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Abstract

The pelagic metabolism of the Douro estuary (Portugal) and the factors influencing primary production (PP) and community respiration (CR)
in this system were studied during an annual cycle (December 2002eDecember 2003). Sampling surveys were conducted twice a month during
ebb and flood spring tides and water samples were collected for PP and CR assessments at three stations along the estuary (lower, middle and
upper stretches). During the study period, PP values were in the range of 4.7e1878.5 mg C m�2 d�1 (average, 319.9 mg C m�2 d�1). River dis-
charge controlled phytoplankton biomass inputs into the estuary as well as residence time. A decreasing trend in water column PP from the upper
to the lower estuary related to higher nitrogen concentrations and phytoplankton biomass from riverine origin was observed. An inverse trend
was found for CR, i.e., higher values were found in the lower, more urbanized stretch. During the study period, averaged CR values reached
1154 mg C m�2 d�1. In general, heterotrophy dominated the entire estuary, except in the upper stretch from May through July, when increased
PP, but also lower CR values were recorded. A positive correlation between chlorophyll a and Pmax was found which is unusual in coastal
ecosystems, where a decreasing trend of the P/B ratio as a function of net primary production is generally observed. This could be explained
by the relatively low phytoplankton biomass, preventing intraspecific competition from lowering photosynthetic capacity, on one hand, and the
physiology of phytoplankton related to their origin in a semi-lotic (reservoir) ecosystem. No significant differences between tides were observed
for all variables, except for the water light extinction coefficient (k) values, reflecting higher turbidity during the ebb.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The metabolic balance of a given system depends upon its pri-
mary production and community respiration. Primary production
is dependent on physical (light availability and temperature),
chemical (nutrients) and biological factors, like phytoplankton
biomass, species composition, size structure and grazing (Stearns
et al., 1987; Cloern, 1991; Landry et al., 1995; Gallegos and
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Jordan, 1997; Calbet and Landry, 2004; Cermeno et al., 2006),
as well as viral control (Proctor and Fuhrman, 1991).

In estuaries, these factors may be influenced by freshwater
inflow, since it carries nutrients, phytoplankton and suspended
matter, which determines light availability in the water col-
umn. River flow magnitude also controls residence time and,
hence, the susceptibility of ecosystems to algal blooms, with
effects propagating throughout the food web to higher trophic
levels (Kimmerer, 2002). Seasonal shifts from auto- to hetero-
trophy according to river flow variations have also been re-
ported. For example, heterotrophy occurs during monsoon
periods in tropical estuaries, when increased allochthonous or-
ganic input leads to enhanced respiration (Ram et al., 2003).

https://core.ac.uk/display/61003898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:iazevedo@icbas.up.pt
http://www.elsevier.com/locate/ecss


134 I.C. Azevedo et al. / Estuarine, Coastal and Shelf Science 69 (2006) 133e146
Phytoplankton dynamics may also be influenced by tides.
Episodes of biomass increase during neap tides and decline
during spring tides have been reported (Cloern, 1991), as
well as differences between ebb and flood tide phytoplankton
biomass (Roegner, 1998). Aubry and Acri (2004) found higher
phytoplankton abundance at flood than at ebb for most of the
year in the Lagoon of Venice, due to the presence of neritic
species. Tidal turbulence can also influence vertical distribu-
tion of different phytoplankton species, e.g., slack water pe-
riods enhance aggregation of dinoflagellates while diatoms
rely on periods of turbulence to ensure entrainment into the
upper water column and to prevent sinking from the photic
zone (Lauria et al., 1999).

Another important factor affecting estuarine metabolism is
human pressure, for example, through the construction of
dams since they alter the timing and quantity of freshwater,
sediment, inorganic and organic matters delivered to estuaries
and adjacent coastal zones (Hopkinson and Vallino, 1995).
The discharge of treated or untreated wastewater into estuaries
also affects metabolism by increasing allochthonous nutrient
or organic matter inputs, respectively. The former may in-
crease production and the latter bacterial respiration. If bacte-
rial respiration exceeds net primary production due to
utilization of external sources of organic matter, heterotrophy
dominates (delGiorgio et al., 1997).

Thus, in estuaries, a transient environment, the understand-
ing of the trophic status is crucial in order to evaluate the role
of such systems as a potential source of autochthonous organic
matter for the coastal environment. The autotrophicehetero-
trophic nature of an estuary is determined by three primary
factors as follows: the ratio of inorganic to organic matter in-
puts, water residence time and the overall degradability of al-
lochthonous organic matter inputs (Hopkinson and Vallino,
1995). Data on metabolic balance of European estuaries are
scarce, namely due to lack of studies concerning pelagic
depth-integrated community respiration (Gazeau et al., 2004).

The river Douro originates from the largest watershed in the
Iberian Peninsula. Its 98,000 km2 are unequally shared be-
tween Portugal (20%) and Spain (80%). Over 50 large dams
have been constructed especially in the last 50 years for irriga-
tion and electric power generation purposes, resulting in flow
regulation.

The Douro estuary is limited upstream by the last dam, lo-
cated 21.6 km from the mouth. This dam determines the fresh-
water flow into the estuary, ranging from 0 to 13,000 m3 s�1

(Vieira and Bordalo, 2000) with an average of 501 m3 s�1.
River flows present a large inter-annual variability, with con-
siderable differences between wet and dry years. A decrease
of annual flow has been reported, due to climate phenomena
(Trigo et al., 2004) but also to an increase of water storage
for hydroelectric power generation, agriculture and domestic
consumptions (Bordalo and Vieira, 2005). The fact that fresh-
water flowing into the estuary originates in a reservoir, a semi-
lotic ecosystem, may also influence estuarine metabolism due
to specific phytoplankton characteristics. Moreover, in the case
of the Douro, the last dam is the main source of phytoplankton
biomass (Bordalo and Vieira, 2005).
The objective of this work is to analyse estuarine environ-
mental conditions and photosynthetic parameters in relation to
its metabolism, in order to answer the following questions:

- Is the Douro estuary auto- or heterotrophic?
- Which factors control primary production (PP) on a spatial

and temporal basis?
- Are there significant differences in estuarine PP and

metabolism between ebb and flood tides?

