
1174 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER 2000

A Fuzzy Clustering Neural Networks (FCNs) System Design Methodology
David Zhang and Sankar K. Pal

Abstract—A system design methodology for fuzzy clustering
neural networks (FCNs) is presented. This methodology empha-
sizes coordination between FCN model definition, architectural
description, and systolic implementation. Two mapping strategies
both from FCN model to system architecture and from the given
architecture to systolic arrays are described. The effectiveness of
the methodology is illustrated by: 1) applying the design to an
effective FCN model; 2) developing the corresponding parallel
architecture with special feedforward and feedback paths; and
3) building the systolic array (SA) suitable for very large scale
integration (VLSI) implementation.

Index Terms—Neuro-fuzzy clustering, systolic array, very large
scale integration (VLSI).

I. INTRODUCTION

T HERE have been a number of approaches for designing
fuzzy clustering neural networks (FCNs) have been con-

sidered. Simpson [1] discussed on fuzzy min-max neural net-
works in fuzzy clustering. Palet al. [2] developed a fuzzy clus-
tering network based on the Kohonen network. Mitra and Pal
[3], [4] described a self-organizing neural network, which is ca-
pable of handling fuzzy input and of providing fuzzy classifica-
tion. All these approaches are concerned with algorithms; their
behaviors and characteristics are primarily investigated by sim-
ulation on general-purpose computers. The fundamental draw-
back of such simulators is that the spatiotemporal parallelism in-
herent in the processing of information using neural networks is
lost entirely or partly. Moreover the computing time of the simu-
lated network, especially for large associations of nodes tailored
to application-relevant tasks, grows to such orders of magnitude
that a speedy acquisition of neural “know-how” is hindered or
made impossible. This makes the actual fuzzy clustering appli-
cations difficult to implement in real time. Therefore, it is essen-
tial to implement FCN in a very large scale integration (VLSI)
medium.

However, it cannot be assumed that FCN models developed in
computational neuroscience, at a high level, are directly imple-
mentable in silicon. This is because the technology, the phys-
ical devices and the circuits severely limit the performance of
integrated FCN. Systolic array (SA) can offer flexibility, pro-
grammability, and precision in computation, coupled with the
advantages of large pipelined throughput and local interconnec-
tions in VLSI implementation [5]–[7]. In the present article, we
describe how an efficient FCN system can be realized by con-

Manuscript received May 24, 1999; revised March 21, 2000 and June 22,
2000. The work was supported in part by the UGC/CRC, Hong Kong Govern-
ment and the central fund, Hong Kong Polytechnic University.

D. Zhang is with the Department of Computing, Hong Kong Polytechnic Uni-
versity, Kowloon, Hong Kong.

S. K. Pal is with the Machine Intelligence Unit, Indian Statistical Institute,
Calcutta 700035, India.

Publisher Item Identifier S 1045-9227(00)07867-X.

sidering the special features and aspects of the fuzzy clustering
technology, designing their special-purpose architectures, and
mapping the neural networks onto the corresponding systolic
arrays (see Fig. 1).

II. FCN MODEL

A basic FCN model using clustering competitive network
is illustrated in Fig. 2. Each node represents a fuzzy cluster
and the connecting weights from the inputs to a node represent
the exemplar of that fuzzy cluster. The square of the Euclidean
distance between the input pattern and the exemplar is passed
through a Gaussian nonlinearity. The output of the node, there-
fore, represents the closeness of the input pattern to the exem-
plar. The degree of possibility that each input pattern belongs
to different fuzzy clusters is calculated in the final membership
level.

A fuzzy cluster criterion, called quality of fit or , is defined
as the sum of all output values of the nodes over all input
patterns. That is , where

and are the respective numbers of input patterns and
nodes, and is the output of nodewhen the input pattern is

.
The weight vector connecting the inputs to nodeis

. The Euclidean distance be-
tween and is defined as .
The weight vectors, , can also be viewed
as the parameters of the Gaussian functions that determine
their locations in the input space. Since the fuzzy clusters are
high concentrations of the input patterns in the input space,
locating the weight vectors at or close to the centers of these
concentrations will insure a maximum for the quality of fit
criterion.

This is clearly an optimization problem where the objective
function is the quality of fit and the variables are the coordinates
of the centers of the Gaussian functions, i.e., the weight vectors.
The change in the weight on the objective function is

. This is equal
to , where the second summation,

, was dropped since appears only in one term. Note
that

and . This means
, where is a constant

of proportionality and is the variance of the function of the
node. It is clear that this formulation utilizes local information
available at the weight itself and the node it is connected to.
There is no need for an external orientation subsystem to de-
cide which weights are to be increased since all the weights are
adapted after accumulating the errors over all input patterns. The
amount of change in the weight is a function of the distance be-
tween the input pattern and the weight vector.

1045–9227/00$10.00 © 2000 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PolyU Institutional Repository

https://core.ac.uk/display/61004193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER 2000 1175

Fig. 1. A system design methodology for FCN implementation.

