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BDPCA Plus LDA: A Novel Fast Feature Extraction
Technique for Face Recognition

Wangmeng Zuo, David Zhang, Senior Member, IEEE,
Jian Yang, and Kuanquan Wang

Abstract—Appearance-based methods, especially linear discriminant
analysis (LDA), have been very successful in facial feature extraction, but
the recognition performance of LDA is often degraded by the so-called
“small sample size”” (SSS) problem. One popular solution to the SSS
problem is principal component analysis (PCA) + LDA (Fisherfaces), but
the LDA in other low-dimensional subspaces may be more effective. In
this correspondence, we proposed a novel fast feature extraction technique,
bidirectional PCA (BDPCA) plus LDA (BDPCA + LDA), which performs
an LDA in the BDPCA subspace. Two face databases, the ORL and the
Facial Recognition Technology (FERET) databases, are used to evaluate
BDPCA + LDA. Experimental results show that BDPCA + LDA needs
less computational and memory requirements and has a higher recognition
accuracy than PCA + LDA.

Index Terms—Bidirectional principal component analysis (BDPCA),
face recognition, feature extraction, linear discriminant analysis (LDA),
principal component analysis (PCA).

I. INTRODUCTION

Face recognition has been an important issue in computer vision
and pattern recognition over the last several decades [4], [33]. While a
human can recognize faces easily, automated face recognition remains
a great challenge in computer-based automated recognition research.
One difficulty in face recognition is how to handle the variations in
expression, pose, and illumination when only a limited number of
training samples are available.

Currently, face-recognition methods are of two types, the geometric-
based approaches and the holistic-based approaches. Geometric-based
approaches extract local features such as the locations and local statis-
tics of the eyes, nose, and mouth and require correct feature detection
and good measurement techniques. Holistic-based approaches extract
a holistic representation of the whole face region and have a robust
recognition performance under noise, blurring, and partial occlusion.

The two main holistic-based face-recognition approaches are the
principal component analysis (PCA) and the linear discriminant analy-
sis (LDA). PCA was first used in 1987 by Sirovich and Kirby to
represent facial images [14], [23]. Subsequently, Turk and Pentland
applied PCA to face recognition and presented the well-known eigen-
faces method [26]. Since then, PCA has been widely studied and has
become one of most successful facial-feature-extraction approaches.
Recently, other PCA-based approaches, such as the two-dimensional
(2-D) PCA (2DPCA), have also been proposed for face recognition
(6], [11], [27], [30].

The second holistic-based face-recognition approach (the LDA)
works by finding the set of the optimal projection vectors that map the
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original data into a low-dimensional feature space with the restriction
that the ratio of the trace of the between-class scatter S to the trace
of the within-class scatter S,, is maximized [8]. When applied to
face recognition, the LDA seriously suffers from the so-called “small
sample size” (SSS) problem caused by the limited number of high-
dimensional training samples [5], [31].

A number of approaches have been proposed to address the SSS
problem. One of the most successful approaches is subspace LDA,
which uses a dimensionality reduction technique to map the original
data to a low-dimensional subspace. Researchers have applied the
PCA, latent semantic indexing (LSI) [7], and partial least squares
(PLS) [9] as preprocessors for dimensionality reduction [1], [2], [24],
[25], [32]. Among all the subspace LDA methods, over the past ten
years, the PCA plus LDA approach (PCA + LDA) has received signif-
icant attention. In the Fisherfaces, PCA is first applied to eliminate the
singularity of S,,, and then LDA is performed in the PCA subspace [2].
However, the discarded null space of S,, may contain some important
discriminant information and may cause the performance deterioration
of the Fisherfaces. Rather than discarding the null space of S,
researchers proposed a class of direct LDA (D-LDA) method [5], [31],
while Yang proposed a complete PCA + LDA method, which simul-
taneously considered the discriminant information both in the range
space and the null space of S, [28].

In this correspondence, we propose a fast subspace LDA technique,
bidirectional PCA (BDPCA) plus LDA (BDPCA + LDA). The BD-
PCA, which assumes that the transform kernel of PCA is separable, is
a natural extension of the classical PCA [13], [21] and a generalization
of Yang’s 2DPCA [27], [30]. The separation of the PCA kernel has at
least three main advantages: faster training, faster feature extraction,
and a lower memory requirement.

