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ABSTRACT 

System Identification of a Free Floating Telerobot Using Kalman Filtering and a 

Stereoscopic Vision Sensor. 

(December 1998) 

William Wybom Benson, B. S. , Washington and Lee University 

Chair of Advisory Committee: Dr. Thomas C. Pollock 

A telerobot has been acquired that floats on air bearings and is intended to 

simulate the dynamics of a spacecraft in a two-dimensional plane. The robot was 

delivered without a computer, sensors or documentation so an effort has been launched 

to determine how the apparatus worked and to identify the model parameters associated 

with mass, moment of inertia and thrust. The robot has been modified to accommodate a 

laptop as the onboard computer and a unique stereoscopic vision sensor as a navigation 

system. The unknown model parameters are then identified using both least squares 

estimation and Kalman filtering. 

The unique stereoscopic vision sensor system is based on one-dimensional 

position sensing diodes (PSD's) and active targets that broadcast a modulated signal. 

The active targets are mounted at known points in the robot frame of reference and 

broadcast their signal to the PSD sensors that are stationary in the inertial coordinate 

frame. This system enables real-time attitude measurements with no moving parts. 



The robot's mass, moment of inertia and the forces generated by its thrusters are 

identified using direct measurements and the well known linear least squares estimation 

algorithm. Identification using these techniques required experiments specifically 

designed to characterize the system. Some of the parameters may change over time, so a 

means of conducting on-line system identification was developed. A Kalman filter was 

designed which could simultaneously perform state estimation and parameter 

identification on-line. This technique did not require an experiment specifically 

designed for identification purposes and could accurately find the unknown model 

parameters during normal robot maneuvering. 
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INTRODUCTION 

Analysis of spacecraft dynamical behavior normally requires utilization of 

computer models to simulate the influence of various disturbances and controls. The gift 

of a free-floating telerobot has afforded the aerospace department an opportunity to 

conduct experiments that are not limited to computer models. It is a valuable adjunct to 

the modelling process to validate such models with appropriate ground based 

experiments. One difficulty associated with experiments of this type is the provision of 

a low friction environment. Another is the precise measurement of position and attitude 

of the simulated spacecraft. Both of these problems must be overcome in order to 

identify the parameters that describe the dynamics of the simulated spacecraft. This 

thesis addresses the identification of a particular such apparatus. As part of this work the 

development of the low friction environment and a position attitude sensing system are 

presented. 

The telerobot floats on air bearings, which permit it to float freely over a 

specially prepared floor, This allows the robot three degrees of freedom (x-translation, 

y-translation, and rotation). The telerobot is equipped with eight thrusters and a reaction 

wheel which provide control forces and moments for all degrees of freedom. It comes 

equipped with an onboard air and power supply so no umbilical is necessary. This 

permits the robot to float without external coupling. 

A system is identifiable and observable only to the degree to which the variables 

describing its dynamical behavior can be measured. The unique requirements of the 

The format used for this thesis is taken from the AIBA Journal. 



telerobot require a new approach to motion detection that will provide an accurate 

measurement of its position and orientation. Determining an object's position and 

orientation can usually be accomplished by using various sensors that must be in 

physical contact with that object. The intended purpose of the telerobot precludes the 

use of such devices because it must be free to move independently and no coupling may 

exist between it and another object. Since there can be no "plumbing" that leads to the 

robot, a means of measuring its motion without touching it must be found. One means 

of remotely measuring the motion of a body are camera based stereoscopic navigation 

systems. These systems are useful in situations where the data may be collected and 

later analyzed. Unfortunately, they present problems for a real-time applications 

because computational requirements associated with processing video images permits an 

update rate of only 2 Hz. ' A suitable alternative to these methods is present with the 

recent arrival of Position Sensing Diode (PSD) technology. 

Real time measurements of angles to a point may be accomplished using a device 

based upon the PSD. Several previous investigations into the use of such devices in a 

stereoscopic vision based navigation system have proven that they can accurately 

determine the position of a point remotely in 3-dimensional space. A simpler version of 2 

this concept was used in the development of a 2-dimensional sensing system. In both of 

the previously mentioned cases, the position of a single point was found by using 

triangulation from two PSD detectors. The detectors used in these two investigations 

projected a laser beam at a target and the angle of the reflected light was measured using 



the PSD. Two angles in a plane to a single target from two separate known points may 

be used to find the position of the target. 

Using the reflected light as the detectable signal limits the range at which the 

position of the target may be accurately determined to a few meters. It is not necessary 

to use reflected light if the targets themselves are broadcasting a signal that is detectable 

by the PSD sensors. This method increases the signal to noise ratio and permits remote 

sensing at greater ranges than those using reflected laser light. The increased range of 

the active target PSD depends upon the amount of light transmitted. In addition, targets 

may be turned on and off in a specific sequence that permits tracking of multiple targets. 

A number of target's mounted at known positions on the body would allow the system to 

be used as a navigation sensor for highly accurate measurements of the telerobot's 

motion at every possible position and orientation. 

This investigation focuses on using PSD sensors with active targets to find the 

position and orientation of an object in real time. This information is then applied 

towards system identification and feedback control. Mounting multiple active targets on 

the telerobot and using time multiplexing permits accurate measurement of incident 

angles from known inertial coordinates to known body fixed coordinates. Using a 

nonlinear least squares differential correction, the robot's inertial position and location 

may be recovered. 3 

The first step in the identification process was to define a mathematical model 

that accurately describes the system. These experiments made use of the autoregressive 

exogenous variable model (ARX) and the least squares estimation algorithm. The ARX 



model describes the rotational dynamics of the system. This model assumes that the 

parameters of the system do not change with time and that the system is linear. In the 
4 

initial set of experiments the output of the system using a single thruster is measured 

using an angular rate sensor. The data collected is later analyzed to identify the control 

influence of that thruster using least squares estimation. 

Once the PSD sensor system is installed, other methods of system identification 

besides least squares may be applied. The least squares estimation technique mentioned 

previously is not an on-line identification procedure and it requires that a special 

experiment be conducted to identify the system. It would be much more desirable to 

identify the unknown model parameters during the course of normal operations. A 

Kalman filter used in conjunction with a state space model of the system is the proposed 

method to conduct on-line parameter estimation of the system. The unknown parameters 

are augmented as additional states to the state space model. If the augmented state space 

model is observable and controllable, then the Kalman filter can estimate these 

augmented states in the same manner as any other state that is not directly measured. ' 

The information gathered from the PSD sensors can be applied to this Kalman filtering 

algorithm to produce an accurate estimate of the system parameters. The results 

gathered from using the least squares technique provides an initial guess for the Kalman 

filter algorithm. 



THE LOCKHEED MARTIN TELEROBOT 

General 

The vehicle is a tubular steel framework into which are installed mechanical and 

electronic systems which allow it to glide on air bearing pads over a prepared flat floor 

area by means of compressed gas thrusters actuated by computer control. In use, the 

vehicle can be autonomous. Power sources are carried on board, so that no umbilical is 

required. As received, the vehicle includes eight SCUBA-type compressed air tanks 

supplying air to the four air bearing pads, four brake pads and eight thrusters through a 

series of manifolds and solenoid-operated valves. Two banks of lead-acid dry cells 

provide power to a set of solid state DC-DC converters that in turn power the 

electronics. Electronics include a standard bus card cage containing cards that perform 

timing and logic functions in support of the thruster system. 

The telerobot mainframe has a base of approximately 4 ft. , with a height of 

about 3. 5 ft. Its weight, assembled except for the computer, was measured using a load 

cell-equipped overhead crane and found to be 850 lb. Fig. I is a photograph of the 

assembled telerobot. 



Fig. i The Lockheed-Martin Telerohot. 

Pneumatic System 

Prominent within the frame of the telerobot are eight aluminum SCUBA tanks, 

four of which are connected by a manifold to air pad, brake and thruster systems. The 

remaining four tanks are disconnected. Located on a side panel are manually operated 

pneumatic controls and gauges, including an "extra" set of controls for a reaction wheel 

which perhaps was air-actuated. A schematic diagram of the pneumatic system showing 

the control layout is shown in Fig. 2. Air is supplied to the pads by a manually operated 

regulator, with a pressure of 50 psi. being sufficient for levitation. Separately regulated 

air is supplied to the thrusters and brakes through solenoid on/off valves. 

There are a total of eight thrusters which simply act as apertures in the manifold 

which may be opened and closed by solenoid on/off valves. The solenoid valves are 

normally closed and require 24 volts DC to open. 

The brakes system consists of four pistons, which are each connected to a 

brake pad. The brakes are held in the release position by a spring. The pistons receive 



air pressure from the manifold through a regulator. When pressure is applied to the 

brakes 
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Air Brakes 
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Tank Pressure 

gearing 
Pressure 

u a nrfold 
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Left 
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L L. . . 
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Fig. 2 Schematic of pneumatic system. 

the pistons will force the brakes downward into the deployed position. Pressure 

to the brakes can only be released by closing a solenoid valve, The solenoid valve is 

normally open and can only be closed by applying 15 volts DC. 

The tanks were charged with dry air to 3000 psi. pressure using a SCUBA-rated 

compressor and dryer loaned to the project by the TAMU Department of Nautical 

Archeology. All pneumatic circuits were free of leaks, and all valves functioned 

correctly. One questionable gauge was replaced. 



Electronic Systems 

The battery packs output 120 volts DC. DC-DC converters are used to provide 

power for the various on-board systems. The converters are programmed to provide 5 

volts DC to the Transistor-Transistor Logic (TTL) control circuits, 15 volts DC to 

transistors providing on/off switching to the thruster solenoids and 24 volts DC to the 

thruster solenoids themselves. 

DaqPad converts 
command to DIO signal. Robot 

Thruster 
System 

Interface card 
switches thrusters 

on/off. 

Commands received 
by onboard computer 

Commands 
transmitted via 

wireless ethernet 
Operator 

Workstation 

Ffg. 3 Wireless ethernet control flow. 

The robot was delivered without an onboard computer so it was necessary to find 

a way to interface with the robot's existing control system architecture. It was 

determined that a convenient way to control the robot was to use a Toshiba Tecra 500s 

laptop computer as the robot's onboard computer and a National Instruments DAQpad- 

MIO-16XE data acquisition board as the interface between the laptop and the electronic 

systems. The DAQpad comes equipped with eight digital input-output lines (DIO). ' A 



control circuit was fabricated which would accept a 3-bit input from the data acquisition 

board and translate it into a specific command to the thrusters. A flowchart that explains 

how this system works may be found in Fig. 3. 
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Fig. 4 DAQpad-Robot interface card. 

The additional circuit card was fabricated to control the thrusters from the 

notebook computer (Fig. 4). This was necessary because the A/D board only has eight 

digital input/output (DIO) lines. Some of the DIO lines cannot be dedicated to thruster 

control because they are needed for other tasks. The new card uses a 74 I 38 decoder 

integrated circuit chip that converts a 3-bit input into eight separate commands. The 

card is programmed to execute a maneuver based on the 3-bit input. The commands are: 



no thrust, positive rotation, negative rotation, forward, backward, lateral left, lateral right 

and deploy brakes. Each output from the 74138 chip will open the appropriate thruster 

solenoid valves to execute the desired maneuver. The digital inputs and their related 

commands are listed in Table l. 

Table 1 Thruster commands 

DIO Input 

000 

001 

010 

011 

100 

101 

110 

Command 

No thrust 

Rotate 
Clockwise 
Rotate 
Counter- 
Clockwise 
Translate 
Forward 
Translate 
Backward 
Translate 
Right 
Translate 
Left 
No thrust 

Thrusters 
Activated 
None 

VI, V3, VS, V7 

V2, V4, V6, V8 

V6, V7 

V2, V3 

V4, V5 

Vl, Vg 

None 
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Fig. 5 Robot free-body diagram. 

Equations of Motion 

A free body diagram of the telerobot may be found in Fig. 5. The inertial 

reference frame is designated as the e frame and the robot or body fixed reference frame 

is designated as the b frame. The well-known coordinate transformation between the 

two reference frames is defined (see Fig. 6). 

b, 

b, 

cosy siny 0 

— sin y cosy 0 e, 

0 0 I 
3 

A reaction wheel is located at the geometric center. The center of mass is located off 

center and is at a previously unknown position due to uneven loading of the support 



12 

f'rame. There are eight thrusters that provide translational and rotational control of the 

robot position on the floor. Viscous damping is present in the form of aerodynamic 

forces as well as interaction between the air bearings and the layer of air that suspends 

them. In this model the damping is treated as a lumped parameter that is linear with 

respect to rotation and translation rates. 

Known 
Point 

ez bz 

lx„buy„b z) 

Ixz e' yz ezl 

(z„V. „) 

Second 
Point 

lx„bu y„bz) 

(x, eu y, . ez) 

b, 

Fig. 6 Robot coordinate systems. 
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The robot is free to translate in two dimensions and can rotate about one axis, 

thus it has three degrees of freedom. The sum of all moments about the b„e, axis is: 

QM = — rlrgi+ V, r, — Vzr, + V, r, — V, r, + V r — V r„+ V, r, — V r, (2) 

Where g is defined as the rotational linear damping coefficient. 