2. Materials and methods

2.1. Study area

The Douro is a granitic drowned valley river, draining to
the north-western shore of Portugal. Its estuary is mesotidal,
characterized by semidiurnal tides and a mean tidal range of
2.8 m. During the flood and under low river flow, sea water
creates a salt wedge that eventually reaches the head of the es-
tuary (at 21.6 km from the mouth), where the tidal excursion is
halted by the Crestuma dam (Fig. 1), and remains within the
estuary during the next ebb. In this situation, residence time
can reach 14 days, whereas during high discharge events,
the estuary is flushed completely during one tidal cycle and
seawater intrusion is prevented during the flood (Vieira and
Bordalo, 2000).

The last 8 km stretch of the river is heavily modified and
over 700,000 inhabitants live within the estuarine area. A total
of eight wastewater treatment plants (WTPs) drain into the
estuary, without nutrient removal.

2.2. Sampling

Data presented in this study were obtained within a larger
sampling program under a contract with Oporto Water Author-
ity, designed to evaluate the influence of WTPs on estuarine
water quality. Sampling surveys were conducted monthly, dur-
ing ebb and flood spring tides, in order to sample the most ex-
treme situations, namely concerning seawater intrusion.

From December 2002 to December 2003, three stations
were visited, in the lower, middle and upper estuary, at approx-
imately 0.7, 5.0 and 21.6 km, respectively, from river mouth
(Fig. 1). The boundaries of these three estuarine stretches
have been defined based on the seasonal salt water intrusion
(Vieira and Bordalo, 2000). Each survey lasted between 90
and 120 min according to flow conditions.

Vertical profiles of temperature, conductivity, salinity, dis-
solved oxygen, pH and turbidity were performed with
a CTD (YSI, 6600). Salinity was measured using the Practical
Salinity Scale. Photosynthetic active radiation (PAR) profiles
were obtained with a spherical quantum sensor light meter,
at 0.5 m depth steps (LI-COR, LI-250).

Simultaneously, samples were collected at three depths
(surface, middle and near bottom) with a Van Dorn bottle
for chlorophyll a, nutrients (nitrate, nitrite, ammonium, phos-
phate and silicate), total particulate matter (TPM) and partic-
ulate organic matter (POM) assessments.
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Fig. 1. The river Douro estuary and location of sampling stations (L e lower, M e middle and U e upper estuary, and WWTP e wastewater treatment plant).
Mean water depth during sampling is presented in Table 1.
During the survey period, tidal height ranged between 0.13
and 1.29 m, at ebb surveys, whereas at flood surveys, was
within the 2.65e3.52 m range.

For PP assessments, subsurface samples were used, after
testing their adequacy to depth-integrated PP assessments in
the present estuarine system (c.f. e Section 2.3). Community
respiration (CR) was initially estimated from samples col-
lected at three depths and from surface samples only, after
confirmation that no significant ( p> 0.05) differences were
found with depth.

Water samples were kept refrigerated in ice chests and pro-
cessed in the laboratory within 1 h from collection of the last
sample.

2.3. Experimental and analytical procedures

PP was assayed by the 14C method (Steeman Neilsen,
1952), following the standard ICES (1996) recommendations.
Briefly, water samples were placed in 125-ml Pyrex glass
flasks and 2 mCi of aqueous solution of sodium bicarbonate
was added (Carbon 14 Centralen). Duplicate samples were in-
cubated for 1e2 h in a water bath, at 5 light levels (100%,
75%, 50%, 25%, and 1%), to mimic light attenuation of differ-
ent depths within the euphotic zone, at in situ temperature. An
artificial light source providing a PAR of 920 mE m�2 s�1 was
used. Attenuation was achieved by means of a neutral screen.
One additional dark bottle was also incubated. After incuba-
tion, samples were filtered through 0.45 mm membranes,
washed, placed in 20-ml scintillation vials and 10-ml scintilla-
tion cocktail (Beckman Instagel Packard) was added. Count-
ings, in disintegrations per minute (DPM), were performed
in a Beckman LS3801 liquid scintillation analyser using inter-
nal standards for the automatic establishment of the quenching
curve. Dark DPM values were subtracted from light DPM
values and results were expressed in mg C m�3 h�1.

In order to validate the sampling strategy for PP assess-
ments, simultaneous incubations, at 5 light intensity levels,
Table 1

Averages and standard errors for selected variables at each location during flood and ebb surveys for the December 2002eDecember 2003 period

Parameter Units Lower Middle Upper

Flood Ebb Flood Ebb Flood Ebb

Salinity e 20.4� 2.6 11.0� 1.6 12.1� 2.3 5.8� 1.3 1.7� 1.1 2.0� 1.1

Temperature �C 14.2� 0.5 14.2� 0.7 14.5� 0.7 15.3� 0.8 17.0� 1.1 16.0� 1.0

NO3þNO2 mM 57.1� 8.9 71.5� 6.7 86.2� 8.9 85.5� 6.6 103.9� 8.0 87.3� 6.2

Ammonium mM 8.8� 0.7 12.5� 2.7 9.3� 0.5 7.8� 0.5 6.6� 0.8 4.0� 0.4

Phosphate mM 1.1� 0.1 1.4� 0.1 1.5� 0.2 1.4� 0.1 1.4� 0.1 1.6� 0.2

Silica mM 39.8� 6.0 59.7� 6.2 53.3� 6.0 58.4� 5.9 56.3� 5.0 68.6� 6.6

N:P ratio 53.8� 4.7 63.4� 3.5 67.4� 5.9 72.7� 5.2 109.7� 19.6 69.4� 6.9

TPM mg l�1 24.0� 3.6 19.5� 1.7 11.5� 1.2 16.7� 1.9 10.9� 1.1 11.1� 1.0

POM mg l�1 4.8� 0.5 4.4� 0.4 3.1� 0.2 3.4� 0.3 2.7� 0.2 2.7� 0.2

Chlorophyll a mg m�3 2.4� 0.2 3.6� 0.3 3.1� 0.4 4.7� 0.5 4.4� 0.6 4.6� 0.6

PP daily mg C m�2 d�1 312.2� 118.7 205.5� 76.5 328.2� 109.1 252.9� 93.7 455.8� 163.1 411.1� 150.0

