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ABSTRACT 

Design and Analysis of an ATM Network Traffic Security Device. 

(August 1997) 

Dan Cristian Teodor, B. S. , State University of New York at Buffalo 

Chair of Advisory Commiffee: Dr. Wei Zhao 

Wide access distributed area network services are increasing in range and capacity at an exponential rate. 

With the continuation of this growth, the requirements of providing uniform security management will 

become more and more difficult to manage without occupying a significant portion of the network traffic 

capability available to the end-users the network is intended to service. Current methods rely on the network 

architecture itself to provide the mechanisms by which traffic is monitored and, when the situaffon warrants, 

suppressed in order to ensure that security methods are enforced. With the introduction of ATM/SONET 

technologies into this arena, the possibility of integrating every class of inforirmtion service into a common 

transmission framework comes closer to reality through its high bandwidth capability and very large 

scalability. However, this expansion of types of services available and range offenxt complicates the task of 

minimizing the possibility that unauthorized persons may rely on covert traff creation and reception in 

order to use the network in a manner not permitted by its controlling bodies. 

To address this deficiency, this thesis presents the groundwork for thc implementation of a dedicated security 

framework which should be able to accomplish the task of minimizing the potential for covert channels in 

such networks without creating the associated traffic overhead normally associated with such operaffons 

within the network itself For this security framework, the system described presents a design which 

incorporates both the mechanisms for the detection and suppression of covert traffic, as well as, the 

implementation by which these mechanisms may be linked to a unifying control authority. 

Performance analyses of the design show that it may be feasibly implemented with current levels of 

semiconductor manufacturing technology and incorporates elements that are readily available on the market. 

Secondly, these analyses show that the associated response delay experienced by transiting network traffic is 

minimal with respect to the overall time the information spends while en route through the nehvork. Thirdly, 

the delays associated with connection management are constant under all global traffic conditions. Finally, 

the design is shown to incur no overhead in excess network traffic due to the enforcement functions which it 

implements. 
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CHAPTER I 

INTRODUCTION 

As thc size of wide-area public access backbones increases, so does the complexity of the task of monitoring 

and enforcing security standards across the entire range of services provided by these communications 

services. Current methods of providing a uniform framework for security enforcement across the network 

attempt to use the network itself as a tool for performing the necessary management functions. Their aim is to 

provide this uniform enforcement while providing the highest level of accessibility and responsiveness for 

which the network is equipped. The contributions of this thesis are as follows: 

~ Presentation of a framework within which uniform and rapid security enfortxment may be 

provided while still offering the greatest amount of network bandwidth with as fast a response 

time as possible to the end user. This is presented in Chapters II and III. 

~ A complete design for the implementation of this security framework which is implementable 

using current semiconductor manufacturing technologies and relies on widely available and 

cost-effective components. This design is intended to minimize the network response 

degradation, as well as, the overhead incurred by the administrative functions of transferring 

management data. This is presented in Chapters IV and VI. 

~ A simulated implementation of the design which would allow for verification of correct 

operation of the device. Additionally, the simulation would allow the researcher to evaluate the 

creative process used in order to add future optimizations or expand the functionality of the 

device as component availabilities and technologies evolve. This is presented in Chapter V. 

The main focus of the work for this thesis has been on creating a design suitable for use in evaluating the 

efficacy of a distributed security enforcement method for wide area ATM networks. The implementation is 

intended as a starting point for future expansion of the security enforcement capacity of a dedicated 

supervisory network for wide-area ATM networks. 

The journal model is IEEE Transactions oa Computers. 



CHAPTER II 

ISSUES IN ATM NETWORK SECURITY 

At its very core, the ATM standard defines a wide-bandwidth network as an interconnection topology of 

digital switches that transport data between themselves in small packets of data called cells. Each cell consists 

of a 48 byte payload and a 5 byte header [I]. In order for a cell to be communicated from one computer to 

another it must first be transmiued to the nearest switch in the ATM network to the source computer This 

switch then uses local information to send this packet to another switch in the ATM network. This process is 

repeated until the cell is transmitted to the switch closest to the destination computer and that switch, in turn, 

delivers the cell to that destination. The ATM network switches rely on a store-and-forward method of 

transmitting to another switch in the ATM network to which it has access. A switch to which another switch 

has access in an ATM network is defined to be one to which the seoond switch has a direct physical 

connection (by whatever physical medium chosen). 

Switch to switch routing in an ATM network is performed based on local information at every switch in 

which a given cell amves. This local information is stored in a look-up table which consists of virtual path 

idennfiers (VPI) and virtue/ connection identifiers (VCI) [I]. These two pieces of information define to 

which switch the data should be Iorwarded on its next hop, based on the VPI/VCI information in the header 

of the amving celL When such a cell arrives, its VPI/VCI data is found in thc switch's internal data and, 

based on this, the cell's header is updated and queued at the output that leads to the ATM switch that forms 

the next link along the logical path specified by the VPI/VCI pair. 

At present, almost all of the available security enforcement methods for these network architectures involve 

sofiware solutions in the switches and the network management functions found in the industry 

specifications. These software methods perform a series of transformations and tests on cells transiting 

through the network to ensure that they fulfill certain characteristics [2-16]. These software enforcement 

methods are designed to reside either in the ATM switches themselves or on the source / destination 

machines where the data originates or arrives. 

Qurently, there are two distinct approaches to network security enforcement. The first approach proactively 

attempts to prevent an intruder from ever gaining access to the system while the second approach reactively 

attempts to detect and track an intruder after they have gained unauthorized access. 



The proactive approach attempts to solve the problem through five different methods: 

~ Access Control refers to a mechanism that restricts access to various subsystems only to those 

parties that are able to provide a key known only to the subsystem and the set of authorized 

users. lt is the responsibility of the subsystem to allow only those transactions that are 

accompanied by an authorized key and, likewise, Lhe responsibility of the users not to allow their 

keys to pass on to unauthorized parties. These approaches have been proven effective many 

times and are currently in use in most major operating systems. By using careful management of 

password keys, it has been shown that access control mechanisms may be effectively 

implemented in large distributed environments. 

~ Encryption requires all parties participating in communication across the network to use a well- 

known algorithm to hide their plain text data according to a key known by all parties and to 

unhide this data according to a key known only by themselves. This security method requires the 

communicating parties to be within a domain that is considered to be secure and it also implies 

the existence of a globally centralized key management authority that also exists within a secure 

domain, The only area that is assumed to be non-secure is the wide area network or inter- 

network itself. Overhead is generated within these systems in order to implement covert-channel 

free mechanisms in order to manage and transfer keys while, at the same time, ensuring the 

security of the centralized authority [3, 16]. However, through careful selection of an encryption 

algorithm and keys of reasonable length it is possible to apply encryption for data transfer in 

large distributed systems. 

~ pttysicat Lockout simply describes the physical infrastructure that protects the various hardware 

components of a distributed system and only allows authorized parties to access the various 

hardware terminals such as display terminals, keyboards and assorted input devices. Since there 

is no global information migration required to maintain the locks and gates to the access 

terminals this approach does not present any significant obstacles to its use for guarding 

distributed systems. 

~ Neutral transmissir&n patterns and modal operation relies on a combination of generating traffic 

padding with meaningless packets, conditionally rerouting segments of traftic and controlling 

the creation and destruction of connections within the network. The objective of this method of 

security enforcement relies on the masking of actual traffic in order to reduce the possibility that 

an attacker will gain any useful information through the passive monitoring of network links 

[17, 18]. Here again, the end-user workstations are assumed to exist within a secure domain 



while the network or inter-network is the only component that is not secure. Overhead is 

generated both by padding tra%c and by thc extra work done by using inefficient routes to pass 

data. In addition, significant restrictions are generally placed on the capacity of client 

workstations to create connections with one another in order to perform meaningful work [19] 

The reactive approach attempts cofiect information regarding system activities and analyze this information 

in order to establish patterns for "typicaf' system use. Once these patterns are established, the system then 

restricts the access of those users that initiate activities of a type or with a frequency that deviates from those 

calculated norms of "typical" system use [5-14]. The major problems encountered in attempting to design 

such systems have come &om three sources. First, the quantity of information generated by tracking every 

system activity in a large system is orders of magnitude too large to store and not significantly impact system 

performance. Second, the computation time required to analyze and create system profiles can become 

significant, which can lead to a poor reaction time when attempting to detect users performing activities that 

do not fit the calculated system profile. Third, malicious users may attempt to fool these systems by 

performing activities that differ from the '*typical" profile by a small amount. Through continued activity of 

this type, new system norms would be established that account for the patterns generated by the malicious 

activity. These systems may be categorized into two classes which differ by the method used to calculate their 

system profiles: 

~ Heuristic profilmg and expert systems rely on the use of a system's past experience to create 

heuristics by which to judge the capability of a particular user to be an intruder. These heuristics 

can be either a set of learned rules based on a history of system security breakdowns or a pre- 

defined set of rules created by a system administrator. In either case, this class of inuuder 

detection systems require lmge amounts of resources (both storage and computational) in order 

to track the necessary heuristics and to test all heuristics continually against the current system 

state. Lant [13] showed that it is possible to accomplish this task, but. only at tremendous 

expenditure of system resources of a type that would only be available on a large workstation. 

~ Statistical profiling makes the simplifying assumption that an intruder's activities should be 

detectable by only monitoring the statistical averages of various types of system activity. 

Therefore, intruders should be detectable if any given subset of the system's monitored activities 

deviate significantly from their normal profile. In this way, it is possible to eliminate the need to 

track a large set of heuristics and the computation time required is now bounded only by the 

number of system statistics which are tracked. 



Out of all of the individual methods described, some do not lend themselves well to implementation in the 

distributed environment of a large number of semi4umb switching stations which is envisioned for the 

current and future implementation of ATM networks. Those methods which rely heavily on being aware of 

the current global state of the distributed system are not suitable in an ATM environment since network 

bandwidth must be expended in order to maintain the aocuracy of that information, Modal operation and 

neutral transmission pauerns have been shown to require a large amount of information about. thc global state 

of the distributed system and, as such, their performance will degrade as networks become larger in size. 

Also, methods which require a large amount of memory or computation will also be difficult to implement 

effectively in the world of ATM networks since the necessary resources will need to be replicated many times 

over as the number of nodes in these networks grow. Intruder detection through heuristic profiting have been 

shown to require the resources provided by an entire workstation in order to provide timely information and, 

thus, would be difficult to scale to the number of nodes that would be required by a large network. 

Of the methods discussed, intruder prevention through access control, data encryption and physical lockout 

show the most promise for implementation in a wide-area ATM environment. For intruder detection, 

statistical profiling has a definite performance advantage in a wide-area ATM environment. Since the 

capacity and range of services ofFered by global networks continues to grow at an astonishing pace the 

performance and cost advantages of these methods can only increase in the future [20, 21]. 

Data encryption, access control and statistical profiling all rely on the proper opemtion of a software module 

within the nodes of the ATM network. No matter how efficient or adaptive these approaches are, they all, as a 

whole, are susceptible to unfriendly attack by other sofiware systems which may be connected to the network 

and which mimic the behavior of network nodes assigned to network management tasks [22J. Such attacks 

include the possibility of modifying virtual connection and path data in a switch in such a way that it is 

beneficial to the attacker (i. e. diversion or insertion of traffic in an unauthorized manner). Also, with the 

proliferation of inter-networking technologies, it becomes more and more tfifftcult for an admimstmtive body 

to manage and patrol the tmffic of every node on the network due to the very large size and distributed nature 

of these inter-networks. Those sofiware security methods which reside within the network nodes themselves 

are prone to uneven enforcement since every organization that controls individual mactunes connected to the 

inter-network apply their own slandards and methods of security enforcement. Thus, an attacker may be able 

to use a combination of partial weaknesses that exist within the security management of different nodes across 

the network in order to perform unauthorized operations. 

Therefore, in order to reach a more complete state of enforcement, the ATM network should not rely on the 

ATM switches or client computer nodes to perform these functions. A separate hardware entity that is 

controlled by one management authority, devoted solely to the purpose of security management and to which 



no network user or local manager has direct access would be the most appropriate solution. This centralized 

authority would be tasked with the responsibility of ensuring that all network traffic entering or exiting the 

secured backbone belongs to a virtual connection through that backbone that has been registered with the 

central securing authority. Thus, an attacker would be unable to use the network to carry traflic that has not 

been explicitly registered with the centralized authority body. Further, this supervisory network would be 

responsible for verifying not only the correlation of traffic with an existing, registered virtual connection, but 

also that this trafllc is not exceeding any volume bounds placed on that connection. In this way, an attacker 

would be restricted from using an existing, authorized connection on which to piggyback covert trafhc. 

Aside from the assumed secure network on which the authorizing body would rely, hardware modules would 

be required at each entry and exit point into and from the backbone which would perfortn the actual 

monitoring of backbone traffic, This monitoring would be performed based on directives from the supervising 

authority body. Toward this goal, the design and implementation of application specific hardware has already 

been shown to be a cost-effective method of realizing such a security governance snucture [23, 24). A next 

step in providing ATM network security in a cost-effective manner is to encapsulate access control, 

encryption and statistical profiling for network traffic into application specific hardware and which will reside 

in the hardware modules at the entry and exit of every access path into the secure backbone. 



CHAPTER III 

SECURITY DEVICE SPECIFICATION 

The ATM forum specifies two communication protocols by which cells are to be transferred across an ATM 

network. The first specification is called the Network to Network Interface (NNI) and describes the data 

formats to be used when two ATM switches in a public network communicate wdth one another [25]. The 

second of these is called the User to Network Interface (UM) and describes the data formats to be used when 

communicating between a public service ATM switch and a private network ATM switch or between two 

private network ATM switches. Therefore, any given connection in an ATM inter-network fotwards data 

according to the following sequence: 

1. The data is relayed from the source computer to the first switch in the source private (local / 

organizational) ATM network using UNI. 

2. The data is relayed from switch to switch within the source private ATM network using UNI. 

3. The data is relayed from the last switch in the private ATM network to the first switch in the 

public ATM network using UNI. 

4. The data is relayed &om switch to switch within the public ATM network using NNI. 

5. The data is relayed from the last switch in the public ATM network to the first switch in the 

destination private ATM nelwork using UNI. 

6. The data is relayed from switch to switch in the destination private ATM network using UNI. 

7. The data is relayed from the last switch in the destination private ATM network to the 

destination node (computer) using UNI. 

Fmm this sequence of events it is possible to conclude that the majority of steps in the transmission relv on 

the UNI interface to transfer data. Further, since there are no user nodes (computers) connected directly to the 

public ATM network and, if we can ensure that no covert traffic exists among the nodes that communicate 

through the UNI, then we can also guarantee that all traffic in the public ATM network will also be covert 

element free. Therefore, the first specification of the external security device is that it correctly implements 

the data elements of the UNI in its network interfaces. 

It is also necessary to address the method by which virtual connection information is maintained inside of 

each ATM switch for the purposes of routing information. The currently accepted method involves the 

transmission ol' specialized cells that contain "management data". These cells are originated by user nodes on 

the ATM inter-network for the purpose of setting up new connections. They inform the switches to which 



they are transmitted that a new connection is desired through that switch and that the switch should allocate a 

unique VPI/VCI pair in their internal data tables for that connection. Since it is this very method of new / 

existing connection management that is in question with regard to the detection of covert traffic, the external 

security device must rely on some other communication device that is external to the ATM network to acquire 

information about new connections as they are created within the network. 

The design ol' this security device is intended to be applied to the current state of ATM network specifications. 

Therefore, the device should support placement within networks that utilize all of the currently published 

physical interface standards. In order to keep this requirement within reasonable bounds, those physical layer 

standards that are developed by any one organization and, therefore, considered "proprietary" will not be 

considered for support. Instead, those smndard that were written to be "industry wide' and, supposedly, do 

not favor technologies controlled by any one specific manufacturer will be the basis for physical layer suppon 

in the design of this device. These standards are those physical layer interface specifications published by the 

ATM forum. 

Currently, there are five standards published and officially recognized by the ATM Forum. These are (in 

order of increasing data rates): 

~ DS-I (1. 544 Mb/sec) physical interface specification [26] 

~ 25. 6 Mb/sec over twisted pair physical interface specification [27] 

~ DS-3 (44. 21 Mb/sec) physical interface specification [28] 

~ 155 Mb/sec over twisted pair physical interface specification [29] 

~ 622. 08 Mb/sec Synchmnous Optical Network (SONET) physical interface specification [30] 

The device must perform the funciions of detection, suppression and alert, when illegal traffic is found to be 

passing through the network, in a timely manner. Detection refers to determining if a cell being transmitted 

out of a particular port on a specific switch is in accordance with a VPI/VCI pair defined to be valid traffic for 

that switch's output. Detection also, optionally, involves verification if that cell is in accordance with a valid 

VPI/VCI pair but violates the traffic capacity of that channeL Suppression involves the discarding of the 

offending cell and alert refers to a method by which the security device reports the VPI/VCI pair of the 

offending cell and the switch output which produced it. Optionally, alert also refers to the reporting of the 

reason for which the cell is found to be in violation, whether it be due to an illegal VPVVCI pair or due to a 

connection capacity violation. The issue of performing these functions in a timely manner is best described by 

setting a target of reporting a traffic infraction within one cell transmission time on the physical media of that 

network, regardless of what the transmission bandwidth may be. 



The device must be able to perform effectively under periods of peak network traific without hampering or 

significantly delaying the operation of the network itself. Tlus means that, when a particular switch output is 

generating cells at its maximum rate for a sustained period of time, the device must be able to correctly 

process and retransmit those cells which are not found to cause any tylre of violation within a bounded delay 

of no more than one cell time. 

Therefore, the device must conform to the following specifications: 

~ Support the ATM forum UNI data specification. 

~ Provide an external interface thmugh which to report network traific violations. 

~ Support all the physical interface specifications currently recognized by the ATM forum. 

~ Perform covert network tratftc detection, suppression and alert. 

~ Perform its intended functions in a timely fashion even under peak tratfic conditions. 

~ Be designed in such a fashion that its implementation is both cost effective and stable. 
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CHAPTER IV 

SECURITY DEVICE DESIGN 

IV. A Design Overview 

The determining factor in the design was the need to implement the device with components that are widely 

available, inexpensive and of a proven stability. Because of the high data rates involved in the transmission of 

cells in ATM networks, it was necessary to use as much parallelization of functions as possible in hardware in 

order to implement the design with standard components and realizable clock speeds. 

Control Module 

iN RQM sw Receiver Analysis Module Transmitter 

ITGH Receiver Analysis Module Transmitter ur o swncH 

IN RQM swlTGH Receiver Analysis Module Transmitter ourroswwr H 

Fig. 1. Bhx:k diagram of ATM switch securily device 

As shown in figure 1, the device relies on three units functioning in tandem to handle the trafhc produced by 

each ATM network switch output. These three units, labeled Receiver, Analysis Module and Transmitter, 

function in sequence to capture, analyze and retransmit the network traffic from one ATM network switch 

output port. The Receivers queue the incoming data from the ATM network switch and present the data to the 

Analysis Modules in manageable pieces. The Analysis Modules capture the data from the Receivers and 



11 

perform the necessary functions of detection, suppression and alert and pass this data to the Transmitters if it 

is found to be valid. The Transmitters capture the outgoing data from the Analysis Modules and transmit it to 

the subsequent switch in the ATM network. 

Overseeing the operation of the Receivers, Analysis Modules and Transmitters is the Control Module. It is the 

responsibility of this module to accept data from the Supervisory Interface regarding new connections that 

need to be admitted in the ATM network and pass this data to the appropriate Analysis Module. Additionally, 

the Control Module must detect a traffic alert from any one of the Analysis Modules and, when it occurs, 

must capture the data regarding the cell which caused the alert from the appropriate Analysis Module. Then, 

the Control Module must transmit this data to the supervisory interface. 

When all of these units function correctly, the end result will be a device that can capture, analyze and 

retransmit the ATM network traffic on the multiple output ports of an ATM switch, update path information 

and report traffic infractions under conditions of peak data rate transmission. The analysis portion of the 

device's function may be of two types. Under the first variant, aniving network trafiic will be checked for 

validity in terms of whether or not the connection with which that traffic is associated does indeed pass 

through the network switch and port from which the data origirmted. The second variant will perform exactly 

the same verification as the first variant and, in addition, will also verify that traffic that has been found to be 

traveling across a valid connection has not exceeded the tmtfic limits placed on that connection. The design 

of both variants is presented. 

IV. B Transmitter and Receiver Besign 

The receivers and transmitters capture and send the cell data from and to the physical outputs and inputs of 

the ATM switches between which the device lies and process it according to the particular physical interface 

characteristics of those switches. This includes any functions of decryption, decompression and bit-level 

synchronization. The exact design of these units will be highly physical media dependent and beyond the 

scope of this design description. The physical blocks comprising these modules is not a matter of choice since 
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CLOCK 

LOW BYTE byte 1, cell 1 byte 3, cell 1 byte 5, cell 1 byte 7, cell 1 

HIGH BYTE byte 2, cell 1 byte 4, cell 1 byte 6, cell 1 byte 8, cell 1 

NEW CELL 
LOW 

NEW CELL 
HIGH 

Fig. 2. Timing diagram for new cell anivat on low byte of Receiver output 

it is already described in the ATM forum literature [26-30] and components for use in these modules have 

already been implemented as prototypes [24], The only design issue which needs to be noted with regard to 

the function of the receivers and transmitters are that they present data to the Analysis Modules in parallel 

sixteen-bit words and synchronize the presentation of these 16-bit words to thc Analysis Module clock. 

Receivers use two control lines, with one conductor each, carrying a digital signal, to indicate each of the 

following two conditions: 

1. (New Ce/I how) If asserted high on the rising edge of the Analysis Module's clock, it indicates 

that the data on the low-order eight bits of the outputs of the receiver is the first byte in a ne~ly 

arriving cell. 

2. (New Cell High) If asserted high on the rising edge of the Analysis Module's clock, it indicates 

thai. the data on the highwrder eight bits of the outputs of the receiver is the first byte in a newly 

arriving cell. This will occur only when a cell arrives immediately afier its predecessor. If this is 

not the case, then the Transmitter will present its data with the first byte on the lower eight bits 

of its outputs and use the signal New Cell how to inform the Analysis Module of this status. 

The graphical representation of the timing characteristics of these interface signals is shown in figure 2 and 

in figure 3. 
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In turn, the Analysis Modules use the same two one-conductor, digital stgnals to inform the transmitters of 

these same conditions in order to pass a cell which has been found to be valid to the Transmitter at the rate of 

one sixteen-bit word per Analysis Module clock cycle. The implication is that the output stage of the Receiver 

and the input stage of the Transmitter must be synchronized to the same clock as the Analysis Module 

The Receivers will present their data words and assert their control signals on the falling edge of the clock 

cycle within which the data arrives in order to allow the Analysis Modules to use positive edge triggered logic 

to sample this data. The same is true for the Transmitters which will capture the data being sent out by the 

Analysis Modules on the falling edge of the clock. 

CLOCK 

LOW BYTE yte 51, cell 1 yte 53, cell1 byte 2, cell 2 byte 4, cell 2 

HIGH BYTE yte 52, cell 1 byte 1, cell 2 byte 3, cell 2 byte 5, cell 2 

NEW CELL 
LOW 

NEW CELL 
HIGH 

Fig. 3. Timing diagram for new cell amval on high byte of Receiver output 

The stipulation that data be presented to and read from the Analysis Modules in sixteen-bit words arises out 

of the need to have this device operate at clock speeds that are reasonable for implementation in integrated 

circuit designs that utilize the major logic families currently available. At the highest speed scenarios of data 

rates of 622. 08 Mbps, it implies that 38. 880 million sixteen-bit words will need to be processed by every 

Analysis Module which, in turn, implies a maximum clock rate of 38. 880 MHz for the Analysis Modules. 



14 

IV. C Analysis Module Desitpt 

The Analysis Module will admit a new cell into a 16-bit shift register, word by word from the receiver. In 

parallel, as components of the VPI/VCI pair belonging to the cell in transit are received from the Receiver 

(contained in the cell header, consisting of the first five bytes of data) they will also be copied into six 4-bit 

latches. This transfer will occur in a stepwise fashion over the course of morc than one clock cycle since 

different portions of the ATM cell header become visible at the Receiver*s outputs on ditfi:rent 16-bit words. 

