smaller is the MSE be-
tween the actual outputs and the desired outputs.

A. Applying Local Search or Cellular GA’s Alone

A set of control experiments has been performed to train
the RNN’s by local search alone. The limitation of using the
gradient-based algorithms (RTRL and delta rule) to solve
the long-term dependency problem is demonstrated clearly
in Fig. 2, where the MSE’s were quickly stuck at 0.08, and
no improvement could be obtained by further training. This
suggests that there are difficult regions (around an MSE of
0.08) in the search space where the gradient-based algorithms
are likely to be trapped, and that applying these local search
methods alone (especially the delta rule) is not able to solve the
long-term dependency problem.

On the other hand, Fig. 2 shows that the cellular GA is more
capable of solving the problem. The average MSE attained after
4 min of simulation (i.e., 20 000 generations) is 0.0303, which
is lower than that of the local search methods. Further improve-
ment to the cellular GA might be achieved when local search is
embedded. In the following experiments, different approaches
to embedding Lamarckian learning in cellular GA’s are com-
pared and analyzed.

B. Low Frequency of Learning

One approach to combining local search and cellular GA’s is
to apply the local search at regular generation intervals. In this
experiment, a chromosome was randomly chosen for learning at
every 20 generations, while the reproduction process remained
unchanged. During learning, the chosen RNN (chromosome)

was trained by the RTRL algorithm or the delta rule for one
epoch, where an epoch is a complete presentation of all training
patterns. The learning rate was set to 0.9 for both algorithms.

The results based on 200 simulation runs are plotted in Fig. 2.
When the delta rule is embedded in the cellular GA, the av-
erage MSE’s attained after 4 min of simulations are smaller
than that of the pure cellular GA. This indicates that the evo-
lution of RNN’s is improved by the application of the delta
rule. On the other hand, Fig. 2 shows clearly that embedding
the RTRL algorithm degrades the performance rather than im-
proves it. However, the CGA–RTRL hybrid algorithm achieves
an average MSE of 0.0136 (with a variance of 0.0010) after
20 000 generations, which is lower than that of the
pure cellular GA.3 This suggests that combining RTRL and the
cellular GA has merits, provided that computation time is not
an issue. Although RTRL may provide some benefit, the corre-
sponding increase in computation time may not provide a suffi-
cient payoff.

C. Interaction Between Evolutionary Search and Local Search

The above experiments show that an appropriate combination
of evolutionary search and local search can reduce the overall
training time and improve the solution quality. In order to un-
derstand how evolutionary search and local search interact with
and complement each other, another set of experiments was per-
formed. Here, in each simulation run, we measured the fitness
improvement frequency as a result of the application of local
search. The average MSE’s of the chromosomes in the popula-
tion were also recorded. The frequency was obtained by dividing
the number of times that a chromosome was improved as a re-
sult of learning by the total number of times that learning was
applied within a fixed period.

Fig. 3 plots the fitness improvement frequency as a function
of generations in a typical simulation run where local search was
appliedatevery20generations.At thebeginningof theevolution,
the MSE’s of the population are relatively large, suggesting that
they are far away from the optima. During this period (before
3000 generations), the fitness improvement frequency is close
to 1 and the average MSE’s decrease rapidly. This suggests that
the local search is able to complement the evolutionary search.

Fig. 3 also shows that, between 5000 and 6000 generations,
the frequency drops to low values, and the average MSE’s are in

3It is also lower than that of the CGA–delta rule hybrid algorithm, but the
difference is not significant(p > 0:05).
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Fig. 2. MSE (based on the average of 200 simulations of the long-term dependency problem) of the best network found by the cellular GA and its hybrid algorithms
where local search (RTRL or delta rule) was applied at every 20 generations (i.e., low-frequency learning). The average MSE’s after 4 min of simulation and their
variances (inside parentheses) are also shown. The performance of gradient-based algorithms alone is also illustrated. All differences in means are statistically
significant (p < 0:01, calculated by Student'st tests).