CR daily mg C m�2 d�1 1810.1� 407.1 1355.2� 587.3 1170.2� 196.9 1487.2� 342.0 474.2� 84.2 629.7� 126.3

Water column depth m 6.8� 0.2 5.5� 0.3 9.7� 0.4 7.7� 0.3 8.1� 0.5 6.0� 0.4
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of surface samples and samples collected at depths correspon-
dent to those light levels, were performed. These experiments
yielded similar results, thus only surface water samples were
used for PP measurements.

Inorganic carbon was assayed from pH and alkalinity mea-
surements by direct titration according to Parsons et al. (1984).

CR was estimated as the difference in dissolved oxygen at
the beginning and after 24 h incubation of samples in the dark
at in situ temperature. Oxygen was assayed by a modification
of the Winkler method (Carpenter, 1965). Oxygen values were
converted into carbon units using a conversion factor of 0.375
(Uthicke and Klumpp, 1998).

Chlorophyll a was assayed spectrophotometrically after
extraction with 90% acetone (Parsons et al., 1984) with cell
homogenisation, using the SCOReUNESCO (1966) trichromatic
equation. Dissolved orthophosphate, nitrite, ammonium and
silicate were analysed following the methods described in
Grasshoff et al. (1983). Nitrate was quantified by an adaptation
of the spongy cadmium reduction technique (Jones, 1984),
subtracting nitrite value from the total. All the analyses were
performed in triplicate. Samples were filtered through glass fi-
bre filters which were dried at 105 �C for TPM assessment and
then incinerated at 500 �C for POM assessment (APHA et al.,
1992).

2.4. Data analysis

Bi-dimensional plots, generated by ‘‘Surfer’’ software,
were used to represent variation with depth of measured vari-
ables along the sampling period. Data were interpolated using
the ‘‘kriging’’ gridding method.

In order to perform statistical and multivariate analyses,
data were depth averaged.

2.4.1. PP calculations
Steele’s production-light function (P/E ) Eq. (1) (Steele,

1962) was fitted to experimental data from incubation experi-
ments, using the GausseNewton non-linear regression method
with Statistica software, since photoinibition was apparent.
The photosynthetic parameters obtained, maximum produc-
tion rate (Pmax) and optimal light intensity (Eopt), were used
to fit Eq. (1). The normalisation to chlorophyll a was made us-
ing the values obtained for each sample analysed. Depth-inte-
grated primary production (�P) was then calculated by
integrating Steele’s equation over depth, Eq. (2).
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where Pmax e maximum production rate (mg C mg Chl a�1 h�1);
E0 e surface light intensity (mE m�2 s�1); k e light extinction
coefficient (m�1); and z e depth (m).
Light extinction coefficients (k) were estimated from the
vertical profiles of PAR measured during each sampling sur-
vey, using the LamberteBeer equation, Eq. (3).

E¼ E0expð�kzÞ ð3Þ
Time integrated PP estimates were obtained as follows:

(i) Hourly E0 values were estimated by means of a model im-
plemented with Stella software using standard formula-
tions described in Brock (1981) and Portela and Neves
(1994) for periods of 24 h and adjusted to values measured
during the sampling surveys. This adjustment was made
by changing cloud cover values, to make sure that pre-
dicted light intensities at the hours when sampling took
place were similar to those measured.

(ii) From these surface light intensity estimates, the k values
measured during the surveys and the P/E curves obtained
in the incubation experiments, daily and depth-integrated
PP was estimated separately for ebb and flood surveys. In
these estimates, vertically averaged chlorophyll values (mea-
sured at three depths, c.f. e Section 2.2) were considered.

Compensation depth (zc) e the depth at which CR equals
PP (net production equal to zero) e was calculated solving
Eq. (4) by the Lambertw function (w.ew¼ x) using the Matlab
6.5 software.

Pmax

E0expð�kzcÞ
Eopt

exp

�
1�E0expð�kzcÞ

Eopt

�
�CR¼ 0 ð4Þ

where CR e community respiration (mg l�1).
Initial slope was estimated by deriving the Steele’s function

in relation to E and calculating the limit of the derivative when
E approaches zero.

2.4.2. Statistical and multivariate analyses
Spearman rank correlation analysis was performed to eval-

uate relations between environmental and biological variables
and metabolic processes. Regression analysis was also carried
out between some specific variables.

MANOVA was used to investigate differences between
results obtained at different times, tides and stations. To ana-
lyse the factors ‘‘time’’ and ‘‘tides’’ a Two-way factorial
MANOVA was carried out, using as surrogates for replicates
the values measured at the three sampling stations at each
month and each tide. To analyse the factor ‘‘station’’, a One-
way MANOVA was carried out. In this case, all values (26)
measured at each station over the 13-month sampling were
used as surrogates for replicates. In the absence of true repli-
cates, the assumptions here are that each of the mentioned
‘‘surrogates’’ was a representative sample of real conditions,
although not based on a random sampling, since time, tides
and stations were sampled on a systematic way. Wilks test
was computed for the multivariate analysis as well as the uni-
variate tests. Calculations were carried out with the Statistica
software. MANOVA was computed with raw and log trans-
formed data, after analysing the homogeneity of variances
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and the relationship between means and variances. Newmane
Keuls test was applied a posteriori.

Principal components analysis (PCA) was performed using
Primer Software in order to investigate patterns of similarity
between samples (Q-mode analysis) based on the values of en-
vironmental and biological variables. The data matrix was or-
ganized with samples as rows and observations (variables) as
columns. Data were log transformed to account for non-normal
distribution of variables and standardized to account for the
different units in which the variables were expressed.