Multiplexers will be used to select which words of the header will be loaded into these latches based on 

whether the arriving cell entered the Analysis Module with its first byte in the low or the high order eight bits 

of the register input from the receiver. 

Once all 24 bits ol' the VPI/VCI pair associated with the cell in transit have been captured in these 4-bit 

latches, the twenty four bits of output from them will be presented to the memory lookup module in two 12-bit 

words, with one word being presented at a time. The control to present these two 12-bit words will be 

performed by a 12-bit by 4-input multiplexer 

The two words that are presented to the memory lookup module will be interpreted by this module as an 

address which it uses to perform the actual analysis of the cell's validity. Depending on the version of the 

Analysis Module to be implemented, this function will change. Primarily, the memory lookup module will 

verify if the cell belongs to a connecuon that does indeed pass through the switch and pon &om which it 

originated. Optionally, the module will also verify if the network connection along which the cell in question 

is traveling has not exceeded the limits of tra%c volume allowed for that connection. 

This result will be used by the sequence / detect module to determine if the cell is valid or noh If the cell is 

valid, it will enable the output from the last set of latches in the 16-bit shiit register to be sent out to the 

transmitter. If the cell is not valid, the sequence / detect module will suppress output of the cell from the shift 

register to the transmitter by simply presenting null data (all zero bits) to the input stage of the Receiver. In 

this case, the sequence / detect module will also will trigger interrupt logic in the Control Module. The 

Control Module will then know that an invalid cell has been detected and will perform the necessary 

operations to read the VPI/VCI pair of the offending cell from the outputs of the six 4-bit latches which have 

been storing this informafion throughout the entire process. 

All of the devices used in this circuit are currently feasible in TTL and HC logic families. In addition, a 

number of tri-state buifers are implicitly being used in this design to allov the Control Module to select 

between the data inputs and outputs of the difierent Analysis Modules to which it is attached. The 

interconnection of the functional blocks of the Analysis Module is shown in figure 4. 
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The sequence / detect module which will be a simple sequential state machine with external decode logic will 

control all of the inputs and outputs required to perform the functions just described. This state machine witt 

be designed using the same type of edge triggered D-type latches and combinational logic used to construct 

the other component blocks of the Analysis Module. 

The reasoning behind the design of the Analysis Modules was to be able to take advantage of the large 

number of operations which can be performed in parallel in order to reduce the number of clock cycles 

necessary for the device to perform its function. 

Thc effect on the performance of the physical communication link passing thmugh this device will be that 

any cell in transit will be delayed by the amount of time necessary to read in the cell's header and perform the 

lookup of the VPI/VCI pair contained in these five bytes in the memory lookup module. This means that the 

controlling factor of the transmission delay a cell will experience in every security device through which it 

passes will be the sum of these two periods of time. 
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Fig. 4. Analysis Module block diagram 
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Fig, 5. Sequence of operations under full data load of the Analysis Module 

The final issue is that the Control Module*s interrupt logic will be triggered within less than one cell transmit 

time if the transiting cell is found to be invalid (nine clock cycles, to be precise). This means that the Control 

Module will know about thc violation in less than one cell time and can begin sending data about the 
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violation to its supervisory control interface within less than one cell time. The timing diagram for cell 

arrivals and departures from the Analysis Module is shown in figure 5. 

The exact sequence of events within the Analysis Module will be: 

1. Bytes I and 2 of cell one are presented on the inputs from the Receiver. These bytes are pushed into the 

shiA register. The sequence / detect module is informed that a new cell has arrived through the assertion 

of the New Cell Low control line from the Receiver. The low order 4 bits ofbyte I and all 8 bits of byte 2 

are presented and latched into the three high-order 4-bit latches. 

2. Bytes 3 and 4 of cell one are presented and pushed into the shiA. register. All 8 bits of byte 3 and the high 

order four bits of byte 4 are presented and latched into the three low-order 4-bit latches. 

3. Bytes 5 and 6 of cell one are presented and pushed into the shift register. The data in the three high order 

4-bit latches is presented to the memory lookup module through the multiplexer. 

4. Bytes 7 and 8 of cell one are presented and pushed into the shift register. The row address select is 

asserted on the memory lookup module. 

5. Bytes 9 and 10 of cell one are presented and pushed into the shift register. The data in the three low order 

4-bit latches is presented to the memory lookup module tltrough the multiplexer, 

6. Bytes I I and 12 of cell one are presented and pushed into the shift register. The column address select is 

asserted on the memory lookup module. 

7. Bytes 13 and 14 of cell one are presented and pushed into the shift register. The result concerning the 

validity of the cell will be read from the memory lookup module. If this result shows that ihe cell is 

invalid, the interrupt logic of the Control Module is triggered. Starting at this point, the Control Module 

may read the VPI/VCI pair stored in the six 4-bit latches in order to transmit this data about the traflic 

violation to the supervisory interface. The Control Module must complete the reading of this data within 

the next 20 clock cycles. 

8. Bytes 15 and 16 of cell one are presented and pushed into the shifl register. The sequence / detect module 

finishes the read cycle in the memory lookup module by deasserling the row address select line. 

9. Bytes 17 and 18 of cell one are presented and pushed into the shift register. If the cell currently being 

received was found to be valid and the New Cell Low control input is asserted (meaning we are still 

receiving a cell with a starting b14e on the low order bits of the Receiver input), the sequence / detect 

module sets the control on the low-order eight bits of the data gate to the Transmitter to reflect the inputs 

from the shift-register for the next 26 cycles. In this case, the sequence / detect module also sets ihc 

control on the high-order eight bits of the data gate to the Transmitter to reflect the inputs fmm the shifl- 

register for the next 27 cycles. The sequence / detect inodule asserts the New Cell Low line to the 

Transmitter and bytes I and 2 of cell one are presented at the inputs of the Transmitter. If the cell 

currently being received was found to be valid and the New Cell High control input is asserted (meaning 
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we are receiving a cell with a starting byte on the high order bits of the Receiver input), the sequence / 

detect module sets the control on both the low-order and highwrdcr eight bits of the data gate to the 

Transmitter to reflect the inputs from the shift-register for the next 27 cycles. The sequence / detect 

module asserts the New Cell High line to the Transmitter and byte 53 of cell one along with byte I of cell 

two are presented at the inputs of the Transmitter. 

lb. Bytes 19 and 20 of cell one are presented and pushed into the shifl register. Either bytes 3 and 4 of cell 

one or bytes 2 and 3 of cell two are presented at the input of the Transmiuer. 

I l. Bytes 21 and 22 of cell one are presented and pushed into the shift register. The sequence / detect module 

initiates a refresh cycle in the memory lookup module by asserting the row address select line. Either 

bytes 5 and 6 of cell one or bytes 4 and 5 of cell two are presented at the input of the Transmitter. 

12. Bytes 23 and 24 of cell one are presented and pushed into the shiA. register. Either bytes 5 and 6 of cell 

one or bytes 4 and 5 of cell two are presented at the input of the Transmitter. 

13. Bytes 25 and 26 of cell one are presented and pushed into the shift register. Either bytes 7 and 8 of ceII 

one or bytes 6 and 7 of cell two arc presented at the input of the Transmitter. 

14. Bytes 27 and 28 of cell one are presented and pushed into the shift register. The sequence / detect module 

continues the refresh cycle of the memory lookup module by deasserting the row address select line. 

Either bytes 9 and 10 of cell one or bytes 8 and 9 of cell two are presented at the input of the Transmitter. 

15. Bytes 29 and 30 of cell one are presented and pushed into the shift register. Either bytes 11 and 12 of cell 

one or bytes 10 and 11 of cell two are presented at the input of the Transmitter. 

16. Bytes 31 and 32 of cell one are presented and pushed into the shiA register. Either bytes 13 and 14 of cell 

one or bytes 12 and 13 of cell two are presented at the input of the Transmitter. 

17. Bytes 33 and 34 of cell one are presented and pushed into the shiA register. The sequence / detect module 

continues the refresh cycle of the memory lookup module by asserting the row address select line. Either 

bytes 15 and 16 of cell one or bytes 14 and 15 of cell two are presented at the input of the Transmitter. 

18. Bytes 35 and 36 of cell one are presented and pushed into the shift register. The sequence / detect module 

finishes the refresh cycle of the memory lookup module by deasserting both the row address select line 

and the column address select line. Either bytes 17 and 18 of cell one or bytes 16 and 17 of cell two are 

presented at the input of the Transmitter. 

19. Bytes 37 and 38 of cell one are presented and pushed into the shift register. If the Control Module needed 

to add or remove a valid path to or from the memory lookup module, it should have loaded a 24-bit latch 

with the appropriate VPI/VCI pair to bc updated, an n-bit latch with the appropriate data about the path 

(the "n" bits depend on the design version chosen) and an SR-latch to indicate that path data needs to be 

updated by this point. If this SR-latch has been set, then the sequence / detect module begins a write cycle 

on the memory lookup module by setting the 12-bit line selector to reflect the high-order twelve bits of 

the 24-bit latch to the memory lookup module. Either bytes 19 and 20 of cell one or bytes 18 and 19 of 

cell two are presented at the input of the Transmitter. 
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20. Bytes 39 and 40 of cell one are presented and pushed into the shiA register. If the SR-latch has been set, 

the sequence / detect module continues the write cycle by asserting the row address select line of the 

memory lookup module. Either bytes 21 and 22 of cell one or bytes 20 and 21 of cell two are presented at 

thc input of the Transmitter. 

21. Bytes 41 and 42 of cell one are presented and pushed into the shifl register. If the SR-latch has been set, 

the sequence / detect module continues the write cycle on the memory lookup module by setting the 12- 

bit line selector to reflect the low-order twelve bits of the 24-bit latch. Either bytes 23 and 24 of cell one 

or bytes 22 and 23 of cefl two are presented at the input of the Transmitter. 

22. Bytes 43 and 44 of cell one are presented and pushed into the shift register. If the SR-latch has been set, 

the sequence / detect module continues the write cycle by asserting the column address select line of the 

memory lookup module. Either bytes 25 and 26 of cell one or bytes 24 and 25 of cell two are presented at 

the input of the Transmitter. 

23. Bytes 45 and 46 of cefl one are presented aud pushed into the shiA register. If the SR-latch has been set, 

both the column and row address select lines on the memory lookup module are deasserted. Either blues 

27 and 28 of cell one or bytes 26 and 27 of cell two are presented at the input of the Transmitter. 

24. Bytes 47 and 48 of cell one are presented and pushed into the shift register. Either bytes 29 and 30 of cell 

one or bytes 28 and 29 of cell two are presented at the input of the Transmitter. 

25. Bytes 49 and 50 of cell one are presented and pushed into the shifl register. Either bytes 31 and 32 of cell 

one or bytes 30 and 31 of cell two are presented at the input of the Transmitter. 

26. Bytes 51 and 52 of cell one are presented and pushed into the shifl register. Either bytes 33 and 34 of cell 

one or bytes 32 and 33 of cell two are presented at the input of the Transmitter. 

27. Byte 53 of cell one and byte I of cell two are presented and pushed into the shifl register. Thc New Cell 

Low control input from the Receiver is deasserted and the New Cell High control input is asserted to 

inform the sequence / detect module that a new cell has arrived. The low-order 4 bits of byte I from cell 

two are presented and latched into the highest-order 4-bit latch. Either bytes 35 and 36 of cell one or 

bytes 34 and 35 of cell two are presented at the input of the Transmitter. 

28. Bytes 2 and 3 of cell two are presented and pushed into the shift register. All bits from bytes 2 and 3 are 

presented and latched into the four 4-bit latches next to the highest-order 4-bit latch. Either bytes 37 and 

38 of cell one or bytes 36 and 37 of ceB two are presented at the input of the Transmitter, 

29. Bytes 4 and 5 of cell two are presented and pushed into the shifl register. The high-order 4 bits of byte 4 

are presented and latched into the lowest order 4-bit latch. The data in the three high order 4-bit latches 

is presented to thc memory lookup module through the multiplexer. Either bytes 39 and 40 of cell one or 

bytes 38 and 39 of cell two are presented at the input of the Transmitter. 

30. Operation continues at step 4 with data continuing to be pumped out of the last stage of the shiA register 

and into the Transmitter on every cycle and the remainder of cell two being pushed into the first stage of 

the shifl register, two bytes at a time, on every cycle. 
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IV. C. I Basic Building Blocks of the Analysis Module Design 

The Analysis Module's design was conceived for gate-level implementation. Therefore, the atomic elements 

considered were NAND and NOR gates since they are the simplest building blocks for all the logic families 

currently in widespread digital semiconductor production. Due to the many different Boolean functions that 

needed to be implemented in order to make the design feasible, many versions of these gates were used, from 

the simplest two input gates up to six and seven input gates. The circuit symbol designations for the smaflest 

of these basic gates are shown in figure 6. 

2-input NAND gate 3-input NAND gate 

2-input NOR gate 3-input NOR gate 

Fig. 6. Some of the atomic circuit units used in the design of the Analysts Module 

Beginning with these basic units the flrst level of integration involved the construction of elementary latches 

and flip-flops. The nature of this design relies on two components for difl'erent elements of its operation. 

First, it relies, to a great extent, on positive edge-triggered latches for counters, state machines, storage 

elements and shift registers. Next, the design requires some SR type flip-flops for status tracking. Both of 

these devices were implemented and used as basic building blocks throughout the design. The circuit schemes 

for these devices are shown in figure 7 and figure 8. 
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RESET 

Fig. 7 SR-latch used in the design of the Analysis Module 

CLOCK 

I 

p&~ 

DATA 

Fig. 8. Positive edge-triggered D-type flip-flops used in the design of the Analysis Module 

IV. C. 2 Shift Register Design 

The Analysis Module relies on a shtfl register in order to temporarily store a portion of a cell that is received 

during the time required by the Analysis Module to determine if that cell can bc further transmitted to the 

Transmitter block. In order for the Analysis Module to complete this task, 9 clock cycles are required. 

Therefore, this shiA register must be able to delay incoming data by this same number of clock cycles. In 

addition, since data is presented from the Receiver in 16-bit words, the shift register must be able to capture 

all of this data on every clock cycle. 
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INPUT FROM RECEIVER 

bank of 16 positive edge-triggered D-type latches in parallel 

bank of 16 positive edge-triggered D-type latches in parallel 

bank of 16 positive edge-triggered D-type latches in parallel 

bank of 16 positive edge-triggered D-type latches in parallel 

bank of 16 positive edge-triggered D-type latches in parallel 

bank of 16 positive edge-triggered D-type latches in parallel 

bank of 16 positive edge-triggered D-type latches in parallel 

bank of 16 positive edge-triggered D-type latches in parallel 

bank of 16 positive edge-triggered D-type latches in parallel 

OUTPUT TO DATA GATE 

Fig. 9. Shift register used in the design of the Analysis Module 
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The shift register is built using positive edge-triggered D-type latches in 9 banks of 16 latches apiece. Each 

bank of 16 latches is linked in series to the next so that the output of a latch at position "n** will be captured 

and reflected at output "n+I*' on the rising clock edge of the next clock cycle. The block diagram for this 

device is shown in figure 9. 

IV. C. 3 Multiplexer and Data Gate Design 

The Analysis Module uses multiplexers in order to present dltferent data to certain modules at the appropriate 

times. At its simplest, the multiplexer requires **n'* inputs and "Iogr n" control hnes. Based on the state of the 

control lines, one of the inputs will be reflected at the output. A two-line multiplexer presents one of two 

inputs at its output, depending on the state of one control line. A four-line multiplexer presents one of four 

inputs at its output, depending on the state of two control lines. The Analysis Module relies on two-line and 

four-line multiplexers to parse the VPI/VCI pair from a newly arriving cell's header and to load this data into 

the memory lookup module. To implement these two forms of multiplexers, their output is expressed as a 

minimized Boolean expression. The Boolean expressions to implement these two devices are shown in 

figurc 10. 

Output = Input-I~Control' + Input-2+Control two-line multiplexer 

Output = Input-I~Control-I 'oControl-2' + 
Input-2 ~Control-I'~Control-2 + 
Input-3 ~Control-I+Control-2' + 
Input-4~Control-I ~Control-2 

E. four-line multiplexer 

Fig. 10. Boolean expressions governing operation of multiplexers 

The Analysis Module uses a data gate to control transmission of data from the shiA register to the 

Transmitter. In its simplest form, the data gate requires an input and a control line. If the control line is 

asserted, the data gate's output will reflect what is presented at the input, otherwise, a value of zero will be 

presented, Once again, the output of this module can be expressed as a minimized Boolean expression. The 

Boolean expression to implement this device is showu in figure 11. 
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Output = InputoControl 

Fig. 11. Boolean expressions governing operation of data gate 

Both the inultiplexers and data gates are expressed at the gate level as a series of NAND gates implementing 

the Boolean expressions governing the operation of these two devices. The circuit schemes governing the 

operation of the multiplexers and the data gate are shown in figure 12 and figure 13, respectively. 

I rl put- 'I 

Input-2 

C I -II dt l t 

Control 

Input-I 

Input 2 

input-3 
Output 

four-line data selecto~r 
2 

Input-4 

Control-1 

Control-2 

Fig, 12. Circuits governing opemtion of multiplexers 



25 

Contro 

Fig. 13. Circuit governing operation of data gate 

The design of the Analysis Module uses two types of multiplexers. The data latches used to store the VPI/VCl 

pair of the incoming cell rely on a series of six 4-bit by 2-line multiplexers to present different portions of this 

path information when new cells arrive with their first byte being presented on the low-order eight bits of the 

Receiver input and on the high-order eight bits of this input. 

The second type of multiplexers are required to load data into the memory lookup module. There are four 

possible sources of data required by this module. Two of these sources are the high and low order bytes from 

the latches that store the VPI/VCI pair of the transiting cell. The remaining two sources are the high and low 

order bytes from the latches that store new path information that the Control Module requests to be loaded in 

the Analysis Module. Therefore, a 12-bit by 4-line data multiplexer is implemented. 

The block diagrams for the implementation of the four-bit by two line multiplexer and the twelve-bit by four- 

line multiplexer are shown in figure 14 and figurc 15, respectively. 
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Input-2 
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Input-1 
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Output 
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Fig. 14. Four-bit by two-line multiplexer used in the design of the Analysis Module 
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IV. C. 4 Memory Lookup Module Design 

The primary purpose of the Analysis Module is to verify if network trafFic passing through it docs not violate 

any path or, in the alternative implementation, path and volume restrictions. These two possible 

implementations are referred to as the "path-only" implementation and the "path and volume" 

implementation. 

The key to performing the path validation of a transiting cell is to perform a lookup of its VPI/VCI pair in a 

table that associates a data field of one bit with each possible VPI/VCI pair. This table is implemented in a 

semiconductor memory external to the Analysis Module with an address bus that has the same width as a 

VPI/VCI pair and a data bus width of one bit. The ATM Forum's specification for the User Network Interface 

(version 3. 0) requires that twenty-four bits be allocated for VPI/VCI information in the header of every cell, 

Therefore, this external memory must have a data bus width of twenty-four bits. Such a memory will have a 

total capacity of 16 megabits. The speed of the memory will dictate how many clock cycles the Analysis 

Module must wait before being able to determine if the transiting cell may be forwarded to the Transmitter. 

With the current state of senuconductor technology, memories of the necessary density and speed have been 

implemented as monolithic integrated circuits. Once such product is the SMJ416100 d&uamic random access 

memory (DRAM) from Texas Instruments. It oR'ers an address bus width of twenty-four bits and a data bus 

width of one bit. After the necessary data has been presented on its address bus, the data for that address will 

become available within a maximum of 18 nanoseconds (for the SMJ416 100-70 package). Since the Analysis 

Module clock is assumed to be operating at 38. 88 MHz (thereby implying a clock period of 25. 72 

nanoseconds), we can guarantee that the data regarding whether or not a cell is valid will be available within 

one clock cycle afier the VPI/VCI information has boen presented. 

Dynamic RAMs such as the SMJ416100 require that some maintenance be periodically performed in order to 

guarantee that the data stored within them will not become volatile. This maintenance consists of performing 

a series of refresh cycles within a specified period of time. For the SMJ416100 specifically, 4096 refresh 

cycles must be performed within every 35 millisecond time period in order to ensure that no data stored 

within the device will be altered inadvertently. This maintenance requirement can be resolved by combining 

the memory read operation required by the VPI/VCI pair lookup with one refresh cycle. Therefore, whenever 

a cell arrives and its path information has been parsed out of the header and presented to the memory, a read 

operation and a refresh operation can be performed in sequence. This operation is called a Hidden-Refresh- 

Read-Cycle in the literature of the SMJ416100. 
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The network data rate that the Analysis Module is required to support is 622. 08 Mbits per second arriving in 

cells of 53 bytes apiece and with each byte consisting of 8 bits. This means that, under peak traffic conditions, 

1. 467 million cells will arrive per second. Since we are performing one read with refresh operation on every 

cell arrival, this implies that we will be performing the same number of refresh operations per second as there 

are cells that anive. From this, it is possible to conclude that 46949 refresh operations will be performed 

every 35 milhseconds under peak traffic conditions, which well exceed the minimum number of 4096 

established for this device. 

lt is fairly evident that the number of refresh cycles that will be performed on the memory well exceeds the 

required minimum (by a factor of ten). However, reducing the number of refresh cycles performed to less than 

one for every cell anival significantly complicates the design of the state machine inside of the memory 

lookup module, thereby, increasing the component count required for its implementation. Due to the fact that 

nothing in the literature about tlus device states or implies that performing such a large number of refresh 

cycles on it will lead to an increased chance of device failure before the expected end of its functional life, it 

was not seen as necessary to incorporate this reduction in refresh cycles within this design. 

On every cell arrival, it is necessary to perform two operations. The first of these is the Hidden-Refresh-Read 

Cycle to verify the cell's validity and to perform the necessary maintenance on the memory. The second 

operation that must be performed is a Write Cycle to update valid path information that the Control Module 

has requested to be entered into the Analysis Module's local information. Each of these operations are 

initiated and carried out by following a sequence of events on the address bus (control lines AO through Al 1) 

and data bus (control line D) of the memory and on the RAS' and CAS' control lines. 
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TABLE I 
Timing characteristics as they appear in pmduct data for the Texas Instruments SMI416100-70 Dynamic 

RAM (DRAM) 

tRC 

tRAS 

tc su 

tRS 

tRCD 

tRSH 

tr 
tCAS 

tRAO 

tca 

tASC 

tASR 

tRAS 

tcAR 

tRCS 

tcAR 

tssu 
tcArr 

tCAC 

IAA 

terr 
tRAC 

tcs 
tcwr. 

tRWC 

tvr 
trra 

twsur 

twsr 

cycle time, random read or write 

pulse duration, RAS' low 

delay time, RAS' low to CAS' going high 

pulse duration, RAS' high 

delay time, CAS' high to RAS' going low 

delay time, RAS' low to CAS' low 

delay time, CAS' low to RAS' going high 
transition time 

pulse duration, CAS' low 

delay time, RAS' low to column address 

pulse duration, CAS' high 

setup time, colunm address before CAS' going low 

setup time, row address before RAS' going low 

delay time, column address to RAS' going high 
hold time, row address after RAS' low 

delay time, column address to CAS' going high 

setup time, W' high before CAS' going low 

hold time, column address atter CAS' lrnv 

hold time, W' high atter RAS' high 
hold time, column address after CAS' low 

access time from CAS' low 

access time from column address 

output disable time after CAS' high 
access time from RAS * low 

setup time, data 

setup time, W' low before CAS' going high 

setup time, W' low before RAS' going high 

pulse duration, W' low 
hold time, data 

delay time, RAS' low to CAS' going high 

hold time, W' high after RAS' low 

sctu time, W hi hbeforeRAS' oin low 

130 ns 
70 ns 

70 ns 

50 ns 

5 ns 

20 ns 

18 ns 
3 llS 

18 ns 
15 ns 

10 ns 

0 ns 

0 ns 

35 ns 

10 ns 
35 ns 

0 ns 

15 ns 
0 ns 

15 ns 

0 ns 

0 ns 
18 ns 

18 ns 

10 ns 
15 ns 
10 ns 

10 ns 

10 ns 

10, 000 ns 

52 ns 

30 ns 

10, 000 ns 
35 ns 

18 ns 

35 ns 
18 ns 

70 ns 

The descriptions of the timing diagram designations for these dynamic RAMs, along with their minimum and 

maximum values, may be found in table I. Also, the refresh operation requirements are shown in figure 16. 
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Fig. 16. Product characteristics information as it appears in product data document for the Texas Instruments 
SM)416100 Dynamic RAM (DRAM) 
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Fig. 17. Hidden-Refresh-Read Cycle timing diagram as it appears in product data document for the Texas 
Instruments SMJ416100 Dynamic RAM (DRAM) 
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SMJ416100 Dynamic RAM (DRAMI 



34 

The timing diagrams for the Hidden-Refresh-Read and Write operations on these dynamic RAMs are shown 

in figurc 17 and figure 18, respectively. 