Fig. 3. Graphs showing the variations of fitness improvement frequency (in a
typical simulation run) as a result of embedding (a) RTRL and (b) delta rule in
the cellular GA. Local search was applied at every 20 generations. The average
MSE’s of the chromosomes in the population (instead of the best individual) are
also plotted.

the range 0.08–0.09. Experiments in Section IV-A have demon-
strated that there are difficult regions in the search space cor-
responding to an MSE of 0.08 where local search is incapable
of finding better solutions. Therefore, the fitness improvement
frequency during this period becomes very low. However, Fig.
3 shows that the frequency starts to increase after 6000 genera-
tions. One reason for this phenomenon is that the evolutionary
search helps the networks to move out of the difficult regions. In
other words, evolutionary search is able to complement the local
search. Beyond 12 000 generations, it becomes increasingly dif-
ficult to reduce the MSE’s by applying local search because
most of the networks are already very close to the optimal so-
lution. Therefore, the frequency decreases as the average MSE
approaches zero.

D. Lifetime Learning

Learning is expensive because it takes time. Therefore,
learning was applied at a regular generation interval in the
previous experiments. However, when the computational com-
plexity of the local search methods is low, it might be beneficial
if learning were applied more frequently. In this section, we
consider the case where learning is applied to the newly born
offspring at every generation. We refer to this approach as
“lifetime learning.”

Fig. 4 shows that lifetime learning is not appropriate for the
CGA–RTRL hybrid algorithm as it results in very poor perfor-
mance. This agrees with the result obtained in Section IV-B: the
RTRL algorithm is so computationally intensive that the gain
obtained from learning cannot compensate for the loss in com-
putation time. On the other hand, performance is greatly im-
proved when lifetime learning is applied to the CGA–delta-rule
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Fig. 4. MSE (based on the average of 200 simulations of the long-term dependency problem) of the best network found by the lifetime learning approach where
local search (RTRL or delta rule) was applied to the offspring generated at every generation. The average MSE’s after 4 min of simulation and their variances
(inside parentheses) are also shown. All differences in means are statistically significant (p < 0:01, calculated by Student'st tests).

hybrid algorithm, and the average MSE attained after 4 min is
only 18% of that attained by the pure cellular GA.

The computational complexity of the delta rule is low because
the RNN is considered as a feedforward network when the error
gradient is computed. However, the delta rule is so simple that
the error gradient obtained by this algorithm may be inaccu-
rate. As a result, the fitness of a chromosome could deteriorate
after the application of the delta rule. Despite this deficiency,
the low computational complexity of the delta rule can shorten
the overall training time when lifetime learning is embedded in
the cellular GA. Among all of the hybrid algorithms, combining
the cellular GA and the delta rule achieves the lowest MSE for a
given CPU time. The benefit of this approach is further demon-
strated in the next section where RNN’s are applied to solve the
inverted pendulum problem.

V. THE INVERTED PENDULUM PROBLEM

A pendulum of fixed length is hinged at the top of a cart which
is free to travel along a horizontal track with fixed length. It is
required to balance the pendulum in a vertical plane and to keep
the cart within the track boundaries. The dynamics of the system
are governed by a system of differential equations:

(4)

and

(5)

where is the cart position, is the cart velocity, is the angle
of the pendulum, is the angular velocity of the pendulum,
is the mass of the pendulum (0.1 kg),is the total mass of the
system (1.1 kg), is the length of the pendulum (0.5 m), is
the force applied, andis the acceleration of gravity (9.8 m/s2).

The system dynamics were approximated using the Euler
method (i.e., ) with a time step of

s. The system is considered to be out of balance when
the pendulum falls beyond 12from the vertical position or the
cart runs beyond ±2.4 m from the center.

Previous approaches [2], [22], [33] to tackling the inverted
pendulum problem employed a feedforward neural network
using , and as inputs, and the output was interpreted
as the force applied to the cart. While the trained networks are
able to balance the pendulum, four input variables are required
to represent the system status. In real applications, practitioners
may find difficulty in acquiring system information such as the
cart velocityand theangularvelocity.Therefore, it is important to
obtain a neurocontroller with as few input variables as possible.