In this work, seasons are defined as: winter (Decembere
February); spring (MarcheMay); summer (JuneeAugust)
and fall (SeptembereNovember).

3. Results

3.1. Environmental conditions

In Table 1, averages and standard errors for the major envi-
ronmental parameters measured at each sampling station, at
ebb and flood tide, are presented. River flow values during
each survey, at sampling time, and monthly averaged values
are shown in Fig. 2. As expected, higher values were found
in winter and lower values in summer, with relatively small
differences between actual survey values and monthly aver-
aged values, except for December 2002. The highest river
discharge was registered during the January ebb survey
when flow reached 2700 m3 s�1, and the lowest in August dur-
ing both surveys, when river discharge was zero. Average river
flow during the sampling period was 935 m3 s�1.

Average estuarine salinity during the study period was 8.5
with values ranging between 0 and 35. Salinity was signifi-
cantly correlated to river discharge, regardless of the tide
( p< 0.01). During high discharge periods, mostly in winter,
estuarine water was completely flushed out at low tide, and
even during the flood, salinity values remained low at the
mouth (Fig. 3). On the other hand, during the summer low dis-
charge period, salinity values increased throughout the estuary
and, in the upper estuary, salinity higher than 18 could be
found, independently of the tide.

Noticeable stratification of the water column occurred in
some occasions, and a halocline was present at the lower sta-
tion in the March ebb, April flood, May flood, July ebb and
November flood surveys; and at the middle station in the
May flood, June ebb, July flood and November flood surveys.

Water temperature followed the expected seasonal trend
from a minimum of 7.2 �C during January and February
freshet to a maximum of 25.4 �C in the upper estuary, during
the high salinity summer period.

In general, nutrient concentrations showed a seasonal pat-
tern, increasing during the fallewinter period and decreasing
during summer. Significant ( p< 0.01) correlations with salin-
ity (negative) and river flow (positive) were observed. The
exception was ammonium, which exhibited no clear seasonal
trend and was positively correlated with salinity.

During the August flood survey, high values of NO3þNO2

were observed in the upper estuary along the water column
and in the middle estuary only at surface. Averaged values de-
creased from the dam to the mouth independently of the tide
(Table 1). Considering the study period, NO3þNO2 ranged
between 1.4 and 227.4 mM.

Ammonium concentration ranged between 0.3 and
108.5 mM. The averaged values (Table 1) increased down-
stream during the ebb, while during the flood the middle sta-
tion presented the highest value. Silicate values decreased
downstream (Table 1) both during the ebb and the flood.

Concerning phosphate variability, values ranged from 0.2 to
4.7 mM. In general, concentration values were under 3 mM
throughout the sampling period, except in December. Only
at the lower station during the flood, a significant linear rela-
tionship ( p< 0.001) was found between phosphate and salin-
ity, i.e. salinity did not control the dynamics of phosphate and
average values throughout the estuary were rather similar.

N:P ratio ranged between 493, at the upper station during
the August flood survey, and 8, at the middle station during
the September flood survey. Nitrate was generally the predom-
inant form of nitrogen. N:P values were always above the
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Fig. 3. Water column salinity levels at the upper (U), middle (M) and lower (L) estuarine stations during the ebb and flood surveys from December 2002 to

December 2003.
Redfield ratio of 16, except for the bottom and middle depth
samples collected during the September flood survey at the
lower and middle stations. A general decreasing trend down-
stream was observed (Table 1), consistent with the salinity
increase.

TPM values ranged between 2.2 and 69.2 mg l�1 and POM
ranged between 0.2 and 14.4 mg l�1. In general, no seasonal
trend was observed and maxima occurred in winter but also
in summer. On an average, the highest values were measured
in the lower estuary during the flood (Table 1). A significant
positive linear relationship ( p< 0.01) between TPM and the
light extinction coefficient was found, independently of tide
and location, as well as between TPM and POM. k Values
ranged between 0.3 and 4.1, with an average of 1.3 m�1.

3.2. Chlorophyll a and photosynthetic parameters

Phytoplankton biomass, expressed in terms of chlorophyll
a contents, showed a clear seasonal trend (Fig. 4). Values
ranged from 0.3 mg m�3, during the December flood survey,
to 14.9 mg m�3, during the June flood survey, with higher bio-
mass occurring generally in the upper estuary, particularly dur-
ing the mid-spring early-summer phytoplankton bloom
originated from the river. During this bloom period, biomass
steadily decreased from the upper to the lower estuary. A
second, more modest bloom was observed in most stations
in late-summer early-fall, especially during the ebb. It should
be noticed that maximal concentrations were observed in the
upper station, during both the flood and the ebb. Variation
with depth occurred only during the bloom period (June),
with concentration of biomass at the surface and in August
at the upper station with a reduction of biomass over depth
(Fig. 4). Phytoplankton biomass was positively correlated
with temperature ( p< 0.01) and negatively correlated with
river flow, phosphate and silicate ( p< 0.01). No statistical
relationship was found between chlorophyll a and NO3þNO2

or ammonium.
Table 2 summarizes the results obtained by fitting Steele’s

equation to P/E data (see Section 2). A general good fit was
obtained between model predicted values and observations
as shown by the r2 values. Pmax values were higher in spring
and summer, with the highest value during the August ebb sur-
vey at the upper station. During the ebb, higher values of Pmax

were found in June, at the lower and middle estuary, whereas
during the flood, the highest values were found in Julye
August at the lower and middle estuary and June and August
at the upper estuary. Globally, photosynthetic parameters Pmax

and Eopt were significantly ( p< 0.01) correlated with chloro-
phyll a and temperature (positively) and with river flow and k
(negatively). The initial slope was correlated significantly and
positively with temperature. The relationships between Pmax

and the initial slope versus temperature were also analysed
by regression analysis. A relatively good fit was obtained
with linear regression (respectively, r2¼ 0.4; ANOVA
p< 0.0001 and r2¼ 0.16; ANOVA p< 0.001).

