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Moving Vehicle Detection for Automatic
Traffic Monitoring

Jie Zhou, Senior Member, IEEE, Dashan Gao, and David Zhang, Senior Member, IEEE

Abstract—A video-based traffic monitoring system must be ca-
pable of working in various weather and illumination conditions.
In this paper, we will propose an example-based algorithm for
moving vehicle detection. Different from previous works, this
algorithm learns from examples and does not rely on any a priori
model for vehicles. First, a novel scheme for adaptive background
estimation is introduced. Then, the image is divided into many
small nonoverlapped blocks. The candidates of the vehicle part
can be found from the blocks if there is some change in gray
level between the current image and the background. A low-
dimensional feature is produced by applying principal component
analysis to two histograms of each candidate, and a classifier based
on a support vector machine is designed to classify it as a part of
a real vehicle or not. Finally, all classified results are combined,
and a parallelogram is built to represent the shape of each vehicle.
Experimental results show that our algorithm has a satisfying
performance under varied conditions, which can robustly and
effectively eliminate the influence of casting shadows, headlights,
or bad illumination.

Index Terms—Principal component analysis (PCA), statisti-
cal learning, support vector machine (SVM), video-based traffic
monitoring.

I. INTRODUCTION

IN AN intelligent transportation system, traffic data may
come from different sensors such as loop detectors, ultra-

sonic sensors, or cameras. The use of video cameras (many of
which are already installed to survey road networks), coupled
with computer vision techniques, offers an attractive alternative
to other sensors. Video-based camera systems are more sophis-
ticated and powerful because the information content associated
with image sequences allows precise vehicle tracking and clas-
sification. In contrast, spot sensors have limited capabilities and
are often both costly and disruptive to install [1]–[3].

Successful video-based systems for urban traffic monitoring
must be adaptive to different weather and illumination condi-
tions. The main difficulties come from cast shadows, vehicle
headlights, and noise. Under sunlight, for example, cast shad-
ows always accompany the moving vehicles. Thereby, it may
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be easily regarded as a part of the vehicle and result in incorrect
segmentation. At night, vehicle headlights and bad illumination
(which may cause strong noise) can also cause many difficulties
for the detection task. Therefore, moving vehicle detection un-
der such situations is always an important but challenging work.

There are many published works concerning moving object
detection, including vehicle detection [1]–[10] and human
detection [11]–[16]. Among them, there is some literature
addressing casting shadow elimination [4], [6]–[10], [16].
In [4], a model of a cast shadow was established on the
assumption of knowing the occurrence time, the location of the
light source, the scene’s geometry, and the shape of the moving
object. The authors in [6] and [7] apply an edge detector to
separate shadow from vehicles with the knowledge that a
shadow is edge-less, and a threshold is chosen to eliminate the
shadow. In [8], two simple methods called the landmark-based
method and the BS-Edge method are proposed for shadow
rejection. In [9], cast shadows are classified from vehicles
using the model of the pixels’ color appearance. Similarly, the
authors in [10] proposed a deterministic approach using the
chrominance information, which distinguishes a cast shadow
from moving objects in a hue-saturation-value color space on
the knowledge, e.g., the shadow has similar chromaticity but
lower brightness than that of the same pixel in the background
image. Its parameters are chosen empirically, and it is difficult
for the tasks to be competent in various illumination changes.
In [16], the authors established four criteria for background
and light source (e.g., shadows have a penumbra and a
soft luminance transition at the contour of the shadow, the
background is textured, and etc.), which are designated for
laboratory conditions, but these criteria are rarely satisfied for
outdoor scenes. In real practice, shadows usually have sharp
edges, and the background is often nontextured.

In the published literature, only [2] addressed how to detect
the moving vehicles at night. The center of the headlight was
treated as a salient feature and extracted by morphological
analysis. Thereby, a vehicle was represented with only two
points, and there was no other information. As we know, there
are streetlights in most urban districts. By the aid of the street-
lights’ illumination, it is very feasible for us to obtain much
more precise information from the traffic image sequences
at night.