This correspondence is organized as follows. Section II briefly
reviews previous work on the PCA technique applied to 2-D image
transforms. Section III first proposes a separable 2-D transform tech-
nique (BDPCA) and then presents a fast face-recognition technique
BDPCA + LDA. It also provides a detailed comparison of the PCA +
LDA and the BDPCA + LDA frameworks. Section IV presents the
results of experiments using the ORL database and the Facial Recog-
nition Technology (FERET) database. Finally, Section V offers our
conclusion.

II. OVERVIEW OF PCA TECHNIQUES FOR
A 2-D IMAGE TRANSFORM
A. Two-Dimensional Image Transform

A 2-D image transform has two major applications in image
processing: image feature extraction and image dimensionality reduc-
tion. In [13] and [21], a 2-D transform is defined as follows.

Definition 1: The 2-D transform of the m X n image matrix
X(j, k) results in a transformed image matrix X’ (u, v) as defined by

X' (w,v) = Y X(G k) A, kiu,v) )
Jj=1 k=1

where A(t,7;u,v) denotes the transform kernel. The inverse trans-
form is defined as

X(ij) =Y > X' (u,0)B(i, j;u,v) @

u=1v=1

where B(i, j; u, v) denotes the inverse transform kernel.
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Definition 2 [13], [21]: The transform is separable if its kernels
can be rewritten as

w)Aow (K, v) 3)

A(]a k; U, ’U) = Acol (]a
B u)Brow (k, v). (€))]

B(j,k;u,v)z col(j7

The introduction of the term “separable” is very important in a 2-D
transform. In a separable transform, the transformed matrix X’ of the
original image matrix X can be obtained by

X' = A XAL 5)
and the inverse transformation can be given by
X BCOIX BE)W (6)

where Ao and A, .y are column and row transform kernels, respec-
tively, and B, and B, are column and row inverse transform
kernels, respectively. If the separable transform is unitary [21], the
inverse transform kernels are then obtained by

Bcol = AT

col

Biow = AL (7

row *

B. Holistic PCA: Nonseparable Image Model-Based Technique

When handling a nonseparable 2-D transform, it is better to map
the image matrix X (7, k) into its vector representation x in advance.
Then, the 2-D transform of (1) can be rewritten as

x' = Ax. 3

A holistic PCA transform, also known as the Karhunen-Loeve
transform (KLT), is an important nonseparable 2-D image transform
technique. In a holistic PCA, an image matrix X must be transformed
into a one-dimensional (1-D) vector x in advance. Then, given a set
of N training images {X1, X2, ..., Xy }, the total scatter matrix S; of
PCA is defined by

N
1 Z
=1

where X denotes the mean vector of all training images.

We then choose eigenvectors {vy,...,V;,..., V4, } correspond-
ing to the first dpca largest eigenvalues {A1,..., A, ..., Adpoa }
of Sy as projection axes. After the projection of sample x onto the
eigenvector v;

yi:v?(x—i), i=1,...,dpca (10)

we can form the PCA-transformed vector y = [y1,%2, - - -, Ydpe A]T

of sample x.

C. Two-dimensional KLT (2D-KLT): Separable Image
Model-Based Technique

The 2D-KLT is a separable PCA technique. If the PCA kernel is
separable, we can rewrite the 2-D transform of (1) as

X' = AT XA, (11)
where A, and A, are the row and column kernels that satisfy

col
Sc Acol :AcolAcol
SiowArow = ArowArow

12)
13)

where S¢°! and SI°" are the column and row total covariance matrices,
respectively, and A, and A, are two diagonal matrices.

Based on the assumption that the column total scatter matrix
S¢ol is defined by a first-order Markov process with a correlation
factor r, Habibi and Wintz [12] and Ray and Driver [22] gave

the column eigenvalues )\“’1 and eigenvectors ¥ = [15°!(1),.. .,
col col T
k (Z)7 e Pk ( )]
1— 2
)\col T (14)

1 —2rcosw§o! + 12

1
col 2 2 . co . (m+1)ﬂ' km
ol(j) = (er)\ZOI) sin |:wk ! (z — + 2)]
i=1,...,m (15)

where wg°! are the real positive roots of the transcendental equation

for m = even

(1 —-7r?)sinw

tan(mw) = (16)

cosw — 2r +r2cosw

Similarly, we can calculate the row eigenvalues \;°" and eigenvectors

row

k

Then, we compare the computational complexity of the holistic
PCA and the 2D-KLT. It is reasonable to use the number of mul-
tiplications as a measurement of computational complexity of PCA
and 2D-KLT transforms. The holistic PCA transform requires (mn)?
multiplications whereas the 2D-KLT transform requires m?n + n?m
multiplications.