This problem can be tackled, as in [35], by using an RNN
in which and are the only inputs. In our experiments, an
RNN with two inputs and six processing nodes (one of them
also serves as an output node), as shown in Fig. 5(a), was used to
balance the pendulum.4 At each time step, and were applied
as inputs to the RNN. If the output were less (larger) than 0.5, the
cart was pushed to the left (right) by a force of . A cellular
GA, with a population size of 100 and a random walk of four
steps, was used to train the RNN’s. The fitness of an RNN is
defined as the number of time steps for which the system is still

4Note that there are a total of6� 6 + 6� (2 + 1) = 54 weights required
to be optimized.
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Fig. 5. RNN’s for balancing the inverted pendulum. The output node(s) represent(s): (a) the control force, (b) the control force, predicted cart velocity, and
predicted angular velocity, and (c) the control force and predicted angular velocity. Note that all weights were trained by evolutionary search, butsome of them
were also trained by local search. These special weights are labeled in the figures.

balanced. The system was started from a random angle in the
range of ±12 and a random cart position in the range of ±2.4
m.

A. Learning a Related Local Task

In the long-term dependency problem, the evolutionary
search has been used to find an RNN that matches the actual
output with the desired output at every time step. This goal has
been the same in the local search methods (RTRL and delta
rule). Therefore, both the evolutionary search and the local
search aim at finding a solution for the same global task, i.e., to
match the actual network outputs with the desired outputs. In
the inverted pendulum problem, however, no teacher signal (ex-
cept for the failure signal at the end indicating that the system
is out of balance) and no local search method are available to
solve the global task (i.e., balancing the pendulum) directly.
Therefore, a simple combination of evolutionary search and
local search as in the previous approaches cannot solve this
problem. In this work, we propose to overcome this difficulty
by allowing the local search to solve a different but “related”
local task, i.e., to predict the cart velocityand the angular
velocity at the next time step. A local task is considered to
be “related” to a global task if a completely resolved local task
helps to accomplish the global task. The relationship between

the global task and the local task in the inverted pendulum
problem is examined in the next section.

The idea of using a different task for the local search to solve
was first introduced by Nolfiet al. [24]. In their experiments,
feedforward neural networks were evolved for food hunting (the
global task), and the fitness of a feedforward network was deter-
mined by the amount of food gathered during its life span. Nolfi
et al. found that the food-hunting ability will be improved if the
feedforward networks are also trained by backpropagation [26]
to predict the location of the nearest food. The rationale of in-
troducing a different task (e.g., predicting the food location) for
local search to solve is illustrated in Fig. 6. Finding a neural net-
work for a specific task can be considered as searching for the
optimum of a fitness function. If the fitness function of a local
task is similar to that of the global task, moving a solution to-
ward the optimal regions of the local task may assist the search
for the optimal solution of the global task.

Motivated by the work of Nolfiet al., we adopt a similar
strategy for the inverted pendulum problem, i.e., introducing a
local task to predict and (cf. predicting the food location
in [24]) in order to help solve the global task of balancing the
system (cf. food hunting in [24]). The neural network used in the
experiment is shown in Fig. 5(b), where two processing nodes
are used to predict the velocities. Although velocity information
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Fig. 6. Diagram depicting the hypothetical relationship (based on the
arguments of Nolfiet al. [24] and Parisiet al. [25]) between a global task and
a “related” local task. The former is optimized by evolutionary search, while
the latter is optimized by local search. There is an overlap between the optimal
regions of these tasks. The local search (learning) progressively brings the
solution of the local task closer to its optimum. This may assist the evolutionary
search in finding the optimal solution of the global task.

is required during training, it is not required after training, and
the trained RNN’s only require two inputs to balance the system.