Substituting Eq. (2) into Newton's second law: 

1 
jii = — ( — rl y + V, r, — V, r, + V r, — V, rz + V, r — V6r„+ V, r, — V, r, ) I„ 

The sum of the forces in the bi direction are: 

Fb = — vx — V+V, +V, — V, 
I 

(4) 

where v is defined as a linear translational viscous damping coefficient. 

The sum of the forces in the b. direction are: 

Fb = — vx — V, — V, +V, — V, 

Making use of Eq. (l), Eq. (4) and Eq. (5) the sum of all forces in the e frame are 

defined. 

g F e, = — v x — cos yV, + sin yV, + sin yV, + cos yV4 + cos yV, — sin yV, — sin yV, — cos yV, (6a) 

QFe, = -vy — sin yV, — cosyV, — cosyV, +sin yV4+sinyV, +cosyV, +cosyV, — 
sin yV(6b) 

Substituting Eq. (6) into Newton's second law, the equations of motion become: 

t( 
x = — 

[ 
— vx — cosyV, + sin yV, + sin yV, +cosyV, +cosyV, — sin yV, — sin yV, — cosyV, (7a) 
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1 y= — ( — i/ — sinlVVI cosIVVz — COSIVVS+sinIVV4+sint/V, +cosIVV, +cosII/Vz — sinIVVsj(7b) 
m 

Placed in matrix form, the equations of motion become: 

0 0 I 
0 — 0 

m 

0 0 
m 

X + 

r, V, 

I„ 
VI — COS I//— 
Vl 

Vl — sin tv — ' 

m 

r, V, 

I„ 
Vz 

sin iz/— 
Vz 

V, — COS IV— 
m 

r, V, 

I„ 
V, 

sin il/ — ' 
m 

v, — COS il/— 
m 

r, V, 

I„ 
V4 

COS I//— 
m 
V4 

sin S/ — ' 
m 

r, V, 

I„ 
Vl 

COS il/ — ' 

V, 
sin ar- 

m 

r, V, 

I„ 
V, -sinIV- 
Vl 

V, 
COS IP'— 

m 

"I Vl 

I„ 
V, — sin iz/— 
m 

V, 
COS I//— 

m 

r, V, 

I„ 
VI — COS IP'— 
Vl 

V, — sin il/— 
Vl 

2 

B4 

Where u, is 1 or 0 and represents the on or off command to a particular thruster. 



LEAST SQUARES ESTIMATION 

Theory 

The autoregressive exogenous variable model is a simple input-output 

relationship described by a linear difference equation of the following form. 

y(t) + apy(t — 1) + a (t — 2)+. . . +a„y(t — n, ) = bpu(l I) + bu(t 2)+ +b„u(t — n„) + e(t) (9) 

This is called an equation error model since the white noise term e(t) enters as a direct 

term in the difference equation. If the unknown parameters are 

0 = La„a„. . . , ap, b„b„. . . , b„j 

and the following terms are introduced 

A(y) =1+apy(t — 1)+a, y(t — 2)+. . . +a„y(t — n ) 

B(u) =1+ b, u(t — 1)+ b, u(t — 2)+. . . +b„u(t — n„) 

(I la) 

(I lb) 

then the resulting transfer function becomes 

B(y) e(t) t(yB)= + 
~(y) ~(y) 

(12) 

Where A(y) is the AR or autoregressive part and B(y) is the exogenous value part. 

The equations of motion Eq. (8) are decoupled with respect to the states. 

Therefore, the effect of the thrusters on the rotational mode of the robot can be tested 

and measured accurately with only a rate sensor. In order to get an accurate measure of 

the thruster force, each thruster may be tested individually and the control influence for 

that thruster may be found using the ARX model and least squares estimation. 

Consider the angular rate equation of motion for the robot with a single thruster: 



(13) 

Which in discrete form becomes, 

(14) 

This can be manipulated to give the standard ARX predictor model: 

Yi ( 
=(1 ) Yg+ 

qAr . Vr, LU 

Or, in the more general form, 

Vi+i = rio Vi+&0"i (16) 

The parameters a, and b, must be found using some identification process and then the 

values for V„and ri may be determined. Given a batch of data of the form: 

Z = [tV(1), u(1), y(2), u(2), . . . . . , y(N), Z(N)] 

If this vector of known parameters is defined as: 

p(k)= &( ), k=1. . Ã 
B(k) 

(lg) 

and the vector of estimated parameters is defined as: 

0(k) = ', k = 1. . N 
a, (k) 

b, (k) 
(19) 

Then the predicted estimate of the output y can be defined as: 

(20) 



A residual for the estimate is defined as: 

N 1 f 
V(0 N) ~ Iitl(k) fail(k) 0(k)J 

i=i 2 
(21) 

The object of the parameter estimation is to minimize the residual. The parameter 4 

estimate that minimizes the error is: 

N N 

ties = — pe(k)ti(k)i — gti(k)V(k) 
I 
N„, N„, 

(22) 

Which, is expressed in this specific case by the following equation. 

Y(k) a(k) — y ~ 3(k) 
0 

(23) 

The Identification Process 

As mentioned previously, the rotational mode in Eq. (8) is decoupled from the 

other two modes, thus experiments to identify parameters specific to rotational motion 

can be conducted independently. Moreover, control inputs may be entered individually, 

which allows the system representation to be reduced to single input, single output 

(SISO) equation. The parameters of interest are the damping ratio 17 and the thrust for 

each thruster at a given manifold pressure Vi . The moment of inertia and centroid of the 

robot were found in a separate test and are listed in Table 2. ' 

The rotational mode was selected to define the thrusters because a reliable sensor 

to measure angular rate was immediately available and thrusters could be tested 

individually. Prior to each test, the surface of the floor was cleaned using a shop-vac 

and wiped down with denatured alcohol to remove any dust or debris that would 



interfere with the operation of the air bearings. All thrusters except for the individual of 

interest were disconnected. The pneumatic system was charged to a pressure of 1600 

psi. or greater. 

To ensure consistent results, the same location on the floor was used as the initial 

position of the robot for each test. Each thruster was tested at an air bearing pressure of 

60 psi. and the given manifold pressure was varied from 100 psi. to 200 psi. At each 

successive test the manifold pressure was increased at an increment of 20 psi. This 

would characterize the relationship between overall manifold pressure and the actual 

thrust. 

Results and Discussion 

The identification experiments yielded the input-output data that was processed 

using least squares estimation. Once the discrete time state-space parameters were 

identified, the values for I7 and Vi found using Eq. (23). Table 8 - Table 15 in Appendix 

A display the discrete-time and continuous time parameters for each thruster at a given 

mani fold pressure. 

Table 2 Robot parameters 

Moment of Inertia (slug-II) 

Mass (slugs) 

Vl Moment Arm (fl. ) 
V2 Moment Arm (fl. ) 
V3 Moment Arm (fl. ) 
V4 Moment Arm (II. ) 
Vs Moment Arm (ft. ) 
V6 Moment Arm (ff. ) 
V7 Moment Arm (ft. ) 
VS Moment Arm (ft. ) 

47. 8 

28. 4 
1. 88 
1. 84 
2. 05 
1. 88 
2 00 
2. 05 
1. 84 

2. 00 



damping vs. pressure 

O e e 10 

c -20 

-30 
P 
6 -40 

-50 
0 18 0 20 0 16 0 14 0 12 10 

th rust vs pressure 

0. 8 : 0. 6 

0. 4 

0. 2 
100 120 140 160 

pressure (psi) 

Fig. 7 Vl thrust curve. 

180 200 

damping vs. pressure 

da 
mp 
ing-2(i 

(Ib- 
in/r 

adr40 
se 
c) 

-60 
100 110 12 0 190 200 0 18 0 130 140 150 16 0 17 

thrust vs. pressure 

0. 8 
thr 
ust 
(Ib 
s. ) 

0. 2 
100 110 120 130 140 150 160 170 180 190 200 

pressure (psi) 

Fig. 8 V2 thrust curve. 



20 

damping vs pressure 

-5 

2 
-1 

P 
u. -15 
E 

-20 
10 0 120 

0. 8 

0. 7 

8 0. 6 

5 0. 5 6 
0. 4 

0 160 14 

AJst vs. pfessur 

0 20 18 

0. 3 
100 120 140 160 180 200 

pressure (psi) 

Fig. 9 V3 thrust curve. 

damping vs. pressure 

4 -10 
6 

3 -20 

P 
'o. -30 
E 

-40 
0 12 10 

-l 

0 20 0 18 0 16 14 

0. 8 

0. 7 

cr 0. 6 

rust vs. pressure 

I 

0. 3 
100 120 140 160 180 200 

pressure (psi) 

Fig. 10 V4 thrust curve. 



damping vs. pressure 

ts -2 

F -4 

'cl 

0 160 120 14 

rust vs. pressure 

180 200 

08 

c 0. 8 

0. 4 
100 120 140 160 180 200 

pressure (psi) 

Fig. 11 VS thrust curve. 

-10 
damping vs. pressure 

g -20 
Ls 

3 

u 40 

-50 
100 120 140 160 180 200 

thrust vs. pressure 

0. 8 
Ih 

Xl = 0. 6 

4 

0. 2 
100 120 140 160 180 200 

pressrse (psi) 

Fig. 12 V6 thrust curve. 



22 

O 
ID 

u 
Iv 5 
u 

F -10 
CL 
E 
IV 

-15 
100 120 

damping vs. pressure 

140 

thrust vs. pressul 

0 200 18 

0. 8 

Cl 
0. 6 

~04 

0. 2 
100 120 140 160 180 200 

pressure (psi) 

Fig. 13 V7 thrust curve. 

damping vs. pressure 

III -10 

~E -15 

= -20 
F 
E 
~ -25 

-30 
100 120 0 16 14 0 20 18 

st vs pressur 

0. 8 

0. 6 

0. 
100 120 140 160 180 200 

pressure (psi) 

Fig. 14 VS thrust curve. 



23 

As is evident from Fig. 7 — Fig. 14, there is a clear linear relationship between the 

pressure applied to the thrusters and the output. At every experiment it was necessary to 

manually set the input pressure, so variations from this linearity are almost certainly due 

to operator error rather than some nonlinearity in the system. The imprecise nature of 

the pressure controls makes an on-line identification process desirable. The data 

gathered from these experiments provides a good initial guess for such an algorithm. 

The erratic values obtained for damping are probably due to the fact that the floor 

is not perfectly clean, flat or smooth and intermittent coulomb and viscous damping is 

bound to occur. The magnitude of the damping is sufficiently small that it can be taken 

into account as an unmodeled disturbance. Feedback control laws are designed to deal 

with such disturbances so this should not provide an obstacle to further experiments. 
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REAL TIME ORIENTATION AND POSITION SENSING 

The previous discussion dealt with determining the robot's parameters using only 

an angular rate sensor to gather the input-output data. A sensor that can determine the 

robot's position and orientation accurately in real time is required for better experiments. 

A device based upon the position sensing diode was designed for this purpose and was 

installed on the robot for the purposes of navigation and parameter estimation. 

PSD Sensor Description 

A PSD averages the light intensity along a photo-sensitive strip and returns two 

currents indicative of the centroid of the energy distribution. These position sensors 

have an advertised analog resolution of better than one part in a million and have a very 

small position non-linearity. The photosensitive strip is 30mm long and is fitted in a 

casing manufactured by DMK Engineering. 

Y1 
focusing lens inc ide nt lig ht 

t'SD 
D«ot 

os' 
c '«pe 

strq& 
L 

Y2 

Fig. 15 Illnstrntion of the incident light projection onto the photosensitive strip. 



When the incident light strikes the PSD, two currents (Yl and Y2 in Fig. 15) are 

produced and they are related to the centroid of the incident light by Eq. (24), (where c is 

the cennoid). Each current is converted to a voltage by an amplifier circuit (see Fig. 16). 

A normalized voltage that is proportional to the position of the centroid of the incident 

light is generated by the following equation. 

c Y2 — Yl 
V= — = 

I. Y2+ Yl 
(24) 

The circuits in Fig. 16 convert the PSD currents into voltages. The first stage of 

the preamplifier are transimpedence opamp circuits which convert the current into a 

voltage. The second and third stages amplify these voltages at a gain of 680 (at 38. 4 

Khz. , the modulation frequency). 

Since the PSD is sensitive to light other than that generated by the active targets, 

it is necessary to modulate the output of these targets and pass the output signal from the 

PSD through a filter so that only this modulated signal is measured. The circuits in Fig. 

17 are two eighth order bandpass filters centered at 38. 4 Khz. frequency (one per PSD 

channel), Each opamp in the circuit represents poles and zeroes in the transfer function 

of the system. The first two opamps of each channel act as fourth order Butterworth 

high-pass filters. These filters have zeroes at the origin and poles shortly below 38. 4 

Khz. Following these are fourth order Butterworth low-pass filters comprised of two 

opamps with poles slightly above 38. 4 Khz. and zeroes at infinity. Between these pole 

frequencies lies the pass band of the bandpass filter. 

After the bandpass filter eliminates the majority of energy other than that due to 

the modulated signal of interest, the signals are put through rectifiers and low-pass filters 
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(see Fig. 18), which bring the modulated signals down to baseband format (i. e. DC to a 

cut-off frequency). The cut-off frequency for this system is I Khz. These processed 

PSD signals are then sampled by the computer and applied to Eq. (24) to produce a 

normalized voltage proportional to the incident angle of the light striking the wide angle 

lens. A flow chart representing the signal processing of the PSD sensor is illustrated in 

Fig. 19. 