Yang recently proposed another 2-D transform, 2DPCA [27], [30].
Note that 2DPCA is different from 2D-KLT in two ways. First, 2D-
KLT uses X’ = AT XA, to transform an image X to X', whereas

2DPCA uses X’ = XA ,,.. Second, 2DPCA and 2D-KLT define the
row total scatter matrix S{°" differently.

III. BDPCA PLUS LDA: A NEW STRATEGY FOR
FACIAL FEATURE EXTRACTION

A. BDPCA: A Face-Image-Specific 2D-KLT Technique

In this section, we propose a face-image-specific transform, the
BDPCA. Given a training set {Xy,...,Xx}, N is the number of
the training images and the size of each image matrix is m X n. By
representing the th image matrix X; as an m set of 1 X n row vectors

x;
X
X, = a7

m
X;

we adopt Yang’s approach [27], [30] to define the row total scatter
matrix

row __
SV =

m
E xJ fij x fij)

Z‘H

(X, - X)T(X; - X) (18)

M= I\Mz

5[~

1

K3

where x? and X/ denote the jth row of sample X; and mean matrix
X, respectively. We choose the row eigenvectors corresponding to the
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TABLE 1
COMPARISONS OF COMPUTATIONAL AND MEMORY REQUIREMENTS OF THE BDPCA + LDA AND THE PCA + LDA
Memory Requirements Computation Requirements
Method
Projector Feature prototypes Training Testing
a) Calculating the projector: ¢) Projection: (mxn)<dy pa Large
PCA+LDA (mxn)XdLDA NXdLDA O(Np3+dPCA3) Large . .
Large Same d) Distance calculation: Nxdjp, Same
b) Projection: Nx<(np>wn)xd pa. Large
a) Calculating the projector: ¢) Projection: mexxmin(k,y,,» ko)™
kg K o Nocd O(m3+m3+dgppea’) Small |k, pk,o<[max(m,n)rd pal Small
BDPCA +LDA | keopkrguw<dipa LDA
Small Same b) Projection: Nx[noxmin(k,q,,. keo) d) Distance calculation: Nxdjp, Same
theolkowmax(m+dy pa, ntdipa)] Small

first k,ov largest eigenvalues of S{°" to construct the row projection
matrix W ,.

W, = [wio wi™, o wi ] (19

where w;°% denotes the row eigenvector corresponding to the ¢th
largest eigenvalues of S}°%.

Similarly, by treating an image matrix X; as an n set of m x 1
column vectors

X; =[x} x 7| (20)
we define the column total scatter matrix
1 N
8601:7 Xz—i Xl—XT 21
= ;< I ) @1)

We then choose the column eigenvectors corresponding to the first
kol largest eigenvalues of S¢°! to construct the column projection
matrix W

W, = [wi, ws o wil ] (22)

kcol
where w¢°! is the column eigenvector corresponding to the ith largest
eigenvalues of S¢°!.
Finally we use the transformation

Y = WIXW, (23)

to extract the feature matrix Y of image matrix X.

B. BDPCA Plus LDA Technique

In this section, we propose a BDPCA plus LDA technique for fast
facial feature extraction. The BDPCA + LDA is an LDA approach that
is applied on a low-dimensional BDPCA subspace. Since less time is
required to map an image matrix to BDPCA subspace, the BDPCA +
LDA is, at least, computationally faster than the PCA + LDA.