Compensation depth values are presented in Table 3. These
values were compared with sampling stations’ mean depth and
the depth of the halocline when present. In the majority of
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Fig. 4. Water column chlorophyll a values at the lower (L), middle (M) and upper (U) estuarine stations, during the ebb and flood surveys, from December 2002 to

December 2003.
situations analysed, compensation depths were less than half
of water column depth. During spring and summer, however,
a fully euphotic water column occurred in some stations,
namely at the upper station in May, during the flood, and in
May through August, during the ebb; at the middle station
in June, during the flood, and at the lower station in June.
Only in two situations the compensation depth was higher
than the halocline: at the lower station, during the July ebb sur-
vey and at the middle station, during the July flood survey,
when the halocline was present at 2.8 and 4.4 m, respectively.

3.3. Estuarine metabolism

Except for the MayeJuly period in the upper estuary, cor-
responding to the phytoplankton bloom, CR was always
higher than photosynthetic production, i.e. heterotrophy was
the dominant process in the estuarine water column (Fig. 5).

A decreasing trend in integrated PP from the upper to the
lower estuary was found, independently of the tide. Integrated
daily values, however, were higher during the flood. Water col-
umn PP was significantly ( p< 0.01) and positively correlated
with temperature and salinity but negatively correlated with
river flow, k, nutrients (except ammonium), TPM and POM.
No relationship was found between PP and water column
CR. From the data obtained during the study period, water col-
umn PP annual averages were calculated. Values of 95, 106
and 160 g C m�2 y�1 were obtained for the lower, middle
and upper estuary, respectively. It is noteworthy that these
PP annual values are estimates from spring tides only, since
there are no data available for neap tides, that would allow
a more accurate estimate of water column annual PP.

Regarding CR, values increased steadily from the upper to
the lower estuary, reaching its maximum expression during the
summer months. Annual averages of 570, 478 and 199 g C m�2

were obtained for the lower, middle and upper estuary, respec-
tively. Depth-integrated hourly CR showed a positive signifi-
cant correlation with salinity and ammonium and negative
correlation with NO3þNO2, silicate and river flow
( p< 0.01).

3.4. Effect of time, tide and stations

After testing the MANOVA assumptions, it was concluded
that not all variances were homogeneous, even after standard-
ization and log transformation. The effect ‘‘time’’ was signif-
icant ( p< 0.05) for Pmax, k, salinity, phosphate and
ammonium. The effect ‘‘tide’’ was significant ( p< 0.05) for
k only.

The effect ‘‘Station’’ was significant for salinity,
NO3þNO2, ammonium and POM.

A posteriori comparisons with the NewmaneKeuls test in-
dicated significant differences ( p< 0.05) between the up-
stream station and the other two stations. Regarding the
variable CR, there was a significant ‘‘station’’ effect
( p< 0.01), unlike the variable PP. However, both results
must be considered with caution, because of variance
heterogeneity.
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Table 2

Monthly photosynthetic parameters obtained for the PI curves for the three sampling stations along the year during the ebb and flood surveys. Pmax in mg C mg

Chl a�1 h�1; Eopt in mE m�2 s�1; initial slope of the P/E curve in mg C mg Chl a�1 h�1 (mE m�2 s�1)�1