In pattern recognition tasks, example-based classifiers are
widely used because they have no model (or criteria) establish-
ment problems. In this paper, we will propose an algorithm for
moving vehicle detection. Different from previous works, this
algorithm learns from the known examples and does not rely
on the prior model of vehicles, lighting, shadows, or headlights.
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First, the background of the scene is estimated adaptively. Then,
the image is divided into many small nonoverlapped blocks. By
subtracting the current image from the background, the blocks
with an intensity change can be found as the candidates for
vehicle parts. After that, a low-dimensional feature vector is
extracted from each candidate by applying principal component
analysis (PCA) to two histograms of the candidate. Since the
support vector machine (SVM) approach [17], [18] has a high
generalization performance, we use it to design a classifier to
classify each vector as part of a real vehicle or others (such as
casting shadow, headlight, or strong noise). Finally, all classi-
fied results are combined, and a parallelogram is used to rep-
resent the vehicle’s shape. Experimental results proved that our
algorithm has a robust performance under varied conditions.

This paper is organized as follows. In Section II, the de-
scription of our algorithm is introduced. Experimental results
are presented in Section III. We finish with conclusions and a
discussion in Section IV.

II. ALGORITHM DESCRIPTION

The whole algorithm includes the following steps: back-
ground estimation, block division, candidates’ selection, feature
extraction, SVM-based classification, and shape representation.
The flowchart of the algorithm is depicted in Fig. 1. In this pa-
per, we only study the processing of gray-level image sequences
instead of color image sequences because the algorithm based
on gray-level image sequences has a better generalization and
can be more widely utilized in real applications.

A. Background Estimation

In order to detect moving vehicles, we need to estimate the
background of the scene first. Some widely used monitoring
systems employ algorithms based on interframe difference or
the subtraction of an input image from a reference image. How-
ever, most researchers have abandoned nonadaptive methods of
background estimation because of the need for manual initial-
ization and the limitation of short-term monitoring applications.
More and more researches are aiming at adaptive background
estimation. A widely used adaptive background estimation al-
gorithm is essentially low-pass filters, which estimate the gray-
level intensity of the background from a sequence of input
images by running mode or running average [19]. Running
mode is reputed to be quite accurate, but its computing speed
is so slow that it cannot be considered for real-time application.
On the other hand, running average is fast, but its estimation
accuracy is rather poor. In [20]–[22], the values of a particular
pixel are modeled as a mixture of Gaussian distributions and
use an online approximation to update the model. Each pixel
that can be represented effectively by the mixtures of Gaussians
is considered as part of the background. This algorithm can be
adapted to deal with lighting changes and especially repetitive
motions of scene elements. In this section, we will propose
an improved adaptive background extraction algorithm based
on Kalman filtering, which has a much simpler computational
complexity and is more suitable for real-time image processing
tasks such as automatic traffic monitoring.

Fig. 1. Flowchart of our algorithm.

In [15], a simple algorithm of background estimation was
proposed, based on Kalman filtering. The algorithm assumes
that the evolution of the background pixel intensity can be
described by a finite-dimension dynamic system and then em-
ploys a Kalman filter to update the background image, but
the algorithm takes little account of the change of illumina-
tion condition in the long term. In [23], the authors proposed
an improved Kalman filtering model called the augmented
state dynamic model. The algorithm introduces a new nonzero
variable component for each pixel to represent the change of
illumination intensity. In order to compute the variances of the
system and input noise, it is assumed that they are constant
to long-term interval, but, in fact, the variances of the noises
are varied with the illumination condition. For example, the
variance of the noise at night will be much stronger than that
in the daytime. Based on the above analysis, we will improve
the above model and set up a more reasonable model for a
background image for varied situations.
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Fig. 2. Illustration of sliding window used in background estimation.