The BDPCA + LDA first uses a BDPCA to obtain feature
matrix Y as

Y = WIXW, (24)
where W, and W,. are the column and row projectors, respectively;

X is an image matrix; and Y is its BDPCA feature matrix. The feature
matrix Y is then transformed into feature vector y by concatenating

Fig. 1. Five images of an individual from the ORL face database.
the columns of Y. The LDA projector Wrpa = [@1,¥2, -, ©m] I8
calculated by maximizing Fisher’s criterion
T
" Spp
J = 25
() TS0 (25

where @, is the generalized eigenvector of S, and S,, corresponding
to the ith largest eigenvalue \;

Sppi = AiSwipi- (26)
S, is the between-class scatter matrix of y
1 &
_+ , _ _ AT
Sp= 7 > Nilmi — 1) (s — 1) @7
i=1
and S,, is the within-class scatter matrix of y
1 & N;
Su=+ Z z;m,j —p) iy —m)" (28)
1= J=

where N;, y; j, and p; are the number of feature vectors, the jth
feature vector, and the mean vector of class ¢, respectively. C is the
number of classes, and p is the mean vector of all the feature vectors.

In summary, the main steps in BDPCA 4 LDA feature extraction
are to first transform an image matrix X into BDPCA feature subspace
Y by (24), to map Y into its 1D representation y, and then to obtain
the final feature vector z by

z=Wip.y. (29)

C. Advantages Over the Existing PCA Plus LDA Framework

In this section, we compare the BDPCA + LDA and the PCA +
LDA face-recognition frameworks in terms of their computational
and memory requirements. It is worth noting that the computational
requirements are considered in two phases, training and testing.
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Fig. 2. MSE curves of the PCA, the 2D-KLT, and the BDPCA (a) on the training set and (b) on the testing set.

Fig. 3. Comparisons of the reconstruction capability of the four methods.
(a) and (f) Original images. Reconstructed images by (b) and (g) the PCA,
(c) and (h) the 2D-KL]T, (d) and (i) the 2DPCA, and (e) and (j) the BDPCA.

(b)

Fig. 4. Example of the discriminant vectors of (a) the Fisherfaces and (b) the
BDPCA + LDA.

We first compare the computational requirement using the number
of multiplications as a measurement of computational complexity.
The training phase involves two computational tasks: 1) calculation
of the projector and 2) projection of images into feature prototypes.
To calculate the projector, the PCA 4+ LDA method must solve an
N x N eigenvalue problem and then a dpca X dpca generalized
eigenvalue problem, where N is the size if the training set and dpca
is the dimension of the PCA subspace. In contrast, BDPCA + LDA
must solve an m X m problem, an n X n eigenvalue problem, and a

TABLE 1I
COMPARISONS OF THE ARR OBTAINED USING THE
BDPCA WITH DIFFERENT PARAMETERS

¢l 1 6 12 18 24 30 112

1 0.138 | 0.851 | 0.905 | 0.924 | 0.920 | 0.920 ]| 0.919
4 0.616 | 0.942 [ 0.949 | 0.951 | 0.949 | 0.950 | 0.950
8 0.719 | 0.937 | 0.941 | 0.941 | 0.943 | 0.941 | 0.940
12 0.734 | 0.941 | 0.943 ] 0.942 | 0.942 | 0.942 | 0.941
16 0.742 ] 0.936 | 0.944 | 0.941 | 0.942 | 0.941 | 0.940
20 0.741 ] 0.934 | 0.942 | 0.944 | 0.943 | 0.942 | 0.940
92 0.741 ] 0936 ] 0.944 | 0.945 | 0.944 | 0.942 | 0.941

TABLE III
COMPARISONS OF THE ARR OBTAINED USING THE BDPCA + LDA
WITH DIFFERENT PARAMETERS

<l 4 8 10 12 15 20 25

2 0.937 1 0.957 ] 0.957 | 0.954 | 0.958 | 0.944 | 0.940
3 0.932 1 0.957 | 0.958 | 0.967 | 0.957 | 0.948 | 0.940
4 0.947 1 0.958 | 0.970 | 0.971 | 0.968 | 0.959 | 0.939
6
8

0.954 ] 0.955 | 0.968 | 0.960 | 0.950 | 0.933 | 0.896
0.958 ] 0.955 | 0.965 | 0.956 | 0.940 | 0.906 —
10 0.944 ] 0.954 | 0.959 | 0.934 — — —
12 0.940 ] 0.942 | 0.938 | 0.864 — — —