The active targets must be controlled so that they generate enough light to 

produce large PSD signals, but not so large as to saturate the following opamps, 

Otherwise, the PSD receivers will saturate at close range or the output will attenuate as 

distance increases. This will reduce sensor accuracy. The four targets must also each be 

turned on and off in a sequence so that when the sensors are receiving their signal, the 

data acquisition code can distinguish which target is active. It is the ability to 

distinguish the incident angles that correspond to a specific target that provides the 

information necessary to find the robot's orientation and position. The circuit in Fig. 20 

performs this task. It recieves a 4-bit digital command from the data acquisition board 

which indicates which target should be activated. This circuit also contains a digital 

clock which drives a sine wave generator chip. The output from this chip is sent to an 

analog multiplexor. The analog multiplexor sends this signal to one of four LED drive 

circuits depending upon the command from the data acquisition board. A commanded 

voltage sets the amplitude of this modulated signal before it reaches the multiplexor. ' 



Transinductance 
opamp circuits 

2nd and 
3rd stage 
amplifiers. 

Fig. 16 PSD preamplifier. 
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Fig. 17 Bandpass filter. 
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PSD Calibration 

The calibration process establishes the exact relationship between the normalized 

voltage output from the receiving circuit and the incident angle IiI. An accuracy of 0. 1 

degrees or better is desired. 

From Fig. 15 it can be seen that the relationship between c and tI' is 

c — = tang' f (25) 

After dividing Eq. (25) by L and substituting into equation Eq. (24) the relationship 

between v and P is found. 

v = — tan ti' =f 
L 

(26) 

Since the PSD sensor field of view extends over a 100 degree arc, it cannot be assumed 

that the relationship between tt and II' is a linear one. It is therefore necessary to 

conduct a sweep of all possible values of trover the field of view and at the same time 

measure the normalized ouqiut voltage v. 

Calibration was accomplished by setting the PSD sensor on the Contraves air 

bearing so that the focus of the lens at tii =0 was located at or near the hub of the air 

bearing. An active target consisting of a single bright LED (3000 millicandles max) was 

placed on an optical table opposite the air bearing and its altitude was adjusted so that it 

was the same height as the lens nominal axis. From previous experiments it has been 

determined that the near linear range of the PSD and lens extends over a 90 degree arc. 

Since it is desirable to calibrate over as much of the linear range as possible, the active 
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target was set up such that when tt - =0, the air bearing was set at zero degrees. Fig. 21 

is an illustration of the calibration apparatus. 

Active 
Target 

Air Bearing 
optical table 

Fig. 21 PSD calibration experimental setup. 

Once the PSD sensor and active target were established in the desired location, 

the air bearing was programmed to rotate from — 50 degrees to 50 degrees at . 1 degree 

increments. The output v was measured at each increment and the resulting relationship 

between v and tant' was established using a Chebyshev polynomial curve fit. " Fig. 22 

shows the monotonic relationship between the normalized voltage and the incident angle 

tangents. 



34 

15 
Tangenl of hndenl Angle tta Normalized Voltage 

05 

g 
F 

-05 

-1 5 
afe -06 -04 -D. 2 0 02 D4 06 0. 8 

Nonnagzed Voltage 

Fig. 22 Incident angle tangents vs. normalized voltage. 

The normalized voltage appears to be a linear function with respect to incident 

angle as seen in Fig. 23. The relationship becomes nonlinear at view angles beyond 45 

degrees. The output of the Yl and Y2 channels on the PSD receiver circuit are due to 

the signal amplitude feedback control law that attempts to keep the maximum output of 

the two P SD channels (after amplification) at 7 volts by controlling the amplitude of the 

modulated signal. As one channel or the other becomes dominant, it will receive the 

most energy and therefore is the determining factor in the control of the modulated 

signal. It is for this reason that as the light incident angle crosses 0 degrees, one channel 

remains at approximately 7 volts, while the other drops below. 
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Normalized Voltage vs Incident Angle 
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Fig. 23 Left, right and normalized voltages vs. incident angle. 

Fig. 24 shows the standard deviations at a sampling rate t. of 10 Khz. The signal 

to noise ratio p for the normalized voltage may be calculated by taking the signal range 

and dividing it by the standard deviation. 

max(v) — min(v) 
p 

mean(std deviations) 
(27) 

Taking the information from Fig. 24 and using it in Eq. (27) the signal to average noise 

ratio at r =10 Khz. is determined to be 687. 3. The standard deviation and p are a 

minimum at ttt = 0 and a maximum ttl = +50 . This is because the light aperture becomes 

smaller as the incident angle increases. For the experiments conducted later in this 

section, a sampling rate of r, = 50 Hz. was used by averaging 200 samples at 10 Khz. 

The signal to noise ratio p, for 50 Hz. was then calculated to be 9727. 7 using Eq. (28). 
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Fig. 24 PSD output standard deviations. 

Establishing the Inertial Coordinate Frame 

To determine the position of the robot from angle data acquired from the PSD 

sensors, it is necessary to determine the position and orientation of the sensors 

themselves in an inertial coordinate frame. This inertial coordinate frame is completely 

arbitrary and may be established anywhere with respect to the sensors themselves. All 
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that is required is a series of reference points that have known locations in the inertial 

coordinate frame. ' 

In the experiments that follow, a small optical table mounted on the Contraves air 

bearing (Fig. 25) was used as a source of known points. This optical table has a 16 in. 

by 21 in. grid of '/4 in. holes that are precisely spaced I in. apart. The air-bearing table 

may be locked in place so that it provides a rigid platform for calibration purposes. The 

active target is moved to each hole and the view angles Ou and O„are measured to each 

known point located at coordinate {x, , y, ) . For situations where an optical table is not 

conveniently available, another technique may be used. A bar that has holes precisely 

drilled along its length may be used in the same way as the small optical table. The bar 

must be rigidly mounted so that it remains in the same position as a target is moved from 

point to point (Fig. 26). 

View 
Angle Active 

Target 

Air earing View 
Angle PSD 

optical table 

Fig. 25 Experimental setup for triangulation tests. 
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Once the angle data is gathered it may be analyzed to determine the position of 

the sensors using a nonlinear least squares differential correction. The residuals are 

defined as 

fo 
f» 
f» 
f» (29) 

fa 
fi. „ „ 

Where, 

f„(x„y„8„, x. , yi 8] ): tan(8, + 8. )— 
Y, Yu 

(30a) 

f»(x„Y„~», x, . Yi ~i ) = tan(~, + ~i )- 
Y» 

(30b) 

From the well known property 

f(q+ Aq) = f(q)+ Aq 
~f(q) 

Bq 
(3l) 

Where, 

q-Ix. . . Y. . . -. . . „, Y. . . , . } (32) 

it is possible to find the correction based upon each successive guess q. 

af(q) af(q) af(q) f( ) (33) 

An Euler correction is used to update the current sensor position estimate. 



39 

qe+i = qr +~qr (34) 

If the result of Eq. (34) is then plugged back into Eq. (30) and the process is repeated, 

the correction should cause the next result of Eq. (33) to move closer to zero. Repeated 

iterations will cause the residual to converge to zero and the resulting value of q at 

convergence is the actual position of the PSD sensors. 5 
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Fig. 26 PSD inertial coordinate frame. 
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In order to verify that the algorithm described above would converge to the 

actual PSD positions, a simulation was performed to test it. View angles were generated 

and input into the algorithm. The results may be found in Fig. 27. The algorithm 

converges to the proper values in less than 10 iterations with great accuracy. 
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Pig. 27 Determination of PSD positions using simulated values. 

Tri ursgrderion 

Fig. 28 shows the robot located somewhere on the air-bearing floor. It is 

mounted with four active LED targets located at each corner. Two PSD receivers are 



located at the upper corners of the air-bearing floor and are in the same plane as the LED 

targets. The position of the receivers is known in terms of the variables 

x] y~ 8~ zt, y„, 8„. The output from each receiver is the incident angle of the line 

of sight (LOS) to each visible target in the form of its tangent tan8, „, where j 
corresponds to the PSD and k corresponds to the target number. 
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Fig. 28 Robot triangulation. 
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Assuming that a given target is visible to both receivers (such as the point 

(x„V, I in Fig. 28), the following relationship may be established. 

V„ tan(8„+ 8, i ) + V, , tan(8„, + 8ii ) xi' + xi. Vr— 
tan(8„+ 8, „) + tan(8„+ 8, „) 

(3 5 a) 

(„+ „)+ „(, + )- . + „1, „) 
tan(8„+ 8„) + tan(8„+ 8, „) 

With the establishment of a single known point, the position of all the other active 

targets and the centroid of the robot may be determined if the orientation can be 

found. Under most circumstances, at least two active targets will be visible to both 

detectors and the orientation may be found by taking the arctangent of the difference 

between the e, coordinates over the difference of the ei coordinates of the two known 

points. However, there are also many cases where there will only be one point that is 

visible to both receivers and each receiver will be able to see a second target, but not the 

same target. 

An algorithm must be developed that can find the position of the robot under all 

conditions. The example in Fig. 28 shows that only one target is visible to both sensors, 

and that each sensor can see a separate additional target. The governing equations for 

the inertial frame location of the active targets in terms of the incident angle tangents are 

as follows. 

tan(8„+ 8„) = " 
Vu V, 

(36a) 
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tan(O„+ O, „) = '" 
Vu Vr 

(36b) 

tan(O„+ O„) = "" 
Vi Vi 

(36c) 

(36d) 

The location of the robot center position and orientation in terms of the active target 

inertial and body-fixed coordinates is defined in the following expressions. 

(37a) 

(37b) 

(37c) 

Where [C j is the coordinate transformation established in Eq. (l). 

Substituting Eq. (37) into Eq. (36) 

x, + x, „cos(y) — y, , sin(y) — x„ 
t (o, . +o„i- 

y„— y„— x„sin(y) — y, „cos(lt') 
(38a) 

x, „+ x, „cos(y) — y, „sin(y) — x„ 
tan(O„, + O, „)— 

y, . — V. , x„, sin(( ) — V„cos(ip') 
(38b) 

x, , + x„„cos(y) — y, „sin(y) — x„, 

y„, — y, „— x, „sin(y) — y„„cos(iy') 

x„+ x „cos(y) — y» sin(y) — x„ 
( „„)-- 

V„— V„„— x ps sin(Y) — V» cos(Y) 



Using Eq. (38) a nonlinear least squares differential correction similar to that 

discussed previously, where the residual f is defined as 

x, „+ x» cos(y) — y„sin(y) — x„ 
tan(8„+ 8») y„— y, „— x» sin( y) — y, , „cos( y) 

x, + x» cos(i/') — y» sin(ip ) — x„ 
tan(8„+8, „) y„— y, „— x» sin(y) — y» cos( y) 

x + x» cos(i//) — J» sifl(i/ ) — xn 
tan(8„+ 8„) + 

y, — y — x» sin(y) — y» cos(y) (', ) x + x i cos(y) — y „stn(i/t') — x„ 
tan 8„+8„)+ 

y„, — y„— x „sin(y) — y, cos(y) 

(39) 

The robot coordinates may be found given the incident angle measurements and an 

initial guess. An attempt was made to invert Eq. (38) and solve for the robot coordinates 

directly, but the resulting equations were extremely cumbersome and computationally 

expensive. It was also determined that due to the triangulation's sensitivity to small 

errors in the incident angles, an approximate solution that would iterate in search of a 

best compromise between conflicting errors would be better than an exact solution that 

was highly sensitive to those errors. 

Fig. 29 shows that a least squares algorithm will converge to the actual robot 

coordinates in less than 10 iterations. Since Eq. (36) and Eq. (37) contain 10 equations 

and 9 unknowns, the system of equations is overspecified. This will allow the algorithm 

to search for the "best" possible solution, which should make it robust in the presence of 

errors in the angle readings. Of course it is not necessary to limit the algorithm to only 

four angles. If more angles are available, then they may also be included. 
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Fig. 29 Least squares differential correction for the four target solution. 

Aetitre Target Design 

There were two design goals that had to be met for the active targets. A bright 

light source was necessary because signal to noise ratio had to be maximized. The 

signal also had to be evenly distributed over a view angle wide enough that both sensors 

would receive the signal. Fig. 30 - Fig. 33 show the relationship between the signal 

strengths versus the viewing angle for four types of LED's. The current through each 

LED was maintained at a constant and the output from the sensor was measured. The 

"IR LED" is a basic 5mm round infrared LED with a moderately wide view angle. The 

Hammamatsu 2168 is a smail wide angle red LED that is normally used for transmitting 

signals. The Hammamatsu 3882 has four very small inf'rared LED's that provide a very 
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wide view angle and a stronger signal than the 2168. The T4 round is a very bright, 

highly directional LED which is mounted in a standard 10mm diameter package. A 

comparison of the four LEDs is summarized in Table 3. The T4 round LED's were 

selected because of their brightness (3000 millicandles max. ) and relatively low cost. It 

was deemed that the highly directional quality of this particular LED could be 

compensated for with the addition of a device that would disperse the light. 