The background on the pixel p of the (n+ 1)th frame can be
defined as

B(n+ 1, p) = B(n, p) + β(n, p) + µ(n, p) (1)

where B(n, p) is the background on the pixel p of the nth
frame, β(n, p) is an undefined function describing the changes
of illumination intensity along with the time, and µ(n, p) is a
white Gaussian noise with a zero mean and a variance Q(n, p)
representing the system error. The input image intensity is
described as

I(n, p) = B(n, p) + η(n, p) (2)

where η(n, p) is a white Gaussian noise with a zero mean and
a variance R(n, p) representing the measurement noise. The
difference between our model and that of the study in [23] is as
follows: For any pixel p,Q(n, p) andR(n, p) may vary with the
different frame (or time). By combining (1) with (2), we have

I(n+ 1, p) = B(n, p) + ω(n+ 1, p) (3)

where ω(n+ 1, p) = β(n, p) + µ(n, p) + η(n+ 1, p). It is
easy to know that ω(n, p) has a Gaussian distribution. Denote
m(n, p) and s(n, p) as the mean value and the variance of
ω(n, p), respectively. Obviously, the values of m(n, p) and
s(n, p) are not constant in the temporal-spatial space. How to
compute them is the key to background estimation.

For traffic monitoring, it is reasonable to suppose that the
illumination changes and the distribution of noise are nearly
identical in a small local region. That is to say, the values
of m(n, p) and s(n, p) are independent of pixel position in
the local region; at the same time, therefore, they can also be
denoted asm(n) and s(n) in that region, respectively. Then, for
a local region, a histogram can be computed from the difference
between {I(n+ 1, p)} and {B(n, p)}. To estimate the value
of m(n) and s(n) from the histogram, we use a recursive-
least-square (RLS) adaptive filter [33] that can solve the linear
filtering problem without invoking assumptions on the statistics
of the input.

To update the background of the whole image, we can use
a sliding window whose size is chosen as 30 × 30 in our
experiments. To avoid the “mosaic phenomenon,” the noise
distribution is computed in the larger window, but only a small
area at the center of the window is updated, as shown in Fig. 2.
The updating method is same with the study in [23]. In practice,
we apply two four-order RLS filters to predict the value ofm(n)
and s(n), respectively.

B. Block Division and Candidates Selection

The image will be divided into nonoverlapped blocks, and
each block has the same size in a same image. The block’s
size is chosen according to different imaging resolution and
other parameters such as the height, angle, and zoom factor of
the camera. In our experiments, its range is between 8× 8 and
30× 30.

Now, we will find out the blocks with a gray-level change.
The current image will be subtracted from the background to
get the difference image, and we compute its mean value for
each block. In order to reduce the computational cost, only the
blocks with a mean value larger than a predefined threshold will
be regarded as candidates containing moving objects. In our
experiments, this threshold is chosen as five. Actually, these
candidates include real vehicles, casting shadows, headlights,
or noise.

C. Feature Extraction

As a simple representation of images, a histogram is invariant
to translation and rotation. Compared with the original image,
it also has the advantage of small dimension. Therefore, it has
been widely used in various applications such as lane detection
[23], face recognition [24], [25], and texture retrieval [26]. In
this paper, we also use the histogram for feature extraction.

Suppose that the range of an image’s gray level is [0, T ] (T
is 255 in this paper since the images we processed have 256
gray levels). For a difference image {D(i, j)}, the range of its
gray level will be [−T, T ]. Denote the histogram of {D(i, j)} as
ha(r), where −T ≤ r ≤ T , and it can be easily computed. For
convenience, we offset the range of r from [−T, T ] to [0, 2T ].
Another histogram, which is denoted as hb(r), 0 ≤ r ≤ T , can
be computed from the image {E(i, j)}, which is an edge map
of {D(i, j)} computed by

E(i, j) =
1
2
{|D(i+ 1, j + 1) −D(i, j)|

+ |D(i+ 1, j) −D(i, j + 1)|} . (4)

Combine the above two histograms to form a new vector with
a dimension of 3T + 2:

hc(r) =
{

ha(r), 0 ≤ r ≤ 2T
hb(r − 2T − 1), 2T + 1 ≤ r ≤ 3T + 2.