TABLE 1V
ToTAL CPU TIME (SECONDS) FOR TRAINING AND
TESTING ON THE ORL DATABASE

Method Time for Training (s) | Time for Testing (s)
PCA+LDA 46.0 5.2
BDPCA+LDA 17.5 39

deppca X dpppca generalized eigenvalue problem, where dgppca
is the dimension of BDPCA subspace. Since the complexity of an M x
M eigenvalue problem is O(M?) [10], the complexity of the PCA +
LDA projector-calculation operation is O(N3 + d3 ) whereas that
of BDPCA + LDA is O(m? + n® + d3ppc,s ). Assuming that m, n,
dpca, and dpppca are smaller than the number of training samples
N, BDPCA + LDA requires less computation than PCA + LDA to
calculate the projector. In Section IV, this assumption is satisfied in
all the experiments.
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TABLE V
COMPARISONS OF COMPUTATIONAL AND MEMORY REQUIREMENTS OF THE BDPCA + LDA AND THE PCA + LDA ON THE ORL DATABASE
Memory Requirements Computation Requirements
Method
Projector Feature Total Training Testing
prototypes
a) Calculating the projector: O(200°+160%) [c) Projection: (112x92)x39 = 401856
=12096000
112%92%:39 20039 d) Distance calculation: 200x39
pcA+LDA | ) 409656 |b) Projection: 200x(112x92)x39 ~7800
=401856 =7800 —80371200
Total=92467200 Total=409656
a) Calculating the projector: ¢) Projection: 112x92x4+4x12
O(112°+923+(12x4) %) =2294208 x(112+39) =48464
BDPCA 112x12+92x4 20039
+LDA +(12x4)x39 —7800 11384 |b) Projection: 200x[112x92x4 +12x4 d) Distance calculation: 200x39
=3584 x(112+39)]=9692800 =7800
Total=11987008 Total=56264
1 TABLE VI
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Fig. 5. Comparisons of the recognition rates obtained using different methods
on the ORL database.

To project images into feature prototypes, we assume that the
feature dimension of BDPCA + LDA and PCA + LDA is the same,
drpa. For PCA 4+ LDA, the number of multiplications is thus
N, x (m x n) x dpa. For BDPCA + LDA, the number of mul-
tiplications is less than N X [m x n X min(Krow, keol) + (Kcol X
krow)x max(m + dypa,n + dipa)], where N, is the number of
prototypes. In this correspondence, we use all the prototypes for
training; thus, N, = N. Assuming that min(kyow, kcor) is much less
than dppa, in the projection process, BDPCA + LDA also requires
less computation than PCA + LDA. In Section IV, we will show that
this assumption is satisfied in all our experiments.

In the test phase, there are two computational tasks: 1) the
projection of images into the feature vector and 2) the calculation
of the distance between the feature vector and feature prototypes.
In the following, we compare the computational requirement of the
BDPCA + LDA and the PCA + LDA in carrying out these two tasks.
When projecting images into feature vectors, the BDPCA + LDA
requires less computation than the PCA + LDA. Because the feature
dimension of BDPCA + LDA and PCA + LDA is the same, the
computational complexity of BDPCA + LDA and PCA + LDA are
equal in the similarity measure process. Taking these two tasks into
account, BDPCA + LDA is also less computationally expensive than
PCA + LDA in the testing phase.

The memory requirements of the PCA + LDA and the BDPCA +
LDA frameworks mainly depend on the size of the projector and
the total size of the feature prototypes. The size of the projector
of PCA + LDA is di,pa X m x n. This is because the PCA + LDA

RECOGNITION PERFORMANCE OF FIVE FACE RECOGNITION
METHODS ON THE ORL DATABASE

Methods | Fisherfaces | D-LDA EFM DCV_ | BDPCA+LDA
Parameters | [dpca, d] | [dv, d] | [dpca, dy. d] [d] [£cols krow, d]
Values | [160,39] [[39,39]][100, 100.39]| [39] [12.4,39]
ARR (%) 92.05% [94.20% 94.72% 95.55% 97.10%

TABLE VII
OTHER RESULTS RECENTLY REPORTED ON THE ORL DATABASE

Methods Recognition Rate (%) | Year
Complete PCA+LDA [28] 97.0% 2003
DF-LDA [17] 95.8% 2003
NKFDA [15] 95.1% 2004
ELDA [34] 95.85% 2004

BDPCA+LDA 97.10%

projector contains dr,pa Fisherfaces, each of which is of the same size
as the original image. The BDPCA + LDA projector is in three parts,
W, W,, and W pa. The total size of the BDPCA + LDA projector
is (keor X M) + (krow X 1) + (dLpa X kcol X krow), which is gener-
ally much smaller than that of the PCA + LDA. Finally, because these
two methods have the same feature dimensions, BDPCA + LDA and
PCA + LDA have equivalent feature prototype memory requirements.