Date Station L Station M Station U

Pmax Eopt r2 Slope Pmax Eopt r2 Slope Pmax Eopt r2 Slope

(A) Ebb

Dec-02 0.87 446.58 0.42 0.0053 1.25 508.02 0.83 0.0067 2.38 398.24 0.99 0.0162

Jan-03 1.46 450.84 0.86 0.0088 1.83 418.97 0.88 0.0119 2.91 507.30 0.94 0.0156

Feb-03 1.35 423.07 0.68 0.0086 1.66 408.89 0.72 0.0110 1.51 379.93 0.71 0.0108

Mar-03 1.76 469.45 0.83 0.0102 2.86 610.88 1.00 0.0127 2.59 535.93 0.84 0.0131

Apr-03 1.95 554.82 0.88 0.0096 2.97 540.28 0.92 0.0149 2.73 608.54 0.90 0.0122

May-03 2.29 466.31 0.88 0.0133 3.99 612.00 0.99 0.0177 3.44 631.26 0.98 0.0148

Jun-03 3.27 455.66 0.76 0.0194 5.56 1882.83 0.86 0.0080 4.09 641.63 0.96 0.0173

Jul-03 2.67 553.08 0.95 0.0131 2.57 560.27 1.00 0.0124 3.87 595.88 0.99 0.0176

Aug-03 3.21 623.17 0.84 0.0140 3.18 687.98 0.92 0.0125 9.24 626.14 0.92 0.0401

Sep-03 1.90 603.28 0.96 0.0086 2.40 684.95 0.96 0.0095 2.73 670.71 0.86 0.0110

Oct-03 2.57 522.12 0.93 0.0134 2.99 675.28 0.96 0.0120 3.79 618.67 0.95 0.0166

Nov-03 2.02 498.35 0.79 0.0110 2.32 524.11 0.80 0.0120 2.89 544.53 0.83 0.0144

Dec-03 1.00 592.37 0.98 0.0046 1.44 925.37 0.88 0.0042 1.02 440.12 0.90 0.0063

(B) Flood

Dec-02 2.51 374.46 0.44 0.0182 3.76 460.18 0.50 0.0222 1.18 718.43 0.84 0.0045

Jan-03 1.45 373.77 0.46 0.0105 1.42 417.60 0.90 0.0092 2.86 380.81 0.89 0.0203

Feb-03 1.74 509.36 0.91 0.0093 1.96 473.66 1.00 0.0112 1.90 505.96 0.97 0.0102

Mar-03 1.73 487.23 0.97 0.0096 2.41 427.91 0.98 0.0153 3.45 812.50 0.80 0.0115

Apr-03 2.43 508.38 0.95 0.0130 2.65 565.28 0.91 0.0127 1.93 587.68 0.93 0.0089

May-03 2.30 587.68 0.93 0.0106 4.43 516.55 0.98 0.0232 3.56 540.42 0.97 0.0179

Jun-03 2.64 582.00 0.89 0.0123 3.08 663.97 0.99 0.0126 4.66 616.00 0.96 0.0205

Jul-03 5.06 722.95 0.92 0.0190 4.52 825.55 0.96 0.0149 3.81 657.61 0.91 0.0157

Aug-03 4.40 675.82 0.94 0.0177 5.45 676.56 0.94 0.0218 4.65 606.66 0.92 0.0208

Sep-03 1.49 698.70 0.84 0.0058 3.66 657.70 0.91 0.0151 3.25 643.49 0.96 0.0137

Oct-03 1.68 489.07 0.81 0.0093 2.58 685.56 0.95 0.0102 3.84 801.13 0.99 0.0130

Nov-03 3.68 552.63 0.98 0.0181 3.38 587.42 1.00 0.0156 3.17 591.01 0.99 0.0145

Dec-03 1.44 551.88 0.90 0.0071 1.30 531.66 0.97 0.0066 1.13 539.04 0.85 0.0057
3.5. Patterns of similarity between samples

The eigenvalues corresponding to the five principal compo-
nents (PCs) considered for analysis are presented in Table 4.
These were chosen because all were greater than the unity
and together explained 77.7% of the total variance contained

Table 3

Compensation depths calculated for the three sampling stations along the year

during the ebb and flood surveys. Compensation depth values represented in

bold type are close to or higher than water column depth

Date Ebb Flood

Station L Station M Station U Station L Station M Station U

Dec-02 a a a a 1.1 a

Jan-03 a a a a a 1.2

Feb-03 a a a a a 5.6

Mar-03 1.7 1.5 1.2 a 0.7 1.7

Apr-03 2.8 2.7 3.1 3.2 2.2 a

May-03 2.5 1.3 4.6 6.0 3.0 6.7

Jun-03 7.3 2.3 3.6 3.5 10.3 5.6

Jul-03 2.8 3.2 4.8 a 4.4 5.3

Aug-03 a 0.7 6.5 2.7 3.2 5.8

Sep-03 a 0.5 0.4 a 3.7 3.3

Oct-03 3.0 1.7 4.2 a a 3.0

Nov-03 0.7 0.6 3.1 0.8 1.4 2.8

Dec-03 a a a a a a

a The solution of Eq. (4) resulted in an imaginary number (see Section 2).
in the original data set. The correlation coefficients between
PCs and variables are presented in Table 5. The variables
that contributed the most to PC1 were temperature and PP
(positively), k and silica (negatively), suggesting a dominant
influence of physical factors on primary production. PC2
was positively participated by POM, TPM, and salinity, and
negatively participated by NO3þNO2 and the N:P ratio,
mostly chemical factors. PC3 was negatively participated by
N:P ratio, TPM, POM and initial slope. PC4 was highly and
negatively participated by ammonium, possibly indicating an
anthropogenic influence. PC5 was positively participated by
chlorophyll a and Eopt and negatively by the initial slope.
However, these last two PCs explained only a small portion
of the total variance (Table 4).

In Fig. 6 a representation of the first two PCs is shown.
Samples have been labelled based on season. Winter and sum-
mer samples were arranged at opposite extremes of PC1 while
spring and fall were spread across the middle, showing a clear
seasonal pattern. This is in agreement with the contribution of
physical variables for PC1. On the other hand, Fig. 7 repre-
sents the same projection but with the samples labelled by
sampling station, highlighting spatial trends. In this case, sta-
tions were spread along the PC2 axis. The lower estuarine sta-
tion samples were spread over the positive side whereas the
upper station samples were located at the negative side. This
agrees with the positive contribution of salinity (higher in
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Fig. 5. Daily integrated phytoplanktonic PP and water column CR in the lower (L), middle (M) and upper (U) estuarine stations, during the ebb and flood surveys,

from December 2002 to December 2003.
the lower estuary) and the negative contribution of NO3þNO2

(higher in the upper estuary). No association between samples
based on tide was observed. Fig. 8 shows graphically the
weight of variables PP and extinction coefficient superim-
posed on the projection of samples, labelled by season, in
the two-dimensional space defined by the first two principal
components. The larger the circle, the greater the value of
the superimposed variable. The samples with the highest
values of PP are located in the positive side while the highest
values of k are located on the negative side of the PC1 axis,
reflecting the negative correlation found between these two
variables.

4. Discussion

The Douro estuary is a highly dynamic system like most es-
tuaries and very dependent on river flow variations which are
due to seasonal changes and dominate water circulation
(Vieira and Bordalo, 2000). River inflow determines the extent
of salt water intrusion, residence time, levels of nutrients and
phytoplankton biomass. During winter, high flows often pre-
vent coastal water from entering into the estuary, even during
the flood, raise nutrient levels, lower phytoplankton biomass
and reduce water residence time. In this estuarine system, river
flow rather than tides controls water residence time (Bordalo
and Vieira, 2005). The surveys were carried out during
a wet year, since the average river discharge was almost twice
the long-term average inflow of freshwater.