Fig. 2. Fuzzy clustering neural network (FCN) model.

To introduce a fuzzy competition mechanism between
the nodes, a membership function for fuzzy clustering is
required. In other words, a partition of the input pattern
space, , into fuzzy clusters,

, is associated with the membership
functions . Assignment of input patterns to
different clusters can be given in terms of a fuzzy cluster
membership matrix , where the element de-
notes the degree of belonging of the input patternto the
fuzzy cluster . It is evident
that the elements of are subject to
and , where and .
Using the fuzzy cluster membership element to participate
in the corresponding weight change, a fuzzy competitive
learning update rule which moves the weight vectors toward
their respective fuzzy cluster centers can be represented
as . We can
obtain a variation of this learning algorithm by letting

. Note that the direction of the gra-
dient only guarantees a locally increasing direction. To avoid
instability of the algorithm, the step taken in the direction
is usually chosen to be very small by the control parameter,
. Thus, if is sufficiently small, .

This means the change in weights will be approximately
equal to if the weights are updated after the error is
computed corresponding to an input pattern, unlike the batch
mode learning. Considering the approximation, we can obtain

.

Fig. 3. Mapping strategies from FCN model to architecture.

Fig. 4. Mapping strategies from FCN architecture to systolic implementation.

III. PARALLEL ARCHITECTURE

A. Mapping Strategies

An FCN architecture is specified by its network topology and
node characteristics. The network topology defines how each
node is connected to other nodes. The node characteristics de-
fine the function which combines the various inputs and weights
into a single quantity as well as the function that then maps this
value to an output. Considering parallel network topology, some
mapping strategies from an FCN model to the architecture are
defined as follows (See Fig. 3):

1) Model Structure Mapping:In the FCN model, each func-
tion, like competitive and membership function, is mapped as
an independent processing layer and their connection patterns
within and between layers are defined.

2) Processing Phase Mapping:Often two processing
phases, searching and learning, are given in the FCN model.
They are able to be performed in architecture design by special
control paths, i.e., feedforward and feedback path, respectively.

3) Computing Unit Mapping:Depending on different func-
tional arithmetic types in each processing layer, such as weight
computing and pattern summing, their processing cells can be
built to achieve the given input–output functions.

B. FCN Architecture: Processing Cells

The FCN architecture comprises three kinds of processing
cells, including weight, node, and output, plus adder. We

1176 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER 2000

have embedded all functions from the FCN model in this archi-
tecture so that on-line learning and parallel implementation are
feasible.

Both node cell and adder can be achieved by many cur-
rent approaches [5], [8]. The output processing cell is used to ob-
tain both the membership element, , and the partial product
for the fuzzy competitive learning update rule (Section II). The
two inputs, and , come from the outputs of nodeand
the adder when the input pattern is . The output of the
partial product is , where is a control param-
eter for the operator. The output cell can be built using mul-
tiplier and divider operators. A weight cell is used to store and
change weight value as well as implement the related arithmetic.
It is mainly composed of four different memory elements, i.e.,
accumulation memory , weight memory , dif-
ference memory and its square memory , and five
operators (two adders, one subtractor, one multiplier and one
unit that generates square of number). In the feedforward pro-
cessing, an input, , is given and the outputs of the cell are
represented as . In the feedback processing,
the input is to come from the output cell and its corre-
sponding arithmetic to implement the update rule is

, where is the control parameter of the multiplier
in the cell, and is obtained in the previous processing and
stored in the difference memory . We use the update rule
in batch mode: . In this way, we can im-
plement the Euclidean distance between weight vectorand
input pattern in the FCN architecture rewritten as

, where is as an input from the weight cell, , to
the node cell. The weights in the FCN architecture are changed
in terms of the following functions: and

, where
and are the weights at timeand time , respectively.

C. Performance Analysis

Based on the FCN architecture, hardware complexity can be
represented as

, where and are the dimensions of the input and output
spaces, respectively; is the complexity of the adder

and are the complexities of three dif-
ferent cells, respectively. Note that is independent of ,
the number of the input patterns, and has a linear com-
plexity in the number of connections of the nodes,. There-
fore the attached cost of direct competition in the FCN architec-
ture, , can be compared with the other competitive architec-
tures, such as the MAXNET [9] with the connective complexity,

. This means that the connective cost of direct com-
petition in the FCN is reduced by a factor of .

In order to analyze the effectiveness of the FCN architecture,
we take the architecture of fuzzy c-means (FCM) as our compar-
ative target. The objective function for the FCM is given by [10],

, where its membership
function is . Thus, the fuzzy
competitive learning update rule can be obtained as

, where ,
with . It has shown that these two architectures have

TABLE I
COMPARISON OF THEPROCESSINGELEMENTS BETWEENFCN ARCHITECTURE

AND FCM ARCHITECTURE

identical structure and the same number of building elements,
but they do differ in the complexities of the three kinds of cells.
The node cell for the FCM architecture is characterized by the
Euclidean distance rather than the Gaussian nonlinearity

. The function characterizing each output cell is given by
, where is the output of the

adder and is defined as . The def-
initions of the cells in the two architectures, discussed above,
are summarized in Table I. Here the number of the elements re-
quired is indicated in parentheses.