(5)

In our algorithm, the vector should be normalized in order to
adapt to different block division by

h(r) =
hc(r)
S

(6)

where S is the size of the block.
In order to remove the influence of noises from the feature

and further reduce dimension, we apply PCA, which is an
optimal orthonormal decomposition, to compress the vector
h(r). By collecting some sample vectors, a scatter matrix is
obtained as

S =
1
N

N∑
i=1

(hi −m)(hi −m)t (7)
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where N is the number of vectors in the training set, hi

is the ith vector, m is the average of all these vectors, and
(hi −m)t is the transpose of the vector of (hi −m). For
S ∈ R(3T+2)×(3T+2), it is easy to obtain its eigenvalues A =
diag[λ1, . . . , λ3T+2], λ1 ≥ · · · ≥ λ3T+2 and its eigen-vectors
V = [ν1, . . . , ν3T+2]. Then, a new compressed vector with a
dimension p can be computed from the original vector h(r):

gp = [ν1, . . . , νp]t h, when p ≤ 3T + 2. (8)

Using compressed vectors as features, our experiments show
that the classification result is better than directly using the
original histograms. Moreover, the computation cost can also
be reduced.

D. SVM-Based Classification

SVM is based on the principle of structural risk minimiza-
tion, which states that better generalization capabilities are
achieved through a minimization of the bound on the gener-
alization error [17]. It has been widely used in face detection
and other recognition tasks [27]–[32].

Let {(xi, yi)}1≤i≤N be a set of training samples, where xi ∈
Rn, belonging to a class labeled by yi ∈ {+1,−1}, and n is the
dimension of the input space. The aim is to define a hyperplane
that divides the set of examples such that all the points with
the same label are on the same side of the hyperplane [18]. The
optimal separating function can be expressed as

f(x) = sign

(
N∑

i=1

αiyiK(xi, x) + b

)
(9)

where K(x, y) is a positive symmetric function called the
kernel function, and b is a bias estimated on the training set.
The parameters {αi} can be achieved by maximizing

W (α) =
N∑

i=1

αi − 1
2

N∑
i,j=1

αiαjyiyjK(xi, xj) (10)

under constraints
∑N

i=1 yiαi = 0 and 0 ≤ αi ≤ C. In the non-
separable case, the constant C must be set to a given value,
which can be chosen as an arbitrary value by adopting an
empirical approach. In our experiments, it is chosen as 1000.

The nature of the decision surface is mainly defined by
the kernel functions K(x, y), which should satisfy Mercer’s
conditions. The commonly used kernels include polynomial
kernels K(x, y) = (xty + 1)d, where d is a positive integer
to define the degree of a polynomial decision surface, and
Gaussian kernels K(x, y) = e−g‖x−y‖2 .

In applications, we can do the following steps to choose
sample data from real traffic video captured under different
illumination and weather conditions: Find out the candidates
from the videos, and manually divide them into two sets, i.e.,
with or without real moving vehicle. For all candidates, their
feature vectors are extracted. Then, they are put into the SVMs
for training, and as a result, the parameters of the SVM-based
classifier can be obtained.

Fig. 3. Eight directions used for eight-connectivity.

On the detection stage, the input image is divided into many
blocks. When a block is found as a candidate, a feature vector is
generated by PCA from two kinds of histograms of the different
image. Then, it is put into the well-trained classifier to judge
whether this region is covered with a vehicle or others (such as
shadow, headlight, or noise).

E. Shape Representation

A traffic surveillance system should have such functions as
vehicle counting, sorting, tracking, and speed estimation. As a
basis, the shape information of vehicles needs to be extracted
first. That is to say, we need to combine the classified results to
approximate the shape of each moving vehicle using a concise
but accurate geometrical form. In order to finish the task of
shape representation, we assume that the road information,
including the direction and position of each lane line in the
monitoring area, has been known in advance (in fact, the user
can obtain this information by simply marking on the screen at
the startup of the system).