Considering nutrient limitation of phytoplankton produc-
tion, oceanic systems are considered to be nitrogen limited
(Eppley et al., 1973) while freshwater systems are generally
viewed as phosphorus limited (Schindler, 1977). In estuaries,
where seasonal and spatial variations of freshwater and seawa-
ter mixtures occur, this concept is not so clear (Bernhard and
Peele, 1997). Seasonal alternation of nitrogen and phosphorus
limitation has been reported (Fisher et al., 1992; Mallin et al.,
1999) as well as a spatial shift from phosphorus to nitrogen
limitation in some estuaries (Yin et al., 2001). In the present
study, N:P ratio was usually high and always above the Red-
field ratio except for the bottom and middle depth samples col-
lected at the lower and middle stations during the September
flood tide survey. These were high salinity low nutrient sam-
ples, characteristic of seawater where nitrogen limitation is
common. Hence, generally, in the Douro estuary phosphate,
rather than nitrate, was the potentially limiting nutrient. Nev-
ertheless, nitrate limitation can occur in low river flow situa-
tions when scarcely diluted seawater is present within the
estuary.
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The PP obtained in the Douro estuary is within the produc-
tivity range for other temperate and subtropical estuaries
(Table 6). The results clearly show that the Douro estuary is
predominantly heterotrophic. This is an expected result, con-
sidering the shallowness (around 23%) of the euphotic layer/
compensation depth compared to the depth of the estuary
(Table 3) and it is also a normal feature in temperate tidal
estuaries (Heip et al., 1995). The deficit in PP may be compen-
sated by external sources of organic matter, such as untreated
sewage discharge or treated effluent disposal by the eight
WTPs (Fig. 1). The contribution of benthic PP is limited
owing to the small intertidal area of the estuary (Magalhaes
et al., 2003) and, due to land reclamation, saltmarsh areas
were dramatically reduced to less than 0.1 km2 (Bordalo,
unpublished data).

The analysis of Figs. 6 and 7, and the MANOVA results in-
dicate significant ( p< 0.01) differences in CR between sam-
pling stations and suggest different metabolic patterns over
time and space in the Douro estuary. The gap between PP
and CR increases towards the river mouth, with some positive
values in summer in the upper and middle estuary. It is note-
worthy that heterotrophy is much more evident towards the
sea. The explanation for this fact lies probably in the higher
TPM and POM loads at this end of the estuary, a very uncom-
mon phenomenon that may be explained by the dam effect at
the upstream end of the estuary, retaining large amounts of

Table 4

Eigenvalues, percent variation and cumulative percent variation of the first five

principal components

PC Eigenvalues %Variation Cum.%variation

1 7.05 39.1 39.1

2 2.8 15.6 54.7

3 1.68 9.3 64

4 1.3 7.2 71.2

5 1.17 6.5 77.7
sediments. Also, the human-induced contamination of the
lower and middle estuary (Bordalo, 2003), contributed to an
increased organic loading and hence of respiration, leading
to the heterotrophy situation observed all year round.

The results show that different factors may control PP over
space and time. From the PCA analysis, it is clear that spatial
differences arose mostly along PC2, contrasting mostly larger
nitrateþ nitrite concentrations and N:P ratios (upper station)
to higher salinities, TPM and POM concentrations (lower sta-
tion). This suggests that the upper estuary is more productive
than the lower estuary as a result of higher nitrogen concentra-
tions from riverine origin (Mallin et al., 1993; Malej et al.,
1995). Also, higher chlorophyll biomass from the reservoir
(Bordalo and Vieira, 2005) may help to explain these trends,
but to a lesser extent (Table 5). Regarding temporal differ-
ences, higher PP values were associated to higher tempera-
tures, lower light extinction coefficients (k ) and higher Pmax,
coinciding with the summer period. According to Heip et al.
(1995), annual PP values lower than 160 g C m�2 y�1 result
from light limitation in nutrient-rich or heterotrophic systems,
which is the case of Douro estuary, with an annual estimate of
120 g C m�2 y�1. This is partly confirmed from the results ob-
tained in this work, regarding temporal variability in PP, statis-
tically related to k values.

Probably, one of the most interesting aspects of this work is
the positive correlation of chlorophyll a with Pmax. In marine
ecosystems, there seems to be a general decreasing trend of
the P/B ratio as a function of net primary production (NPP).
In one extreme there are oligotrophic ecosystems, with high
P/B, low biomass and NPP, such as open ocean pelagic sys-
tems, and in another extreme there are ecosystems with low
P/B, high NPP and biomass, such as algal reefs and beds
(Duarte et al., 2006). These trends suggest that low biomass
and NPP ecosystems are more efficient in using limiting re-
sources. Furthermore, low biomass standing stocks may also
leave more resources per unit of biomass, helping to explain
Table 5

Eigenvectors or coefficients in the linear combinations of variables making up PC’s

Variable PC1 PC2 PC3 PC4 PC5

Pmax 0.282 �0.211 �0.256 0.046 �0.199

Eopt 0.217 �0.097 0.208 0.144 0.468

k �0.3 �0.073 �0.274 �0.002 0.152

Slope 0.191 �0.168 �0.363 �0.094 �0.545

PP 0.327 �-0.149 �0.125 0.193 0.093

CR 0.13 0.213 �0.013 �0.209 0.197

Chlorophyll a 0.241 �0.201 �0.12 0.278 0.36

Temperature 0.325 �0.049 0.038 0.206 0.05

Salinity 0.217 0.364 �0.052 �0.14 0.071

NO3þNO2 �0.238 �0.384 �0.064 �0.207 0.115

Phosphate �0.258 �0.066 0.314 �0.108 �0.071

Silica �0.32 �0.232 0.002 �0.036 0.004

Ammonium 0.062 0.203 �0.141 �0.595 0.332

N:P ratio 0.001 �0.365 �0.449 �0.246 0.263

Turbidity �0.262 0.009 �0.256 0.212 0.142

TPM �0.174 0.342 �0.385 0.27 0.056

POM �0.125 0.411 �0.33 0.15 0.002

River flow �0.261 �0.06 0.058 0.371 0.126
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higher P/B ratios. Pmax, expressed as mg C mg Chl a�1 h�1,
may be viewed as a potential P/B ratio. Therefore, from the re-
sults obtained, it seems that the Douro estuary has a different
pattern regarding the usual relationship between P/B and bio-
mass standing stock e higher biomass situations coincide with
higher phytoplankton photosynthetic capacity. This positive
feedback is reinforced by higher initial slopes (Table 2). The
significant linear relationships between those parameters and
temperature highlighted the importance of temperature in con-
tributing to higher Pmax and photosynthetic efficiency. Madar-
iaga (1995) in the Urdaibai estuary (Bay of Biscay) and van
Spaendonk et al. (1993) in the Westerschelde (The Nether-
lands) obtained higher Pmax values downstream than upstream,
whereas the contrary was true for PP and chlorophyll concen-
trations: exactly the opposite trends obtained in this work for
Pmax and in line with previous comments on the P/B ratios.
Pmax values reported here are well within those measured by
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Madariaga (1995), 2.03 and 15.21 mg C mg Chl a�1 h�1, and
van Spaendonk et al. (1993), 0.08 and 16 mg C mg Chl a�1 h�1.