Due to the success of the lifetime learning approach in the
long-term dependency problem, it was used in the inverted pen-
dulum problem. The delta rule was used as the local search
method. The RNN generated at the end of each reproduction
cycle was applied to balance the pendulum, and during the first
1000 time steps,5 the delta rule was applied to learn the local
task. After that, no more local search was applied. The number
of steps for which the pendulum was balanced was used as the
fitness value for subsequent reproductions. This process was re-
peated for every generation. Table II lists the training time re-
quired to evolve an RNN to keep the system balance for 120 000
time steps. It shows that allowing the RNN’s to predictand

can reduce the training time (compare Algorithms I and V).
Table II also shows that, although the training time and the
number of generations required to balance the pendulum de-
pend on the training algorithms, they exhibit a large variation.
This is because some starting conditions [e.g., and

m] could lead to a training time much longer than the
average training time. Therefore, we use a nonparametric statis-
tical test (Wilcoxon–Mann–Whitney) [15] which is applicable
to data with continuous distributions. The tests suggest that the
difference in average training time and average number of gen-
erations in Table II are significant .

B. Empirical Analysis

According to the above results, we conclude that the time
taken to find an RNN to balance the inverted pendulum is re-

5The system may be out of balance before reaching the 1000th time step.

duced when local search is applied to learn the prediction of
cart velocity and angular velocity. In order to understand why
learning a local task can help improve the evolution process,
further experiments were performed.

1) Perfect Performance in the Local Task Helps Evolu-
tion: In this section, the relationship between the local task
(predicting velocities) and the global task (balancing the pen-
dulum) is examined. This is achieved by determining whether
or not the evolution time for finding a solution for the global
task can be reduced when the local task is assumed to be
completely resolved. The architecture of the RNN’s remains
unchanged, as shown in Fig. 5(b); however, no weights were
allowed to be changed by the local search, and the outputs of
the two processing nodes were forced toand at every time
step. Therefore, all RNN’s appear to have an innate ability to
predict the velocities precisely. In the experiment, evolutionary
search alone (without learning) was used to train the RNN’s
using , and as inputs.

Table II shows that the above experimental setup (Algorithm
III) results in very short training time6 as compared to evolu-
tionary search alone (Algorithm I). This result suggests that the
completely resolved local task helps solve the global task. This
also indicates that the local task is not arbitrary; rather it is “re-
lated” to the global task. The experiments in Section V-B-3 fur-
ther demonstrate that the way in which a local task and a global
task are “related” could affect the evolution process that solves
the global task.

2) Good Performers in the Local Task Helps Evolution:In
the previous experiment, all RNN’s have an innate ability to
model the dynamics of the pendulum system. However, errors
cannot be avoided when the ability has not been completely ac-
quired. Here, we demonstrate that even though the RNN’s have
not learned the local task completely, those with good perfor-
mance (as a result of learning rather than innate ability) in the
local task are also likely to achieve good performance in the
global task. In the experiment, the performance (measured in
terms of the MSE’s between the actual and predicted velocities)
in solving the local task by the application of local search was
recorded. The performance (measured in terms of the number
of steps for which the pendulum is still balanced) of the global
task was also recorded. The results are illustrated in Fig. 7 (the

lines). It shows that the performance of both local and global
tasks is poor in the first 1000 generations. However, after 1000
generations, the performance of the global task starts to im-
prove, and the MSE’s reduce to a low level, indicating that
the networks have learned the system dynamics to some extent.
Fig. 7 also shows that the RNN’s that are good at balancing the
pendulum are also good at predicting the velocities. This sug-
gests that there is an overlap, as hypothesized in Fig. 6, between
the optimal regions of the local task and the global task in the
inverted pendulum problem.

6Algorithm III was created for analytical purposes. Although its training time
is very short, it has little practical value as it assumes that every offspring has
an innate ability to resolve the local task.
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TABLE II
TRAINING TIME AND NUMBER OF GENERATIONS (WITHOUT CONSIDERING THETIME SPENT ON LEARNING) REQUIRED TO EVOLVE

AN RNN TO BALANCE THE PENDULUM FOR UP TO120 000 TIME STEPS

Note: Results are based on 100 simulations running on a Pentium-Pro 200 MHz processor. All differences in means are statis-

tically significant (p < 0:01) according to the Wilcoxon–Mann–Whitney test.