We have compared the computational and the memory requirements
of the BDPCA + LDA and the PCA + LDA frameworks, as listed in
Table 1. Generally, the BDPCA + LDA framework is superior to the
PCA + LDA in both the computational and the memory requirements.

IV. EXPERIMENTS AND ANALYSIS

To test the efficacy of BDPCA + LDA, we make use of two face
databases, the ORL face database [18] and the FERET database
[19], [20]. We also compare the BDPCA + LDA with other LDA-
based methods, including the Fisherfaces [2], enhanced Fisher dis-
criminant model (EFM) [16], discriminant common vectors (DCV)
[3], and D-LDA [31].

The experimental setup is as follows. Since our aim is to evaluate
the efficacy of feature extraction methods, we use a simple classifier,
the nearest neighbor classifier. To reduce the variation of recognition
results, we adopt the mean of ten runs as the average recognition
rate (ARR). All the experiments are carried out on an AMD 2500+
computer with a 512-Mb RAM and tested on the matrix laboratory
(Matlab) platform (Version 6.5).
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Fig. 6. Seven images of an individual from the FERET face database.
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Fig. 7. Comparisons of the recognition rates obtained using different methods
on the FERET database.

A. Experiments on the ORL Database

We use the ORL face database to test the performance of BDPCA +
LDA in dealing with small variations in expressions, scale, and pose.
The ORL database contains 400 facial images with ten images of each
person. Fig. 1 shows the five images of an individual. The images
have been collected at different times, under various light conditions,
and with various facial expressions, facial details (glasses/no glasses),
and variations in scale and tilt [18]. In order to evaluate the BDPCA
representation and reconstruction, we compare the mean-square errors
(MSE) of the 2D-KLT and the BDPCA and compare the reconstruction
performances of the PCA, the 2D-KLT, the 2DPCA, and the BDPCA.
Then, we present an intuitive illustration of the discriminant vectors
obtained using the BDPCA + LDA. Finally, we carry out a compari-
son analysis of the BDPCA + LDA and other LDA-based methods.

To evaluate BDPCA representation and reconstruction, we construct
a training set by choosing the first five images of each person. The
remaining five images of each person are used for testing. Using this
training set and this testing set, we test the MSE of BDPCA and
intuitively evaluate the BDPCA reconstruction performance.

We compare the image representation performance of the PCA,
the 2D-KLT, and the BDPCA according to their MSE curves on the
training set and the testing set. Fig. 2(a) shows the plots of MSE curves
on the training set. The MSE of the BDPCA is lower than that of the
2D-KLT, but the MSE of the PCA is much lower than those of the 2D-
KLT and the BDPCA. This shows that the face-image-specific BDPCA
represents facial images more effectively than the content-independent
2D-KLT, and the PCA is the best for representing training images.
Fig. 2(b) shows the plots of MSE curves on the testing set. The MSE
of BDPCA is also lower than that of the 2D-KLT, and the MSE of the
PCA will be lower than that of the BDPCA when the feature dimension
is higher than 90. This shows that the BDPCA is better than the 2D-
KLT in facial image representation and is more robust than the PCA in
representing the testing images.

We now intuitively compare the PCA, the 2D-KLT, the 2DPCA, and
the BDPCA image reconstructions. Fig. 3 shows two original facial
images and their reconstructions. Fig. 3(a) is a training image. We
can see in Fig. 3(b)—(e) that the quality of the PCA reconstruction
is perfect, the quality of the 2DPCA and BDPCA reconstruction
is satisfactory, and the quality of the 2D-KLT is less satisfactory.