In order to perform a Hidden-Refresh-Read Cycle, the following must occur in sequence (assuming that, 

initially, the memory's RAS', CAS' and W' control lines are unasserted): 

1. The high-order twelve bits of the address are presented on the address bus (read). 

2. The RAS' control line is asserted by being driven low and the data on the address bus continues to be 

held there for 10 nanoseconds more (read). 

3. The low-order twelve bit of the address are presented on the address bus (read). 

4, The CAS' control line is asserted by being driven low and the data on the address bus continues to be 

held there for 15 nanoseconds more (read). 

5. Wait for 3 nanoseconds to ensure that, at least, 18 nanoseconds have elapsed since the CAS' line was 

asserted and read or latch the data at the address from the Q output (read). 

6. Wait for 42 nanoseconds to ensure that, at least, 70 nanoseconds have elapsed since the RAS' line was 

asserted and deassert the RAS' control line by driving it high (read). 

7. Wait for 50 nanoseconds and reassert the RAS' control line by driving it low (refresh). 

8. Wait for 70 nanoseconds and deassert the RAS' control line by driving it high (refresh). 

9. Wait for 50 nanoseconds and reassert the RAS' control line by driving it low (refresh). 

10. Wait for 10 nanoseconds and deassert both the RAS' and CAS' control lines by driving them both high 

(refresh). 

In order to perform a Write Cycle, the following must occur in sequence (assuming that, initially, the 

memory's RAS', CAS' and W' control lines are unasserted): 

1. The high-order twelve bits of the address are presented on the address bus. 

2. The RAS' control line is asserted by being driven low and the data on the address bus continues to be 

held there for 10 nanoseconds more. 

3. The low-order twelve bits of the address are presented on the address bus and the data to be written to 

that address is presented on the data bus. 

4. The RAS' and W' control lines are asserted by driving them low and the data on the address bus 

continues to be held for 10 nanoscconds more while the data on the data bus continues to be held lor 15 

nanoseconds more. 

5. Wait for 3 nanoseconds to ensure that, at least, 18 nanoseconds have elapsed since the CAS' line was 

asserted and deassert both the RAS' and CAS' control lines. 
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With these details regarding the operation of the external dynamic RAM on which the memory lookup 

module will rely having been presented, the design of this module for the '*pathwnly" version of the Analysis 

Module will simply direct the control lines of this external memory (pins RAS', CAS' and W') into the 

sequence detect module, the address bus (pins AO through Al 1) into the twelve-bit by I'our-line selector, the 

data bus gin D) to the output of the "n-bit latch" and the data output (pin Q) to a latch within the sequence / 

detect module. Also, in the "path-only" implementation the "n-bit latch" will only be required to capture one 

bit of information since only this one bit is required to indicate whether or not the newly amving cell is valid. 

The use of a dynamic RAM as a memory lookup module in the "path-only'* version of the Analysis Module 

implementation is shown in figure 19. 
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Fig. 19. Memory lookup module used in the design of the "pathwnly" version of the Analysis Module 

The design of the memory lookup module for the "path and volume" version of the analysis module requires a 

significant amount of addifional circuitry in order to ensure that transiting cells will experience a delay of less 

than one cell time. The "path and volume" version requires that we maintain two pieces of information 

regarding each possible network connection through the security device. First, as in the "path-only" 

implementation, it is necessary to determine whether or not a transiting cefi belongs to a connection which is 

valid for the Analysis Module. Second, it is necessary to be able to store a short term history about every valid 



connection passing through a given Analysis Module. This short term history is the number of cells which 

have passed through the Analysis Module along a particular valid connection within a known window of 

time. Therefore, this requirement stipulates that no more than a certain known number of cells will be 

allowed to pass through the Analysis Module along a particular connection within that known window ot 

time. 

In order to implement this second requirement, a small storage unit must be used which will track the number 

of cells that are allowed to pass through the Analysis Module along a particular connection. Every single time 

that a cell belonging to that path passes through the module, the binary value stored within this storage unit 

will be decremented to reflect the event. 

However, a mechanism must also exist by which this number of allowable cells can be replenished. 

Otherwise, the volume of tratflc along a particular connection could only be monitored for an infinitely long 

window of time. Therefore, in addition to the ability to decrement the value in this storage unit, it is also 

necessary to be able to periodically increment this value. This implies a storage device with two control lines, 

If one control line is asserted, then, on the next clock cycle, the device must increment the value which it 

stores and, if the other control line in asserted, then, on the next clock cycle, the device must decrement the 

value which it stores. 

This device can most easily be implemented as a simple counter with two sets of counting logic. If the 

decrement control line is asserted, then the oount down logic is enabled on the next clock cycle. If the 

increment control line is asserted, then the count up logic is enabled on the next clock cycle. If both or neither 

the increment and decrement control lines are asserted, then the device will retain tts current value on the 

next clock cycle. 

According to the logic of its operation, this device will be able to alert the Analysis Module if a valid 

transiting cell has exceeded its traffic volume restrictions when the value stored internally reaches zero. 

However, as currently described, the device could conceivably also come to store an internal value of zero if, 

on some particular clock cycle, the internal value is the maximum value that the device can store (all bits set 

to one) and the increment control line is asserted. Likewise, a valid alarm due to a zero internal value may be 

stopped if another cell transits through the Analysis Module while the alarm is triggered because the internal 

state of the device would shift from all zero bits to all one bits, if the count down logic is operating properly. 

In order to prevent these two events from occurting, we must restrict the count up and count down logic from 

wrapping around to all zeroes or all ones when the extremes of the counting range have been reached. 
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This device will be called a "counter with control" for the purposes of this design and its block diagram is 

shown in figure 20. The operational states of the device are shown in table II. 

TABLE II 
Operational states of the "counter with control" to be implemented in the "path and volume" version of the 

memory lookup module 

asserted 

unasserted 

unasserted 

asserted 

the replenishment time period has elapsed 

a valid cefi is transiting through the device 

if (current state w all ones) 
current state + 1 

else 
current state 

if (current state w all zero) 
current state - I 

else 
current state 

asserted asserted a valid cell is transiting through the device and 

the replenishment time period has elapsed 

current state 

unasserted unasserted no event occurred current state 

The entire design of the Analysis Module centers around being able to perform the individual steps of capture 

and analysis of newly arriving cells within one cell time and synchronized to a clock whose period is equal to 

the time that is required to receive two bytes from the external network. Because of this requirement, this 

"counter with control** must be able to update its internal state within a bounded period of time. The reason 

this bounded period of time is important is that we cannot stipulate that the internal state of this counter 

consist of any certain fixed number ofbits. Therefore, the implementation of this device as a ripple counter or 

any series of partial adders is ruled out due to the fact that the time required for complete state update from 

one clock cycle to the next in these devices is linearly dependent on the number of bits which make up the 

internal state of the device. 

Additionally, it is necessary to determine if a valid cell has violated the volume restrictions for its connections 

without delaying that cell more than one cell transmission time. It has already been shown that the "path- 

only" version of the Analysis Module requires almost one complete cell time to perform its function leaving 

only seven byte times short of a complete cell, which translates to only 3'A clock cycles. Since the "counter 

with control" will be performing a function that is in addition to that of the "path-only" version, it must be 
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able to provide this result within less than this period of time. In order to keep within this time restriction for 

state updates when the internal state of the counter is made up of an indeterminate number of bits, it is 

necessary to employ logic to fully decode the current state of the device on every state transition. 
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Fig. 20. "Counter with control*' for the memory lookup module used in the design of the "path and volume" 

version of the Analysis Module 

The logic necessary to implement the count-up and count-down logic blocks of the "counter with control" 

depends only on the number of latches that determine the internal state of the counter and whether or not the 
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TABLE VI 
Boolean expressions necessary to implement the decode logic for the five lowest-order terminal bits of a fully 

decoded count-down counter with no roll-over 

bi 

bi 
br 

bg 

(bo)(b, 
bo+ 0»)(bi) 
o+bi +br 

(ho + bi + br + b, )(b, ) 

The design of the multiplexer will not be presented here as this mea has already been covered by other 

sections of the Analysis Module design. 

To build on the functionality provided by the "counter with control", it is necessary to provide a method by 

which this counter may be incremented in order to continually replenish the bandwidth available to any valid 

connection. However, it is necessary to do this in such a fashion that every connection be allowed to maintain 

their own rate of replenishment and, in addition, to be able to update thc replenishment rate for any new 

connection that is created. Therefore, the output of a simple fixed clock divisor will not be su15cient to drive 

the "Increment Control" on the "counter with control". For a connection that is valid, it is necessary to allow 

for this replenishment rate to be programmable. 

This can be accomplished with a multiple-bit latch (called a register from this point on) and a simple counter 

with reset control which counts up on every clock cycle. When the internal state of the counter with reset 

control exactly matches the internal state of the register, an equality tester can be used to trigger an event. 

This event wig reset the simple counter to an null internal state (all bits zero) and will also act as the 

"Increment Control" for the "counter with control". Once this collection of register, simple counter with reset, 

equality tester and '*counter with control" has been implemented, the entire system should work in tandem to 

provide a unit that replenishes its allowable data at a rate which is programmable and sets of an alarm signal 

whenever the tratfic rate (signaled by the "Decremcnt Control" ) has exceeded the rate allowed within the 

programmable window (i. e. the *'counter with control" has reached an internal state consisting of all zero 

bits). This module will be referred to as a "window control module". 

The simple counter with reset used in the window control module must also be a fully decoded counter since 

it too must change states in a fashion that is independent of the number of bits that make up its internal state. 

However, since there is no requirement that this device not roll over from a smte of all one bits to all zero bits, 

the decode logic necessary for each bit is greatly simpliified over that of the '*counter with control'*. Moreover, 
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there is no longer any difference in the logic required for terminal and non-terminal bits in the expressions 

describing the next state decode logic. 
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input-0 bit-2 

input-1 bit-2 

input-0 bit-2 

Fig. 21. Circuitry for an example three-bit equality tester for the memory lookup module used in the design of 
the "path and volume" version of the Analysis Module 

The Boolean expressions necessary to implement the decoding of all bits in the simple counter with reset 

control is shown in table VII for the five lowest order bits (the Boolean expressions for additional higher 

order bits may be generalized from these expressions). 
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TABLE VII 
Boolean expressions necessary to implement the decode logic for the five lowest-order bits ot a simple 

u -counter with reset control 

bp 

bi 

b, 

bp' 

i' + Ibo')0») 

Ibo)0»)tbz') + Ibi')Ibz + ' ) 
Ibo)tbz)tbz)tbz') + Ibz')Ibz) + 0»')Ibz) + Ibo')Ibz) 

Ibc)tbi)tbz)tbz)tbz') + Ibz')Ibz + ')Ibi) + 0»')Ibi) + (bo')(ba) 

The zero tester unit of the window control module must simply assert its result if and only if all bits of its 

input are zeroes. This can very easily be accomplished with a multiple input NOR gate. Therefore, for an "n- 

bit*' zero tester, all that is required is an n-input NOR gate. 

The equality tester unit of the window control module must compare all of the bits of one input against all of 

the bits of the other input and assert its result output if and only if all of these bits match. The comparison of 

the individual bits would best be performed by an XNOR gate. However, due to the low level nature of this 

design, the XNOR function will be implemented with component NAND gates. Once each of the 

corresponding bits &om the two inputs have been tested with the XNOR function, the resulting equality may 

be tested by applying the results of all the XNOR functions to a multiple input NAND gate. The circuitry for 

this device is shown in figure 21. 

The interconnection of all of these sub-units in the make up of one window control module for the "path and 

volume" version of the Analysis Module is shown in tigure 22. Once the window control module's 

functionality has been described, it becomes feasible to implement the "path and volume" version of thc 

Analysis Module so that valid path enforcement and connection volume enforcement both oocur with the cell 

in transit experiencing a delay of less than one cell time. The design will rely on the same dynamic RAMs on 

which the "path-only'* version relied. However, more than one memory will now be used to provide more 

detailed information about the path along which an arriving cell is traveling. 

Instead of simply using the DRAM to provide information about whether the connection to which the 

transiting cell belongs exists, this memory will now be used to provide a mapping from a VPI/VCI pair to one 

specific window control module within the Analysis Module that controls the volume information regarding 

that cell. As before, the first steps will be to present the VPI/VCI pair of the transiting cell as an address to 

the DRAM. However, the data provided by the memory will now be richer in content. If the data returned is 

null, then the VPI/VCI pair for the transiting cell will be assumed to belong to an invalid connection, an alert 

will be raised for this reason and the cell will be dropped. However, if the data presented by the memory for a 



particular VPI/VCI pair is not null, then the transiting cell is passing along a connection that is valid for the 

Analysis Module. This result data from the memory will be forwarded through a data gate to a demultiplexer 

which will, in turn, assert the "valid cell arrived" control line on one unique window control module. 
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Fig. 22, Window control module for the memory lookup module used in the design oi' the "path and volume'* 

version of the Analysis Module with "k" bits of control granularity 
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This use of DRAMs in the memory lookup module implies that more than one DRAM unit will be required. 

The total number of these memories that are required is a function of the total number of window control 

modules available within the Analysis Module. As an example, if the Analysis Module is equipped with 

sixteen window control modules, then four bits will be required to uniquely select one of these modules 

which, in turn, implies that four Texas Instruments SMJ416100 devices would be required in order to provide 

the necessary four bits of data. These four bits of data would then be passed to a four-to-sixteen demultiplexer 

which will, in turn, assert the "valid cell arrived'* signal on one unique control module. The block diagram for 

a four-window control module "path and volume" Analysis Module is shown in figure 23. 

As a general result, for every "W" window control modules available in an Analysis Module, a total of 

(logs W) DRAMs will be required, each with a density of 16 Mbits, along with a "(Iogt W) to W" 

demultiplexer. 
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VPINCI information 
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Fig. 23. Block diagram for the "path and volume" version of the Analysis Module 



IV. C. 5 Sequence / Detect Module Design 

The sequence / detect module performs all of the necessary functions within the Analysis Module that guide it 

through the various functions it has to perform when receiving new cells fmm the Receiver. The sequence / 

detect module asserts and deassetts the control lines on the major logic blocks described in the top-level 

layout of the Analysis module and it does this only at the appropriate times. To be more specific, it sets the 

control lines to the dynamic memory or memories, the 4-bit multiplexers, the 4-bit data latches, thc 12-bit by 

4-line multiplexer, the memory lookup module, the traific alert latch or latches and the New Cell High and 

New Cell Low lines to the Transmitter and the data gate that controls cell output to the Transmitter. 

The core of the sequence / detect module is a state machine that cycles through a total of 28 states in order to 

perform all of the necessary operations on the control lines leading to the various blocks of logic. The actual 

signals that must be controlled are shown in table VIII. 

TABLE VIII 
Signal names and descriptions of thc control lines set by the state machine internal to the sequence / detect 

module 

4BDS[1] 
4BDS[2] 
4BDS[3] 
4BDS[4] 
4BDS[5] 
4BDS[6 
4BDL[1] 
4BDL[2] 
4BDL[3] 
4BDL[4] 
4BDL[5] 
4BDL[6] 
12BDS[B] 
12BDS[S] 

Controls which of the two possible inputs are reflected at the outputs of the 4-bit 
multiplexers. Each of the six bits control one multiplcxcr and each multiplexer is numbered ¹I to ¹6 with ¹ I being the highest order and ¹6 being the lowest order multiplexer. (Found 
on both the "pathwnly" and the "path aud volume" implementations of the Analysis 

Module. ) 

Controls the latching on the 4-bit latches that store the VPI/VCI information regarding a 
transiting cell. These are positive edge-tnggered latches, therefore, latching occurs when 

these signals transition from low to high. Each of the six bits control one 4-bit latch and 
each latch is numbered ¹I to ¹6 with ¹I being the highest order and ¹6 being the lowest 

order latch, (Found on both the "path-only" and the "path and volume" implementations of 
the Anal sis Module. ) 
Controls which of the four possible inputs are reflected at the outputs of the 12-bit by 4-line 

multiplexer. When the "B" signal is high, the high order twelve bits of the possible inputs 

will be reflected at the output and when the "B" signal is low, the low order twelve bits of 
the possible inputs will be reflect at the output. When the "S" signal is high, the VPI/VCI 

pair information will be reflected at the output and when the "S" signal is low, the new 

path information will be reflected at the output. (Found on both the "path-only" and the 
" ath and volume'* im lementations of the Anal is Module. ) 
Controls the latching on the latch or latches (depending on thc implementation) which 

store the result of the memory read on the memory lookup module. These are positive edge- 

triggered latches, therefore, latching occurs when this signal transitions from low to high. 
(Found on both the "path-only" and the "path and volume" implementations of thc 
Analysis Module. ) 
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TABLE VIII 
(continued) 

RSRL 

LLODG26 

LLODG27 

LHODG27 

RAS' 

CAS' 

SDDG 

When asserted high, this signal will reset the SR-latch that indicates to the Control Module 
whether the information about a new path tlmt was last loaded has been stored in the 

memory lookup module. (Found on both the '*path-only" and the "path and volume** 

im lementations of the Anal 's Module. ) 
When asserted high, this sigrml will load the counter that controls whether the data gate to 
the transmitter will allow to pass the low order byte from the shiA register. When asserted, 
this signal will load flmt counter with a value of 26, indicating that the data gate will allow 

the next sequence of 26 bytes on the low-order byte output from the shift register to pass 
through it and on to the Transmitter. Pound on both the "path-only" and the "path and 
volume" im lementations of the Anal 's Module. ) 
When asserted high, this signal will load the counter that controls whether the data gate to 
the transmitter will allow to pass the low order byte from the shiA register. When asserted, 
this signal will load that counter with a value of 27, indicating that the data gate will allow 

the next sequence of 27 bytes on the low-order byte output from the shift register to pass 
through it and on to the Transmitter. (Found on both the "path-only" and the "path and 
volume" im lementations of the Anal 's Module. ) 
When asserted high, this signal will load the counter that controls whether the data gate to 
the transmitter will allow to pass the high order byte from the shiA register. When asserted, 
this signal will load that counter with a value of 27, indicating that the data gate will allow 

the next sequence of 27 bytes on the high-order byte output from the shift register to pass 
through it and on to the Transmitter. (Found on both the "path-only" and the "path and 
volume" im lementations of the Anal sis Module. ) 
This is the row address select control line to the external dynamic RAM that is found in the 

memory lookup module. This line is used to latch address information when read and write 

cycles are being performed on the memory. This signal is asserted low when these two 

operations are being performed according to the data sheets describing these two 

prtxxdures for the Texas Instruments SMJ416100 DRAM. (Found on both the "path-only" 

and the " ath and volume" im lementations of the Anal sis Module. 

This is thc column address select control line to the external dynamic RAM that is found in 
the memory lookup module. This line is used to latch address information when read and 

write cycles are being performed on the memory. This signal is asserted low when these 

two operations are being performed according to the data sheets describing these two 
procedures for the Texas Instruments SMJ416100 DRAM. (Found on both the "path-only" 

and the" ath and volume" im lementations of the Anal is Module. ) 
This is the read I write control line to the external dynamic RAM that is found in the 

memory lookup module. This line is used to indicate whether a write or a read operation is 
being performed on the memory. This signal is asserted low when a write opemtion is in 

progress and deasserted high when a read operation is in progress according to the data 

sheets describing these two procedures for thc Texas Instruments SMJ416100 DRAM. 
(Found on both the "path-only" and the "path and volume** implementations of the 
Anal sis Module. ) 
Controls the latching on the latches which store the result of the window control module 

activity performed after the memory read in the memory lookup module. These are positive 
edge-triggered latches, therefore, latching occurs when this signal transitions from low to 
high. (Found on both the "path-only" and the "path and volume" implementation of the 
Anal sis Module. ) 
When asserted high, this signal instructs the data gate at the input to the demultiplexer in 

the window control module to reflect the data on the data bus of the memories at its output. 

When not asserted, the data te will reflect null values at its out uts (all zero bits). 
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The state machine guiding the operation of the sequence / detect module requires some external information 

about the events of new cell arrivals. New cells can arrive at the Analysis Module with either the first byte 

being presented on the low-order eight bits of the Receiver's output stage or with the first byte being 

presented on the high-order eight bits of the Receiver's output stage. In order to be able to detenuine when 

these events are occurring, the state machine uses, as external controls, the New Cell High and New Cell Low 

signals which are generated by the Receiver. The meihod in which these signals behave is described in the 

section devoted to the Receiver's design. The designations for these signals are shown in table IX. 

TABLE IX 
Signal names and descriptions of the external signals the state machine internal to the sequence / detect 

module r uires 

When asserted high, it indicates the arrival of a new cell from the Receiver with the first 

byte of that cefi being presented on the high-order eight bits of the Receiver's output stage. 

NCLIN When asserted high, it indicates the arrival of a new cell from the Receiver with the first 

byte of that cell being presented on the high-order eight bits of the Receiver's output stage. 

The exact states of each of the signals controlled by the state machine for each state in the state diagram are 

shown in table X (don't care conditions appear as blank fields in the table). Internal values which have not 

been assigned to any specific state are naturally assumed to produce a don't care condition for all signals. Thc 

state diagram for the state machine guiding the actions of the sequence / detect module are shown in 

figure 24. 
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Fig 24. State diagram for the state machine internal to thc sequence / detect module within thc Analysis 

Module 



TABLE X 
Signal states for every valid state in the state machine diagram for the sequence I detect module of the 

Anal sts Module 

1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

00000 
00001 
00011 4W, J ll 
00010 
00110 
00111 
00101 
00100 
01100 
01101 
01111 
01110 
01010 
01011 
01001 
01000 
11000 
11001 
11011 
11010 
11110 
lllll 
11101 
11100 TTTTTT 
10100 771111 
10101 
10111 

Aside from this central state machine and decode logic blocks guiding the actions of the control signals, there 

are also some additional logic units that provide for support operation which allows the state machine to 

continue on with other activities. One such unit is the logic that. controls the data gate which feeds a cell's 

contents to the input stage of the Transmitter (and controls the state of the New Cell High and New Cell Low 

lines to the Transmitter). The state machine only devotes one state to setting in motion the chain of events 

which will present an entire cell to the Transmitter. Once the state machine has passed through this state, a 

count-down with no roll-over counter takes over and continues holding the data gate in pass mode unlil all of 

the b&res of the transiting cell have been passed on to the Transmitter. 
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Other blocks of logic necessary for the correct functioning of the analysis modu)e are those that control the six 

4-bit multiplexers which present the VPI/VCI information to the 4-bit latches. These additional blocks arc 

shown in the block diagram of the sequence / detect module in figure 25. 