After applying the SVM-based classifier on all candidates,
those blocks classified as nonvehicles can be discarded, and the
others will be transferred to the following steps. At the same
time, some parts of real vehicles may also be misclassified as
nonvehicles. For example, some dark parts of the vehicles with
uniform color could be classified as shadow and be discarded.
At night, the case is even worse. Then, we need to take
steps to group the remaining blocks and compensate for the
misclassification.

We will do the following steps in different lanes. In each lane,
the blocks classified as vehicles can be grouped by their eight-
connectivity, i.e., all blocks connected with each other along
eight directions (see Fig. 3) will belong to a same vehicle.
For use at night, the misclassification could cause a single
vehicle to be separated into several separate parts. Then, we
can set a threshold and measure the distance between each
of two adjacent blocks in each lane, and the blocks with a
distance smaller than the predefined threshold will be regarded
as connective. An optimal threshold is not only related to the
moving vehicle itself but also relies on the distance between
the other vehicles adjacent to it. Therefore, it can be defined by
the average speed and length of the vehicle on this road at night.
For simplicity, the threshold is simply set as twice the length of
a block’s diagonal in our experiments and systems. That is to
say, if the distance between the centers of two blocks is smaller
than this threshold, these two blocks are thought as connective.
Then, all connected blocks will be merged together. We need
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to take some steps to compensate for them. To compensate
the losing parts in the process of misclassification, we choose
to apply the algorithm proposed by the study in [34] which
is designed to compute a convex hull from a known set of
points. For each vehicle (corresponding to a connected set), the
algorithm is taken to derive a convex polygon to enclose all the
points in the connected set (see [34] for details).

In traffic monitoring tasks, a thorough delineated contour
fitting is not necessary because we only care for statistical
information of vehicles such as its length, width, and speed;
therefore, it is better for us to use a parallelogram for the
approximation of the vehicle’s shape. Another advantage of
using a parallelogram instead of a convex polygon is that
the former will possess a better robustness due to its simple
representation. Since we know the information of each lane
such as its direction, a parallelogram will be easy to derive from
the convex hull to represent the shape of vehicles. Denote the
parallelogram as P1P2P3P4, where the lines P1P2 and P3P4

should be parallel to the direction of the lane and lines. The
two lines P1P4 and P2P3 are parallel too, and their direction
can be set in advance, according to the imaging angle (in
most cases in our experiments, their direction is chosen to
be parallel to the horizontal axis in the image plane). Since
the directions of these four lines are known, what we need to
do is compute their offsets. For a convex polygon, a natural
way is to find the smallest parallelogram to enclose the whole
polygon, which can be easily done by projecting the convex
polygon along the direction of P1P2 and P2P3, respectively,
and finding their beginning and ending points. This kind of
parallelogram can roughly describe the shape of vehicles, but
since some outer blocks may contain a nonvehicle part, it
is better to make the above parallelogram shrink a little to
approximate the real shape. That is to say, P1P2, P2P3, P3P4,
and P1P4 need to have a shift to four directions, i.e., right,
down, up, and left, respectively. The shift is restricted beyond
a single block, and it is computed by analyzing the projected
distribution of the convex polygon along the directions P1P2

and P2P3, respectively. Take the projection along the lane as an
example. Assume the width of a block as a unit length. We can
compute the accumulation in each unit extent from left to right.
Denote L1 and L2 as the accumulation of the first and second
unit extent (see Fig. 4). The shift Sleft of the left margin of the
parallelogram P1P2 is defined by

Sleft = 1 − min
(

1,
L1

L2

)
. (11)

It should be noted that, in most cases, L1 is smaller than L2

due to the convexity of the polygon. Similarly, the shift of the
other three margins can also be computed.