Fig. 7. Graphs showing: (a) the average performance of the global task
(number of steps for which the pendulum is still balanced), and (b) the average
performance of the local task (MSE in velocity prediction) achieved by the
chromosomes in the population. Learning (predicting_h and _�) and reverse
learning (maximizing the error in velocity prediction) are performed by
applying the delta rule. The results are based on the average of 100 simulations.

In order to further validate that improving the performance of
the local task can really accelerate the evolution of RNN’s, an-
other experiment was performed. In the experiment, the perfor-
mance of the local task was degenerated, rather than improved,
by the local search. More specifically, the weights were adjusted
by “reverse learning,” where they were changed in a direction
that maximizes MSE, i.e., using gradient ascent to maximize
MSE’s instead of using gradient descent to minimize MSE’s.

The results in Fig. 7 (the lines) indicate that, when the MSE’s
are high (maintained by “reverse learning”), finding a solution
for the global task becomes very difficult. Table II (Algorithm
VI) shows that applying reverse learning leads to a very long
training time as compared to other hybrid algorithms. These re-
sults suggest that improving the performance of the local task
by local search is beneficial to the evolution of RNN’s.

We must stress that good performance in a related local task
does not necessarily mean that the performance in the global
task is also good. More specifically, a network that can predict
the velocities of the pendulum precisely does not imply that it
is able to balance the pendulum. We have illustrated in Section
V-B-1 that RNN’s with an innate ability to predict velocities
have to be fine tuned by evolutionary search before they can
balance the system. On the contrary, a network that is able to
balance the system does not imply that it can predict the veloci-
ties perfectly. For example, Algorithm VI of Table II illustrates
that it is possible for networks with high MSE’s in velocity pre-
diction, maintained by gradient ascent, to balance the system,
although it takes a much longer time and needs many more gen-
erations to achieve this goal.

3) Preferable Local Tasks:In the previous experiments, the
local task is to learn the system dynamics by predicting the an-
gular and cart velocities. It would be interesting to investigate
how the interaction between the local and global tasks affects
the evolution process.

The experiments in Section V-B-1 show that having an innate
ability to model the dynamics of the whole system can improve
the evolution process. The improvement is likely to be small if
only part of the system dynamics (angular velocity, for example)
is known to the RNN’s. This argument is supported by the ex-
perimental results in Table II, where evolutionary search with an
innate ability to predict the angular velocity only (Algorithm II)
takes a longer time as compared to the one with an innate ability
to predict both velocities (Algorithm III). Therefore, the task of
predicting only the angular velocity is considered as being re-
lated loosely to the global task.

Here, the loosely related local task was learned by local
search. As shown in Fig. 5(c), one of the processing nodes
was assigned to predict the angular velocity; therefore, the
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time spent on learning was shortened. Table II shows that,
when the local task is changed from predicting both velocities
(Algorithm V) to predicting the angular velocity (Algorithm
IV), the overall time taken becomes longer, even though the
time spent on learning is shortened.7 This suggests that, when
the local task is loosely related to the global task, the ability
to evolve solutions for the global task might be reduced. If
the local task is “unrelated” to the global task, it is likely that
no improvement can be obtained, and it may deteriorate the
evolution process in the worst case. One can easily find a local
task, forcing the output of a processing node to be a constant,
for example, that cannot improve the evolution of solutions for
the global task. Therefore, we suggest that one should choose a
local task that is closely related to the global task.

VI. DISCUSSION ANDCONCLUSION

Local search methods are usually fast, but they have difficul-
ties in avoiding local optima. Evolutionary search methods have
the capability to escape from local optima, but their computa-
tion time could be long. We have found that it is possible for
these search methods to complement each other, and to yield
a better training algorithm for RNN’s. In the long-term depen-
dency problem and the inverted pendulum problem, embedding
the delta rule in the form of lifetime learning is able to speed up
and improve the accuracy of the training process.