TABLE XI 
Next state decode logic for each bit of the state machine controlling the operation of the sequence / detect 

module 

bi 

b& 

bp 

0»)0&z)0»') + (bp')0»)0»')0») + (bo')0&&')0&z)(b&) + 0&&')0&z')0&f)(bo) + 
0»')0»')(b& ')(b, ')(New Cell Low) + (b4)(b&)(bz') + (bp)(b&')(bo) + (bp)(b&)(bo') + 

(bp')(b& ) 'i p ew Cell Hi h) 

(bz )(bz )(bo) + 0&p')(b&)(bz)0&o) + 0&o)(b& )(bo) + (b4)(bz')0»')(bp) + (bo)0»')0»)(bo)(La«h Sm) + 
0&i)0&o') 

(bi')(b&')(bz) + 04')(bz)(b& ') + (bp')(bzg&o) + (b&')(b&)0&o') + 0&o)0&i)0&o') + (b4)(b&)(bz) + 
3 (bt ) o')(New Cell Hi h + p 

' 
i o Latch Reset + ) i (bp 

(bo')(b&) + (bp')(bz)(b& ')(bo') + (b4)(bz')(b&)(bo)(Latch Set) + 0»)(bz)(b&) + 0»)(bi)(bo') + (bi)(bi ')(bp) 
+ (bz)(bz' (b&' 

4 3 + (bi (bi )(bp) + (bp)(bz')(bp')(New Cell Hi h + (b, )(bz')(b, ')(b, ') 

TABLE XII 
Decode logic for the control lines which the sequence / detect module uses to operate sub-units of the Analysis 

Module 

PVRL 
RSRL 

LLODG26 
LHODG27 
LLODG27 

RAS' 
CAS' 

VVRL 
SDDG 

4BDS 1. . . 6 
4BDL [0] 

4BDL [2/. . 3] 
4BDL [4. . . 5] 

4BDL [61 
12BDS [8] 
12BDS L 

0&p')0»' (bz)0»')(bp) 

(b, )0&, )(bz) i')(bp) 

04')0») 0») 0» ') 0&p')(New Cell Low) 

(b, ') &)(bz)(b&')(bp')(New Cell Hi h) 
(bo') + &') + (bz') + 0»') + 0&o') 

0&p')(b&')0&o') + (b&)(bi')(bo) + (bz')(bp) + 0&4W»') + 0&o)(bz)(b&') 

(bi 0&2 + 3 0&1 0&o') + 0&4N&&)0&&)0&o' + (bp) i i' o) + (bo)0&&)0&z')0&&) 

(bp')(b&')(bz)(bi ')(bo')(Memory Lookup Result) 

z) 

04')(b&')(bz')0&&') o + p)(b&') z)(b&') o') 

0&p')(b&')(bz')0&i')(bo) + (bp)0»')0&z (b&')0&o) 

(bo')(b&') z') i 0&o) + 0&i)(b&')(bz)(b&')(bo) 

(bo')(b&')0&z' 0&i (bp (bp)(b& )(bz)0&l)(bo) 

(bz') 
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TABLE XIII 
Next state decode logic for each bit of the presettable down-counters with no roll-over in the sequence I detect 

module 

bo 

bi 

bz 

bq 

(b, '+ Setzz)(bz + bz + bz + b, + b0+ Setzz)(Setzs' + Setzz) 
z' + bp+ Setzs+ Setzz (bz + b0 + Setzs+ Setzz) (b4+ bz+ bz+ bz + bp+ Setzs + Setzz) 

(bz' + bz + b0) + bz' + bp' (bs + br + bz+ bz + bp) Setzs') Setzz' 

(bz' + bz + bi + b0+ Setzs + Setzz) (bz + bz' + Setzs + Setzz)(bz + bi' + Setzs + Setzz) 

(bz + b0' + Setzs + Setzz)(b4 + br + bz + b) + bo + Setzs + Setzz) 

, + b, + b, + b0 + Setzs + Setzz 0)n + Setzs + Setzz 

Afier minimization, table XI shows that the logic necessary to decode the next state of each of the bit inputs 

to the down-counters, the state machine and the control lines to the other modules is considerable. Also, as is 

shown in tables XII and XIII, the decode logic for the presettable down-counters and external control lines is 

not trivial either. 

IV. D Control Module Desi)Fr 

The Control Module must do its work asynchronously from the Analysis Modules. It's job is to handle 

communication with the supervisory interface and with the hardware in the Analysis Modules to which it is 

attached. To the supervisor interface, the Control Module must report tratftc violations detected and read 

from the Analysis Modules and get information about new valid data paths that have been created in the 

network. When the Control Module receives data about a new valid path, it must be able to distinguish 

through which Analysis Module the path passes and must update the valid path information within this 

module. Implied in this responsibility is the job of maintaining the coherency of all the DRAMs in the 

Analysis Modules, as well as getting the data from a given security module as quickly as possible once a 

traffic violation has occurred. 

A Motorola 68PM302 Integrated Multiprotocol Processor would be an ideal candidate in this design because 

of its current availability at reasonable cost and its capability to provide a broad range of built-in features that 

closely match the needs of this application. It provides sufficient VO to be able to perform all the necessary 

read and write operations to and from the Analysis Module hardware. It offers the interrupt circuitry 

necessary for the Analysis Module to alert the Control Module of a uaffrc violation. Finally, it provides a 

high-speed serial interface which could be used in conjunction with a DSI compliant transceiver in order to 

communicate with the Control Module's supervisory interface. Those transactions which are considered 

necessary are: 
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~ Informing the security device by the supervisor hardware that a new VPI/VCI pair is valid on 

one of the ports of the ATM switch which the device is monitoring. 

~ Informing the supervisor hardware that a traiffc violation has oocurred, on which port it has 

occurred and what the VPVVCI pair of the offending cell was. 

The event which is considered crucial to the operation of the device will be assigned to the interrupl. logic of 

the MC68PM302. This is the presence of a traffic &dolation on one of the data streams passing through an 

Analysis Module. Since the timing requirements of the design are so stringent, it would bc recommended that 

no interrupt be shared within these tasks because the time required to perform the additional job of 

determining exactly which module triggered a particular interrupt is likely to make the processor unable to 

capture the necessary information in a timely fashion (a timely fashion is defined as one that is performed 

suificiently fast that data due to a traffic alarm in one of the Analysis Modules is lost) due to the entry of a 

new cell into that Analysis Module. Therefore, since the MC68PM302 has 8 interrupt levels, this design 

should be able to handle the security requirements of traffic originating from an ATM switch with up to 8 

outputs (one interrupt per switch output). 

While it is not the express purpose of this discussion to describe how the interconnection between the Control 

Module and Analysis Module should be created, in order to show that it is feasible to have a Control Module 

consisting of one MC68PM302 controlling up to eight Analysis Modules, one possible arrangement for the 

assignment of the microcontmller's available exterrml I/O controls follows: 

~ VO ports A and C are assigned to load VPI/VCI information into the latches that store data 

about new connections within the Analysis Modules. This data will become the physical address 

which will be updated in the dynamic RAM of the Analysis Modules in order to track the new 

information about that data path, 

~ VO port B, upper nibble is assigned to loading the state of a new path into the latches that store 

data about new connecuons within the Analysis Modules (this, together with the VPI/VCI 

information forms the complete data regarding a new path that needs to be set up). 

~ VO port B, lower tubble is assigned to select the Analysis Modules whose data needs to be 

updated. These signals are used to ensure that only one Analysis Module out of those to which 

the Control Module is attached, will latch the data regarding a new connection which needs to 

be created. 

This interconnection is shown as a block diagram in figure 26. It should be noted that a good portion of the 

reaction time and efficiency of this module relies on the manner in which the controlling sofiware within the 
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microcontroller behaves. It is possible to code this soffware in such a way that it reacts to tratftc violations 

extremely quickly while information coming in from the supervisory interface regarding new connections that 

must be created is allowed to wait a lengthy period of time. Alternatively, the reverse could be true, where 

new path information is applied to the Analysis Modules very quickly, while traffic violations not always be 

picked up or may wait for a period of time before being reported to the supervisory interface. 

It is beyond the scope of this document to make statements regarding how thc soffware in this module should 

bc coded. The exact mechanics and operating characteristics of the supervisory interface and the format in 

which it transmits data are only outlined in broad strokes. 
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Fig. 26. A possible configuration for using a Motorola 68PM302 microcontroffer as a Control Module for 
multiple Analysis Modules 
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For thc implementation of this Control Module with "path-only" Analysis Modules, the functions described 

thus far do not require anything more involved than thc functionality necessary to receive commands along an 

ISDN compliant serial communications link, decode it and write the new path information to the registers on 

the appropriate Analysis Module. Since the only information regarding any virtual path that is required is 

whether the path is valid or not, there is no prolonged processing involved in order to decide what. 

information needs to be written to the Analysis Module. This means that the time required to begin allowing 

cells to pass along a newly created valid connection is bounded by only those clock cycles in the 68PM302 

necessary to decode the command from the serial link and write it to the Analysis Module. 

However, in the case of the Control Module* s implementation with "path and volume" Analysis Modules, the 

situation changes significantly. With the "path and volume" implementation, the data that the Control 

Module must write to the Analysis Modules is no longer a simple statement describing thc validity of a 

particular path. In this case, this data describes a mapping from the VPI/VCI pair of an arriving cell to one of 

the "window control modules" on the target Analysis Module. This implies that the Control Module must 

know, a priori, which "window control modules" on which Analysis Modules have already been assigned to 

existing paths. When information arrives along the serial link regarding a new connection, the Control 

Module must be able to determine which "window control module" in the target Analysis Module to map to 

the new connection. 

It becomes evident from this situation that, if the 68PM302's sofiware were to be allowed to handle the 

mapping of a new path onto a particular "window control module" in the appropriate Analysis Module, then a 

search algorithm must bc implemented in order to ensure that the new path is not being mapped onto a 

"window control module" already assigned to another path. The table that would need to be searched would 

contain the state of every "window control module" in a particular Analysis Module. Each element in this 

table would indicate the assignment state of one lxtiticular "window contml module". Further, this search 

space would be a linear function of the number of "window control modules" in each Analysis Module. In 

order to have this search execute in constant time, the sofiware would be required to create a last-in, first-out 

(LIFO) queue for every Analysis Module. It is assumed that the operations of pushing and pulling new values 

onto and from these queues, respectively, would require constant computational time. 

The length of each of these queues would be the number of "window control modules" on each Analysis 

Module. Initially, the Control Module, would completely fill each queue with the indexes of all the "window 

control modules'* on every Analysis Module (indicating that no valid paths exist in any Analysis Module). 

Then, as new paths are created through command fiom the serial link, the 68PM302 would need to pull the 

first index off the LIFO queue which pertains to the appropriate Analysis Module and write this value to the 

Analysis Module, along with the VPI/VCI pair of the new connection. ln this way, the connection setup time 
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will be constant, since the critical operation of pulling the first value off a LIFO queue is assumed to be 

accomplished in constant time. 

When commands arrive along the serial link which invalidate existing paths, the actions necessary to 

invalidate the path can no longer be accomplished in constant time according to this approach. In order to 

invalidate an existing path, the Control Module must first determine to which "window control module", in 

the appropriate Analysis Module, the path had originally been mapped. Using the design described thus far, 

this would need to be accomplished through a series of tables which would have been updated at connection 

setup time. The action of determining which "window control module" has been freed by the path just 

invalidated would be accomplished by searching this table. Since there are no constraints being placed on the 

order in which new connections are created and invalidated, then the most optimal search of this table could 

only be accomplished in computational time that is a linear function of the size of each table, i. e. , the number 

of "window control modules" implemented in each Analysis Module. Once the appropriate "window control 

module" has been determined, then its index in the appropriate table would be updated and that index would 

be pushed back onto the LIFO queue which pertains to the Analysis Module on which that "window control 

module*' resides. 

However, this linear search time does not imply that the time required to invalidate an existing connection is, 

itself, linear and not constant. When a command arrives along the serial link to invalidate a path, the 

command will contain the exact VPI/VCI pair which needs to be invalidated. This means that all of the 

information necessary to invalidate that path in the appropriate Analysis Module is already available. The 

6gpM302, would write to that Analysis Module indicating that the Vpl/VCI pair in question just maps to a 

null value (this null value being zero, as described in the Analysis Module's design). Once this is 

accomplished, then the previously mentioned table search could be performed without the danger that a cell 

will transit through that Analysis Module along the neu ly invalidated connection. 

Therefore, both new connection creation and invalidation may both be accomplished in constant time within 

the Control Module's software for the "path and volume" implementation of the Analysis Module. 
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CHAPTER V 

SIMULATION OF SECURITY DEVICE 

As already stated, the determining factor in the design was the need to tmplement the device with circuits of a 

proven stability and which are inexpensive, in terms of transistor count. Because of the high data rates 

involved in the transmission of cells in ATM networks, it was necessary to use as much parallelization of 

functions as possible in hardware in order to implement the design with these stable circuits and at realizable 

clock speeds. 

The objective of this design was to determine whether it is possible to assemble all of the necessary logic units 

into one or a few monolithic ASICs which will comply with all of the specifications set forth in Chapter 3. 

Therefore, the deciding factor in the technology chosen for this simulation was that technology which would 

allow for an accurate determination of the necessary component count and also provide a rough estimate of its 

operating characteristics for some known value of the signal delay intrinsic in each gate in the circuit. A 

secondary issue involved was the simulation cost in terms of simulation development time and computational 

complexity of the simulation itself. Finally, due to the nature of the conclusions to be drawn, the simulation 

had to be free of logic family specific manufacturing issues. One such example is the dttference in the 

importance of correct transistor sizing between different logic families. In bipolar logic families the sizing of 

individual transistors is much more important than it would be in a design relying on FET technologies due 

to the large difference in bipolar base currents drawn versus those of field-efFect transistor gates. Another 

example would be the differences in component counts which may be mounted on an emitterwoupled logic 

die versus other logic families. Since the devices in emitter coupled logic circuits are not intended to ever be 

driven into their saturation region during normal circuit operation, these circuits typicafiy reach the die 

package heat dissipation limits at much lower component counts than would similar circuits in other logic 

families. 

In order to cover these issues, the simulation was laid out as a behavioral description of the circuits involved, 

with individual logic gates as the atomic element. The design of the entire security device was simulated 

using the Verilog hardware description language in order to verify that the circuit indeed performs its 

intended function. The actual circuit is expected to operate with a clock period of 25. 88 nanoseconds. For the 

purposes of this implementation, this clock period was approximated to 26 nanoseconds, in order to make 

simulation of the device less computationally intensive. This approximation may be found in the Verilog 

definition of the "ClockGen" module. 
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The Receivers, Transmitters, Control Module and dynamic RAM of the device use a purely behavioral 

description. The pmcedure used for the Receivers, Transmitters and Control Module is a direct extension of 

the earlier discussion regarding their design. The procedure used for the dynamic RAM is drawn from the 

manufacturer's product data and implements the functions of "Read with Hidden Refresh*' and "Write" 

according to the timing specifications described therein. 

The Analysis Module was modeled as a series of behaviorally described "NAND" and "NOR" gates whose 

operation is assumed to be ideal except for a known, fixed signal propagation delay. As shown in the source 

code included in Appendices A and B, this propagation delay is set to one nanosecond, this is to say, l/26 of 

the clock cycle time. 

Based on these gate description, all of the remaining sub-modules necessary to construct the Analysis Module 

were simulated, with latches and multiplexers appearing as the most basic building blocks and continuing all 

the way up to complete state machines at the highest orders of complexity. 

The results of this simulation indicate that the device will, indeed, perform its function satisfactorily for a 

range of gate delays, with the highest acceptable delay being 2/26 of the clock period of the Analysis Module. 

The device operation breaks down at some point between a gate delay of 2/26 and 3/26 of the clock period 

The entire simulation for both versions of the Analysis Module was implemented with a modular approach in 

order to make debugging, testing and compilation feasible. The resulting simulation consists of a large 

number of functional module units which are interdependent among themselves. These modules and the 

submodules upon which they depend are shown in table XIV for the "path-only" version of the Analysis 

Module. 

The logic which makes up each of the individual blocks of logic described in the design sections were 

grouped as closely as possible within one complete circuit module with the same name. This was not precisely 

possible in all cases due to the interdependence of similar reusable blocks that could be used as submodules 

for ditferent design components. However, every simulation module is a faithful representation of the exact 

circuit logic and Boolean expressions described in the section concerning the design of the device. 

Component count optimizations within each of the logic blocks were implemented as far as possible without 

having the logic block deviate from the circuit described in the design section. While a carefid analysis will 

reveal certain optimizations still lefi unimplcmcnml, these optimizations will have a non-significant impact 

on the overall component count of the entire device. For example, the number of literals in the decode logic of 
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many of the counters could have been reduced somewhat by implementing the states of the counters as Gray- 

code counters. However, this optimization would reduce overall component count by less than one percent. 

The correctness of the simulation's operation, and the subsequent inference that the device, if constructed 

would operate properly, relies on the generation of test pattern cell arrivals and new path updates from the 

modules entitled "ControlModule" and "Receiver". Both of these modules are behaviorally defined with the 

"Receiver" logic block generating an alternating sequence of non-unique complete cell arrivals and the 

"ControlModule" generating a continuous stream of new path updates for loading into the device's memory 

For the purposes of this simulation, it was not feasible to implement the entire sixteen megabit memory space 

of all of the memories involved. Instead, in the "path-only" version of the Analysis Module, the dynamic 

RAM's procedural definition specifies that it will recognize a cell's path as being valid if the last bit of thc 

address presented to it is asserted. In the "path and volume" version of the Analysis Module, an arriving 

cell's path will be mapped to an existing path if the lower three bits of the address correspond to a sequence 

that has already been generated by the "ControlModule". 

It is evident that some simplifications had to be made in order to encapsulate thc entire design into the 

simulation environment chosen, however, the artificial data sequence created by the test modules simulated 

show cases of the device operating under all possible combinations of circumstances. This is to say that the 

data streams generated by the "ControlModule" and the "Receiver" force the Analysis Module to show its 

behavior both when a valid cell arrives and when an invalid cell arrives, on either starting byte of the 

*'Receiver*' module's output. In addition, it shows that the Analysis Module will correctly load new path data 

within one cell time of the "ControlModule" block's having presented it. 
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TABLE XIV 
Module names and the submodules of which they consist for the simulation of the "path-only" Analysis 

Module 

Inverter 

Twoln utNANDGate 

Threcln utNANDGate 

Fourln utNANDGate 

Fiveln utNANDGate 

Sixln utNANDGate 

Sevenln tNAND Gate 

¹nein utNANDGate 

Twoln utNORGate 

Threeln utNORGate 

FourIn utNORGate 

Fiveln utNORGate 

Sixln utNORGate 

Sevenln utNORGatc 

SRLatch 
PosEdge TrigLatch 

FourBitRegister 

Ei htBitRegistcr 

SixteenBitRe ster 

ShifiRcgister 

DataGate 
FourBitDataGate 

EightBitDataGate 

TwoLine Selector 

FourBitTwoLineSelector 

FourLineSelector 

TwelveBitFourLine Selector 
ClockGen 

NewPathStore 

D namicRAM 
NetworkReceiver 

NetworkTransmitter 

ControlModule 

DownCounterWithpresct 

Proccdura)I defined 

Procedurall defined. 

Procedurall defined 

Procedurall defined 

Procedurall defined. 

rocedurall defined. 

rocedurall defined 

rocedurall defined. 

rocedurall defined. 

rocedurall defined. 

rocedurall defined. 

rocedurall defined. 

rocedurall defined 

rocedurall defined. 
~ (Twoln utNANDGate) 
~ (Twoln utNANDGate) + I~(Threeln utNANDGate) 

~ osEd eTri atch) 
~ osEd eTri atch 

16~(posEd eTri tch) 
~ SixteenBitRe ister) 

1~(Twoln utNANDGate) + 1~(lnverter) 

~ (DataGate) 
~ FourBitDataGate) 

3 ~(Twoln utNANDGate 
~ (TwoLineSelector) + I ~ (Invertcr 
~ Threeln utNANDGate) + 1~(Fourln utNANDGate) 

12~(FourLineSelcctor + 2o Inverter) 

rocedurall defined. 

3~(Ei tBitRe ister) + I ~ PosEd eTri atch) + 1~(SRLatch) 

Procedurall defined. 

Procedurall defined 

ocedurall defined. 

rocedurall defined. 

5~(posEdgeTrigLatch) + 2~(inverter) + 5~(TwolnputNORGate) + 
3~(ThreeinputNORGate) + 5~(FourinputNORGate) + 
2~(FiveinputNORGate) + 4~(SrxlnputNORGatc) + 
2~(SeveninputNORGate) 
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TABLE XIV 
(continued) 

S tate Control 

StateMachine 

SequenceDetect 

Network Security 

5O(lnverter) + 7~(TwolnputNANDGate) + 4v(TltreeinputNANDGate) + 
3 ~(FourinputNANDGate) + I I ~ (FivelnputNANDGate) + 

2O Sevenln utNANDGate) 

5O(PosEdge TrigLatch) + 5~(ResetControl) + 3 ~(TwoinputNANDGate) + 
1gv(ThreelnputNANDGate) + 9o(FourlnputNANDGate) + 
6O(FivelnputNANDGate) + I o(SevenlnputNANDGate) + 

2~(Niacin utNANDGate) 

lo(StateMachine) + la(StateControl) + 2o(DownCounterWithpreset) + 
2» iveln utNANDGate) 

le(ClockGen) + I ~ (NetworkReceivcr) + le(NetworkTransmitter) t 
1~(ControIModule) + 1~(ShifIRegister) + 2~(EightBitDataGatc) + 

l~(SequenceDetect) + I ~(NewPathStore) + 6~(FourBitTwoLineSelector) + 
6o ourBitRe ister) t 1 o(TwelveBitFourLineSelector) + I ~ ( namicRAM) 

The modules and the submodules upon which they depend are shown in table XV for the "path and volume" 

version of the Analysis Module. 

It must be noted that, to simulate the entire device as one complete unit requires a very considerable amount 

of computation time, The device's simulation code presented here had, itself, to be broken down into 

component sections, Each of those sections were simulated with a known generator pattern of signals, their 

results captured and then passed along to the standalone simulation of the next logic block in the sequence. 

However, the Verilog code presented here allows a designer to look at the behavior of the signals of every 

phase of the design in order to analyze where improvements could be made. Therefore, the simulation's 

purpose as a "proof of concept" has been realized. 
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TABLE XV 
Module names and the submodules of which they consist for the simulation of the "path and volume" 

Anal sis Module 

Inverter 

Twoln utNANDGate 

Threeln utNANDGate 

Fourln utNANDGate 

Fiveln utNANDGate 

Sixln utNANDGate 

Sevenln utNANDGate 

Nineln utNANDGatc 

Twoln utNORGate 

Threeln utNORGate 

Fourln utNORGate 

Fiveln utNORGate 

Sixln utNORGate 

Sevenln utNORGate 

SRLatch 

PosEdge TrigLatch 

FourBitRegister 

Ei tBitRe 'ster 

SixteenBitRegister 

ShiftRegister 

DataGate 

Four BitDataGate 

EightBitDataGate 
TwoLineSelector 

FourBit TwoLineSelector 

FourLineSelector 

TwelveBitFourLine Selector 

ClockGen 
NewPath Store 

NetworkReceiver 

NetworkTransmitter 

Con trolModule 

DownCounterWithpreset 

Procedurall defined 

Procedurall defined 

Procedurall defined. 

Procedurall defined. 

Procedurall defined 

Procedurall defined 

Procedurall defined. 

Procedurall defined. 

Procedurall defined 

Procedurall defined. 

Procedurall defined. 

Procedurall defined. 

Procedurall defined 

Procedurall defined. 

2o(Twoin utNANDGate) 

5o(Twoin utNANDGate) + 1~(Threeln utNANDGate) 

4~(posEd eTri atch 

8~ osEd eTri atch) 

16~(PosEd eTri atch 

9~(SixteenBitRe ster 

1~(Twoln utNANDGate) + I ~ (Inverter) 

4~(DataGate) 

2o(FourBitDataGate) 

3~(Twoln utNANDGate) 

4~ woLineSelector) + I~(invcrter) 

4~(Threeln utNANDGate) + 1~(Fourin utNANDGate) 

12~(FourLineSelector + 2~(inverter) 
Procedurall defined. 

3~(Ei tBitRe ister) + 7~ PosEd eTri atch) + I ~ (SRLatch) 
Procedurall defined 

Procedurall defined. 

Procedurall defined. 