Table 3 Comparison of various light emitting diodes 

LED Type Signal 
Strength 

(mV) 

View Arc 
(deg. ) 

Price 

T4 Round 361. 65 15 $. 73 ea. 

IR Round 93. 02 $1. 09 ea. 

Hammamatsu 2168 3. 856 60 $24. 09 ea. 

Hammamatsu 3 882 11. 276 60 $48 ea. 
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The LED target itself is a 3. 25 in. diameter cylinder with fourteen T4 round 

bright LED's distributed around 270 degrees of its perimeter (see Fig. 34). The size of 

the cylinder was selected so that the circuit board for each target could be mounted 

inside. A belt of 3 millimeter diameter glass rods was placed around the outside of the 

active target so that the light emitted by the LED*s would be evenly dispersed in a plane 

coincident with that of the PSD sensors. 

Fig. 34 Active LED Target. 

The desired output from the active targets would be a light distribution similar to 

the Hammamatsu 3882 but with greater intensity. This even disntbution is desired so 

that errors due to assymeny in the target light distribution are minimized. Fig. 35 shows 

the distribution from one of the four targets. The light distribution varies considerably 

over the view angle. This occurs despite the use of a lens placed around the target to 

spread out the signal. Experiments showed that this assymetry in light distribution 



caused up to a 5 in. error in target location when using the triangulation algorithm. The 

targets could be significantly improved by making them smaller and selecting LED's 

with a wider light distribution. 
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Fig. 35 Light distribution from active target. 

By comparing the commanded output to the LED targets at various ranges, a 

general relationship between the sensor output and the distance from target to sensor was 

found and is illustrated in Fig. 36. The "uncontrolled" output is the amplitude that the 

sensor would have if the target was placed at full power and was unregulated. The PSD 



51 

sensor will saturate at a distance of approximately 13. 4 ft. or less if the target intensity is 

not regulated. The signal will attenuate to below 7 volts at a range of over 17, 6 ft. . even 

if the commanded amplitude is at maximum. At the greatest possible range of 24 fl. (the 

length of the air-bearing floor), the sensor output will be 3. 77 volts. Since the signal to 

noise ratio at a sampling rate of 50 Hz. is 9727:1, at the increased distance of 24 ft. the 

signal to noise ratio will be 3670:1. This will still provide the necessary accuracy of 0. 1 

degrees. 

15 
CONTROLLED SENSOR OUTPUT vs. DISTANCE 

controlled 
uncontrolled 

10 
range (R) 

15 20 

Fig. 36 PSD signal to noise ratio. 
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Experimental Verification 

In order to determine the effectiveness of the PSD sensor system for robot 

navigation, it is necessary to test this system in a controlled environment where the 

accuracy of this system may be verified. Using an optical table, a Contraves air bearing, 

and a computer equipped with a data acquisition board, such an experiment was 

conducted. 

The active targets were set up on a small optical table mounted on the Contraves 

air bearing. The optical table acted as the body-fixed coordinate frame and it provided a 

convenient way to get the exact locations of the targets within that frame. The two PSD 

sensors were set up on the larger optical table and they were oriented so that they could 

observe the Contraves air bearing. A photo of the experimental setup is in Fig. 37. 

, :Ig 

Fig. 37 Photo of experimental apparatus. 



Prior to testing, an inertial coordinate frame was established in the manner 

described on page 36. A total of eighteen points were surveyed and the results were 

used in the aforementioned algorithm to compute the exact locations of the two PSD 

sensors in the inertial frame of reference. The survey data and the results are tabulated 

in Table 4 and Table 5 respectively. 

As a preliminary step to determine how well the sensors tracked an individual 

target, the first set of tests were conducted with one target mounted at the corner of the 

optical table mounted to the air bearing. The system would then have to track a target 

moving in a circular trajectory. The air bearing could be commanded to rotate at a fixed 

rate, so the performance of the system in tracking targets at several different speeds 

could be evaluated. 

Table 4 Inertial frame setup data 

Angle 81 Angle 8i Angle 8& Angle 8& 
Target Coordmates 

(degrees) 

61 
9. 5 
12. 9 
'l6 1 

19. 3 
22 2 
71 

14. 75 
184 
21. 6 

25 15 
8. 3 
12 6 

16. 85 
20. 85 
24 65 
28 3 

(radians) 

0. 106465084 
0. 165806279 
0. 225147474 
0 28099801 
0. 336848546 
0. 387463094 
0. 123918377 
0 191986218 
0. 257436065 
0 321140582 
0. 380481777 
0. 438950307 
0. 144862328 
0. 219911486 
0 294087979 
0. 363901149 
0. 430223661 
0. 493928178 

(degrees) 
25. 7 
22. 8 
198 
16. 65 
133 
9. 9 

28. 85 
25. 65 
22. 4 
18. 9 
15. 2 
11. 3 

32 05 
28. 8 
25. 2 
21. 35 
17 3 
13 

(radians) 

0. 448549618 
0. 397935069 
0. 345575192 
0. 29059732 
0. 232128791 
0. 172787596 
0. 503527489 
0. 447676953 
0. 390953752 
0. 329867229 
0. 265290046 
0. 197222205 
0. 55g378025 
0. 502654825 
0 439822972 
0. 372627795 
0. 301941961 
0. 226892803 

X gn ) 

12 

20 

12 
16 
20 

12 
16 
20 

Y(in. ) 

15 
15 
15 
15 



Table 5 PSD coordinates 

SENSOR PSD1 PSD2 

Orientation 
(radians) 

X-Position 
(inches) 

Y-Position 
(inches) 

. 0233 

-8. 4967 

65. 2052 

. 0107 

32. 1040 

64. 8940 
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Fig. 38 Tracking one target at a sampling rate of 50 Hz. 
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Fig. 39 Tracking error for a single target at a sampling rate of 50 Hz. 

Fig. 38 and Fig. 39 show the tracking data and tracking error for one of the tests. 

In all cases the x position was tracked with greater accuracy than the y position. This 

was due to the location of the target with respect to the position of the PSD sensors. Fig. 

40 shows how an error in the measured incident angle effected the triangulation on a 

single target. The "error diamond" elongated in the e, direction as the target's distance 

from the sensors increased in that same direction. Conversely, as that distance decreased, 

the error diamond compressed and triangulation became more sensitive in the 

e, direction. Since in this experiment the target was always farther away than the 

optimal 45 degree center, the error diamond due to bias and noise in the angle readings 

effected the y position reading more than the x position reading. In spite of these errors, 



the system was still tracking the location of the target to within an inch of the actual 

position and in most cases to within . 5 inches. 

The next step in the evaluation process was to use two targets and determine how 

well the system could track orientation in addition to position. In this case the body- 

fixed coordinate reference frame was again established at the corner of the optical table 

to simulate tracking the robot as it translates and rotates across the floor. 

PSD l(x„, y„, 8„) PSD 2(xq, yz 8~ ) 

0, 

Error 
Diamond 

Fig. 40 Triangulation sensitivity due to incident angle error. 
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Fig. 41 Tracking two targets at a sampling rate of 50 Hz. 

Fig. 41 and Fig. 42 show the hacking data and error respectively for the two- 

target case. It was more accurate than the single target case because the each of the two 

targets canceled out the errors caused by the asymmetrical shape of the other. During the 

course of these experiments, it was discovered that when using a two targets, their 

relative assymetry merited using both of them to establish the inertial reference 

coordinate frame. If only one target was used, a large error would result. The spike 

found in the data for this experiment was due to an interrupt in the processing of the data 

caused by the operating system and is not a sudden burst of electronic noise. 
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Fig. 42 Tracking error for two targets at a sampling rate of 50 Hz. 

Fig. 43 and Fig. 44 show the tracking data and error respectively when four 

targets were used to recover the robot orientation and position. There was a marginal 

improvement in error over the two-target case, but this was probably due to the fact that 

the sampling rate was less and the oversampling was greater in the four-target case. It 

was also discovered that the least squares estimation was computationally expensive and 

therefore could not be run at a rate greater than 10 Hz. while maintaining system 

stability. 



25 

c 
e 20 

o 15 

10 

30 

c 
e 20 

. g 
o 10 

0 

50 

X COORDINATE 

0 40 6 
Y coo 

0 80 
RD INATE 

0 40 60 80 
ORIENTATION 

Tracking Data 
Actual Posiion 

100 12 

Tracking Dale 
ActualPosition 

100 12 

Tracking Data 
Actual Position 

e 'o 

E 
Ilt 

o 
-50 

0 20 40 60 80 100 120 
time (sec) 

Fig. 43 Tracking four targets at 10 Hz. 

Despite these drawbacks however, the four-target solution is more desireable for 

a number of reasons: 1. ) There is more information available and therefore an error in 

one angle will have less of an effect on the accuracy. 2. ) There is less likelihood of a 

poorly conditioned configuration (such as in the two-target case where one target may be 

viewed as directly behind another from one of the sensors). 3. ) There are existing 

brackets around the robot where four targets may be mounted. Mounts do not yet exist 

for a two-target configuration. 
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KALMAN ESTIMATOR DESIGN AND SIMULATION 

The PSD sensor is capable of providing position and orientation data in real time 

to a control algorithm, however the nanslational and rotational rates are also of interest 

in this experiment. Another issue is that the model parameters associated with mass, 

mass moment of inertia and thrust will change with each experiment and with time. The 

PSD sensors are also susceptible to electronic noise. The extended Kalman filter is an 

effective means of dealing with all of these problems. 

The Extended Ealman Filter Computational Aigorithm 

The underlying theory behind the extended Kalman filter is well documented in 

other texts and will not be discussed here. ' The general algorithm is introduced to make 

the later discussion about parameter identification more clear. The general discrete time 

model for a linear dynamical system is described as: 

x(k+1) = &Ii(k+ 1, k)x(k)+1 (k+ 1, k)w(k) (40a) 

z(k) = H(k)x(k) + v(k) 

Where the standard assumptions and definitions are 

(40b) 

E(x(0)} = m„(0);E(w(k)} = 0, for aii k 

E(v(k+1)}=0, for ail k 

cov(x(0), x(0)} = P, (0) 

cov(w(k), w(j)} = 0(k)o„ 
cov(v(k), v(j)} — = R(k)6', „ 
cov(x(0), w(k)} — = 0, for ail k 

cov(x(0), v(j)} = 0, for ail j 
cov(w(k), v(j)} =0, for aii j, k 

(41) 
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Where w(k) and v(k+1) are zero mean, white noise sequences uncorrelated with each 

other and with the initial condition random vector x(0). w(k) is often referred to in the 

literature as "process noise" and v(k+l) as "measurement noise". py, „ is the Kronecker 

delta function. 

The more general nonlinear version of the dynamics described in Eq. (40) may 

be written as 

k(t) = f(x(t), t)+ G(x(t), t)w(t) (42a) 

z(t, ) =h[x(t, ), t, ]+v(t, ) for i = 0, 1, . . . . (42b) 

Where f(x(t), t) is an n-vector and G(x(t), t) is an n x r-matrix of nonlinear functions in 

x(t) and t. z(t, . ) is an m-dimensional measurement vector and h[x(t, ), t, ] is an m- 

dimensional vector of nonlinear functions in x(t) and t, By analogy with the linear 

model written above, the following relationships are assumed 

E{x(t, )} = mp(0);E{w(t)} = 0, for all t & tp 

cov{w(k), w(j)} = Q(t)b'(t — r) 
cov{v(t, ), v(t, )} = — R(i) pyp 

cov{x(t, ), w(t)} — = 0, for all t &t, 
cov{x(tp), v(t, )}=0, for all t&t, 
cov{w(t), v(t, )} = 0, for all t & tp 

(43) 

Using the above equations and assumptions, the extended Kalman filter problem is as 

follows: Given a measurement sequence Z(k) = (z(t, ), z(t, ), . . . , z(t„)}, find an estimator 

to provide estimates of x(t), denoted by x(t I t„) . 

The computational sequence to solve this problem is: 
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1. Extrapolate the state estimate to time tn The equation 

x(ttt, ) = f(x(ttt, ), t) (44) 

is integrated on the interval [ta tt] with initial conditions x(t, I t, ) . The result at the end 

of the integration is x(t, I t, ) . 

2. Extrapolate the covariance matrix to time ts The equation is 

(„, , )= („„, „) (, „) („„„)+Q(t ) (45) 

to use this equation, the state transition matrix rb(t„„t„) and the process noise matrix 

g(tat must be computed. 

The state transition matrix is formed using the Jacobian of the equations of motion 

(46) 

where x(t, It, ) is a result from step 1. The matrix differential equation 

( ' ') = F(t)tP(t, t, ) 
at 

(47) 

is integrated on the interval [t„ tt] with initial conditions 6&(t„t, ) = I . The result is 

tP(t, , t, ) which is then plugged into equation (41) 

3. The state estimate at time tt must be updated to account for the measurement at 

time ts The update equation is 

x(t, I t, ) = x(t, I t, )+ K(t, ) z(t, I t, ) (4g) 

where 
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K(t/): P(l( Ito)H (I( )[H(t/)P(t Ito)H (tt) + R(t/)] (49) 

and the measurement residual is 

z(t, I t, ) = z(t, ) — h(x(t, I t, ), t, ) (50) 

H(t/) is computed from 

Bh 
H(t, ) =- 

Ox 

A=all� 

/III ) 
(5l) 

where x(t, I t, ) is available from step l. Using P(t, I t, ) from step 2, all required 

quantities are now collected to compute the Kalman gain K(t/). The residual is 

computed Eq. (50), where the new measurement z(t/) is assumed to be available. The 

result of this state update is x(t, I ti). 