In the shape representation stage, the overlapped vehicles
will be judged as a single one, but they can be easily separated
in the tracking scheme (which is not included in this paper).
It also should be noted that all training phases in PCA and
SVM can be done offline. Therefore, the computation cost of
the online stage is rather small, which guarantees the practical
use of our algorithm.

Fig. 4. Illustration of shape representation. The gray blocks are the detected
vehicle parts by the SVM classifier, which are grouped by a convex polygon.
The parallelogram P1P2P3P4 is the smallest parallelogram to enclose the
polygon. After projection along the lane, L1 and L2 are the accumulation
of the first two unit extents (assuming the width of a block as a unit length),
respectively, and Sleft is the shift of P1P2 from left to right when the original
parallelogram shrinks.

III. EXPERIMENTAL RESULTS

We collected some real traffic video captured at different
times, under different weather conditions. Following the steps
stated in Section II, the candidates are extracted from the
videos. Out of them, a total of 2009 samples are chosen, in
which 1218 samples belong to the vehicles, and the others are
nonvehicles (including shadows, headlight, and strong noise).
All these samples are divided into two parts: The training set
includes 263 vehicles and 246 nonvehicles, which is used to
train the SVM-based classifiers, and the others act as the testing
set to examine the performance of classifiers. The scatter matrix
for PCA is computed using the training samples.

The classification accuracy on the testing set by using differ-
ent features and different SVM kernel functions is reported in
Table I. Out of these features, we choose a 20-dimensional PCA
vector (i.e., p = 20) for practical use due to its overall perfor-
mance. The classifiers produced by different kernel functions
have a similar accuracy, but SVM with a simpler kernel always
has a better generalization; therefore, we decide to apply a poly-
nomial kernel function with two dimensions for the real tasks.

Our algorithm has been implemented into a real traffic mon-
itoring system on a Pentium III 500-MHz PC. Our algorithm
can process more than 15 frames a second when the image
size is 384 × 288 pixels. We have compared it with manual
counting or loop detectors, a more than 98% accuracy rate of
vehicle counting, tracking, classification, or speed estimation
are reported in the daytime and more than 90% at night in
the outdoor running. It is a rather robust and satisfying result
for real applications. Table II presents some results of vehicle
counting by applying our algorithm in real traffic scenes. In
these experiments, the monitoring region covers two to six
lanes, so the vehicles’ cast shadow or headlight may influence
the neighboring lane frequently. It shows that the system can
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TABLE I
CLASSIFICATION ACCURACY ON THE TESTING SET BY USING DIFFERENT FEATURES AND DIFFERENT SVM KERNEL FUNCTIONS

TABLE II
SOME RESULTS OF VEHICLE COUNTING BY USING OUR ALGORITHM UNDER DIFFERENT CONDITIONS

deal with shadows perfectly in the daytime (the accuracy is bet-
ter than 99%). During nightfall (without streetlight) and at night
(with streetlight), our system can still distinguish shadows,
vehicle headlights, and strong noise from vehicles with a small
error rate (the accuracy is 91.8% and 94.5%, respectively).

To illustrate its effectiveness and robustness, our algorithm
is also compared with the algorithms proposed in [10] and
[16]. Because the algorithms in [10] and [16] are designed
for color images, we randomly choose some color image se-
quences as the testing sets from real traffic videos. For our
algorithm, they are converted into gray image sequences before
the further processing. For fairness, these video sequences are
different from those used in SVM training. These videos are
captured in daytime with thick shadows, in daytime with light
shadows, at night under streetlight illumination, and in the dark
at nightfall with no streetlight, respectively. Since the authors
of [10] did not provide any parameters, the choice of them in
this experiment is done manually on the image sequences in
order to have the best performance in the daytime and with
thick shadows. When implementing the algorithms proposed in
[16], the parameters used are the same as those preferred by the
authors (see [16, p. 72]).