Procedurall defined. 

5~(posEdge TrigLatch) + 2~(lnverter) + 5~(TwolnputNORGate) + 
3~(ThreelnputNORGate) + 5~(FourinputNORGate) + 

2~(FiveinputNORGate) + 4~(SixlnputNORGate) + 
2o(SeveninputNORGate) 



63 

TABLE XV 
(continued) 

CounterGate 

BitEqualTest 

ThreeBitDataGate 
ThreeBySevenDemux 

ResctControl 

CounterWithZero Test 

CounterWithReset 

WindowCounter 

Wind owControl 

SiateControl 

StatcMachine 

ScquenceDetcct 

NetworkSecurity 

2~ Inverter) + 4~(Threein utNANDGate) + I ~ Fourln utNANDGate 

3~ Twoln utNANDGate 

3 o(DataGate 

10~(lnverter) + 7~(Threeln utNANDGate) 

Procedurall defined. 

4~(posEdge TrigLatch) + 4~(CounterGate) + 6~(TwoinputNANDGate) + 
6~(TwoinputNORGate) + 3~(ThreelnputNANDGate) + 
3~(ThreelnputNORGate) 4 2~(FourinputNANDGatc) + 

3~(Fourin utNORGate) 

4o(PosEdge TrigLatch) + 4~(DataGatc) + 3~(inverter) + 
5~(Twoln utNANDGate) + 3~(Threein utNANDGatc) 

4v(PosEdgeTrigLatch) + 1~(CounterWithReset) + 4~(BitEqualTest) + 
I o(lnverter) + 1~(Fourin utNANDGate) 

1~(WindowCounter) + lv(Counter WithZero Test) + 1~(lover(or) 

5~(inverter) + 7~(TwoinputNANDGate) + 4~(ThreelnputNANDGate) t 
3~(FourlnputNANDGate) + 11~(FiveinputNANDGate) + 

2~ Sevenln utNANDGate) 

Se(PosEdge TrigLatch) + 5~(ResetControl) + 3v(TwoinputNAND Gate) + 
18~(ThreeinputNANDGate) + 9~(FourinputNANDGate) + 
6~(FtvelnputNANDGate) + tv(SeveninputNANDGate) + 

2~ ineln utNANDGate 

I~(StateMachine) + I~(StateControt) + 2~(DownCounterWithpreset) + 
2~(Fiveln utNANDGate) 

1~(ClockGen) + 1~(NetworkReceiver) + l~pqetworkTransmitter) + 
1~(ControlModule) + 1~(ShitIRegister) + 2~(EightBitDataGate) + 

I ~(SequenceDetect) + I ~(NewpathStore) + 6~(FourBitTwoLineSelector) + 
6~(FourBitRcglster) + le(TwelveBitpourLineSeiector) + 3~(DynamicRAM) 

+ 3~(PosEdgcTrigLatch) + lv(ThreeBitDataGate) + 
2e(ThreeBySevenDemux) + 7~(WindowControl) + 2~(lnverter) + 

7o(Twoln utNANDGate t I v(Sevenln utNORGate) 

For the designer's reference, the entry point into the simulation (the highest level block of integration) for 

both versions of the Analysis Module is the "NetworkSecurity" Verilog module. Additionally, the "path and 

volume" version of thc Analysis Module simulated implements seven window control modules with each 

window control module having a granularity of four bits. This means that the "path and volume" Analysis 

Module described in thc Verilog simulation is capable of supporting up to seven valid connections and that 

the leaky bucket traffic meter on each connection will support a traific credit system with a maximum of 

sixteen credits per connection and that the lowest credit generation rate possible will be one credit every 

sixteen clock cycles. 
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If, at some future date, it is necessary to extend this simulation to support morc simultaneous connections, it 

is only necessary to add more traffic control modules (and, the appropriate number of dynamic RAMs) to the 

"NetworkSecurity" module in the Vcrilog source code. However, the changes necessary to change the 

granularity of the window control modules will be more extensive since this will involve changes, not only to 

the counters that manage the credit system within these window control modules but also to the latches that 

control how often to generate a credit. Not to be excluded from these changes, are thc equality testcrs thai 

check when it is time to generate a new credit and when a connection tratfic volume has overflowed. All of 

the changes necessary to change the granularity of ihe credit system would be in the "WindowControl** 

module of the Verilog source code. 
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CHAPTER VI 

PERFORMANCE ISSUES 

The digital circuits assembled indicate that this design can correctly handle traffic from all of the ATM forum 

data rate spcciffcations. These calculations were made using worst case network traffic assumptions with full 

traffic violation rates. This means that the basic assumption regarding traffic arrival characteristics werc that 

no link bandwidth was being lett unutilized and that the arriving traffi could be either completely invalid for 

all arriving cells or completely valid for all arriving cells. 

All of the components mentioned in this design can easily be implemented in the TTL (trausistor-transistor 

logic), ECL (emitter-coupled logic) and HC (high-speed CMOS) logic families as evidenced by the range of 

products available in any catalog from the major digital applications semiconductor manufacturers. The 

external micmcontrollers and dynamic memories have been available for considerable periods of time and, 

thus, are considered to be very stable from the point of view of reliability of operating characteristics. 

Therefore, this design should be feasible utilizing only standard, off the shelf components for the 

implementation of three of thc major components of the design which are not specifically laid out in this 

document: Receivers, Transmitters and Control Module. The Analysis Module should be implementable 

through current one-micron and sub-micron production pmcedures coupled with current VLSI design tools. 

Again, current product literature allows for the conclusion that two, three and four million transistor count 

microchip designs are feasible on a scale that allows for mass manufacturing [31, 32]. 

In order to assess the feasibility of the implementation of the design of this device, it is necessary to establish 

what the approximate transistor counts for the various versions of the device will be, as well as, the maximum 

gate delays necessary to make the device feasible. In order to accomplish both of these measurements, the 

circuits described in the design portion of this document will be used. Approximate transistor counts will be 

reached by counting the gates necessary to implement these circuits and maximum gate delays necessary will 

be calculated by finding the longest series chain of gates through which a signal must pass in any one clock 

cycle and still allow the device to accomplish its function correctly. 

The design of the Analysis Module was described to be as logic family independent as possible. While it is 

not feasible to use the exact same circuit to perform the necessary functions in all of the logic families, the 

circuit, as described, could be implemented in all of the logic families and be quite close to optimal in 

component count. In the RTL (archaic), DTL (archaic), TTL and ECL logic families, the circuit description is 

very close to optimal. In the CMOS and High Speed CMOS logic families, the circuit description could vary 
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somewhat due to the availability of very low part count latches within these logic families. However, these 

low part count latches, are of the level-triggered variety and would require additional logic in order to ensure 

device stability. Therefore, an assumption involved in using the part count estimates described here for the 

CMOS logic family implementations is that the additional logic necessary to account for the level-triggered 

nature of CMOS latches would balance out the transistors lost by using these lower component count latches. 

In an attempt to calculate the necessary component count in a way that is independent of a particular logic 

family implementation, this component count will be assessed based on gate counts with each gate being 

assigned a component weight based on the number of inputs. Since all of the logic families sharc the common 

characteristic that the transistor count necessary to implement an "n" input logic gate is directly and linearly 

proportional to "n" (the number of inputs to the gate), we can accurately approximate the component count by 

summing the weight of each gate used. This sum of input-normalized gate weights would then be multiplied 

by a constant in order to predict the component count for the device's construction within each logic family, 

For RTL (the most primitive of the logic families; largely archaic) this multiplication constant would be 

exactly one, since one transistor is required for every gate input. For the CMOS families, this multiplication 

constant would be approximately two and the TTL/ECL families would fall somewhere in between [33J. 

The component count for the "path-only" version of the Analysis Module will remain fixed for all situations 

since the design, as presented, has sufficient capabilities to support invalid cell suppression for arrivals with 

any path information. However, the additional circuitry necessary to implement the "path and volume" 

version of the Analysis Module is significant and has the ability to grow to an untenable component count, In 

order to keep this version of the design within a reasonable component count, the component weights are 

calculated based on two variables. The number of "window control modules" and size of the window control 

module demultiplex selector in this version of the design is in direct relation to the number of valid paths for 

which the Analysis Module may provide traffi volume verification. Therefore, the first variable in the 

component count for the design of the "path and volume" Analysis Module will bc the number of valid 

connection paths supported by the Analysis module which will be referred to as "W". 

The granularity with which the leaky bucket mechanism in the "path and volume" Analysis Module can 

verify traffi along each valid connection path is directly related to the number of bits in the internal states of 

the two counters, the size of the input words of the equality testers and the size of the storage register which 

compose the window control modules. Therefore, the second variable in the component count for the design 

of the "path and volume'* Analysis Module will be the granularity supported by each leaky bucket mechanism 

controlling each valid connection which will be referred to as "K'. 



TABLE XVI 
Com sition and corn nent wei t of the modules in the" ath-onl " version of the Anal is Module 

4-bit multiplexer for loading cell 
header data (six units) 

4-bit latch for storing cell header 
data (six units) 

12-bit by 4-line multiplexer for 
presenting data to memory 

12-bit latch for new path data 
(two units) 

I-bit latch I'or new path data state 

latch for memory lookup result 

SR-latch for status of new path 
re isters 

memory lookup module for path 
verification 

alert latch for result from 
memo looku 

sequence I detect module for 
ovendl control 

12-bit shiA register with 9 stages 
for cell data transit area 

data gate for cell ou ut control 

72~(Two Input) + 6~(One Input) 

24~(Three Input) + 120s(Two Input) 

12e(Four Input) + 48v(Three Input) + 
2~(One In ut) 

24s(Three Input) + 120s(Two Input) 

1~(Three In ut) + 5v(Two In ut) 

I ~ Three In ut + Ss Two In ut 

2s(Two Input) 

External Unit 

ls(Three Input) + 5~(Two Input) 

9~(Onc Input) + 95v(Two Input) + 
43 ~(Three Input) + 22~(Four Input) + 

23s(Five Input) + 8s(Six Input) t 
7o Seven In ut) + 2~(Nine In ut) 

720~(Two Input) + 144~(Three Input) 

16s(One In ut) + 16~ Two In ut) 

150 

312 

194 

312 

13 

13 

646 

1872 

As shown in table XVI and table XVII, the part count in the Analysis Module is sufficiently low to lend itself 

to VLSI implementation only if the "pathwnly" version is implemented or if the "path with volume" version 

is implemented with a limited number of window control modules. As the analysis shows, the "path-only" 

version could be implemented with a component weight of only three to four thousand, which is trivial by 

modern VLSI standards. However, it is evident that for the "path and volume" version, the component weight 

depends heavily on the number of window control modules implemented and their associated granularity. In 

fact, there is a square relationship between the component weight and the granularity of each window control 

module while there is a linear times log relationship between the component weight and the number of 

window control modules implemented. 



TABLE XVII 
Composition and component weight of ihe sub-modules composing one *'window control module'* used in the 

th and volume" version of the Anal is Module 

"N"-bit register 
"K'-bit counter (with reset) 

5N~(Two In ut) + N~ Three In ut 

N~(One Input) + 'A(N t13N+4)~(Two Input) + 
(N)~(Three In ut + 2~ E, x In ut) 

13N 
2N + 16N 

"N'*-bit by "N"-bit equality tester 3N~(Two In ut) + l~ "N" In ut) 
**N"-bit counter with control (N'+4N+6)o(Two Input) + 5N~(Three Input) + 

N~(Four Input) + 6~(Z» Input) + 
2N~("N" In ut 

7N 

6N +23N+4 

"bf'-bit zero tester I ~ "N" In ut) 

However, the component weights required to implement the "path and volume" version of the Analysis 

Module are not so great as to make them unfeasible at current VLSI densities. The governing relationships 

necessary to calculate the component weight of the "path and volume" implementation as a function of the 

number of window control modules added and their associated granularity is are shown in table XVIII. With 

a component weight of one million, it is feasible to implement 100 window control modules with each inodule 

having a granularity of 32 bits. If the component weight is allowed to grow to two million, then it becomes 

feasible to implement 200 window control modules with 32 bits of granularity apiece. Also, it should be noted 

that if the window control module granularity is halved, the corresponding number of modules which can be 

added to keep the component weight at the same level more than doubles. To extend the example, if the 

window control module granularity is reduced to 16 bits, then 329 window control modules may be placed 

within an Analysis Module at a component weight of one million with this figure growing to 658 window 

control modules at a component weight of two million. Table XIX shows the order of magnitude correlation 

between the number of window control modules constructed within a "path and volume" Analysis Module, 

their associated granularities and the resulting component weight of that Analysis Module. 

Since the component weights of one million and two million components correspond to an actual transistor 

count of up to two to four million transistors, respectively (depending on the logic family used for its 

implementation) it is evident that these design goals are not unrealisuc. 
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TABLE XVIII 
Com sition and corn nent wei ht of the modules in the ** th and volume" version of the Anal sis Module 

4-bit multiplexer for loading cell 
header data six units 

4-bit latch for storing cell header 
data (six units) 

12-bit by 4-line multiplexer for 
presenung data to memory 

12-bit latch for new path data 
(two units) 

n-bit latch for new path data state 
(sufficient bits to load a word 

describing a unique window 

control module 

latch for memory lookup result 

(sufflcient units to store a word 

describing a unique window 

control module 

SR-latch lor status of new path 
re sters 

Memory lookup module for path 
verification 

Demultiptexer to select window 

control module (suificient outputs 

to select one of all window 

contml modules — two units: load 
new data and react to a memory 

looku 

Alert latch for result fmm 

memory lookup (sufficient bits to 
load a word describing a unique 

window control module) 

Window control module with "N" 
bits of granularity (W units) 

sequence I detect module for 
overall control 

12-bit shiA register with 9 stages 
for cell data transit area 

data gate for cell ou ut control 

6~(One Input) + 72~(Two Input) 

120~(Two Input) + 24o(Three Input) 

2~(One Input) + 48'(Three input) + 
12~(Four In ut) 

120~(Two Input) + 24~(Three Input) 

Slogz(W)~(Two Input) + logz(W)~(Three Input) 

Slogz(W)~(Two Input) + Iogz(W)o(Three Input) 

2o(Two Input) 

External Unit 

2W~(logz(W) Input) 

Stogz(W)~(Two Input) + logz(W)~(Three Input) 

N~(One Input) + 
~/z(3N' + 37N + 4)~(Two Input) + 

7N~(Three Input) + N~(Four Input) + 
go(Z3 zz la ut) + (2N+ 2)~("N" In ut) 

9~(One Input) + 95o(Two Input) + 
43~(Three Input) + 22~(Four Input) + 

23'(Five Input) + 8~(Six Input) + 
7~(Seven In ut + 2~(Nine In ut) 

720~(Two Input) + 144~(Three Input) 

16~(One In ut + 16~ Two In ut 

150 

312 

194 

312 

13(iogz W) 

13(log, W) 

2W(logz W) 

13(logz W) 

8WN + 60WN+ 
4W 

646 

1872 

48 
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TABLE XIX 
Order of magnitude correlation of the component weight of the "path and volume" Analysis Module as the 

number and ranularit of "window control modules'* im lemented varies 

tt of window control modules 0 Wlo W) 

ulari of each window control module (e ressed in number of bits) O(N ) 

Granularity versus number of window control modules for a fixed 
component weight 
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Fig. 27. Granularity versus number of window control modules which may be implemented in one Analysis 

Module for fixed component weighf 8 

Therefore, it has been shown that the component weight necessary to implement the device is significantly 

impacted by the granularity of the "window control modules" placed on each Analysis Module. Figure 27 

shows this in graphical form as the design component weights begin in increase exponentially if the window 

control module granularity is increased linearly. Figure 28 presents this component weight information as a 
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function of the number of window control modules implemented and allows the conclusion that the 

component weight is a linear function of the number of window control modules. 

All "window control modules", regardless of their granularity, exhibit an upper limit on the traflic volume 

they will permit to pass of one cell credit per clock cycle, which translates to one credit per cell time (if the 

Analysis Modules' clock is divided by 26. 5 for all window control modules). However, their granularity 

affects the minimum allowable traFtc rate per connection, as well as, the greatest number of traflic credits 

any one connection is allowed to accumulate when that connection is utilizing less than its declared allowable 

bandwidth. Therefore, with "window control modules" of greater granularity, the Analysis Module is capable 

of successfully controlling virtual connections with lower trafflc limits and, also, of allowing unintenupted 

traffic flow for connections with "bursty" traFtc patterns. All of this is possible while still verifying that they 

do not exceed their allowable "mean" traFtc limits. Both of these characteristics are favorable to supporting 

the wide range of traffic types envisioned for the distributed nature of wide-area backbones [34, 35] 

The remaining issue which pertains to the components necessary to implement this design are those of the 

amount of dynamic RAM memory that will be required oF-chip for the Analysis Module. In the case of the 

"path-only" Analysis Module, it is only necessary to place one 16 megabit RAM in the circuit in order to 

support complete screening of all possible connection paths. However, in the "path and volume" 

implementation, the amount of memory which will be required will be a function of the number of valid paths 

which must be supported by each Analysis Module. To be more precise, sufhcient memory will be required in 

order to generate a data word wide enough to support the selection of one unique window control module for 

any random address within a 244nt address space. Therefore, in the case where "W" window control modules 

have been implemented within an Analysis Module, a data word with a width of log, (W) will be required in 

order to select one of them. By extension, this means that log, (W) memories of 16 megabits apiece will be 

necessary to support an Analysis Module with **W" window control modules. Therefore 2~Iogr(W) megabytes 

of memory would be required by this design (with one byte equaling to eight bits). If we were to place 16 

megabytes of memory in one Analysis Module, this would allow for the support of 256 window control 

modules. Likewise, 8 and 4 megabytes in each Analysis Module would support 128 and 64 window control 

modules, respectively. These memory ranges are not unreasonable, given the current market availability of 

these components. 
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Component weights for fixed window control module granujarities 
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Fig. 28. Component weight versus number of window control modules which may be implemented in one 

Analysis Module for fixed module granularities 

Up to this point, it has been shown that the component count of this security device is significantly impacted 

by the number of simultaneous network virtual connections the device will support. This impact it so great 

thai for security devices connected to nodes through which a large amount of traffic passes, the number of 

simultaneous connections could very well exceed the number of components that may feasibly be mounted on 

one or a few dies. Likewise, it does not make sense to make the investment to develop a high component chip 

only to install it into a security device that monitors a gateway to the backbone where only a few connections 

may simultaneously exist. Therefore, an approach should be discussed by which an extensible version of this 

security device may be implemented. Extensibility of the chip in this design refers to an implementation that 
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uses this same core of design decision in such a fashion that multiple identical devices may be interconnected 

to operate as one device which can handle a greater number of simultaneous virtual connections than any one 

chip would normally be able to. 

The issue at thc heart of creating a series of devices which can behave as one is to divide the set of virtual 

connections which may exist simultaneously among ditferent units. In this way, every individual unit can test 

incoming trafiic for validity or volume violations and only forward that portion of the trafiic found to belong 

to a valid connection, for which it is responsible, to the network backbone. That tratfic for which a particular 

module is not responsible will be forwarded to the next security unit in the sequence. This extensible 

approach is described graphically in figure 29. 

Cell found 
and verified 

Security 
FROM 

NETwoRK' , Module 
Cell found 

and verified 

FlFP DUTPUT 
TO 

i Queue NE QRK 

Security 
«iect~ Module 

Cell found 
and verified 

Security 
Reject' Module 

BAD CELL 
(rejected) 

Fig. 29. High level view of the interconnections of Security Modules in a simple extensible implementation 

Using this approach, every security module is responsible only for those cells belonging to connections that 

are found within its own window control modules. The additional hardware necessary to implement such an 

approach consists only of a first-in first-out (FIFO) queue which would capture those cells that are found to be 
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valid and within volume limits by any of the Security Modules and forward them to the network. Since, in the 

worst case, cells will be fed into the first Security Module in the chain at the network's peak transmission 

rate, and the interconnections between the Security Modules will pass these cells to one another at this same 

rate, at most one cell may exist within one Security Module at any given time. Due to this, the greatest 

number of cells that may be passed to the FIFO queue is the same as the number of Security Modules to which 

it is connected. Therefore, the FIFO queue's depth need be no greater than the number of Security Modules to 

which it is connected. 

The impact on the overall performance of the device in terms of cell delay time are significant. In the best 

case, the cell will be found to be valid and to be within volume limits within the first Sccurip Module to 

which it is transmitted. In this case the cell will experience one-half cell time delay within that module and 

negligible delay within the FIFO queue (assuming it is empty). Therefore, in the best case, cell delay 

experienced within this extensible configuration will be the same as that of the non-extensible device. In the 

worst case, a cell will not be found to bc valid until it reaches the last Security Module in the chain. Also, 

when that ceff is finally transmitted to the FIFO queue, it may experience additional delays due to cells that 

may already be in that queue. Since every Security Module delays a cell by one-half of a cell time and every 

cell already in the FIFO queue will delay tliat cell by an additional cell time, the worst~so delay a valid cell 

(N 
may experience while travelling though this device will be — + X — 1 cell times for N Security Modules 

Therefore, if there were four Security Modules chained together outputting their valid data to a FIFO queue 

with a depth of four cells, the worst-case cell delay would be five cell times. 

The Control Module in this configuration would have to oversee the operation of a number of Security 

Modules for every data path, instead of just one, as in the non-extensible configuration. In order to determine 

whether or not a cell truly belongs to an invalid path, it would have to correlate the invalid cell alarms from 

all of the Security Modules along one data path together. However, as in the nonwxtensible configuration, a 

connection volume violation alarm from any one of the Security Modules will suffice in order to detect a 

traffic volume idolation. Finally, in order to create new valid connections along any one data path, ihe 

Control Module will not only have to determine into which memory slot to place the connection, but it will 

also have to select one of the Security Modules along that data path first. This decision will finther be 

complicated by the fact that the cells belonging to connections which are tracked in the first Security Module 

in the chain will experience a smaller delay than those being tracked in the last Security Module in the chain. 

Therefore, before adopting this extensible configuration, the fact that cell delay in these security devices will 

be a linear function of the number of Security Modules used in each data path should be duly noted. 
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CHAPTER VII 

CONCLUSION 

The primary goals of this thesis work were to create a design by which basic covert tratfic minimization 

mechanisms could be implemented in hardware with the scope of providing a mechanism for uniform security 

enforcement across a wide-area ATM/SONET technology network backbone. 

A module level description of the device has been presented and shown to be implementable with currently 

available ofl'-the-shelf components and custom application specific integrated circuitry (ASIC) available at 

current levels of integration technology. The performance of the device has been evaluated under worst-case 

conditions for network trafilc. Is has been shown that the delay experienced by network trafilc in existing 

virtual connections in the network is trivial when compared to its expected transit time within the network 

and that the management functions of creating and destroying virtual connections are not a function of the 

creation / destruction rate of these connections. Through the description of its operation, it is evident that, 

while utilizing such a framework of traffic security enforcement, the full bandwidth of the network is 

available to all users for authorized utilization and that through trafhc delays network cells will experience 

are constant even under sustained peak traific conditions. 

The possibility of implementing fixed-window leaky bucket trafilc control mechanisms, whether for actual 

security enforcement purposes or others, was actually shown to be feasible. While actual performance 

measurements on thc correlation between the "burstiness" of connection trafiic and size of the leaky bucket 

mechanism window have not been taken, this information is amply documented in [36J and [37]. Even 

though no guidelines have been given with regard to the window size of the leaky bucket mechanism that 

should be implemented, there is sufiicient research to allow for an educated decision with regard to the 

tradeoff between the component count of the ASIC that would need to be implemented and the "burstiness" of 

the connection traffic that should be allowed to be admitted thmugh the network. 