4. The covariance matrix at time t/ is updated using the equation 

P(t, It, ) = [I — K(t, )H(t, )]P(t, I t, ) (52) 

All required quantities are available from the steps listed above and the result is the 

updated covariance matrix P(t, I t, ) . 

The above sequence establishes the computational framework from which the 

algorithm that provides parameter and state estimation for the robot is derived. 

Derivation of the Kalman Fstimator for the Robot Case 

The Kalman filter is an effective means of estimating an m-dimensional state 

vector x when not all of the states are available for measurement and when noise is 

present in the system. Since there are additional parameters of interest that are unknown 

and may change with time, it is logical to augment the state equations with additional 
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states that represent these unknown parameters. If the system is still observable, then it 

is possible for an extended Kalman filter to estimate these parameters just as if they were 

an unknown position or rate. 

Since the damping associated with the robot dynamics was shown to be a small 

random force when compared with the magnitude of the control thrust, it is neglected in 

the modified equations of motion below. Any disturbance associated with random 

contact between the air bearings and the floor surface can be accounted for as model 

uncertainty. An appropriate Q matrix in the Kalman filter will allow it to deal with any 

such disturbance. Dropping the damping terms from Eq. (8) and substituting the 

V, r, V, . 
unknown parameters b, , = — 'and b„, = ' ' 

the equations of motion reduce to 

y b, 

x = -b, cosy 
ii — b sin y 

b, -b, b4 -bo 

bysin y b, sin y b„cosy b, „cosy by sin y — 
tty sin y 

— b, cos y — b, cos y b„sin y b„sin y b„cos y b„cos y 

— bo 

-b, „cos y 
— b„sin y 

uy 

"4 

(53) 

If the unknown parameters b„and the control inputs are each assigned a state, then the 

nonlinear differential equations become 



XI 

Zz 

Xz 

— 
XzXg + XlpX12 X13X13 + X16XIg 

— XIgX21+ X22X24 
— 

X23X22 + XzgX30 

Xg 

Xg 

— 
XgXg S111XI + XIIZ12 COSZI X14X13 COSXI X12XIg Sill XI + XzpX21 S111XI X23X24 COSXI + X26X22 S111XI + XzgXlp COSXI 

x, 
Xg Xg Sill XI + XI I XI 2 COS XI X X COS X XI X Sill X + XzpX21 Sill XI — Xz X24 COS X + X26X21 Sill X + Xz X3 COS XI 

0 

(54 ) 

Xzp 

0 

where, 

XI = I/I 

Zz — II66 

X3 = X 

X4=X 

x, =y 

Xp=y 

x, =b, 

x, =b, 

xg =u1 

X 
1 0 b3 

x„=b, 

x„=b, 
XI4 = bp 

X13 = uz 

x„=b, 
x„=b, 
x„= ug 

x„=b, 
Z20 blp 

X21 5 

X22 bl I 

x„= brz 

x24 = up 

xzs =ho 

Xzz = uz 

x„= b„ 
Xzg bl 6 

Xzp = ug 
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Numerical Simulation and Results 

To verify that the extended Kalman filter would be capable of state estimation for 

this problem, it was simulated using MATLAB. The parameters used to simulate the 

dynamic model of the system were taken directly from the data found in the previous 

experiments listed in Table 8 - Table 15. It was assumed that the robot was operating at 

a manifold pressure of 200 psi. The parameters used in the simulation are in Table 6. 

Table 6 Robot model parameters 

Thruster Parameter bt; Parameter bt, i 

Vl . 0317 . 0329 

V2 . 0337 . 0342 

V3 . 0293 . 0331 

V4 . 0294 . 0305 

V5 . 0365 . 0403 

V6 . 0310 . 0351 

V7 . 0329 . 0334 

V8 . 0373 . 0412 

Since the intent of the extended Kalman filter is to identify the system parameters 

during "normal" operations, the experimental identification methodology previously 

discussed using least squares is not applicable here. It is not possible to disconnect all 

the thrusters except for the one of interest and measure the system's response. The 

simulation will instead put the robot through a series of maneuvers using all the thrusters 
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just as it would be during operations not specifically dedicated to system identification. 

The "robot waltz" manuever sequence is listed in Table 7. 

Table 7 Robot maneuver sequence 

Manuever Elapsed Time 

Rotate Clockwise 

Rotate Counter-Clockwise 

3 seconds 

3 seconds 

Move Forward 3 seconds 

Move Backward 3 seconds 

Move Left 3 seconds 

Move Right 3 seconds 

Eq. (54) is integrated forward in time using the Runge-Kutta method with a time 

step of . 01 seconds. The measurable values of Ixi zt, x„x, I are fed to the Kalman filter 

at every tenth time step to simulate a sampling rate of 10 Hz. The state estimates 

associated with position and rate are illustrated in Fig. 45. The residual is illustrated in 

Fig. 46. The estimates associated with the unknown parameters are illustrated in Fig. 47 

- Fig. 54. 
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The Kalman filter estimates corresponding to the unknown parameters converge 

to the correct values after 18 seconds of the "robot waltz" and remain at or near these 

values for the remainder of the time that the robot is maneuvering. In Fig. 45 it can be 

observed that the estimated dynamic states closely match the simulated values 

throughout the maneuver despite a 30'/o error introduced on the initial conditions. 

A random error in the measured values was introduced in the form white 

Gaussian noise to simulate the electronic interference observed in the calibration of the 

PSD sensors, This random error did cause some oscillation in the identification process, 

but the oscillations were about the desired values. In all but two of the thrusters this 

oscillation was significantly attenuated by the time the maneuver had ended. It is 

interesting to note that this oscillation was largest when a thruster initially went from an 

"off' state to an "on'* state. This indicates that the Kalman filter was momentarily 

"surprised" by the sudden change in one of the parameters, but was able to recover 

sufficiently to give accurate rate and position readings as well as to bring the unknown 

parameter back to its correct value. 

In cases run where no noise was present the Kalman filter performed even better 

than in the situation illustrated in Fig. 47 - Fig. 54. The deviation from nominal found in 

the state estimation also occurred in the noise free case, but the filter was able to recover 

and cause the estimates to converge to the correct value. An example of the noise free 

case may be found in Fig. 55. 
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Fig. 55 Noise free identification of thruster V2. 
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CONCLUSIONS AND RECOMMENDATIONS 

A means of navigating a robot using a remote sensing system is developed for 

the purposes of system identification and control. Using a nonlinear least squares 

differential correction, the robot orientation and position may be recovered from 

measured incident angle data. The effect of errors in the incident angle data on the 

triangulation algorithm was reduced as more targets became visible. More numerous 

targets also meant more computational load on the system and reduced the sampling rate 

to 10 Hz. A real-time operating system or a faster platform is necessary to increase the 

sampling rate to 50 Hz. or better. 

An extended Kalman filter was developed to estimate the rotational and 

translational rates as well as unknown parameters in the system. Data collected using 

the PSD sensors may be used with the Kalman filter to conduct system identification. It 

was discovered that the unknown parameters associated with rotation were easy for the 

algorithm to identify, but translational parameters took longer to converge. The 

estimates were also sensitive to sudden changes in the system brought on by thruster 

switching, but the estimates would still reconverge to the true values. Damping will be a 

small but significant force in the real system, and since it always acts in opposition to the 

direction of motion, it cannot be considered to be a white noise random process. When 

the Kalman filter is applied to the robot, an additional unknown parameter associated 

with the damping coefficient should be introduced. 

Future work should include a redesign of the active targets to make them smaller 

and more uniform so that partial occlusion of the targets will cause less error. Replacing 
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the active targets with retro reflective patches illuminated by a scanning laser should also 

be investigated to determine if any advantage can be gained using that method. Further 

investigations into applications for a 3-dimensional navigation system should also yield 

interesting results, particularly for spacecrafl applications. 
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APPENDIX A 

Table 8 ARX parameters and resulting thrust for thruster Vl 

Manifold 
Pressure 

(psi. ) 
100 

120 

140 

160 

180 

200 

A, 
(data set I) 

0. 9914 

0. 9964 

0. 9987 

0. 9995 

0. 9992 

0. 9984 

B, 
(data set I) 

0. 0027 

0. 0034 

0. 0042 

0. 0049 

0. 0054 

0. 0062 

r/ 

(data set I) 
Lb. -in. -sec/rad 

-26. 3935 

-11. 0164 

-3. 7869 

-1. 6639 

-2. 4098 

4. 8197 

V3 

(data set I) 
Ibs 

0. 3654 

0. 4618 

0. 5633 

0. 6521 

0. 7232 

0. 8323 

At 
(data set 2) 

0. 9868 

0. 9968 

0. 9989 

0. 9979 

0. 9968 

0. 9991 

B, 
(data set 2) 

0. 0027 

0. 0034 

0. 0041 

0. 0048 

0. 0053 

0 0062 

I/ 

(data set2) 
lb. -in. -sec/rad 

40. 8525 
-9 8115 

-3 4426 

4I. 4262 

-5. 2213 

-4. 3033 

V3 

(data set2) 

Ibs 

0. 3679 

0. 4694 

0. 5506 

0. 6395 

0. 7181 

0. 8374 

Table 9 ARX parameters and resulting thrust for thruster V2 

Manifold 
Pressure 

(psi) 
100 

120 

140 

160 

180 

200 

A, 
(data set I) 

0. 9837 

0. 9923 

0. 9955 

O. 9959 

0. 9962 

0. 9973 

Bi 
(data set I) 

0. 0029 

0. 0035 

0. 0042 

0. 0048 

0. 0056 

0. 0062 

r/ 

(data set I) 
Lb. -in. -sec/rad 

-49. 9181 
-23. 4672 

— 13. 7131 
-12. 6230 

— 11. 4754 

— 8. 2623 

V3 

(data set I) 
lbs. 

0. 3975 

0. 4806 

0. 5845 

0. 6573 

0. 7664 

0. 8495 

A, 
(data set 2) 

0. 9925 

0. 9951 

0. 9955 

0. 9965 

0. 9965 

0. 9972 

B, 
(data set 2) 

0. 0028 

0. 0036 

0. 0042 

0. 0048 

0. 0056 

0. 0064 

r/ 

(data set2) 
lb. -in. -sec/rad 

-23. 0656 
— 14. 8033 

— 13. 7705 
— 10. 6148 

-10. 6148 

-8. 3771 

V3 

(data set2) 

lbs. 
0. 3897 

0. 4962 

0. 5767 

0. 6599 

0. 7742 

0. 8885 



Table 10 ARX parameters and resulting thrust for thruster V3 

Manifold 
Pressure 

(psi) 
100 

120 

140 

160 

180 

Ai 
(data set 1) 

0. 9961 
0. 9970 

0. 9938 

0. 9942 

0. 9984 

0. 9994 

B, 
(data set 1) 

0. 0028 

0. 0034 

0. 0041 

0. 0048 

0. 0056 

0. 0062 

(data set 1) 
Lb. -in. -sec/rad 

-11. 9344 
-9. 3525 

-19. 1639 
— 17. 8443 

— 4. 9918 

-1. 9508 

V3 

(data set 1) 

lbs. 
0. 3454 

0. 4271 

0. 5205 

0. 6045 

0. 7025 

0. 7726 

A, 
(data set 2) 

0. 9967 
0. 9969 

0. 9968 

0. 9980 

0. 9987 

0. 9991 

Bl 
(data set 2) 

0. 0027 

0. 0033 

0. 0041 

0. 0047 

0. 0055 

0. 0062 

r/ 

(data set2) 
lb. -in. -sec/rad 

— 10. 0984 
-9. 6393 

-9. 7541 

-6. 1967 

-3. 9016 

-2. 6967 

V3 

(data set2) 

lbs. 

0. 3338 

0. 4178 

0. 5182 

0. 5952 

0. 6909 

0. 7726 

Table 11 ARX parameters and resulting thrust for thruster V4 

Manifold 
Pressure 

(psi) 

A, 
(data set 1) 

B, 
(data set 1) 

r/ 

(data set 1) 
Lb. -in. -sec/rad 

V3 

(data set 1) 
lbs. 

A, 
(data set 2) 

Bt 
(data set 2) 

17 

(data set2) 
lb. -in. -sec/rad 

V3 

(data set2) 

lbs. 
100 

120 

140 

160 

180 

200 

0. 9925 

0. 9900 

0. 9936 

0. 9945 

0. 9966 

0. 9975 

0. 0023 

0. 0032 

0. 0037 

0. 0044 

0. 0051 

0. 0057 

-23. 0656 
— 30. 8689 

-19. 8525 

-16. 9836 

-10. 3853 

-7. 5738 

0. 3121 
0. 4365 

0. 5050 

0. 6065 

0. 6877 

0. 7816 

0. 9893 

0. 9952 

0. 0024 

0. 9936 

0. 9965 

0. 9977 

0. 0024 

0. 0031 

0. 0037 

0. 0044 

0. 0052 

0. 0057 

-33. 1640 0. 3299 
-14. 7459 0. 4263 

-23. 3525 0. 5075 

-19. 6803 0. 6065 

-10. 7295 0. 7080 

-7 0000 0. 7765 



Table 12 ARX parameters and resulting thrust for thruster V5 

Manifold 
Pressure 

(psi) 

A, 
(data set 1) 

Bl 
(data set 1) 

r/ 

(data set 1) 
Lb. -in. -sec/rad 

V3 

(data set 1) 

lbs. 