The mentioned patterns may result from the specific charac-
teristics of the Douro river and its estuary. The relatively low
chlorophyll concentrations in the Crestuma-Lever reservoir,
within 8e12 mg Chl a m�3 (Bordalo, unpublished data),
discharging directly into the estuary, may explain the low
phytoplankton biomass within the estuary.

The river is dammed all over its course and this may justify
the relatively low TPM loads to the estuary as compared to
other European estuarine systems, such as the Sado estuary
(Portugal), the Gironde (France) and the Scheldt (Belgium
and The Netherlands). In such systems TPM concentrations
in the upper estuarine area were 600 mg l�1, >200 mg l�1

and c.a. 40 mg l�1 (Cabecadas et al., 1999). Moreover, in the
Douro estuary an increasing trend of TPM with salinity was
observed (Table 1), whereas in the above-mentioned systems
an opposite trend was found. Chlorophyll concentrations
were in the range of those measured in the Douro, except for
the Scheldt, with maximal values above 200 mg Chl a m�3.
For both the Sado and the Gironde, chlorophyll maxima
occurred at intermediate salinities, whereas for the Scheldt,
upstream maximum was reported. This was also the case of
Douro, where the highest chlorophyll concentration was
observed at the estuary head, indicating a riverine origin of
phytoplankton.

A possible explanation for the positive correlation between
photosynthetic capacity and chlorophyll concentration of the
Douro phytoplankton may be the relatively low phytoplankton
biomass, preventing intraspecific competition from lowering
photosynthetic capacity, on one hand, and the physiologic
characteristics of phytoplankton itself, originated from
a semi-lotic (Crestuma reservoir) rather than from a true lotic
ecosystem. Probably, this last hypothesis deserves further
investigation, since it may clarify some impacts of river dam-
ming over estuarine metabolism in accordance with the Water
Framework Directive (EC, 2000).

The absence of historical data to compare the obtained re-
sults with similar studies carried out before dam construction
prevents any definite conclusion about the dam effect on estu-
arine production and metabolism. However, considering the
important differences between the Douro estuary and other
European estuaries, it may be acceptable that the river Douro
dams lead to a reduction in TPM and chlorophyll loads into
the estuary and a decrease in estuarine metabolism at its up-
stream end. Whilst it is generally accepted that TPM loads de-
crease as a result of dam retention, the same is not so clear
regarding chlorophyll. However, considering that the Cres-
tuma-Lever reservoir has an average depth of above 13 m,
that only about one-third of the water column is euphotic
and that, for most of the year, the water column is well mixed
(Bordalo et al., unpublished data), it may be speculated that
PP in the reservoir is not very high and therefore relatively
low chlorophyll values may be expected as an input to the
estuary.

Finally, significant differences between tides were not ob-
served, as shown by MANOVA and multivariate analyses
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Fig. 8. Projection of samples in two dimensions defined by the two first principal components. Bubble size is related to the magnitude of the variable represented.

A e depth-integrated hourly PP; B e extinction coefficient (k). Samples are labelled by season: winter (W); spring (Sp); summer (S); and fall (F).
results, except for k, reflecting higher water turbidity during
the ebb. Considering spatial variability, higher turbidity in
the lower estuary is rather derived from sewage discharge
within that estuarine stretch or from oceanic outfalls than
from sediment resuspension, which traditionally originates
the turbidity maximum. Differences between tides concerning
phytoplankton biomass reported in other studies are related to
a much higher difference between chlorophyll a coming from
the river and the adjacent coastal waters (Roegner, 1998); or to
seasonal phytoplankton cycles (Aubry and Acri, 2004).

5. Conclusions

The results obtained from this study suggest that:

(1) The Douro estuary is predominantly heterotrophic, with
some exceptions in the lower salinity upstream area in
summer.

(2) PP seems to be mostly controlled by temperature, being
also influenced by a positive feedback from photosynthetic
capacity and chlorophyll biomass.

Table 6

Summary of pelagic primary production (PP) measurements (mean values or

ranges) in temperate estuaries

Site Pelagic PP

(mg C m�2 d�1)

Author

Bristol Channel 204 Joint (1978)

Chesapeake Bay 500e3500 Malone et al. (1996)

Colne 24 Kocum et al. (2002)

Danube 200e4400 Humborg (1997)

Douro 4.7e1879

(mean¼ 320)

This work

Eastern Scheldt 908 Wetsteyn and Kromkamp

(1994)

Ems-Dollard 20.4 Van Es FB (1977)

Ems-Dollard 36 Cadée and Hegeman (1974)

Lynher 222 Joint and Pomeroy (1981)

St. Lawrence 10e800 Sinclair (1978)

Swan river 2192e2740 Thompson (1998)

Western Scheldt 485 van Spaendonk et al. (1993)

Western Scheldt 632 Kromkamp et al. (1995)

Apalachicola Bay 90e1800 Mortazavi et al. (2000)

Mississippi 50e1000 Thomas and Simmons (1960)
(3) No significant differences between ebb and flood were ob-
served in what PP is concerned.

(4) The reservoir located upstream may have a dominant in-
fluence on TPM concentration gradients in the estuary,
which exhibit low TPM and chlorophyll a comparing to
other systems.

(5) Further studies addressing the impact of the upstream dam
on the characteristics of phytoplankton arriving at the es-
tuary, as well as its influence on estuary metabolism are
needed.
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