The device was tested by simulation for proper operation with the Verilog hardware description language and, 

according to its specifications, and was found to meet its design goals for any design whose gate delays are 

less than two nanoseconds. While integrated circuit gate delays are highly logic family dependent, this 

requirement should not be a significant hindrance to the implementation of the ASIC since large 

microcontmller designs have already been shown to have the capacity to operate at clocking speeds in excess 

of thirty-eight MHz (the intended clocking speed for this device). 
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VILA Future Work 

The details for the components of the security framework presented here have concentrated primarily on the 

mechanisms by which actual enforcement should occur and how to limit the impact which it has on overall 

network performance. Many portions of the larger issues of this method of security enforcement have been 

glossed over, Foremost among these issues is the topology and physical architecture which should be used to 

impleinent the network by which supervisory control data is transferred between the modules that actually 

provide the enforcement and the workstations which keep the operators of the security body appraised of the 

state of the network. Toward this end, a significant amount of work lies ahead in order to assess which 

topologies and implementation technologies would be optiinal for this overlying network. An integral 

component of this decision will be an assessment of exactly what criteria to use in order to derive the level of 

enforcement that the modules designed in this document will be required to perform. Based on this, 

assessments may be made with regard to what the overall bandwidth and worst-case delays of the overlying 

network must be in order to provide an interface to the individual enforcement modules that is deemed to be 

acceptable l'rom the network management perspective. 

Another issue of paramount importance which needs to be addressed are the mechanisms that will be used to 

protect the overlying "security trafflc only" network which allow the enforcement modules to communicate 

with the operator workstations. While trying to avoid a *'who guards the guardian" paradox, it will be 

necessary to produce a methodology by which "sufficient" impenetrability for this network may be assessed. 

A final area for future work is an examination of how many connections are lypically supported in tandem on 

any given port of a switch in a wide-area ATM network. Such an assessment will be necessary in order to 

decide at which level to implement the integration of the security enforcement ASIC in order to provide the 

level of required traffic support at a minimal cost. Without such surveys, it is possible to construct devices 

that are prohibitively expensive yet provide support for many more connections than actually exist or, 

alternauvely, to construct devices whose connection support is so limited as to severely handicap the 

capability of the network to provide the level of service for which it was designed. As a possible alternate 

approach to the solution of this problem, it may be possible to modify the design presented here in such a 

fashion that it becomes scaleable with respect to the number of connections a security module may support. 

This modification would allow for the addition of inexpensive, readily available option modules in those areas 

where connection support is found to be insufficient. 
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APPENDIX A 

"PATH-ONLY" ANALYSTS MODULE SIMULATION CODE 

This appendix contains the Verilog hardware description language code necessary to implement a gate-level 

simulation of the "pathwnly" version of the Analysis Module. The Receivers, Transmitters and memories 

involved in the destgn of the network security device were simulated at the procedural level and the Analysis 

Module was simulated at the gate level. 

All sub-module inputs and outputs are fully commented. 

A. A Verilog Simulation 

module Inverter (In, Out); 

input In; 

output Out; 

reg Out; 

always 

¹I Out = -In; 

endmodule 

module TwoinputNANDGate (InOne, InTwo, Out); 

input InOne, In Two; 

output Out; 

reg Out; 



¹I Out = -(InOne k In Two); 

endmodule 

module ThreelnputNANDGate (InOne, InTwo, InThree, Out); 

input InOne, In Two, In Three; 

output Out; 

reg Out; 

always 

¹ I Out = -(InOne k, In Two k In Three); 

endmodule 

module FourlnputNANDGate (InOne, InTwo, InThree, InFour, Out); 

input InOne, lnTwo, InThree, InFour; 

output Out; 

reg Out; 

always 

¹ I Out = -(InOne & In Two & In Three k InFour); 

endmodule 

module FivelnputNANDGate (InOne, In Two, In Three, InFour, InFive, Out); 

input InOne, InTwo, InThree, InFour, InFivc; 

output Out; 
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reg Out; 

always ¹I Out = -(InOne k InTwo & ln Three k InFour &. InFive); 

endmodulc 

module SixlnputNANDGate (InOne, InTwo, InTIvce, lnFour, InFive, InSix, Out); 

input lnOnc, InTwo, InThree, InFour, InFivc, InSix; 

output Out; 

reg Out; 

always 

¹I Out = -(InOne & InTwo k lnThree & InFour k InFive & lnSix); 

cndmodule 

module SevenlnputNANDGate (InOnc, In Two, In Three, InFour, InFive, InSix, 

InSeven, Out 

input InOne, InTwo, InThree, lnFour, lnFive, InSix, InSeven; 

output Out; 

reg Out; 

ahvays ¹I Out = -(lnOne & In Two & InThree k lnFour &. InFive & InSix & InSeven); 

endmodule 
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module NinelnputNANDGate (InOne, InTwo, ln Three, InFour, InFive, InSix, 

InSevcn, InEight, InNine, Out 

input InOne, In Two, InThree, InFour, InFivc, lnSix, InSeven, 

InEight, lnNme; 

output Out; 

reg Out; 

always 

¹1 Out = -(InOne k, In Two k ln Three & InFour k InFive k InSix k 
InSeven k InEight k InNine 

endmodulc 

module TwolnputNORGate (InOne, InTwo, Out); 

input lnOne, In Two; 

output Out; 

reg Out; 

always ¹I Out = -(InOne 
~ 
InTwo); 

endmodule 

module ThreelnputNORGate (InOne, InTwo, InThree, Out); 

input. InOne, In Two, lnTltree', 

output Out; 



reg Out; 

always ¹I Out = -(InOnc 
~ 
lnTwo 

~ 
InThree); 

cndmodule 

module FourlnputNORGate (lnOne, InTwo, InThree, InFour, Out); 

input InOne, InTwo, lnThree, InFour; 

output Out; 

reg Out; 

always 

¹I Out = -(InOne 
~ 
InTwo InThree 

~ 
InFour); 

endmodule 

module FivelnputNORGate (InOne, InTwo, ln Three, InFour, InFive, Out); 

input InOne, In Two, In Three, InFour, InFive; 

output Out; 

reg Out; 

always ¹I Out = -(InOne 
~ 
la Two 

~ 
InThree 

~ 
InFour ) InFive); 

endmodule 

module SixlnputNORGate (InOne, In Two, InThree, InFour, lnFive, InSix, Out); 
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input InOne, InTwo, lnThree, lnFour, InFive, InSix; 

output. Out; 

reg Out; 

always 

¹I Out = -(InOne 
~ 
In Two 

( 
In Three 

~ 
InFour 

~ 
InFive 

~ 
InSix); 

endmodule 

module SevenlnputNORGate (InOne, InTwo, In Three, InFour, 

InFivc, InSix, InSeven, Out ); 

input InOne, In Two, In Three, InFour, InFive, InSix, InScvcn; 

output Out; 

reg Out; 

always ¹I Out = QlnOne 
~ 
InTwo 

~ 
lnThrec 

~ 
InFour ) InFive 

~ 
InSix 

~ 
InSeven); 

endmodule 

module SRLatch (Set, Reset, Out, InvertOut); 

input Set, Reset; 

output Out, InvertOut; 

TwoinputNANDGate GateOne (Set, InvertOut, Out); 

TwolnputNANDGate Gate Two (Reset, Out, InvertOut); 

endmodule 



module PosEdgeTrigLatch (Clock, Data, Out, InvertOut); 

input Clock, Data; 

output Out, InvertOut; 

wire wl, w2, w3, w4; 

TwolnputNANDGate GateOnc (w4, w2, wl); 

TwolnputNANDGate GateTwo (wl, Clock, w2); 

ThreelnputNANDGate Gate Three (w2, Clock, v 4, w3); 

TwolnputNANDGate GateFour (w3, Data, w4); 

TwolnputNANDGate GateFive (w2, lnvcrtOut, Out); 

TwolnputNANDGate Gategix (Out, w3, InvertOut); 

endmodulc 

// Name: FourBitRegister 

// Inputs: Data [3:0] - The data to be latched by thc register on the 

next. rising clock edge. 

// Clock - The clocking signal which controls data latching. 

// Outputs: Out [3:0] - The data latched on the last rising clock edge. 

module FourBitRegister (Clock, Data, Out), 

input [3:0] Data; 

input Clock; 

output [3:0] Out; 

wire [3:0] Outlnv; 

PosEdgeTrigLatch BitZero (Clock, Data[0], Out[0], Outluv[0]); 

PosEdgcTrigLatch BitOne (Clock, Data[1], Out[1], Outlnv[l]); 

PosEdgeTrigLatch BitTwo (Clock, Data[2], Out[2], Outlnv[2]); 



PosEdgeTrigLatch BitThree (Clock, Data[3], Out[3], Outinv[3]); 

endmodule 

// Name: EightBitRegister 

// Inputs: Data [7:0J - The data to be latched by the register on the 

// Clock 

next. rising clock edge. 

- The clocking signal which controls data latching. 

// Outputs: Out [7:OJ - The data latched on the last rising clock edge. 

module EightBitRegister (Clock, Data, Out); 

input [7:0] Data; 

input Clock; 

output [7:0] Out; 

FourBitRegister LowNibblc (Clock, Data[3:0], Out[3:0]); 

FourBitRegister HighNibble (Clock, Data[7:4], Out[7:4]); 

endmodule 

// Name; SixteenBitRegister 

// Inputs: Data [15:0] - The data to be latched by the register on the 

// Clock 

next rising clock edge. 

- The clocking signal which controls data latching. 

// Outputs: Out [15:0] - The data latched on the last rising clock edge. 

module SixteenBitRegistcr (Clock, Data, Out); 

input [15:0] Data; 



input Clock; 

output [15:0] Out; 

EigluBitRegister LowByte (Clock, Data[7:0], Out[7:0] ); 

EightBitRegister HighByte (Clock, Data [15: 8], Out[15:8]); 

endmodule 

// Name: ShiftRegister 

// Inputs: Data [15;0] - The data to be latched by the shift register on 

// Clock 

the next rising clock edge. 

- The clocking signal which controls data latching. 

// Outputs: Out [15:0] - The data latched on the rising clock edge twenty 

seven clock cycles ago 

// Outlnv [15:0] - The negation of the data latched on the rising 

clock edge nine clock cycles ago. 

module ShiftRegister (Clock, Data, Out); 

input [15:0] Data; 

input Clock; 

output [15:0] Out; 

wire [15:0] Ll, L2, L3, L4, L5, L6, L7, L8; 

SixteenBitRegistcr Stage0 

SixteenBitRegistcr Stagel 

SixteenBitRegister Stage2 

SixteenBitRegister Stage3 

SixteenBttRegister Stage4 

SixteenBitRegister Stagc5 

SixteenBitRegister Stagc6 

SixteenBitRegister Stage7 

(Clock, Data, Ll); 

(Clock, L I, L2); 

(Clock, L2, L3); 

(Clock, L3, L4); 

(Clock, L4, L5); 

(Clock, L5, L6); 

(Clock, L6, L7); 

(Clock, L7, L8); 
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SixteenBitRegister Stage8 (Clock, Lg, Out); 

endmodule 

// Name; DataGate 

//Inputs: In 

// Select 

- Data input. 

— If asserted low. the bit value at "In" will be 

reflected at "Out". Otherrvisc. "Out" will 

reflect zero. 

// Outputs; Out — Reflect "In" if Select is low, otherwise low 

regardless of the state of "In". 

module DataGate (Jn, Select, Out); 

input In, Select; 

output Out; 

wire Outlnvert; 

TwolnputNANDGate Gate (In, Select, Outlnvert); 

lnverter Invert (Outlnvert, Out); 

endmodule 

// Name: FourBitDataGate 

// Inputs: In [3:0] - Data input. 

// Select — If asserted high, the bit values at "In" will be 

reflected at "Out". Otherwise, "Out" will 

reflect all zeroes. 

// Outputs: Out [3:0] - Reflect "In" if Select is high, otherwise just 
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set all bits to low. 

module FourBitDataGate (In, Select, Out); 

input [3:0] In; 

input Select; 

output [3:0] Out; 

DataGate Bit0 (In[0], Select, Out[0]); 

DataGate Bitl (In[1], Select, Out[1]); 

DataGate Bit2 (In[2], Select, Out[2]); 

DataGate Bit3 (In[3], Select, Out[3]); 

endmodule 

// Nmne: EightBttDataGate 

// Inputs: In[7:0] - Data input. 

// Select - If asserted high, the bit. values at "In" will be 

// reflected at "Out". Otherwise, "Out. " will 

reflect all zeroes. 

//Outputs: Out[7:0] -Reflect 'ln" if Select is high, otherwisc just 

go low on all bits. 

module EightBitDataGate (In, Select, Out); 

input [7:0] ln; 

input Select; 

output [7:0] Out; 

FourBitDataGatc LowNibble (la[3:0], Select, Out[3:0]); 

FourBitDataGate HighNibble (in[7:4], Select, Out[7:4]); 

endmodule 



// Name: TwoLineSelector 

// Inputs: In[I:OJ 

// Select 

- Two bits of data input 

- Input that must be asserted in order to control 

which of the two bits of input will be rctlected 

at the output. 

// Selectlnv - Input which is the inverse of "Select" 

// Outputs: Out - Reflec the value at "In[1]" if "Select" is 

high and "Selectlnv" is low. Reflect the vahic 

at "In[0]" if "Select" is low and "Selectlnv" is 

high. Behavior is unpredictable otherwise. 

module TwoLineSelector (In, Select, Selectlnv, Out); 

input [1:0] In; 

input Select, Selectlnv; 

output Out; 

wire [1;OJ Con; 

TwolnputNANDGate GateZero (In[0], Selectlnv, Con[0]); 

TwolnputNANDGate GateOne (In[IJ, Select, Con[1]); 

TwolnputNANDGate Gate Two (Con[0], Con[1 ], Out); 

endmodule 

// Name: FourBitTwoLineSelector 

// Inputs: InZero [3:0] - The first input line 

// InOne [3:0] - The second input line 

// Select - Input (hat must be asserted in order to contml 

which of thc two nibbles of input will be 
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reflected at the output nibble. 

// Outputs: Out [3:OJ - Reflec the nibble at "InOne" if "Select" is 

lugh. Otherwise, reflect the nibble at "InTwo". 

module Fouri3itTwoLineSe)cctor (lnZero, InOne, Select, Out); 

input [3:0] InZero, InOne; 

input Select; 

output[3:0] Out; 

Sclectlnv, 

wire [7:OJ Input; 

assign Input[0] = InZero[0], Input[I J 
= lnOne[0], 

Input[2] = InZero[1], Input[3] = InOnc[1], 

Input/4] = InZero[2], Input[5] = lnOne[2], 

Input[6] = lnZero[3], Input[7] = InOne[3]; 

Inverter Invert (Select, Selectlnv); 

TwoLineSelector Sclect0 (Input[I:0], Select, Selectlnv, Out[0]); 

TwoLineSelector Selectl (Input[3:2], Select, Selectlnv, Out[1]); 

TwoLineSelector Select2 (Input[5:4], Select, Selectlnv, Out[2]); 

TwoLineSelector Select3 (Input[7:6], Select, Selectlnv, Out[3]); 

enthnodule 

// Name: FourLineSelector 

// Inputs: In[3:0] - Four bits of data input 

// Sclcct[1:0] - Inputs that must be asserted in order to control 

which of the four bits of input will be 

reflected at the outpuh 



// Selectlnv[l:0] - Input which is the inverse of "Select[1:0]" on 

afl bits. 

// Outputs: Out - Depending on thc state of the "Select" inputs, 

this signal will reflect the state of one of the 

bits at the "In" input, according to the table 

below. Behavior is unpredictable for conditions 

not covered in the table. 

Sel[0] Sellnv[0] Sel[1] Sellnv[1] 
~ 

Out 

Low High Low High 
~ 
In[0] 

Low High High Low [ In(1J 

High Low Low High 
~ 
In(2] 

High Low High Low 
~ 
In[3] 

module FourLineSelector (In, Select, Selectlnv, Out); 

input [3:0] In; 

input [1:0] Select, Selectlnv; 

output Out; 

wire [3:0] Con; 

ThreelnputNANDGate GateZero (In[0], Selectlnv[0], Selectlnv[1], Con[0]); 

ThreelnputNANDGate GateOne (In[I], Selectlnv[0], Select[1], Con[1]); 

ThreelnputNANDGate GateTwo (In[2J, Select[0], Selectlnv[1], Con[2]); 

ThreelnputNANDGate GateThree (In[3], Sclcct[0], Select[1], Con[3]); 

FourlnputNANDGate GateFour (Con[OJ, Con[1], Con[2], Con[3], Out); 

endmodule 

// Name: TwelveBitFourLineSelector 

// Inputs: InZero [11;0] - The first input line 
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// InOnc [11:0] — The second input linc 

// InTwo [11:OJ - The third input line 

// InThrce [11:0] — The fourth input linc 

// Select [I:0] - Consols whose state govern which of the four 

inputs will be reflected at the output. 

rcflccied at the output. 

//Outputs: Out [11:0] - Depending on the state of the "Select" inputs, 

this signal will reflect the state of the twelve 

bits at one of the four inputs. Behavior is 

unpredictable for conditions not covered in the 

table. 

Selcct0 Selectl 
( 

Out 

Low Low 
~ 

InZero 

Low High 
~ 

InOne 

High Low 
~ 

In Two 

High High 
~ 

InThree 

module TwctveBitpourLineSelector (InZcro, InOne, InTwo, InThree, Select, Out)', 

input [11:0] InZero, InOne, InTwo, InThrce; 

input [I:0] Select; 

output [11:OJ Out; 

wire [I:0] Selcctlnv; 

wire [47:OJ Input; 

assign Input(0] =InZero[0], Input[1] =InOne[0], 

Input[2] = lnTwo[0], Input[3] = InThree[0], 

Input[4] = InZero[1], Input[5] = InOne[1], 

Input[6J = InTwo[l], Input[7] = InThree[1 J, 

Input[SJ = InZero[2], Input[9] = InOne[2], 

Input[10] = ln Two[2], Input[11] = InThree[2], 

Input[12] = InZero[3], Input[13] = InOne[3], 

Input[14] = InTwo[3J, Input[15] = In Three[3], 
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Input[16] = InZero[4], Input[17J = lnOne[4], 

Input[18] = InTwo[4], Input[19] = InThrec[4], 

input[20] = InZero[5], Input[21J = InOne[5], 

Input[22] = InTwo[5], Input[23] = InThree[5], 

Input[24] = InZero[6], Input[25] = InOne[6J, 

Input[26J = InTwo[6], Input(27] = InThree[6J, 

Input[28J = InZero[7], Input[29] = InOne[7], 

Input[30] = lnTwo[7], Input[31] = InThree[7], 

Input[32J = lnZcro[8], Input[33] = InOne[8], 

Input[34] = InTwo[8], Input[35] = InThree[8], 

Input[36[ = InZero[9], Input[37] = InOne[9], 

Input[38] = InTwo[9], Input[39] = InThree[9], 

Input[40] = InZero[10], Input[41] = InOne[10], 

Input[42] = InTwo[10], Input[43] = InThree[10], 

Input[44] = InZero[1 I J, Input[45] = InOne[11], 

Input[46] = InTwo[11], Input[47] = InThree[11]; 

Invcrtcr Invert0 (Select[0], Selectlnv[0]); 

Inverter Invertl (Select[1], Selectlnv[1 J); 

FourLineSelector Select0 (Input[3:0], Select, Selectlnv, Out[0] ); 

FourLineSelector Selectl (Input[7:4], Select, Selectlnv, Out[1] ); 

FourLineSclector Select2 (Input[11:8], Select, Selectlnv, Out[2] ); 

FourLineSelector Select3 (Input[15:12], Select, Sclectlnv, Out[3] ); 

FourLineSelector Select4 (Input[19:16], Select, Selcctlnv, Out[4] ); 

FourLineSelcctor SelectS (Input[23:20], Select, Sclectlnv, Out[5] ); 

FourLineSelector Select6 (Input[27:24], Select, Selcctlnv, Out[6] ); 

FourLineSelector Select7 (Input[31:28], Select, Selectlnv, Out[7] ); 

FourLineSelector Select8 (Input[35:32], Select, Selectlnv, Out[SJ ); 

FourLineSelector Sc)ect9 (Input[39:36], Select, Selectlnv, Out[9J ); 
FourLineSelector Selcct10 (Input[43:40], Select, Selectlnv, Out[10]); 

FourLineSelector Select I I (Input[47: 44], Select, Selectlnv, Out[11]); 

endmodule 
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// Name: ClockGen 

// Inputs. None. 

// Outputs: Clock - Square wave that cycles up and down every 

13 nanoseconds thereby producing a signal with a 

period of 26 nanoseconds. 

module ClockGen (Clock); 

output Clock; 

reg Clock; 

imttat 

Clock = I; 

always 

begin 

¹13 Clock = 0; 

¹13 Clock = 1; 

endmodule 

// Name: NewpathStore - Simulates the storage elements that accept and 

hold data about a ncw path to be loaded into 

the memory lookup module by the sequence / 

detect module at the appropriate time 

// Inputs: Load 

// UnLoad 

- The Set input on I bc SR latch indicating 

whether the unit still contains new data 

- The Reset input on the SR latch indicating 

whether the unit still contains new data 



// Dataln — Input indicating whcthcr the new path is to be 

validated or invalidated 

// Addressln [23:0]- The input for thc new path which is to be 

validated or invalidated 

// Outputs; Full — The Q output on the SR latch which, if high, 

indicates the unit contains new data. 

// Empty - The Q' output on the SR latch which, if high, 

indicates the unit does not contain new data. 

// DataOut - Output indicating whether the ncw path 

currently stored is to be validated or 

invalidated 

// AddressOut[23:0]- The output of the new path which is to be 

validated or invalidated 

module NewPathStore (Load, UnLoad, Addressln, Detain, 

Full, Empty, AddressOut, DataOut); 

input Load, UnLoad, Dataln; 

input [23:0] Addressln; 

output Full, Empty, DataOut; 

output [23:0] AddressOut; 

wire DataOutlnv; 

EightBitRcgister Low (Load, Addressln[7;OJ, AddressOut[7:0] ); 

EightBitRcgister Middle (Load, Addressln[l fag], AddressOut[15:8] ); 

EightBitRegister High (Load, Addressln[23:16], AddressOut[23:16]); 

PosEdgeTrigLatch Data (Load, Dataln, DataOut, DataOutlnv); 

SRLatch Status (Load, UnLoad, Full, Empty); 

endmodule 

//Name: DynamicRAM -Simulates a Texas Instruments SMJ416100-70 

dynamic random access memory 
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// Inputs: Address [11:0] — DRAM address lines 

// RAS — Row address select 

// CAS - Column address select 

// W - Read/Write select 

// D - Data input on memory writes 

// Outputs: Q - Data output on memory reads 

module DynamicRAM (Address, RAS, CAS, W, D, Q); 

input [11:0] Address; 

input RAS, CAS, W, D; 

output Q; 

rcg [11:0] Row, Column; 

reg Q, Dataln; 

initial 

Q = 1'bz; 

always 

begin 

wait (!RAS) 

Row = Address; 

wait (!CAS) 

Column = Address; 

if (W == 0) 

begin 

// we are performing a write cycle 

Detain = D; 

wart (CAS) 

Q = 1bz; 

end 

else 



// we are performing a read cycle 

// for thts simulation just present the low bit of the address 

¹18 Q = Address[0]; 

wait (CAS) 

Q= lbz; 

end 

end 

cndmodule 

// Name: NetworkReceiver 

// Inputs: Clock - Clock on whose negative edge to present data 

// Outputs: Out [15:0] - Present data produced by the receiver. 

// NewCclIEven - Asserted when the starting byte of dtc cell 

currently being transmitted was presented on 

the high-order byte of the output. 

// NewCellOdd - Asserted when the starting byte of the cell 

currently being transmitted was presemed on 

thc low-order byte of the output. 

module NetworkReceiver (Clock, NewCellLow, NewCeIIHigh, Out); 

input Clock; 

output [15:0] Out; 

output NewCellLow, NewCellHigh; 

reg [15:0] Out, Temp; 

reg NewCellLow, NewC:IIHigh; 

initial 

begin 

Pol (negedge Clock) Out[15:8] = 8'b00000000; 

Out[7:0] = 8'b00000001; 
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end 

NewCellLow = 0; 

NewCellHigh = 0, 

always 

@ (negedge Clock) Temp[15: 8] = Out[15. 8] + 2 

Tnnp[7:0] = Out[7;0] + 2; 

tf (Temp[15:8] & 52) 

Temp[15:8] = Temp[15:8] - 53; 

if (Temp[15:8] == 0) NewCellLow = I; 

end 

else 

NewCelILow = 0; 

if(Temp[7:0] & 52) 

begin 

Temp[7. 01 = Temp[7:0] -53, 

if (Temp[7:0] == 0) NcwCellHigh = I; 

end 

else 

NewCeIIHrgh = 0; 

end 

Out[15:0] = Temp[15:0]; 

endmodule 

// Name: NetworkTransmitter 

// Inputs: Data [15:0] - The data to be transmitted out onto the 

network. 