A, 
(data set 2) 

B, 
(data set 2) 

r/ 

(data set2) 
lb. -in. -sec/rad 

V3 

(data set2) 

lbs. 
100 

120 

140 

0. 9981 
0. 9984 

0. 9991 

0. 0035 

0. 0042 

0. 0051 

-5. 9672 

-4. 8771 

— 2. 8115 

0. 4436 

0. 5295 

0. 6463 

0. 9984 

0. 9985 

0. 9993 

0. 0035 

0. 0042 

0. 0049 

-4. 6475 0. 5319 

-2. 1803 0. 6296 

-4. 8197 0. 4484 

160 

180 

0. 9992 

0. 9993 

0. 0060 

0. 0066 

— 2. 4098 

-2. 1230 

0. 7656 

0. 8371 

0. 9989 

0. 9996 

0. 0059 

0. 0065 

— 3. 4426 

-1. 3770 

0. 7560 

0. 8300 

200 0. 9997 0. 0074 -0. 7459 0. 9492 0 . 9993 0. 0075 -2. 0082 0. 9635 

Table 13 ARX parameters and resulting thrust for thruster V6 

Manifold 
Pressure 

(psi) 
100 

120 

140 

160 

180 

200 

A, 
(data set 1) 

0. 9914 
0. 9904 

0. 9911 

0. 9897 

0. 9944 

0. 9936 

B, 
(data set 1) 

0. 0028 

0. 0036 

0. 0046 

0. 0053 

0. 0059 

0. 0065 

(data set 1) 
Lb. -in. -sec/rad 

-26. 2787 
-29. 2623 

— 27. 2541 

-31. 6148 

-17. 0984 

-19. 6803 

V3 

(data set 1) 
lbs. 

0. 3547 

0. 4457 

0. 5741 

0. 6581 

0. 7398 

0. 8121 

A, 
(data set 2) 

0. 9904 

0. 9860 

0. 9908 

0. 9913 

0. 9935 

0. 9962 

B, 
(data set 2) 

0. 0028 

0. 0035 

0. 0047 

0. 0050 

0. 0059 

0. 0066 

r/ 

(data set2) 
lb. -in. -sec/rad 

-29. 4344 

-42. 6885 

-28. 1721 

-26. 5656 

-19. 9672 

-11. 4754 

V3 

(data set2) 

lbs. 

0. 3477 

0. 4294 

0. 5787 

0. 6301 

0. 7374 

0. 8191 



Table 14 ARX parameters and resulting thrust for thruster V7 

Manifold 
Pressure 

(psi) 

A, 
(data set 1) 

B, 
(data set 1) 

r/ 

(data set 1) 
Lb. -in. -sec/rad 

V3 

(data set 1) 

lbs. 

A, 
(data set 2) 

B& 

(data set 2) 
r/ 

(data set2) 
lb. -in. -sec/rad 

V3 

(data set2) 

lbs. 
100 

120 

140 

160 

180 

200 

0. 9964 

0. 9957 

0. 9975 

0. 9977 

0. 9994 

0. 9982 

0. 0028 

0. 0033 

0. 0042 

0. 0050 

0. 0058 

0. 0064 

11. 0738 

13. 0820 

7. 5738 

7. 0000 

1. 7213 

5. 3934 

-0. 3897 
— 0. 4546 

-0. 5897 

-0. 6884 

-0. 7975 

-0. 8963 

0. 9962 

0. 9970 

0. 9960 

0. 9976 

0. 9973 

0. 9994 

-0. 0029 
-0. 0036 

-0. 0043 

-0. 0050 

— 0. 0057 

-0. 0062 

11. 8197 0. 3975 
9. 2377 0. 5014 

12. 2213 0. 5949 

7. 4590 0. 6962 

8. 3197 0. 7897 

1. 7787 0. 8677 

Table 15 ARX parameters aud resulting thrust for thruster VS 

Manifold 
Pressure 

(psi) 
100 

120 

140 

160 

180 

200 

A, 
(data set 1) 

0. 9973 

0. 9911 

0. 9973 

0. 9975 

0. 9972 

0. 9975 

B& 

(data set 1) 

0. 0032 

0. 0038 

0. 0049 

0. 0056 

0. 0066 

0. 0075 

ll 
(data set 1) 

Lb. -in. -sec/rad 
— 8. 0328 

-27. 0820 

— 8. 0902 

-7. 6312 

-8. 3771 

-7. 6312 

V3 

(data set 1) 
lbs. 

0. 4156 

0. 4942 

0. 6418 

0. 7303 

0. 8557 

0. 9786 

A, 
(data set 2) 

0. 9974 

0. 9963 

0. 9972 

0. 9970 

0. 9974 

0. 9966 

(data set 2) 

0. 0031 
0. 0040 

0. 0048 

0. 0056 

0. 0065 

0. 0075 

r/ 

(data set2) 
lb. -in. -sec/rad 

— 8. 0328 
— 11. 1312 

-8. 5492 

— 9. 2377 

-7. 9754 

— 10. 2131 

V3 

(data set2) 

lbs. 

0. 4082 

0. 5188 

0. 6221 

0. 7352 

0. 8532 

0. 9836 



APPENDIX B 

AIR BEARING FLOOR DESIGN AND CONSTRUCTION 

The project was assigned space in a former Texas Instruments factory building 

now owned by Texas A&M University. The space was partitioned from adjoining areas 

with a chain link fence eight feet in height. TAMU Physical Plant provided electrical 

service and low-pressure (125-psi) compressed air service. Within this area was poured 

an epoxy floor measuring 4. 88 m (16 ft) by 7. 31 m (24 ft). 

In an effort that echoed the prior experience of Lockheed Martin, a number of 

epoxy products were purchased in gallon quantities. These products were chosen on the 

basis of recommendations from suppliers located using the Thomas Register and similar 

sources. The two most important parameters were the elapsed time from mixing to 

curing ("pot-life" ) and viscosity. A low viscosity fluid that would not harden for several 

hours was desired so that it could flow easily and level to within . 0005 in. Test pours of 

each product were made into frames of roughly 4 fl. by 4-ft. size. Results were not 

promising. From conversations with Garlan Moreland' of NASA JSC it was learned 

that JSC had also poured an ultra-flat floor. Their material of choice was the same as that 

used at Lockheed Martin. Unfortunately, this product was removed from the market 

prior to the JSC effort. Koch Corrosion Control Co. received the contract to provide the 

materials for JSC, and a successful pour was made. JSC offered us their surplus 

materials (Techni-plus EP 60. 250 SL) for testing. Results were promising. 

The existing floor in the factory building was surveyed and it was determined that 

elevations varied up to . 91 in. over the proposed air bearing floor (ABF) area. 
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Calculations were made to determine the quantity of epoxy required to level the existing 

floor and add an additional . 25 in. of elevation to the surface. The total exceeded 150 

gallons at $80/gallon of Techni-plus. A more cost-effective means of preparing the floor 

for epoxy application had to be found. 

Further consultation with NASA revealed that a concrete underlayment to 

improve the grade of the existing floor was necessary to reduce costs and provide a solid 

base for the ABF. After researching various techniques and materials, it was determined 

that Ardex would offer the best solution. Ardex is a self-levelling concrete with polymer 

additives, which can level to within . 0125 in. if properly applied. Several preliminary 

steps were necessary before the Ardex could be installed. 

The existing floor was mechanically cleaned using a process known as shot- 

peening. A shot-peening machine scours a surface by projecting minute lead pellets at 

high velocity onto the surface and simultaneously vacuuming the expended shot and 

resulting debris. The shot is separated from the debris and recycled through the machine 

for a subsequent use. Concrete Cleaning Inc. was contracted and the desired results 

were obtained. Wooden forms were erected around the area where the Ardex was to be 

installed. 

Jay South, a licensed Ardex dealer, was contracted to install the Ardex 

underlayment. The Ardex was mixed using a portable mixer and was completely 

installed in less than 20 minutes. Using wooden dowels as elevation benchmarks, the 

Ardex was levelled using a squeegee. The Ardex underlayment was allowed to cure and 

was surveyed to determine the quantity of epoxy required. After curing, the Ardex was 
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found to be flat and level to within. 25 in. , but had a single peak that was . 33 in. above 

datum. It was determined that a . 25 in. tolerance was acceptable and that the single peak 

could be ground down to the datum. Concrete Cleaning Inc. returned to shot-peen the 

Ardex and level off the peak. 

After the Ardex was shot-peened and levelled, it was resurveyed and calculations 

were made to determine the necessary quantity of epoxy to level the Ardex and add an 

additional . 125 in. of elevation. Despite its low viscosity and long pot-life, the EP-60 

would not flow more than several feet, so a detailed method of application had to be 

developed. It was found that the best way to apply the epoxy would be to survey the 

floor into 4 ft. by 4 fl. grid squares and find the necessary volume of epoxy to raise each 

area to the desired datum. The volume was converted into weights for easy 

measurement. 

The actual application process started with installing metal edging around the 

ABF perimeter to protect the epoxy and separating the area into discrete grid squares 

using . 75 in. by 3 in. rubber belting as dams. A representative from Koch Corrosion 

Control was present to supervise the mixing of the epoxy and to lend technical assistance 

as necessary. The process was broken down into teams of individuals responsible for 

mixing, measuring and pouring the epoxy into the individual grid squares. After the 

adjacent grid squares were filled with epoxy the dams were removed to permit the epoxy 

to self-level and smooth. 

The epoxy was permitted to cure for several days before an assessment was 

made. Several areas of uncured epoxy were observed. After consultation with Koch, it 
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was determined that epoxy was not properly mixed prior to pouring. According to 

instructions from Koch, three to four minutes of mixing using a . 75 in. drill and a mixing 

paddle were necessary to properly mix all the resin and hardener. It was found that 

because of the special nature of this product, additional mixing time should be added to 

ensure a proper reaction. Despite this problem, the ABF was level to the desired 

tolerance of . 0005 in. The only remaining course of action was to remove the uncured 

areas of epoxy and apply a uniform . 01625 inch layer of EP-60 to the existing floor. 

Koch agreed to sell the necessary epoxy at reduced price. The additional layer was 

applied using squeegees and the resulting floor hardened to the desired strength and 

texture. 

The telerobot was placed on the ABF and it appeared to move smoothly over the 

surface. There were several small peaks where it would "hang", but these were easily 

removed using 200 grit sandpaper. The ABF installation process was deemed a success. 

Fig. 56 Air bearing floor installation. 
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APPENDIX C 

SOURCE CODE 

This is the Matlab code LSE. m used to analyze the input-output data taken during the 

least squares identification process. 

LSE. m (Least Squares Esttimate) 
Written By: Bill Benson February 28, 1998 
This is a matlab code that finds the unknown parameters of the 
robot using the least squares method. 
The program will prompt the user for the data file (in *. *. wkl) 

format 
and it will analyze the data and return the ARX parameters. 

clear all 
filename=input('What file to search?', 's') 

rng=[1 1 230 6]; 
A=wklread(filename, l, l, rng)it Search the spreadsheet file 
quit=length(A); 
deltaT=sum(A(:, 4))/quit;'-. find the average sampling time 

RN=[0 0;0 0];FN=[0 0]';8 initialize the process 

for step=2:quit, 
phi(l, step)=A(step — 1, 2); 
phi(2, step)=A(step — 1, 1); 
RNtemp=phi(:, step)*phi(:, step)'; 
FNtemp=phi(:, step)+A(step, 2); 
RN=RN+RNtemp;FN=FN+FNtemp; 

end 
RN=RN/309;FN=FN/309i 
(' The estimated discrete parameters are:') 
theta=inv(RN)*(FN) 

(' The estimated continuous time parameters are') 
convert from discrete to continuous time 

Ac=log(theta(1))/deltaT 
Bc=inv(deltaT +. 5*Ac*deltaT"2 tl/6*Ac 2"deltaT"3)*theta(2) 
time=(1:step)*deltaT; 
('time constant') 
deltaT 
clear phi 
('or maybe') 
phi(2:229, 1)=A(1:228, 2); 
phi(2:229, 2)=A(1:228, 1); 
K=inv(phi'*phi)*phi'; 
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y=A (1: 229, 2) 
thetaK=K*y 

SFind the confidence interval 
v=y-phi*thetaK; 
m=length(v); 
Rv=cov(v); 
Rtk=K*Rv*K'; 
sigma=sqit(diag(Rtk)) 
(' The confidence Interval' ) 

(' High Limit' ) 

high=thetaK+sigma; 
Ach=log(high(1))/deltaT 
Bch=inv(deltaT t. 5*Ach+deltaT"2 +1/6*Ach 2*deltaT"3)*high(2) 
('Low Limit' ) 

low=thetaK-sigma; 
Acl=log(low(1))/deltaT 
Bcl=inv(deltaT +. 5*Acl*deltaT 2 +1/6*Acl 2*deltaT"3)*low(2) 
yhat=phi*thetaK; 
figuze(1) 
subplot(211) 
plot (A(:, 3), A(:, 2)); grid;title('Angular Rate vs. Time '); 
xlabel('time (secs)');ylabel('Angular Rate (rad/sec)'); 
subplot(212) 
plot(A(:, 3), A(:, 1));grid;title('Input vs. Time' ); 
xlabel('time (secs)');ylabel('Input (on/off)'); 

figure(2) 
subplot(211) 
plot(A(:, 3), yhat, 'b-', A(:, 3), A(:, 2), 'g-. ');grid;title('Angular Rate vs. 
Time' ); 
xlabel('time (secs)');ylabel('Angular Rate 
(zad/sec)');legend('predicted', 'actual' ); 
subplot(212) 
plot(A(:, 3), A(:, 1));grid;title('Input vs. Time' ); 
xlabel('time (secs)');ylabel('Input (on/off)'); 

This is the Matlab code PSDsetup. m that determines the inertial position of the PSD 

sensors. 