TABLE VIII
RECOGNITION PERFORMANCE OF FIVE FACE RECOGNITION
METHODS ON THE FERET DATABASE

Methods | Fisherfaces | D-LDA EFM DCV | BDPCA+LDA
Parameters | [dpca. @] | [dv. d] | [dpca, dw. d] [d] [fcol: row. d]
Values [200, 201 | [60, 24]][100, 100, 24]| [20] [15, 5, 28]
ARR (%) 78.26% | 84.69% 84.69% 82.51% 87.14%

TABLE IX

ToTAL CPU TIME (SECONDS) FOR TRAINING AND
TESTING ON THE FERET DATABASE

Method Time for Training (s) | Time for Testing (s)
PCA+LDA 254.2 36.2
BDPCA+LDA 57.5 26.3

Fig. 3(f) is a facial image from the testing set. Fig. 3(g)—-(j) shows
the reconstructed images. We can see that the quality of the classical
PCA has greatly deteriorated, but the 2DPCA and the BDPCA still
perform well and the 2D-KLT is once again less satisfactory. It is worth
pointing out that the feature dimension of 2DPCA is 896 (112 x 8),
much higher than that of the PCA (180), the BDPCA (30 x 8 = 240),
and the 2D-KLT (240).

Fig. 4 presents an intuitive illustration of the Fisherfaces and
BDPCA + LDA’s discriminant vectors. Fig. 4(a) shows the first five
discriminant vectors obtained using the Fisherfaces, and Fig. 4(b) de-
picts the first five discriminant vectors obtained using BDPCA + LDA.
It can be observed that the appearance of Fisherfaces’ discriminant
vectors is distinctly different from that of BDPCA + LDA. This estab-
lishes the novelty of the proposed LDA-based facial-feature-extraction
technique.

In the following experiments on the ORL database, five images of
each person are randomly chosen for training while the remaining five
images are used for testing, producing a training set of 200 images and
a testing set of 200 images. In this way, we run the face-recognition
method (for example, BDPCA + LDA) ten times and calculate the
ARR to reduce the variation of recognition rate.

We study the effect of parameter values on the recognition perfor-
mance of the BDPCA and the BDPCA + LDA. Both the BDPCA and
the BDPCA + LDA introduce two parameters, the number of column
eigenvectors k., and the number of row eigenvectors k... Table II
depicts the effect of k¢, and ko on the ARR obtained using the
BDPCA. As Table II shows, the maximum ARR is obtained when
krow = 4. When the number of column eigenvectors k.o, > 12, kco
has little effect on the ARR of the BDPCA. Table III shows the effect
of keop and kyon on the ARR obtained using the BDPCA + LDA.
As Table III shows, the maximum ARR (97.1%) is obtained when
krow = 4 and k.o = 12.

Table IV shows the total CPU time of the PCA + LDA (Fisherfaces)
and the BDPCA + LDA in the training phase and in the testing phase.
The BDPCA + LDA is much faster than the Fisherfaces both for
training and for testing.

We compare the computational and the memory requirements of the
BDPCA + LDA and the PCA + LDA (Fisherfaces). In Section III-C,
based on a number of assumptions, we assert that the BDPCA + LDA
is superior to the PCA + LDA in the computational and the memory
requirements. We check the correctness of these assumptions. The size
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TABLE X
COMPARISONS OF COMPUTATIONAL AND MEMORY REQUIREMENTS OF THE BDPCA + LDA AND THE PCA + LDA ON THE FERET DATABASE
Memory Requirements Computation Requirements
Method
Projector Feature Total Training Testing
prototypes
a) Calculating the projector: O(200°+160%) |c) Projection: (112x92)x39= 401856
~{2096000 . .
(112x92)x39 20039 d) Distance calculation: 200x39
PCA+LDA —401856 —7800 409656 |b) Projection: 200x(112x92)x39 =7800
=80371200
Total=92467200 Total=409656
a) Calculating the projector: ¢) Projection: 112x92x4+4x12
O(11234923+(12x4)*) 2294208 X(112+39) =48464
BDPCA 112x12+92x4 200x39
ALDA +(12x4)x39 —7800 11384 |b) Projection: 200 112x92x4+12x4 d) Distance calculation: 200x39
=3584 *(112+39)[=9692800 =7800
Total=11987008 Total=56264

of the training set is 200, higher than the size of the row vector (92) or
the column vector (112). The feature dimension of the Fisherfaces is
39, much higher than the k.o (4). Thus, all these assumptions are sat-
isfied. Table V shows the computational and the memory requirements
of the BDPCA + LDA and the Fisherfaces. The BDPCA + LDA has a
lower total memory requirement than the Fisherfaces and also requires
less computation for training and testing.