// NewCeIIEven - Assettcd when the starting byte of the cell 



currently being transmitted was presented on 

the high-order byte of the input. 

// NewCellOdd - Asserted when the starting b)ue of the cell 

currently being transmitted was presented on 

the low-order byte of the input. 

moduleNetworkTransmittcr (Clock, NewCellEven, NewCellOdd, Data); 

input Clock, New CellEven, NewCcllOdd; 

input [15:0] Data; 

cndmodule 

module ResetContro( (Clock, Input, Output); 

input Clock, Input; 

output Output; 

reg Output; 

initial 

Output = 0; 

¹26 Output = Input; 

// @(negedge Clock) Output = Input; 

Clld 

always 

Output = Input; 

endmodule 

// Name: ControlModutc 

// Inputs: Latchget - If high, indicates that the new path storage 
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// LatchReset 

module still contains new data. 

- If high, indicates that the new path storage 

module has been cleared of new data. 

// Output: SetLatch 

// Data 

// Address 

- If high, indicates that new data lies been 

presented and should be latched. 

- If high, indicates that the new path 

being modified is io be a valid path. 

Otherwise, the new path is to be an invalid 

one. 

- Indicates the VPI/VCI pair of the path whose 

status is to be modifie. 

module ControlModulc (Address, Data, SetLatch, LatchSet, LatchReset); 

input LatchSet, LatchReset; 

output SetLatch, Data; 

output [23:0] Address; 

reg SetLatch, Data; 

reg (23:0j Address; 

inilial 

SetLatch = 0; Data = 0; Address = 0; 

end 

always 

begin 

¹I if (LatchSet == 0) 

begin 

Address = Address + I; 

if (Data == 0) Data = 1; 

if (Data == I) Data = 0; 

¹I SetLatch = I; 

¹I SetLatch = 0; 
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end 

cnd 

end module 

// Name: DownCounterWithPreset 

//Inputs: Clock 

// Set26 

// Set27 

- Signal on whose positive edge, the counter 

must change state 

- If high on a rising edge of "Clock", then 

it forces the next state of the counter to 

be 26 transitions away from zero. 

- If lugh on a rising edge of "Clock", then 

it forces the next state of the counter to 

be 27 transitions away from zero. 

// Output: Bit0. . . 4 — Individual lines of the output of the five 

latches that store the current state of the 

counter. BitO refers to the lowest order 

bit and Bit4 to the highest order bit. 

module DownCounterWithPreset (Clock, Set26, Set27, 

BitO, Bitl, Bit2, Bit3, Bit4); 

input Clock, Set26, Set27; 

output Bit0, Bit l, Bit2, Bit3, Bit4; 

wire BitOInput, Bit 1 Input, Bit2lnput, Bi(3input, Bit4lnput; 

wire Set261nv, Set27lnv; 

wire [22:0) Linc; 

// Memory elements to store the current state 

PosEdgeTrigLatch BitZcro (Clock, BitOInput, BitO, BitOInv); 

PosEdgeTrigLatch BitOne (Clock, Bitllnput, Bitl, Bitllnv); 

PosEdgeTrigLatch BitTwo (Clock, Bit2lnput, Bit2, Bit2lnv); 
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PosEdgeTrigLatch BitThree (Clock, Bit31nput, Bit3, Bit3lnv); 

PosEdgeTrigLatch BitFour (Clock, Bit41nput, Bit4, Bit41nv); 

// Prepare inputs 

lnverter 

lnverter 

Gatc0 (Set26, Set261nv); 

Gate 1 (Set27, Set27lnv); 

// Decode logic for bit 0 

TwolnputNORGate Gate2 (BitOInv, Sct27, Line[2]); 

TwolnputNORGate Gate3 (Set261nv, Set27, Line[3]); 

SixlnputNORGate Gate4 (Bit0, Bit 1, Bit2, Bit3, Bit4, Set27, 

Line[4] 

ThreclnputNORGate Gate5 (Line[2], Line[3J, Line[4], Bit01nput); 

// Decode logic for bit I 

FourlnputNORGate Gate6 (Bit0, Bitllnv, Set26, Set27, Line[6]); 

FourlnputNORGate Gate7 (BitOInv, Bitl, Set26, Set27, Line[7]); 

SevenlnputNORGate GateS (Bit0, Bit 1, Bit2, Bit3, Bit4, Set26, 

Set27, Line[8] 

ThreelnputNORGate Gate9 (Line[6], Line[7], Line[SJ, Bitllnput); 

// Decode logic for bit 2 

Twolnpu(NORGate Gatel0 (Bit 1lnv, Bit2, Line[10]); 

TwolnputNORGate Gate 1 I (BitOInv, Bit2, Line[11]); 

ThrcclnputNORGate Gate12 (Bit0, Bitl, Bit21nv, Line[12]); 

FiveinpuiNORGate Gate13 (Bit0, Bitl, Bit2, Bit3, Bit4, Linc[13]); 

SixlnputNORGate Gate14 (Line[10], Line[11], Line[12J, Line[13], 

Set26, Set27, Bit21nput 

// Decode logic for bit 3 

FourlnputNORGate Gate15 (Bit21nv, Bit3, Set26, Set27, Linc[15]); 

FourlnputNORGate Gatel6 (Bitl lnv, Bit3, Set26, Set27, Line[16J); 

FourlnputNORGate Gate17 (BitOInv, Bit3, Set26, Set27, Line[17J); 

SixlnputNORGatc Gate lg (Bit0, Bill, Bit2, Bit31nv, Set26, Set27, 

Line[18] 

SevenlnputNORGate Gate19 (Bit0, Bitl, Bit2, Bit3, Bit4, Set26, Se(27, 
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Linc[19] 

FivelnputNORGate Gate20 (Line[15], Line[16], Line[17J, Line[18], 

Linc[19], Bit31nput 

// Decode logic for bit 4 

ThreelnputNORGate Gate21 (Bit4, Set26, Set27, Line[21]); 

SixinputNORGate Gatc22 (Ilit0, Bit 1, Bit2, Bit3, Set26, Set27, 

Line[22J 

TwoInputNORGate Gate23 (Line[21], Line[22], Bit41nput); 

endmodule 

// Name: StateControl 

// Inputs: NewCeIILow - When high, indicates a new cell is coming 

in with the first byte starting on the low 

order bits of the input. 

// NewCellHigh - When high, indicates a new cell is coming 

in vdth the first byte starting on the high 

order bits of the input. 

// LookupRes - Path validity result of the memory lookup 

for the transitting cell 

// Bit [4;0] - The state of the five bits which define the 

current state of the state machine for which 

the control lines must be decoded. 

// BitInv [4-OJ - The negated state of the five bits specified 

by the "Bit" input, 

// Output: PVRL 

// RSRL 

// LLODG26 

- Latch the results of the read from the 

memory lookup module. 

- Clear the neiv path information in the new 

path registers (by setting the SR-Latch 

indicating the validity of the data as 

being false) 

- Start the low-byte counter at 26 
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// LLODG27 - Start the low-byte counter at 27 

// LHODG27 - Start the high-byte counter at 27 

// VVRL - Not applicable to "path-only" Analysis Mod. 

// RAS — Row address select line on the memory 

lookup module 

// CAS - Column address select line on the memory 

// W 

lookup module 

- Read/Write control line on the memory 

lookup module 

// FourBDS [5:0] - Control lines to the four bit multiplexer 

that shunt different portions of the 

incoming data words from the Receiver 

// FourBDL [5:0] - Latch control lines on the latches tlmt store 

thc path information of the currently 

transiting cell 

// TwelveBDS [1;0] - Control lines to the twelve bit by four line 

multiplexer that presents dais from 

various latch groups to the memory lookup 

module 

module StateControl (Bit, Bitlnv, NewCellLow, NewCellHigh, LookupRes, 

FourBDS, FourBDL, TwelveBDS, PVRL, RSRL, 

LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, WJ; 

input 

input 

outpllt 

NewCellLow, NewCellHigh, LookupRes; 

[4:0] Bit, Bitlnv; 

PVRL, RSRL, LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W; 

output [5:0] FourBDS, FourBDL; 

output [1:0] TwelveBDS; 

wire LowStart, HighStart; 

wire [4:0] Stage; 

wire [28:0] Line; 

assign FourBDL[0] = Stage[1], FourBDL[1] = Stage[2], 

FourBDL[2] = Stage[2], FourBDL[3] = Stage[3], 
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FourBDL[4] = Stage[3], FourBDL[5] = Stage[4], 

TwelveBDS[0] = Bitlnv[2], TwelveBDS[1] = Bit[4], 

LLODG26 = Lowg tart, LHODG27 = LowStart, 

LLODG27 = HighStart; 

// Logic for PVRL 

FivelnputNANDGate Gatco (Bitlnv[4], Bitlnv[3J, Bit[2], Bitlnv[1], 

Bit[0], Line[0] 

Inverter Gate I (Line[0], PVRL); 

// Logic for RSRL 

FivelnputNANDGate Gate2 (Bit[4], Bit[3], Bit[2], Bitlnv[1], Bit[0], 

Line[2] ); 

Inverter Gate3 (Line[2J, RSRL); 

// Logic for LxODG2x 

SevenlnputNANDGate Gate4 (Bitlnv[4], Bit[3], Bit[2], Bitlnv[1], 

Bitlnv[0], NewCcllLow, LookupRes, Line[4]); 

SevcnlnputNANDGate Gate5 (Bitlnv[4], Bit[3], Bit[2], Bitlnv[l], 

Bitlnv[0], NewCellHigh, LookupRes, Linc[5]); 

Inverter Gate6 (Line[4], LowStart); 

Invcrtcr Gate7 (Line[5], HighStart); 

// Logic for VVRL 

FivelnputNANDGate GateS (Bitlnv[4], Bitlnv[3], Bit[2], Bitlnv[l J, 

Bitlnv[0], Line[8] ); 

Inverlcr Gate9 (Line[8], VVRL); 

//Logic for RAS 

TwolnputNANDGate Gate10 (Bit[4], Bitlnv[3J, Line[10]); 

TwolnputNANDGate Gatel I (Bitlnv[2], Bit[0], Line[11]); 

ThreelnputNANDGate Gatc12 

ThreelnputNANDGate Gate13 

ThreelnputNANDGate Gate] 4 

(Bit[4], Bit[2], Bitlnv[1], Line[12]); 

Gilt[3], Bitlnv[1], Bit[0], Line[13]); 

(Bitlnv[4], Bitlnv[1], Bitlnv[0], Line[14]); 

FivelnputNANDGate Gate15 (Line[10], Line[11], Line[12], Line[13], 

Line[14], RAS ); 
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// Logic for CAS 

TwolnputNANDGate Gate16 (Bitlnv[3], Bitlnv[2], Line[16]); 

ThreelnputNANDGate Gatc17 (Bitlnv[3], Bit[I], Bitlnv[0], Line[17]); 

FourlnputNANDGate Gate18 (Bit[4], Bit[3], Bit[1], Bitlnv[0], Line[18]); 

FourlnputNANDGate Gate 19 (Bit[4], Bit[3], Bitlnv[1], Bit[0], Line(19]); 

FourlnputNANDGate Gate20 (Bit[4], Bit[3], Bitlnv[2], Bit[1], Line/20]); 

FivelnputNANDGate Gate21 (Line[16], Line[17], Linc[18], Line[19], 

Line[20] CAS 

// Logic for W 

FivelnputNANDGate Gate22 (Bit[4], Bit[3], Bit[2], Bit[1 J, Bit[0], W); 

// Logic for 4BDL 

FivclnputNANDGate Gate23 (Bitlnv[4], Bitlnv[3], Bitlnv[2], 

Bitlnv[1], Bit[0], Line[23] ), ' 

FivclnputNANDGate Gate24 (Bit[4], Bitlnv[3], Bit[2], Bitlnv[l J, 

Bitlnv[0], Line[24] ); 

FivelnputNANDGate Gate25 (Bit[4], Bitlnv[3], Bit[2], Bitlnv[1], 

Bit[0], Line[25] 

FivelnputNANDGate Gate26 (Bitlnv[4], Bitlnv[3], Bitlnv[2], Bit[1], 

Bit[OJ, Line[26] ); 

FivelnputNANDGate Gate27 (Bit[4], Bitlnv[3], Bit[2], Bit[1], Bit[0], 

Line[27] 

TwolnputNANDGate Gate28 

TwolnputNANDGate Gate29 

TwolnputNANDGate Gatc30 

); 

(Line[23], Line[24], Stage[1]); 

(Line[23], Line[25], Stage[2]); 

(Line[26], Line[25], Stage[3]); 

TwolnputNANDGate Gate31 (Line[26], Line[27], Stage[4]); 

// No logic block necessary for 12BDS[B, S] 

endmodule 

// Name: StateMachine 

// Inputs: Clock - Signal on whose rising edge the state 
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machine must make a state change 

// NewCellLow - When high, indicates a ncw cell is coming 

in with the first byte starting on the low 

order bits of the input. 

// NewCellHigh - When high, indicates a new cell is coming 

in with thc first byte starting on thc high 

order bits of the input. 

// LatchSet - Output of ihe SR-Latch which, if higlt, 

indicates there is new path data to be loaded 

into the memory lookup module. 

// LatchReset - The negated state of the LatchSet input, 

//Output: Bit [4:0] - The state of the five bits which define the 

current state of the state machine. 

// Bitlnv [4:0] — The negated state of the five bits specified 

by the "Bit" input. 

module StateMachinc (Clock, NewCellLow, NcwCellHigh, LatchSet, LatchReset, 

Bit, Bitlnv 

input Clock, NewCcllLow, NewCellHigh, LatchSet, LatchReset; 

output [4:0] Bit, Bitlnv; 

wire [4:0] BitDecode, Bitlnput; 

wire [39:0] Line; 

// Memory elements to store the current state 

PosEdgeTrigLatch BitZero (Clock, Bitlnput[0], Bit[0], Bitlnv[0]); 

PosEdgeTrigLatch BitOne (Clock, Bitlnput[1], Bit[1], Bitlnv[1]); 

PosEdgeTrigLatch BitTwo (Clock, BitInput[2], Bit[2], Bitlnv[2]); 

PosEdgeTrigLatch BitThrec (Clock, Bitlnput[3], Bit[3], Bitlnv[3]); 

PosEdgeTrigLatch BitFour (Clock, Bitlnput[4], Bit[4], Bitlnv[4]); 

// Decode logic for bit 0 

ThreeinputNANDGate Gateo (Bit[3], Bit[2], Bitlnv[1], Line[0]); 
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ThreelnputNANDGate Gatel (Bit[4], Bit[3], Bit[2], Line[1]); 

ThreelnputNANDGate Gate2 (Bit[4], Bitlnv[1], Bit[0], Linc[2]); 

ThreelnputNANDGate Gate3 (Bit[4J, Bit[3], Bitlnv[0], Linc[3]); 

FourlnputNANDGate Gate4 (Bitlnv[4], Bit[3], Bitlnvf2], Bit[1], 

Line[4] 

FourlnputNANDGatc Gate5 (Bitlnv[4], Bitlnv[3], Bit[2f, Bit[1J, 

Linc[5] 

FourlnputNANDGate Gate6 (Bitlnvf3], Bitlnv[2], Bitlnv[1], Bit[0], 

Line[6] 

FivelnputNANDGate Gate7 (Bitlnv[3], Bitlnv[2], Bitlnv[1], 

Bitlnv[O], NewCeBLow, Line/7]); 

FivelnputNANDGate Gateg (Bit[4], Bitlnv[3], Bitlnv[1], Bitlnv[0], 

NewCclIHigh, Line[8] 

NinelnputNANDGate Gate9 (Line[0], Line[1], Line[2], Line[3], 

Line[4], Line[9], Line[6], Line[7], 

Line[S], BitDecode[0] ); 

ResetControl Reset0 (Clock, BitDecode[0], Bitlnput[0]); 

// Decode logic for bit I 

TwolnputNANDGate Gatel0 (Bit[1], BitlnvfO], Line[10]); 

ThreelnputNANDGate Gatel I (Bitlnv[3], Bitlnv[2], Bit[0], Line[11]); 

ThreelnputNANDGate Gate12 (Bit[4], Bitlnv[3], Bit[OJ, Line[12]); 

FourlnputNANDGate Gate13 (Bitlnv[4], Bit[3], Bit[2J, Bit[0], Line[13]); 

FourlnputNANDGate Gate14 (Bit[4J, Bitlnv[2], Bitlnv[1], Bit[0], 

Line[14] 

FivelnputNANDGate Gate 15 (Bit[4J, Bitlnv[2], Bit[1], Bit[OJ, 

Latchget, Line[15] ); 

SixinputNANDGate Gate16 (Line[10], Line[11], Line[12J, Line[13], 

Line[14], Line[15], BitDecode[1] ); 

ResctControl Resctl (Clock, BitDecode[l], Bitlnput[1]); 

// Decode logic for bit 2 

ThrcelnputNANDGatc Gate17 (Bitlnv[4], Bitlnv[3], Bit[2], Line[17]); 

ThreelnputNANDGate Gate18 (Bitlnv[4], Bit[2], Bitlnv[1], Line[IS]); 

ThreelnputNANDGate Gate19 (Bitlnv[4], Bit[2J, Bit[0], Line[19]); 

ThreelnputNANDGate Gatc20 (Bitlnv[3], Bit[1], Bitlnv[0], Line f 20]); 



ThreclnputNANDGate Gate21 (Bit[4], Bit[1], Bitlnv [OJ, Line[21]); 

ThreelnputNANDGate Gate22 (Bit[4], Bit[3], Bit[2], Linc(22]); 

ThreelnputNANDGate Gatc23 /lit[2], Bitlnv[1], Bit[OJ, Line[23]); 

FivelnputNANDGate Gate24 (Bit[4J, Bitlnv[3], Bitlnv[1], Bitlnv[0], 

NewCeIIHigh, Line[24] 

FivelnputNANDGate Gate25 (Bit[4], Bitlnv[2], Bit[1], Bit[0], 

LatchReset, Line(25] ); 

NinelnputNANDGate Gate26 (Linc[17], Line[18], Line[19], Linc[20], 

Line[21], Line[22J, Line[23], Line[24], 

Line[25], BitDecode[2J 

ResetControl Reset2 (Clock, BitDecode[2], Bitlnput[2]); 

// Decode logic for bit 3 

TwolnputNANDGate Gate27 (Bitlnv[4], Bit[3J, Line[27]); 

ThreelnputNANDGatc Gate28 (Bit[3], Bit[2], Bit[I J, Line[28]); 

ThreelnputNANDGate Gate29 (Bit[3], Bit[I], Bitlnv[0], Line[29]); 

ThreelnputNANDGate Gate30 (Bit[3], Bitlnv[IJ, Bit[0], Line[30]); 

ThrcelnputNANDGate Gate31 (Bit[3], Bitlnv[2], Bitlnv[1], Line[31]); 

FourlnputNANDGate Gate32 (Bitlnv[4], Bit[2], Bitlnv[1], Bitlnv[0], 

Line[32J 

FivclnputNANDGate Gate33 (Bit[4], Bitlnv[2], Bit[1], Bit[0], LatchSet, 

Line[33J 

SevenlnputNANDGate Gate34 (Line[27], Line[28], Line[29], Line[30], 

Line[31], Line[32], Line[33], BitDecode[3]); 

ResctControl Reset3 (Clock, BitDecode[3], Bitlnput[3]); 

// Decode logic for bit 4 

TwolnputNANDGate Gate35 (Bit[4], Bit[3], Line[35]): 

ThreelnputNANDGate Gate36 (Bit[4], Bitlnv[1], Bit[0], Linc[36]); 

FourlnputNANDGate Gate37 (Bit[3], Bitlnv[2], Bitlnv[1], Bitlnv[0], 

Line[37] 

FourlnputNANDGate Gate38 (Bit[4], Bitlnv[3], Bitlnv[0], NewCcllHigh, 

Line[38] 

FourlnputNANDGate Gate39 (Line[35J, Line[36], Line[37], Line[38J, 

BitDecode[4] 

ResetControl Resct4 (Clock, BitDecode[4], Bitlnput[4]); 



endmodule 

// Name: SequenceDetect 

// Inputs: Clock - Signal on whose rising edge the state 

machine must make a state change. 

NewCcllLow - When high, indicates a new cell is coming 

in wdth the first byte starting on l. he low 

order bits of the input. 

NewCettHigh - When lugh, indicates a new cell is coming 

Latch Set 

Late hRe set 

in with the first byte starting on the high 

order bits of the input. 

— Output of the SR-Latch which, if high, 

indicates there is new path data to be loaded 

into the memory lookup module. 

- The negated state of the LatchSet input. 

//Output: PVRL 

LLODG26 

LLODG27 

LHODG27 

RAS 

CAS 

LowChokc 

— Latch the rcsul ts of the read from thc 

memory lookup module. 

- Clear the new path information in the new 

path registers gaby setting the SR-Latch 

indicating the validity of thc data as 

being false) 

- Start the low-byte counter at 26 

- Start the low-byte counter at 27 

- Start the high-byte counter at 27 

- Not applicable to "path-only" Analysis Mod. 