Some comparison results are shown in Fig. 5. The first
column (a1)–(e1) shows the detection results of our algorithm,
where white boxes indicate the detected parts of the vehicles.
The detection results of the study in [10] and [16] are shown in
the second and third column, respectively, where black pixels
represent the background, white pixels are those classified as
vehicles, and gray pixels are shadow. In order to compare the ro-
bustness of each algorithm, the three algorithms are tested using
the same data captured under different illumination and weather
conditions. In Fig. 5, the first two rows [(a) and (b)] are obtained
in the daytime. There are thick shadows, as well as some dark
cars in the images. The third row [row (c)] is obtained from a
daytime scene with light moving shadows, while the fourth row

[row (d)] is at night under streetlight illumination with shadows
and considerable noise. Another detect result of our algorithm
is shown in the last row [row (e)], which is obtained in the dark
at nightfall with no streetlight but strong vehicle headlights in it.
The illuminating condition is so poor that vehicles are difficult
to detect, and the vehicle headlights are also hard to distinguish
from vehicles. From the results in Fig. 5, it is clear that our
algorithm can detect most parts of vehicles and eliminates
shadows correctly and robustly. Although some dark areas of
the vehicles are lost, the detected parts can be easily combined
together and represented by parallelograms (see Fig. 6). The
algorithm of the study in [10] can detect most parts of the
moving vehicles from the cast shadow in (a2) and (b2), which
means that the used parameters are suitable for the cases in
the daytime and with heavy shadows. In (c2), most of the
shadow can be distinguished, but the edges of the shadow are
classified as vehicle. That means these parameters cannot work
well in the circumstance of light shadow. In (d2), the algorithm
has difficulty suppressing shadows correctly. As in (e2), the
algorithm proposed in [10] fails to eliminate the disturbance
from vehicle light. All the above results show that the algorithm
in [10], with a fixed parameter set, is not suitable for use in
various illumination and weather conditions, and an adaptive
selection of parameters is needed. From the last column [(a3) to
(e3)], we can see the results of the algorithm proposed in [16].
In them, large parts of the vehicles are classified as shadows. It
shows that this algorithm has a rather poor performance because
the criteria used in this algorithm is established to deal with
indoor usage and is not suitable for the task of automatic traffic
monitoring.

Fig. 6 shows some results of vehicle representation, where
the detected parts of each vehicle are combined and represented
by a parallelogram. The images used here are the same as those
in Fig. 5. From these results, we can see that the parallelograms
can effectively describe the vehicles’ shape in various cases.
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Fig. 5. Some comparison results of moving vehicle detection in real traffic video captured under different illumination and weather conditions. (a1)–(e1) The
detection results of our algorithm (white boxes indicate the detected parts of vehicles). (a2)–(e2) and (a3)–(e3) Detection results of the study in [10] and [16],
respectively (black pixels represent the background, white pixels are those classified as moving vehicles, and gray ones are shadow).

IV. CONCLUSION AND DISCUSSIONS

In this paper, we have studied how to detect moving vehicles
robustly using an example-based strategy. First, an improved al-
gorithm for adaptive background estimation is proposed. Then,
the image is divided into many small nonoverlapped blocks.

The candidates of the vehicle’s part can be found from the
blocks if there is some intensity change between the current
image and the background. PCA is used to extract a low-
dimensional vector from two histograms of each candidate. The
vector will be classified as belonging to the vehicle or not by an



58 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 1, JANUARY 2007

Fig. 6. Some examples of shape representation, which correspond to the
images listed in Fig. 5, respectively.

SVM-based classifier that is trained on the examples. Finally,
all classified results are combined, and a parallelogram is built
to represent the shape of each vehicle. Compared with previous
works, this algorithm has no modelling or criteria establishment
problems. The experimental results on real traffic video data
show that our vehicle detector has strong abilities to deal with
different weather and illuminating conditions.

For vehicle detection research the precision on a pixel level
other than an object level is desired. In the future, we will
improve our algorithm to be more precise. For example, we can
apply more information such as color into the algorithm, and
some other classifiers can also be considered for future study.
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