We compare the recognition performance of the BDPCA + LDA
with other feature extraction methods. Fig. 5 shows the ARR obtained
using the BDPCA + LDA, the Fisherfaces, the EFM, the DCYV, and the
D-LDA. Table VI lists the optimal parameter values and the maximum
ARR of these five methods. The maximum ARR obtained using
BDPCA + LDA is 97.10%, higher than the ARRs obtained using the
other four methods.

We also compare the recognition rate of the BDPCA + LDA with
some recently reported results. Table VII lists the reported recognition
rates obtained using other LDA-based methods on the ORL database,
where the training set consisted of five images of each person. Note
that some results were evaluated based on the performance of just one
run [28] and that some results were evaluated based on the ARR of five
runs or ten runs [15], [17]. Table VII shows that the BDPCA + LDA
is very effective and competitive in facial feature extraction.

B. Experiments on the FERET Database

The FERET face database is sponsored by the U.S. Department of
Defense and is one of the standard databases used in testing and in
evaluating face-recognition algorithms [19], [20]. For our experiments,
we chose a subset of the FERET database. This subset includes 1400
images of 200 individuals (each individual contributing seven images).
The seven images of each individual consist of three front images, with
varied facial expressions and illuminations, and four profile images
ranging from £15° to £25° pose [29]. The facial portion of each
original image was cropped to a size of 80 x 80 and preprocessed
using a histogram equalization. Fig. 6 presents seven cropped images
of one person.

In our experiments, three images of each person are randomly
chosen for training, while the remaining four images are used for
testing. Thus, we obtain a training set of 600 images and a testing
set of 800 images. In this way, we run the face-recognition method ten
times and calculate the ARR.

We compare the recognition rates obtained using the BDPCA +
LDA, the Fisherfaces, the EFM, the DCV, and the D-LDA as shown
in Fig. 7. We also list the optimal parameter values of each method
and its maximum ARR in Table VIII. The maximum ARR of the
BDPCA + LDA is 87.14%, higher than the ARRs of the other four
methods.

Table IX shows the total CPU time of the PCA + LDA (EFM) and
the BDPCA + LDA in the training phase and in the testing phase. The
BDPCA + LDA is much faster than the EFM in both the training and
the testing phases.

We compare the computational and the memory requirements of
the BDPCA + LDA and the PCA + LDA (EFM). In Section III-C,
based on a number of assumptions, we assert that the BDPCA + LDA
is superior to the PCA + LDA in the computational and the memory
requirements. We then check the correctness of these assumptions. The
size of the training set is 600, much higher than the size of the row
vector (80) or the column vector (80). The feature dimension of the
EFM is 24, much higher than k. (5). Thus, all these assumptions
are satisfied. Table X shows the computational and the memory re-
quirements of the BDPCA + LDA and the EFM. The BDPCA + LDA
needs less computational and memory requirements than the EFM.

Comparing Table IX with Table IV, much more training time is
saved by the BDPCA + LDA framework for the FERET database.
This is because the training complexity of the BDPCA 4 LDA is
O(N), whereas that of the PCA + LDA is O(N3), where N is the
size of training set. This property implies that, when the size of the
training set is high, the BDPCA + LDA would be more superior to
the PCA + LDA in terms of the computational requirement. Since the
FERET database is a much larger face database compared to the ORL
database, the BDPCA + LDA would be much less computationally
expensive than the PCA + LDA in the training phase.

V. CONCLUSION

In this correspondence, we propose a fast facial-feature-extraction
technique, BDPCA + LDA, for face recognition. Two face databases,
the ORL database and the FERET database, were used to evaluate
the BDPCA + LDA. Experimental results show that the BDPCA +
LDA framework has a number of significant advantages over the
PCA + LDA framework. First of all, the BDPCA + LDA needs less
computational requirement in both the training and the testing phases.
The reason is twofold. On one hand, compared to the PCA + LDA,
there are just some smaller eigenproblems required to be solved for the
BDPCA + LDA. On the other hand, the BDPCA + LDA has a much
faster speed for facial feature extraction. Second, the BDPCA + LDA
needs less memory requirement because its projector is much smaller
than that of the PCA + LDA. Third, the BDPCA + LDA has a higher
recognition accuracy over the PCA + LDA.
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