IV. SYSTOLIC ARRAY DESIGN

A. Mapping Strategies

It is clear that the complexity of the FCN stems not from the
complexity of its nodes, but from the multitude of ways in which
a large collection of these nodes can interact. Therefore, an im-
portant task is to build highly parallel, regular, and modular SA’s
that are attractive for VLSI techniques. Mapping from the FCN
architecture to SA implementation can be achieved as follows.

1) Processing Mode Mapping:Here we partition a fuzzy
clustering neural network into some basic subnets, each capable
of performing an independent function. Often a subnet repre-
sents a layer in the neural networks. The subnets are imple-
mented by a corresponding SA, which are then cascaded ac-
cording to the architectural definition.

2) Computing Property Mapping:Each basic subnet func-
tion is reduced to a recursive form which is implemented by the
corresponding pipeline matrix in terms of the systolic rules. In
practice, this mapping transforms spatial parallelism to temporal
parallelism.

3) Arithmetic Module Mapping:A basic operation in recur-
sive arithmetic is implemented by a building element. A node
can be divided into two parts: forming a weighted sum ofin-
puts and passing the result through a nonlinearity. The weighted
sum can easily be integrated by a two-dimensional (2-D) recur-
sive matrix using weight processing elements. To form the non-
linearity, a special element is defined which may be cascaded

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER 2000 1177

with the recursive matrix as a bound node of its output. Mapping
strategies from the FCN architecture to systolic implementation
are shown in Fig 4.

B. FCN Systolic Arrays

Based on the given mapping strategies, the FCN architec-
ture can be systematically implemented by the corresponding
SA’s, where two kinds of data flow paths, viz., feedforward and
feedback exist. Each processing layer in the FCN architecture
is achieved by the different SA’s. Since two simple one-dimen-
sional (1-D) SA’s, output SA and node SA, can be easily built,
we will concentrate here only on the discussion of 2-D SA.

Arranging properly the input data flow, , the corresponding
output of the nodes, , can be obtained by a feedforward SA
with weight PE’s and node PE’s. The other 2-D
SA is to implement the triangle SA with adder PE’s and

shifting registers, where an adder PE is defined
as and . When the data flow enters this
array, each adder can accumulate its corresponding. Note
that after steps both and ,
are available at the same time.

V. CONCLUSION

We have presented a novel system design methodology for
FCN. This methodology offers flexibility, programmability, and
precision in computation, coupled with the advantages of large

pipelined throughput and local interconnections. Two mapping
strategies from FCN model to architecture and from architec-
ture to SA implementation are described. The effectiveness of
the methodology is illustrated by applying the design to an ef-
fective FCN model, developing the corresponding parallel ar-
chitecture, comparing with FCM architecture, and building the
SA’s suitable for VLSI implementation.

REFERENCES

[1] P. Simpson, “Fuzzy min-max neural networks—Part 2: Clustering,”
IEEE Trans. Fuzzy Syst., vol. 1, pp. 32–45, 1993.

[2] N. R. Pal, J. C. Bezdek, and E. C. Tsao, “Generalized clustering networks
and Kohonen’s self-organizing scheme,”IEEE Trans. Neural Networks,
vol. 4, pp. 549–557, 1993.

[3] S. Mitra and S. K. Pal, “Self-organizing neural network as a fuzzy clas-
sifier,” IEEE Trans. Syst., Man, Cybern., vol. 24, pp. 385–389, 1994.

[4] S. K. Pal and S. Mitra,Neuro-Fuzzy Pattern Recognition: Methods in
Soft Computing. New York: Wiley, 1999.

[5] G. A. Jullien, W. C. Miller, R. Grondin, L. Del Pup, and D. Zhang,
“Dynamic computational blocks for bit-level systolic arrays,”IEEE J.
Solid-State Circuits, vol. 29, pp. 14–22, 1994.

[6] J. Chung, H. Yoon, and S. R. Maeng, “A systolic array exploiting the in-
herent parallelisms of artificial neural networks,”Microprocessing Mi-
croprogram., vol. 33, no. 3, pp. 145–159, 1992.

[7] D. Zhang,Parallel VLSI Neural System Designs. New York: Springer-
Verlag, 1998.

[8] D. Zhang, G. A. Jullien, and W. C. Miller, “A neural-like network ap-
proach to finite ring computations,”IEEE Trans. Circuits Syst., vol. 37,
pp. 1048–1052, 1990.

[9] R. P. Lipmann, “An introduction to computing with neural nets,”IEEE
ASSP Mag., vol. 4, pp. 4–22, 1987.

[10] J. C. Bezdek, “A convergence theorem for the fuzzy ISODATA clus-
tering algorithms,”IEEE Trans. Pattern Anal. Machine Intell., vol. 2,
pp. 1–8, 1980.