When evolutionary search is combined with local search, the
computational complexity of the local search determines the op-
timal frequency at which it should be applied. When the com-
plexity is low, it is possible to apply local search at every gener-
ation, leading to the lifetime learning approach. Another factor
that affects the frequency of applying local search is the evolu-
tionary search’s ability to eliminate the regions not containing
the global optimum. Hart [12] found that the frequency should
be reduced when the fitness distribution of the population re-
liably indicates the possible locations of the global optimum;
otherwise, little benefit can be obtained from local search.

Between the two local search methods that we have inves-
tigated, the delta rule is the simplest, although it is not able
to find a good solution on its own. However, its low compu-
tational complexity makes it suitable for being embedded in the
cellular GA. We have demonstrated that good performance can
be achieved by embedding it in evolutionary search, suggesting
that local search methods need not be sophisticated in order to
obtain the benefit of combining evolutionary search and local
search. Other researchers [11], [21] also demonstrate that the
combination of “simple” local search and evolutionary search
can yield better performance as compared to evolutionary search
alone. However, the local search method adopted in [11] has
limitations, as it is only applicable to simple Boolean networks

7Comparing Algorithms IV and I, the former requires a smaller number of
generations, but takes a longer training time. This is because the reduction in
the number of generations cannot compensate for the additional time spent on
learning.

with binary rather than floating-point weights. As the parity
problem used in [11] is simple enough to be solved by local
search alone, good results were expected when it was combined
with evolutionary search. In contrast, we have shown in Section
IV-A that applying the delta rule alone is not able to solve the
long-term dependency problem, and that the problem is solved
whenever the delta rule is embedded in evolutionary search.
Although improvement in evolutionary search was observed in
[21], the author did not consider the time spent on learning. Our
results, however, clearly demonstrate the benefit of embedding
local search in evolutionary search, even if the learning time is
taken into account.

For the inverted pendulum problem, local search aims at
producing better predictions, while evolutionary search aims at
balancing the system. We found that learning the local task is
able to improve the evolution of solutions for the global task.
While Nolfi et al. [24] observed this phenomenon, they did not
consider the learning time involved. It is therefore uncertain
whether the improvement was achieved at the expense of
longer training time. Only limited comparisons between the
performance of the global task and the local task were provided
in [24]; in particular, not much information regarding the
performance of the local task during the course of evolution
was given. Without these comparisons and information, the
reasons why learning a local task can improve the evolution
process remain unclear. Would it be the case that learning a
local task, or any arbitrary tasks, is a kind of mutation that
increases the exploration of the search space, which in turn
improves the evolution process? Our comparisons between the
performance of the global task and that of the local task during
the course of evolution, as shown in Fig. 7, provide a clearer
answer to this question. We show that the evolution process is
improved because the performance of the local task (achieved
by Lamarckian learning) is good.

We have also found that the interaction between the local task
and the global task can affect the evolution process. We suggest
that when the two tasks are related, especially when there is an
overlap between the regions of optimal solution for the local task
and for the global task, learning the local task is able to improve
the evolution of solutions for the global task. We have shown
that, when the local task is not directly related to the global task,
the local task has a smaller contribution to the evolution process.
Therefore, one of the criteria for choosing a local task is that it
should be related to the global task, where the term “related”
means that it is easier to accomplish the global task when the
local one is resolved.

Other reports [13], [14] demonstrate that the performance of
a target task can be improved even if an arbitrary task rather
than the target task is learned. We have not found any evidence
in our experiments to support this argument. Neither have we
found evidence to disprove this claim. In fact, one of our ex-
periments shows that learning an unsuitable local task deterio-
rates the evolution process, and one can easily find a local task
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that cannot improve the evolution process. It has also been re-
marked in [14] that only under very restrictive conditions (e.g.,
real-valued genotypes, a small amount of learning), can a ben-
efit be obtained by learning an arbitrary task. Therefore, for
practical purposes, it is unlikely to obtain any improvement by
learning an “unrelated” task.
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