This m-file is designed to find the actual position of the 
photodetectors 

PSDsetup. m 

Written by: Bill Benson June 25, 1998 
ss 

This program analyzes the data collected during the inertial frame 
set-up 
W process and determines the location of the PSD sensors in the 
inertial 

coordinate frame. 
a numerical non-linear least squares 

clear all 
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6~initialize the actual values 

z(1, 1)= 0 S. l*Thetalc; 
z(2, 1)=16 8*xlc; 
z(3, 1) = 86 %1. 9*ylc; 

z(4, 1)= 0 5. 5*Theta2c; 
z(5, 1)=55 % *xZc; 
z(6, 1)= 86 %. 4*y2c; 
k=1; 

data is entered manually here 
thetal=[]; 
theta2=[]; 
x=[]; 
y= []; 
for k=1:40, %number of iterations 
for I = I:length(thetal), ~ generate Jacobian matrix 

temp2=2*I; 
tempi=Z*I-1; 

evaluate the error at each point 

f(tempi)=tan(z(1, k) + thetal(I)) — (x(I) — z(2, k))/(z(3, k) — y(I)) 
f(temp2)=tan(z(4, k) + theta2(I)) — (z(5, k)-x(I))/(z(6, k) — y(I)) 
A(tempi, l)=1+tan(z(l, k)+thetal(I))"2;6dfl/dthetalc 
A(tempi, 2)=1/(z(3, k) — y(I));%dfl/dxlc 
A(tempi, 3)=(x(I) — z(2, k)j/(z(3, k) — y(I)) 2;%dfl/dycl 
A(temp2, 4) =1+tan(z(4, k) ttheta2(I)) "2; gdf2/dtheta2c 
A(temp2, 5)=-1/(z(6, k) — y(I));Rdf2/dxcZ 
A(temp2, 6)=(z(5, k)-x(I))/(z(6, k) — y(I))"2;6df2/dycZ 

end 

compute the psuedoinverse 
deltax=-pinv(A)"f' 

update the guess 
z(:, ktl) =z(:, k) +deltax; 

end 

display the results 
z(l, k) 
z(2, k) 
z(3, k) 
z(4, kl 
z(5, k) 
z(6, k) 

plot the results 
figure(1) 
subplot(321) 



plot (z (1, : ) ); 
subplot(322) 
plot (z (2, : ) ); 
subplot(323) 
plot (z (3, : ) ); 
subplot(324) 
plot(z(4, :)); 
subplot(325) 
plot(z(5, :)); 
subplot(326) 
plot(z(6, :)); 

This Matlab code simulates the Kalman Estimator. 

ExtKalman. m 

Written by: Bill Benson, July 2, 1998 
This program simulates the identification of unknown model 

parameters 
of the robot using an extended Kalman filter with a state-space 

matrix augmented 
by additional states that represent the unknown parameters. 

clear all 
quit = 3600; %number of time steps 
deltaT = . 01; %Discrete Sample Interval 
h=. 01; TRunge Kutta interval 
j=l; SEKF iterate 

. 0293 1 0305 
12 . 0373 0] '; 

x(:, 1)=[1 0 1 0 1 0 . 0329 . 0317 1 . 0342 . 0337 0 . 0331 
. 0294 0 . 0403 . 0365 1 . 0351 . 0310 0 . 0334 . 0329 1 . 04 
%initial conditions of actual state 
xhat(:, 1)=. 7*x(:, 1);xhat(9, 1)=x(9, 1);xhat(9, 1)=x(9, 1) 
);xhat(15, 1)=x(15, 1); 
xhat(18, 1) =x(18, 1); xhat(21, 1) =x(21, 1); xhat(24, 1) =x(24 
7, 1);xhat(30, 1)=x(30, 1); 
phi=eye(9); %initial conditzons of the state transiti 

;xhat(12, 1)=x(12, 1 

, 1);xhat(27, 1) =x(2 

on matrix 

P=eye(30); 
phi=eye(30); 
0=eye(30); 
H=[1 0 0 0 0 

0 1 0 0 0 
0 0 1 0 0 
0 0 0 0 1 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 0 0 1 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 0; 
0 0 0 0 0; 
0 0 0 0 0; 
0 0 0 0 0; 
0 0 0 0 0; 
0 0 0 0 0; 
0 0 0 0 0; 
0 0 0 0 0; 
0 0 0 0 0; 
0 0 0 0 0; 
0 1 0 0 0; 
0 0 0 0 1]; 
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R=eye( 
tact=1 
z(:, 1) 
for I= 

if 

12)*. 01; 
%thruster select 

=8*x (:, 1); 
1:quit; 
The robot waltz 
(rem(I, 300) == 0), 
teat=teat+1; 
if (tact == 7), 

tact = 1; 
end 
'4rotate clockwise 
if (tact==1), 

x(9, I) =1; 
x(12, I) =0; 
x(15, I)=1; 
x(18, I)=0; 
x(21, I)=1; 
x(24, I) =0; 
x(27, I) =1; 
x(30, I)=0; 

end 
%rotate counter-clockwise 
if (tact==2), 

x(9, I) =0; 
x(12, 1)=1; 
x(15, I)=0; 
x(18, 1)=1; 
x(21, I)=0; 
x(24, I)=1; 
x(27, I)=0; 
x(30, I)=1; 

end 
Smove forward 
if (tact==3), 

x(9, 1)=0; 
x(12, I)=0; 
x(15, I)=0; 
x(18, I)=0; 
x(21, I)=0; 
x(24, I)=1; 
x(27, I)=1; 
x(30, Z)=0; 

end 
%move backwards 
if (tset==4), 

x(9, 1)=0; 
x(12, Z)=1; 
x(15, I)=1; 
x(18, I)=0; 
x(21, I)=0; 
x(24, I) =0; 
x(27, I) =0; 
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x(30, I) =0; 
end 
%move right 
if (tact==5), 

x(9, 1)=0; 
x(12, 1)=0; 
x (15, I) =0; 
x(18, I)=1; 
x (21, I) =ll 
x(24, I) =0; 
x(27, I)=0; 
x(30, 1)=0; 

end 
4move left 
if (tact==6), 

x(9, 1) =1; 
x (12, I) =0; 
x(15, I)=0; 
x(18, 1)=0; 
x(21, I)=0; 
x(24, 1)=0; 
x(27, I)=0; 
x(30, I) =1; 

end 
end 

%%simulate the robot trajectory 
deltaxl(:, I)=DelX(deltaT, x(:, I)); 
dx2=x(:, I)+. 5*deltaxl(:, I); 
deltax2(:, I) =DelX(deltaT, dx2); 
dx3=x(:, I)+. 5*deltaxZ(:, Z); 
deltax3(:, Z)=DelX(deltaT, dx3); 
dx4=x(:, I)+deltax3(:, I); 
deltax4 (:, I) =DelX(deltaT, dx4); 
x(;, I+1)=x(:, I) + (deltaxl(:, I) + 2*deltax2(:, I) + 2*deltax3(:, I) + 

deltax4(:, I))/6; 

tintegrate the estimate forward in time 
dhat1(:, I)=DelX(h, xhat(:, I)); 
dh2=xhat(:, I)+. 5*dhatl(:, I); 
dhat2(:, I) =DelX(h, dh2); 
dh3=xhat(:, I)4. 5*dhat2(:, I); 
dhat3(:, I) =DelX(h, dh3); 
dh4=xhat(:, I)+dhat3(:, I); 
dhat4 (:, I) =DelX (h, dh4); 

xhat (:, I+1) =xhat (:, j ) 4 (dhatl (:, j ) + 2*dhat2 (:, j ) + 2*dhat3 (:, j ) + 
dhat4(:, 3))/6' 

%find the state transition matrix 
A=jacob(xhat(:, j)); 
dphil=h*(A*phi); 
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A=jacob(dh2); 
dphi2=h*(A*(phi+. 5*dphil)) 
A=jacob(dh3); 
dphi3=h*(A*(phi+. 5*dphi2)) 
A=jacob(dh4); 

dphi4=h*(A*(phi+dphi3)); 
phi=phi+(dphil 4 2*dphi2 + 2+dphi3 +dphi4)/6; 

if (rem(I, 10)==0), 

z(:, I+1)=H*x(:, I+1); 
4Run Extended Kalman Filter 
P=phi*P*phi' + 0; 
K=P*H'*inx(H*P*H' + R); 
xhat(:, j+1)=xhat(:, j+1)+K*(z(:, I+1) — H*xhat( 
P=(eye(30)-K*H)*P; 
ERROR(:, I)=(x(:, I+1) — xhat(:, I+1)); 
phi=eye(30); 

end 

j+1) ); 

(1, 1:quit), ' — ');ylabel('Rotation 

(2, 1:quit), ' — ');ylabel('Rotation 

(3, 1:quit), ' — ');ylabel('X (ft)'); 
(4, 1:quit), ' — ');ylabel('X-rate 

(5, 1:qurt), ' — ');ylabel('Y (ft)') 

(6, 1:quit), ' — ');ylabel('Y-rate 

end 
time=(1:quit)*deltaT; 
figure(1) 
subplot(321) 
plot(time, x(1, 1:quit), ' — -', time, xhat 
(rad) '); 
legend('actual', 'estimate'); 
subplot(322) 
plot(time, x(2, 1:quit), ' — — ', time, xhat 
Rate (rad/sec)'); 
subplot(323) 
plot(time, x(3, 1: quit), '--', time, xhat 
subplot(324) 
plot(time, x(4, 1:quit), '- — ', time, xhat 
(ft/sec)'); 
subplot(325) 
plot(time, x(5, 1:quit), ' — — ', time, xhat 
xlabel ( 

' time (sec) ' ); 
subplot(326) 
plot(time, x(6, 1:quit), ' — — ', time, xhat 
(ft/sec)'); 
xlabel('time (sec)') 

orient tall 

figure(Z) 
subplot(311) 
plot(time, x(7, 1:quit), ' — — b', time, xhat(7, 1:quit), '— 
on;axis([0, quit*h, . 01, . 05]); 
title('Rotational Parameter for Thruster 
Vl');legend('actual', 'estimate' ) 

subplot(312) 

r');grid 
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plot (time, x(8, 1:quit), ' — — b', time, xhat (8, 1:quit), '-r' );grid 
on; axis ( [0, quit*h, . 01, . 05] ); 
title('Translational Parameter for Thruster Vl'); 
subplot(313) 
plot(time, x(9, 1:quit), ' — — b', time, xhat(9, 1:quit), ' — r');grid 
on;axis([o, quit+h, — . 5, 1. 5]) 
title('Input to Thruster Vl');xlabel('time (sec)'); 
orient tall 

This mfile is a subroutine of ExtKalman. m and it contains the nonlinear differential 

equations of motion. 

function[DX]=DelX2(deltaT, x) 
8%This evaluates the non-linear equations 
sxl=sin(x(1));cxl=cos(x(1)); 
DX=deltaT*[x(2); 

( — x()5)*x(7)*x(21)/x(20)+x(16)*x(8)*x(22)/x(20)— 
x(16)*x(9)*x(23)/x(20)+x(17!*x(10)*x(24)/x(20)— 
x(17)*x(11)*x(25)/x(20)+x(18)*x(12)*x(26)/x(20)— 
x(18)*x(13)*x(27)/x(20)+x(15)*x(14)*x(28)/x(20)); 

x(4); 
( 
— sxl"x(7)*x(21)/x(19)+cxl*x(8)+x(22)/x(19)-cxl*x(9)+x(23)/x(19)— 

sxl*x(10)*x(24)/x(19)+sxl"x(11)*x(25)/x(19)— 
cxl*x(12)*x(26)/x(19)tsxl*x(13)*x(27)/x(19)tcxl*x(14)*x(28)/x(19)); 

x(6); 
(cxl*x(7)*x(21)/x(19)tsxl*x(8)*x(22)/x(19)— 

sxl*x(9)*x(23)/x(19)+cxl*x(10)*x(24)/x(19) — cxl*x(11)"x(25)/x(19)— 
sxl*x(12)*x(26)/x(19)+cxl*x(13)+x(27)/x(19)-sxl*x(14)*x(28)/x(19)); 

0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
0]; 
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This mfile is a subroutine of ExtKalman. m and it computes the Jacobian matrix [A]. 

function(A] =jacoh2 (x); 
%%This function evaluates the Jacohian of the nonlinear equations 
Atzeros(28); 
sxl=sin(x(1));cxl=cos(x(1)); 
A(1, 2) =1; 
A(2, 7) = — x (15) *x (21) /x (20); 
A(2, 15) =(x(14) *x (28) -x(7) *x(21) ) /x(20); 

(2, 21) =-x(15) *x(7) /x(20);A(2, 8) =x(16) *x(22) /x(20); 
A(2, 16) = (x (8) *x (22) — x (9) *x (23) ) /x (20); 
A(2, 22) =x (8) *x (16) /x (20); 
A (2, 9) =-x (16) *x (23) /x (20); 
A (2, 23) =-x (16) "x (9) /x (20); 
A(2, 10)=x(17) *x(24) /x(20); 
A(2, 24) =A(17) *x (10) /x (20); 
A(2, 17) =(x(10) *x(24) — x(11) *x(Z5) ) /x(20); 
A (2, 11) = — x (17) *x (25) /x (20); 
A (2, 25) =x (17) *x (11) /x (20); 
A(2, 12) =x(18) *x (26) /x(20); 
A(2, 26) =x(18) *x (12) /x (20); 
A (2, 18) = (x (12) *x (26) -x (13) *x (27) ) /x (ZO); 
A(2, 13) = — x(18) *x(27) /x(20); 
A(2, 27) = — x(18) *x(13) /x (20); 
A(2, 14) =x(15) *x (28) /x (20); 
A(2, 28) =x (15) *x (14) /x (20); 
A(2, 20) = (x (15) +x(7) *x (27) — x(16) *x (8) *x (22) +x (16) *x(9) *x(23)— 
x (17) *x (10) *x (24) +x (17) *x (11) *x (25)— 
x (18) *x(12) *x (26) tx(18) *x (13) *x(27) — x (15) *x(14) *x(28) ) /x (20) 2; 
A(3, 4) =1; 
A(4, 1) =(-cxl*x (7) *x (21) /x (19)— 
sxl*x(8) *x(ZZ) /x(19)+sxl*x(9) *x(23) /x(19)— 
cxl*x(10) *x(24) /x(19)+cxl*x(11) *x (25) /x(19)+sxl*x(12) *x(26) /x(19) tcxl*x 
(13) *x (27) /x (19) — sxl*x (14) *x (28) /x (19) ); 
A(4, 7) = — sxl*x(21) /x(19); 
A(4, 21)= — sxl*x(7) /x(19); 
A (4, 8) =cxl*x (22) /x (19); 
A (4, 2Z) =cxl*x (8) /x (19); 
A(4, 9) = — cxl*x(Z3) /x(19); 
A(4, 23)= — cxl*x(9) /x(19); 
A(4, 10) = — sxl*x (24) /x (19); 
A (4, 24) = — ex 1*x (10) /x (19); 
A(4, 11) =sxl*x (25) /x (19); 
A(4, 25) =sxl*x (11) /x(19); 
A(4, 12) =-cxl*x(26) /x(19); 
A(4, 26) =-cxl*x (12) /x (19); 
A(4, 13) =sxl*x (27) /x(19); 
A(4, 27) =sxl*x (13) /x (19); 
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1*x(10) *x(24)— 

25) /x (19)— 
(28) /x (19) ); 

A(4, 14) =cxl*x(28) /x (19); 
A (4, 28 ) =cx 1*x (14) /x (19); 
A(4, 19)=(sxl*x(7) *x(21)-cxl*x(8) *x(22)+cxl*x(9) *x(23) tsx 
sxl*x (11) *x (25) +cxl*x (12) *x (26) -sxl*x (13) *x (27)— 
cxl "x (14) *x(28) ) /x(19) "2; 
A(5, 6) =1; 
A (6, 1) = (-sxl*x (7 ) *x (21 ) /x ( 19) +cxl*x (8 ) *x (22 ) /x (19)— 
cxl*x(9) *x(Z3) /x(19) — sxlwx (10) *x(24) /x(19)+sxl*x(ll) *x ( 
cxl*x (12) *x (26) /x (19) -sxl*x (13) *x (27) /x (19) -cxl*x (14) *x 
A(6, 7) =cxl*x (21) /x (19); 
A (6, 21) =cxlax (7) /x (19); 
A(6, 8) =sxl*x (22) /x (19); 
A(6, 22) =sxl*x (8) /x(19); 
A(6, 9) =-sxl*x (23) /x (19); 
A (6, 23) = — sxl*x (9) /x (19); 
A(6, 10) =cxl*x(24) /x(19); 
A(6, 24)=cxl*x(10) /x(19); 
A(6, 11) =-cxl*x (25) /x (19); 
A(6, 25) = — cxl*x (11) /x (19); 
A(6, 12)=-sxl*x(26) /x(19); 
A(6, Z6) =-sxl*x (12) /x (19); 
A(6, 13) =cxl*x (27) /x (19); 
A(6, 27) =cxl*x (13) /x (19); 
A(6, 14) =-sxl*x(ZB) /x(19); 
A(6, 28) = — sxl*x (14) /x (19); 
A(6, 19) =( — cxl*x(7) *x(21) -sxl*x(8) *x(Z2)+sxl*x (9)*x (23)— 
cxl*x (10) *x (24) +cxl*x (11) ~x (25) +sxl*x (12) *x (26)— 
cxl*x(13) *x(27) taxi "x(14) *x(28) ) /x(19) 2; 

This C code finds the orientation and position of the robot. 

/ ***** ** *** ******* **** * w ** ** ***** * ** * ** 6 * * ***** ** * *** w * w * **** w * ** * ** 
*triangul. c 
*Nritten by: Bill Benson, July 28, 1998 

*This code recovers the robot orientation and position from the 
*available line of sight angles from the two PSD sensors. The code 
*flexible and can adjust to use from 4 to 8 available target angles. * 

is* 

¹include &analysis. h& 
¹include &ansi c. h& 
¹include "mat lib. h" 
¹include &math. h& 
¹define Pl 3. 14159265359 

double* triangu112(double Psd Pos[3] [2], double Loc tar[2] [4], double 
Tar tan[4][2], double guess[3]) 
[ 
double X [4], Y [4], den, Or [Z]; 
double *"A, **Atran, **AtranA, **invAtranA, **psuedo, **F; 
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double **deltax; 
double* output; 
int i, j, k, I, J, mul, status, dud, ntar, ptar, visible=0, LOS[9] [2]; 
double TstarR[2] [1], TntarR[2] [1], Tntar[2], Cmat[2] [2]; 
double Tht[4] [2], ITht, ztemp[3]; 
double norm[2], dx[3]=(. 0001, . 0001, . 0001); 
double tgttan[2]; 
double* coord; 
double Tp[2], Tn[2], Lsn, Dspn, d; 
double c, s, cn, sn, phi, max, min, ORS[2][l], cp, sp, sptemp, cptemp; 

visible*/ 
visible+a; 
LOS[visible][0]=j; 
LOS[visible][1]=i; 
) 
Tht[j] [i]=(Psd Pcs[2] [i]+Tar tan[j] [i] )/(1- 

[r]*Tar tan [3] [r] ); Psd Pos[2] 
) 

y(j] 
x[j] 

=Tht[j][0];/*store tangents for later sorting */ 
=Tht[j][1]; 

for (j=0;j&4;j++) 
for (i=0;i&2;i++)( 
if (Tar tan[j][i] != 0. 0) ( 

/*search the tangents to see how many and which targets are 

/* setup the Jacobian matrices, size varies according to number of 
visible targets */ 
A=dmatrix(l, visible, 1, 3); 
invAtranA=dmatrix(1, 3, 1, 3); 
F=dmatrix(1, visible, 1, 1); 
deltax=dmatrix(1, 3, 1, 1); 

/*check to see if initial guess is totally absurd, if it is reset*/ 

if (guess [0] &= (double) 40 . 0) 
guess[0] = (double)0. 0; 

if (guess [0] &= ( — (double) 40 . 0) ) 

guess [0] = (double) 0. 0; 

if (guess [1] &= (double) 40 . 0) 
guess[1] = (double)0. 0; 

if (guess[1] &= ( 
— (double)40. 0)) 

guess[1] = (double)0. 0; 

if (guess[2] &= 2*PI) 
guess[2] = (double)0. 0; 

if (guess[2] &= — (-2*PI)) 
guess[2] = (double)0. 0; 
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for (k=1;k&=20;k++) ( 
cp=cos(guess[2]) 
sp=sin(guess[2]) 

ztemp[0] =guess(0] +dx[0] 
ztemp[1]=guess[1]+dx[1] 
ztemp[2] =guess[2] tdx[2] 

cptemp=cos(ztemp[2]) 
sptemp=sin(ztemp[2]) 

for (i=1;i&=visible;i++) 
I=LOS[i][0]; 
/*compute the vector f and the numerical Jacobian matrix for 

PSD1*/ 
F'[i] [1] =(guess[0] +Loc tar[0] [I] *cp — Loc tar[1] [I] *sp- 

Psd Pos [0] [0] ) / (Psd Pos [1] [ 0] -guess [1] -Loc tat [0] [I] *sp- 
Loc tar[1][Z] *cp) — Tht[I][0]' 

A[i] [1] =-(F[i] [1] — ((ztemp[0] +Loc tar[0] [I] *cp- 
Loc tar[1][I]*sp-Psd Pos[0][0])/(Psd Pos[1][0]-guess[1]— 
Loc tar[0][I]*sP — Loc tar[1][I]*cp) — Tht[I][0]))/dx[0]; 

A [I] [2] = — (F[i] [1] — ((guess [0] +Lee tar [0] [ I] *cp- 
Loc tar[1] [I] *sp-Psd Pos[0] [0] ) / (psd pcs [1] [0] — ztemp [1]— 
Loc tar[0][I]*sp — Loc tar[1][I]*cp) — Tht[I][0]))/dx[1]; 

A[i] [3] =- (F[i ] [1] — ((guess [0] +Loc tar [0] [ I] +cptemp- 
Loc tar[1][I]*sptemp-Psd Pos[0][0])/(Psd Pos[1][0] — guess[1]— 
Loc tar[0][I]+sptemp-Loc tar[1][I]*cptemp) — Tht[I][0]))/dx[2]; 

matrix for 

Psd Pos[0] 
Loc tar[1] 

if (LOS[i][1] ==1) 
/*compute the 

PSD2*/ 
F [i] [1] =- (gue 

[1] ) / (Psd Pos [1] [1] — g 
[I] *cp) -Tht[I][1]; 

vector f and the numerical Jacobian 

as[0] +Lac tar[0] [I] *cp-Loc tar[1] [I] *sp- 
uess[1] -Loc tar[0] [Z] *sp- 

A[i] [1] = — (F[i] [1] — (-(ztemp[0] +Loc tar[0] [I] *cp- 
Loc tar [ 1] [I] *sp-Psd Pos [0] [1] ) / (Psd Pcs [1] [1] -guess [1]— 
Loc tar[0][I]*sp — Loc ter[1][I]*cp) — Tht[I][1]))/dx[0]; 

A[i] [2] = — (F[i] [ 1] — 
( 
— (guess [0] +Loc tar [0] [I] *cp- 

Loc tar[1][I]*sp — Psd Pos[0][1])/(Psd Pos[1][1]-ztemp[l]— 
Loc tar [0] [I] *sp — Loc tar [1] [I] *cp) — Tht [I] [1] ) ) /dx [ 1]; 

A[i] [3] = — (F[i] [1] — 
( 
— (guess[0] +Loc tar[0] [I] *cptemp- 

Loc tar [ 1] [I] *sptemp-Psd Pcs [0] [ 1] ) / (Psd Pcs [ 1] [ 1] — guess [ 1]- 
Loc tar[0][I]*sptemp — Loc tar[1][I]*cptemp) — Tht[I][1]))/dx[2]; 

)//end of if 
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)//end of for 
dprint mat(A, visible, 3); 
printf("kn"); 
/*compute the pseudoinverse*/ 

Atran=dtranspose(A, 4, 3); 
AtranA=dmult mat(Atran, A, 3, 4, 3); 
dmat inver(3, AtranA, invAtranA); 
psuedo=dmult mat(invAtranA, Atran, 3, 3, 4) 
deltas=dmult mat(psuedo, F, 3, 4, 1); 

/*update the guess*/ 

guess[0] =guess[0] -deltax[1][1] 
guess[1] =guess[1] -deltax[2] [1] 
guess[2]=guess[2] — deltax[3][1] 
) 

output=malloc(sizeof (double) v3) 

/* reset the 
free dmatrix 
free dmatrix 
free dmatrix 
free dmatrix 
free dmatrix 
free dmatrix 
free dmatrix 

matrices for next sample time*/ 
(A, 1, visible, 1, 3); 
(Atran, 1, 3, 1, visible); 
(AtranA, 1, 3, 1, 3); 
(invAtranA, 1, 3, 1, 3); 
(psuedo, 1, 3, 1, visible); 
(deltax, 1, 3, 1, 1); 
(F, l, visible, l, l); 

output[0]=guess[0] 
output[1]=guess[1] 
output[2]=guess[2] 
return output; 
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