- Row address select line on the memory 

lookup module 

- Column address select line on the memory 

lookup module 

- Read/Write control line on thc memory 

lookup module 

- Control line to the data gate that informs 
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it whether to transmit the low byte of the 

data words exiting from the shift register 

// HighChoke - Control line to the data gate that informs 

it whether to transmit the high byte of the 

data words exiting from the shiA register 

// FourBDS [5:0] - Control lines to the four bit multiplexer 

that shunt different portions of the 

incoming data words from the Receiver 

// FourBDL [5:0] - Latch control lines on the latches that store 

the path information of the currently 

transiting cell 

// TwelveBDS [I:0] - Control lines to the twelve bit by four line 

multiplexer that presents data from 

various latch groups to the memory lookup 

module 

module SequenccDctect (Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset, 

LookupRes, FourBDS, FourBDL, TwelveBDS, PVRL, RSRL, 

VVRL, RAS, CAS, W, LowChoke, HighChoke ); 

input Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset, 

LookupRes; 

output PVRL, RSRL, VVRL, RAS, CAS, W; 

output LowChoke, HighChoke; 

output [I:0] TwelveBDS; 

output [5:0] FourBDS, FourBDL; 

wire LLODG26, LLODG27, LHODG27, Ground; 

wire [th0] Bit, Bitlnv, LowByte, HighByte; 

assign Ground = 0; 

StateMachine Core (Clock, NewCeBLow, NewCellHigh, LatchSet, 

LatchReset, Bit, Bitlnv 

StateControl Signal (Bit, Bitlnv, NewCellLow, NewCeIIHigh, LookupRes, 

FourBDS, FourBDL, TwelvcBDS, PVRL, RSRL, 
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LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W); 

DownCounterWithPreset LowByteCounter 

(Clock, LLODG26, LLODG27, LowByte[0], LowByte[l], 

LowByte[2], LowBy7e[3], LowByte[4] ); 

DownCounterWithPreset HighByteCounter 

(Clock, Ground, LHODG27, HighByte[0], HighByte[1], 

HighByte[2], HighByte[3], HighByte[4] ); 

FivelnputNAND Gate LowByte Choke 

(LowBytc[0], LowB&We[I], LowByte[2], LowByte[3J, 

LowByte[4], LowChoke ); 

FivelnputNANDGate HighByteChoke 

(HighByte[0], HighByte[l], HighByte[2], HighBySe[3], 

HighByte[4J, HighChoke ); 

endmodule 

// Let's bring the whole thing together 

module NetworkSecurity; 

wire 

wire 

wire 

Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset, 

PVRL, RSRL, VVRL, RAS, CAS, W, LowChokc, HighChoke, 

NewPathDataln, NewPathDataOut, LoadNewData, UnLoadNewData, 

PathState; 

[I:0] TwelveBDS; 

[4:0] StateBit, StateBitlnv; 

wire [5:0] FourBDS, FourBDL; 

wire [11:0] RAMAddress; 

wire [15:0] Dataln, ShiftOut, GateOut; 

wire [23:0] NewPathAddressln, NewPathAddressOut, Latchln, LatchOut; 

initial 

begin 

// generate our report 



// $shm open; 

// $shm~robc("AC"); 

//¹5000 $shm close; 

¹5000 $finish; 

// $monitor ($time„ 

// "SO='/ob Sl='/b ¹I='/od ¹2=9ad ¹3='rM ¹4=o/vd 0='/od" 

// Se10, Sell, One, Two, Three, Four, Out); 

cnd 

ClockGen Timer (Clock); 

NetworkReceiver Receive (Clock, NewCellLow, NewCellHigh, Dataln); 

NetworkTransmitter Transmit (Clock, NewCellLow, NewCellHigh, GateOut); 

ControlModule PathGcn (NewPathAddressln, NewPathDataln, LoadNewData, 

LatchSet, LatchReset ); 

ShiftRegister Shifter (Clock, Dataln, ShiftOut); 

EightBitDataGate LowGatc (ShiftOut[7:0], LowChokc, GateOut[7: 0]); 

EightBitDataGate HighGate (ShiftOut[15:8], HighChokc, GateOut[15:8]); 

SequenceDetect Control (Clock, NewCellLow, NewCcllHigh, LatchSet, 

LatchReset, PathState, FourBDS, FourBDL, 

TwelveBDS, PVRL, RSRL, VVRL, RAS, CAS, W, 

LowChoke, HighChoke 

NewPathStore NewPath (LoadNcwData, UnLoadNewData, NewPathAddressln, 

NewPathDataln, LatchSet, LatchReset, 

NewPathAddressOut, NewPathDataOut ); 

FourBitTwoLincSe)cctor Sl (Detain[11:8], Detain[3:0], FourBDS[0], 

Latchln[23:20] 

FourBitTwoLineSelcctor S2 (Dataln[7:4], Detain[15:12], FourBDS[1], 

Latchin[19: IG] 

FourBitTwoLineSelector S3 (Detain[3:0], Dataln[11:8], FourBDS[2], 

Latcldn[15:12] 

FourBitTwoLineSelector S4 (Dataln[15:12], Dataln[7:4], FourBDS[3], 

Latchln[11: 8] 
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FourBitTwoLineSelector S5 (Dataln[l I:8], Dataln[3;0], FourBDS[4], 

Latchln[7:4] 

FourBitTwoLineSelector S6 (Dataln[7:4], Detain[15:12], FourBDS[5], 

Latchln[3:0] 

FourBitRcgister 

FourBitRegister 

FourBitRegister 

FourBitRegister 

FourBttRegi ster 

FourBitRegister 

Ll (FourBDL[0], Latchln[23:20], LatchOut[23:20]); 

L2 (FourBDL [ I], Latchln [19: 16], Laic hOut [19: 16]); 

L3 (FourBDL[2], Latchln[15:12], LatchOut[15:12]); 

L4 (FourBDL[3], Latchln[ll:8], LatchOut[11:8] ); 

L5 (FourBDL[4], Latchln[7:4], I atchOut[7:4] ); 

L6 (FourBDL[5], Latchln[3:0], LatchOut[3:0] ); 

TwelveBitFourLincSelector SM(LatchOut[23:12], 

LatchOut[11:00], 

NewPathAddressOut[23:12], 

NewPathAddressOut[11:0], 

TwelveBDS, RAMAddress ); 

DynamicRAM Lookup (RAMAddress, RAS, CAS, W, NewPathDataOut, 

Path State 

endmodule 
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APPENDIX B 

"PATH AND VOLUME" ANALYSIS MODULE SIMULATION CODE 

This appendix contains the Verilog hardware description language code necessary to implement a gate-level 

simulation of the "path and volume" version of the Analysis Module. The Receivers, Transmiucrs and 

memories involved in the design of thc network security device were simulated at the procedural level and the 

Analysis Module was simulated at thc gate level. 

All sub-module inputs and outputs are fu))y commented. 

B. A Vertlog simulation 

module Inverter (In, Out); 

input In; 

output Out; 

rag Out; 

always 

¹I Out = -In; 

endmodule 

module TwolnputNANDGate (InOne, InTwo, Out); 

input InOne, In Two; 

output Out; 

reg Out; 

always 
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¹ I Out = -(InOnc k InTwo); 

endmodule 

module ThreeInputNANDGatc (InOne, InTwo, InThree, Out); 

input InOne, InTwo, InThree; 

output Out; 

reg Out; 

always 

¹ I Out = -(InOne k In Two & In Three); 

endmodulc 

module FourlnputNANDGate (InOne, In Two, In Three, InFour, Out); 

input InOne, In Two, In Three, InFour; 

output Out; 

reg Out; 

always 

¹ I Out = -(InOne k ln Two k In Three k InFour); 

endmodule 

module FivelnputNANDGate (InOnc, In Two, InTluee, InFour, InFive, Out); 

input InOne, InTwo, InThree, InFour, InFive; 

output Out; 
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reg Out; 

always ¹I Out = -(InOne & InTwo & InThree & InFour &. InFive); 

endmodule 

module SixlnputNANDGate (InOne, ln Two, In Three, InFour, lnFive, InSix, Out); 

input InOne, InTwo, In Three, InFour, InFive, InSix; 

output Out; 

reg Out; 

always 

¹I Out = -(InOnc & In Two & In Three & InFour &. InFive &. InSix); 

endmodule 

module SevenlnputNANDGate (InOne, InTwo, In Three, InFour, InFive, 1nSix, 

InSeven, Out 

input InOne, InTwo, InThree, InFour, InFive, InSix, InSeven; 

output Out; 

reg Out; 

always 

¹I Out = -(lnOne & InTwo & In Three &, InFour & InFive & lnSix & InSeven); 

endmodule 
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module NinelnputNANDGate (InOne, InTwo, InThrce, lnFour, InFive, InSix, 

InSeven, InEight, InNine, Out 

input InOne, InTwo, lnThree, InFour, InFive, InSix, InSeven, 

InEight, InNine; 

output Out; 

reg Out. ; 

always 

¹ I Out = -(lnOne k In Two k In Three k InFour k InFive k lnSix k InSeven &. 

InEight & InNine 

enthnodule 

module TwolnputNORGate (InOne, InTwo, Out); 

input InOne, fn Two; 

output Out; 

reg Out; 

always 

¹I Out = -(InOne 
~ 
InTwo); 

endmodule 

module ThreelnputNORGate (InOnc, InTwo, InThree, Out); 

input InOne, In Two, In Three; 

output Out; 



rag Out; 

always ¹I Out = -(InOne 
~ 
InTwo 

~ 
InThree); 

endmodulc 

module FourlnputNORGate (InOnc, In Two, Iu Three, InFour, Out); 

input lnOne, InTwo, InThrec, InFour; 

output Out; 

reg Out; 

ahvays ¹I Out = -(InOnc 
~ 
InTwo InThree 

~ 
InFour); 

endmodule 

module FivelnputNORGate (InOne, In Two, In Three, InFour, InFive, Out); 

input InOne, InTwo, lnThree, InFour, InFive; 

output Out; 

reg Out; 

always ¹I Out = -(InOne 
) 
InTwo [ InThree 

~ 
InFour 

~ 
InFive); 

endmodule 

module SixlnputNORGate (InOnc, InTwo, InThree, InFour, InFive, InSix, Out); 
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input InOne, InTwo, InThree, InFour, InFive, InSix; 

output Out; 

reg Out; 

always 

¹I Out = -(InOne 
~ 
In Two 

( 
In Three 

~ 
InFour 

~ 
InFive 

~ 
InSix); 

endtuodule 

module SevenlnputNORGate (InOne, InTwo, InThree, InFour, 

InFive, InSix, InSeven, Out ); 

input InOne, lnTuo, InThree, InFour, InFive, InSix, InSeven; 

output Out; 

reg Out; 

always 

¹I Out = -(InOne 
) 
InTwo 

~ 
InThree 

~ 
InFour 

~ 
InFive 

~ 
InSix 

~ 
InSeven); 

endmodule 

module SRLatch (Set, Reset, Out, InvertOut); 

input Set, Reset; 

output Out, InvertOut; 

TwolnputNANDGate GateOne (Set, InvertOut, Out); 

TwolnputNANDGate GateTwo (Reset, Out, InvertOut); 

endmodule 
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module PosEdgeTrigLatch (Clock, Data, Out, InvertOut); 

input Clock, Data; 

output Out, Inveri Out; 

wrre wl, w2, w3, w4; 

TwolnputNANDGate GatcOne (w4, w2, w I); 
TwolnputNANDGate GatcTwo (wl, Clock, w2); 

TlueelnputNANDGate GateThree (w2, Clock, w4, w3); 

TwolnputNANDGate GatcFour (w3, Data, w4); 

TwolnputNANDGate GateFive (w2, InvertOut, Out); 

TwolnputNANDGate GateSix (Out, w3, InvertOut); 

endmodule 

// Name: FourBitRegister 

// Inputs: Data [3:0] - The data to be latched by the register on the 

// Clock 

next rising clock edge. 

- The clocking signal which controls data latching. 

// Outputs: Out [3:0] - The data latched on thc last rising clock edge. 

module FourBitRegister (Clock, Data, Out); 

input [3:0] Data; 

input Clock; 

output [3:0] Out; 

wire [3:OJ Outlnv; 

PosEdgeTrigLatch BitZero (Clock, Data[0], Out[OJ, Outlnv[0]); 

PosEdgeTrigLatch BitOnc (Clock, Data[1], Out[1], Outlnv[1]); 

PosEdgeTrigLatch BitTwo (Clock, Data[2], Out[2J, Outlnv[2]); 
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PosEdgeTrigLatch BitThree (Clock, Data[3], Out[3J, OutInv[3]); 

endmodule 

// Name EightBitRegister 

// Inputs: Data [7:0J - The data tobe latched by the register on thc 

// Clock 

next rising clock edge. 

- Thc clocking signal which controls data latching. 

// Outputs: Out [7:0] - The data latched on the last rising clock edge. 

module EightBitRegister (Clock, Data, Out); 

input [7;0] Data; 

input Clock; 

output [7:0] Out, ' 

FourBitRegister LowNibble (Clock, Data[3:0], Out[3:0]); 

FourBitRegister HighNibble (Clock, Data[7:4], Out[7:4J): 

endmodule 

// Name: SixteenBitRegister 

// Inputs: Data [15:0] - The data to be latched by the register on the 

// Clock 

next rising clock edge. 

- The clocking signal which controls data latching. 

// Outputs: Out [15:OJ - The data latched on the last rising clock edge. 

modtdc SixteenBitRegistcr (Clock, Data, Out); 

input [15:0] Data; 



125 

input Clock; 

output [15:0] Out; 

EightBitRegister LowByte (Clock, Data[7:0], Out[7:0] ); 

EightBitRegister HighByte (Clock, Data[15:8], Out[15:8]); 

cndmodule 

// Name: ShiflRegister 

// Inputs: Data [15:0] - The data to be latched by the shiA register on 

// Clock 

the next rising dock edge. 

- The clocking signal which controls data latching. 

// Outputs: Out [15:0] - The data latched on the rising clock edge twenty 

seven clock cycles ago 

// Outlnv [15:0] - The negation of the data latched on the rising 

dock edge nine clock cycles ago. 

module ShiARegister (Clock, Data, Out); 

input [15:0] Data; 

input Clock; 

output F 
15:0] Out; 

wire [15:0] Ll, L2, L3, L4, L5, L6, L7, Lg; 

SixteenBitRegistcr Stage0 

SixteenBitRegister Stagel 

SixteenBitRegistcr Stage2 

SixteenBitRegister Stage3 

SixteenBitRegister Stage4 

SixteenBitRegister Stagc5 

SixteenBitRegister Stage6 

SixteenBitRegister Stage7 

(Clock, Data, Ll); 

(Clock, L I, L2); 

(Clock, L2, L3); 

(Clock, L3, L4); 

(Clock, L4, L5); 

(Clock, L5, L6); 

(Clock, L6, L7)', 

(Clock, L7, Lg); 
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SixtcenBitRegtster Stagcg (Clock, L8, Out); 

endmodule 

// Name; DataGate 

// Inputs: In 

// Select. 

- Data input. 

— If high, the bit value at "In" will be reflecte 

at "Out". Otherwise, "Out" will reflect aero. 

// Outputs: Out - Reflect "In" if Select is low, otherwise low 

regardless of thc state of "In". 

module DataGate (In, Select, Out); 

input In, Select; 

output Out; 

wire Outlnvert; 

TwolnputNANDGate Gate (In, Select, Outlnvert); 

Inverter Invert (OutInvert, Out); 

endmodule 

// Name: CounterGate 

// Inputs: InUp 

// InDown 

// InSame 

// Incr 

// Deer 

- Data input to count up 

- Data input to count down 

- Data input to remain in same state 

- If high, we must count up on next transition 

- If high, we must count down on next transition 

// Outputs: Out - Reflect the value to be loaded for the next 
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transition 

module CounterGate (InUp, InDown, InSame, Incr, Deer, Out); 

input InUp, InDown, InSame, Incr, Deer; 

output Out; 

wire Incrlnv, Decrlnv; 

wire [3:0] Line; 

// Provide the inverted logic controls 

Invcrter 

Invcrter 

Gate0 (Incr, Incrlnv); 

Gatel gkcr, DecrInv); 

// Implement the data gate 

ThreelnputNANDGate Gate2 (Incrlnv, Decrlnv, InSame, Line[0]); 

ThrcclnputNANDGate Gate3 (Incr, Deer, InSame, Line[1]); 

ThreelnputNANDGate Gate4 (Incrlnv, Deer, InDown, Line[2]); 

ThreelnputNANDGate Gate5 (Incr, Decrlnv, InUp, Line[3]); 

FourlnputNANDGate Gatco (Line[0], Line[1], Line[2], Line[3], Out); 

endmodule 

// Name: BitEqualTest 

// Inputs: InZero - First data input 

// InZerolnv - Negation of first data input 

// InOne - Second data input 

// InOnelnv - Negation of second data input 

// Outputs: Result - Result of equality test 

module BitEqualTest {InZcro, InZerolnv, InOnc, InOnelnv, Result); 

input InZero, InZerolnv, InOne, InOnelnv; 



128 

output Result; 

wire [I:0] Line; 

TwolnputNANDGate Gate0 (InZerolnv, InOnelnv, Line[0]); 

TwolnputNANDGate Gatel (lnZero, InOne, Line[1]); 

TwolnputNANDGate Gate2 (Line[0], Line[1], Result); 

endmodule 

// Name: ThreeBitDataGate 

// Inputs: In [2:0] - Data input. 

// Select - If asserted high, the bit values at "In" will be 

reflected at "Out". Otherwise, "Out" will 

reflect all zeroes. 

// Outputs: Out [2:0] - Reflect "In" if Select is high, otherwise just 

set all bits to low. 

module ThreeBitDataGate (In, Select, Out); 

input [2:0] In; 

input Select; 

output [2:0] Out; 

DataGate Bit0 (In[0], Seleci, Out[0]); 

DataGate Bitl (In[1], Select, Out[1]); 

DataGate Bit2 (In[2], Select, Out[2]); 

endmodule 

// Name: FourBitDataGate 
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//Inputs: In 

// Select 

[3:0] - Data input. 

— If asserted high, the bit values at "In" will bc 

reflected at "Oug'. Otherwise, "Out" will 

reflect all zeroes. 

// Outputs: Out [3:0] - Reflect "In" if Select is high, otherwise just 

set all bits to low. 

module FourBitDataGate (In, Select, Out); 

input [3:0] In; 

input Select; 

output [3:0] Out; 

DataGate Bit0 (In[0], Select, Out[0]); 

DataGate Bit I (In[1], Select, Out[I]); 

DataGate Bit2 (In[2], Select, Out[2]); 

DataGate Bit3 (In[3], Select, Out[3]); 

endmodule 

// Name: EightBitDataGate 

// Inputs: In[7;0] - Data input. 

// Select — If asserted high, the bit values at "In" will bc 

reflected at "Out". Otherwise, "Out" will 

reflect all zeroes. 

// Outputs: Out[7:0] — Reflect "In" if Select is high, otherwise just 

go low on all bits. 

module EightBitDataGate (In, Select, Out); 

input [7:0] In; 

input Select; 
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output [7:OJ Out; 

FourBitDataGate LowNibble (In[3;0], Select, Out[3:0]); 

FourBitDataGate HighNibble (In[7:4J, Select, Out[7:4]); 

endmodule 

// Name: TwoLineSelector 

//Inputs: In[1:0] 

// Select 

- Two bits of data input 

- Input that must be asserted in order to control 

which of the two bits of input will be reflected 

at the output. 

// Selectlnv - Input which is the inverse of "Select" 

// Outputs: Out - Reflect the value at "In[I]" il "Select" is 

high and "Selectlnv" is low. Reflect the value 

at "In[0]" if "Select" is low and "Selectlnv" is 

high. Behavior is unpredictable otherwise. 

module TwoLineSelector (In, Select, SelectInv, Out); 

input [I:0] In; 

input 

output 

Select, SelectInv; 

Out; 

wire [I:0] Con; 

TwolnputNANDGate GateZero (In[0], Selectlnv, Con[0]); 

TwolnputNANDGate GateOne (In[1], Select, Con[I]), 

TwoInputNANDGate GateTwo (Con[0], Con[1], Out); 

cndmodule 
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// Name: FourBitTwoLincSelector 

// Inputs: InZero [3:0] - The flrst input line 

// luOne [3:0] - The second input line 

// Select - Input that must be asserted in order to control 

wluch of thc two nibbles of input vill bc 

reflected at the output nibble. 

// Outputs: Out 

// 

[3:0] - Reflect the nibble at "InOne" if "Sclcct" is 

high. Otherwise, rellect the nibble at "In Two". 

module FourBitTwoLineSelector (InZero, InOne, Select, Out); 

input [3:0] InZcro, InOne; 

input Select; 

output [3:0] Out; 

wire Selectlnv; 

wire [7:0] Input; 

assign Input[OJ = InZero[0], Input[1] = InOne[0], 

Input[2] = InZero[1], Input[3] = InOne[1], 

Input[4] = InZero[2], Input[5] = InOne[2J, 

Input[6] = InZcro[3], Input[7] = InOne[3J; 

Inverter Invert (Select, Selectlnv); 

TwoLineSelector Select0 (Input[1:0], Select, Selectlnv, Out[0]); 

TwoLineSelector Selectl (Input[3:2], Select, Selectlnv, Out[1]): 

TwoLineSelector Select2 (Input[5:4], Select, Selectlnv, Out[2]); 

TwoLineSctector Select3 (Input[7:6], Select, Selectlnv, Out[3]); 

endmodule 
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// Name: FourLineSelector 

// Inputs: In[3:0] - Four bits of data input 

// Select. [l:0] — Inputs that must be asserted in order to control 

which of the four bits of input will be 

reflected at the outpun 

// Selectlnv[1:0] - Input which is thc inverse of "Select[1:0]" on 

all bits. 

// Outputs: Out — Depending on the state of the "Select" inputs, 

this signal will reflect thc state of one of the 

bits at the "In" input, according to the table 

below. Behavior is unpredictable for conditions 

not covered in the table. 

Sel[OJ Sellnv[0] Sel[l] Sellnv[lj 
~ 

Out 

Low High Low High 
~ 

In[OJ 

Low High High Low 
~ 
In[I] 

High Low Low High 
~ 
In[2] 

High Low High Low 
J In[3J 

module FourLineSelector (In, Sclcct, Selectlnv, Out); 

input [3:0] In; 

input [I:0] Select, Selectlnv; 

output Out; 

wire ]3:OJ Con; 

ThreelnputNANDGate GateZero (In[OJ, Selectlnv[0], Selectlnv[1], Con[0]); 

ThreelnputNANDGate GateOne (In[1 J, Selectlnv[0], Select[1], Con[1]); 

ThreelnputNANDGate GateTwo (In[2], Sclcct[0], Selectlnv[1], Con[2]); 

ThreelnputNANDGatc GateThree (In[3], Select[0], Select[1], Con[3]); 

FourlnputNANDGate GateFour (Con[0], Con[I], Con[2], Con[3], Out); 
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endmodule 

// Name: TwclveBitFourLineSelector 

// Inputs: InZero [11:0] - The first input. line 

// InOne [11:0] — The second input line 

// InTwo [11:0] — The third input line 

// In Three [11:0] - The fourth input line 

// Select [I:0] - Controls whose state govern which of the four 

inputs will be reflected at the output. 

reflccted at the output. 

// Outputs: Out [11:0] - Depending on the state of the "Select" inputs, 

this signal will reflect the state of the twelve 

bits at one of the four inputs. Behavior is 

unpredictable for conditions not covered in the 

table. 

Selcct0 Selectl [ Out 

Low Low 
~ 

InZero 

Low High 
~ 

InOne 

High Low 
~ 

In Two 

High High 
~ 

InThree 

module TwelveBitFourLineSelector (InZero, InOne, InTwo, lnThree, Select, Out); 

input [11;0] lnZero, InOne, InTwo, lnThree; 

input [1:0] Select; 

output [11:0] Out; 

wire [I:0] Selectlnv; 

wire [47:0] Input; 

assign Input[0] = InZero[0], Input[I ] = InOne[0], 

Input[2] = InTwo[0], Input[3] = InThree[0], 
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Input[4] = lnZero[1], Input[5] = InOne[1], 

Input[6] =InTwo[1], Input[7] =InThree[1], 

Inputf8] = InZcro[2], Input[9] =InOne[2J, 

Input[10] = 

Input[12] = 

In Two[2], 

InZero[3], 

Input[11] = InThree[2], 

Input[13] = InOne[3], 

Input[14] = InTwo[3], Input[15] = InTluee[3], 

Input[16] = InZero[4], Input[17] = InOne[4], 

Input[18] = InTwo[4], Input[19] = InThree[4], 

Input[20] = InZero[5J, input[21] = InOne[5], 

input[22] = InTwo[5], Input[23] = InThree[5], 

input[24] = InZero[6], Input[25] = InOne[6], 

Input[26] = InTwo[6], Input[27J = InThree[6], 

Input[28] = InZero[7], input[29] = InOne[7], 

Input[30] = 

Input[32] = 

Input[34] = 

Input[36] = 

Input[38] = 

Input[40] = 

Input f42] = 

Input[44J = 

Input[46] = 

In Two[7] 

InZero[8] 

InTwo[8] 

InZero [9], 

In Two[9], 

InZero [10] 

In Two[10] 

InZero[11] 

lnTwo[11] 

Input[31] = lnThree[7], 

Input[33] = InOne[8], 

Input[35] = InThree[8], 

Input[37J = lnOne[9], 

Input[39J = lnThree[9], 

Input[41J = InOne[10], 

Input[43] = In Three[10], 

Input[45] = lnOne[11], 

Input[47] = InThree[11]; 

Invcrter Invert0 (Select[0], Selectlnv[0]); 

Invcrter Invert I (Sclcct[1], Selectlnv[l]); 

FourLineSelector Select0 (input[3:0], Select, Selectlnv, Out[0] ); 

FourLineSelector Selectl (Input[7:4], Select, Selectlnv, Out[1] ); 

FourLincSelector Select2 (Input[11:8], Select, Selectlnv, Out[2] ); 

FourLincSelector Select3 (Input[15:12], Select, Selectlnv, Out[3] ); 

FourLineSelector Select4 (Input[19:16], Select, Selectlnv, Out[4] ); 

FourLineSclcctor Select5 (Input[23:20], Select, Selectlnv, Out[5] ); 

FourLineSclector Select6 (Input[27;24], Select, Selectlnv, Out[6] ), 

FourLineSelcctor Select7 (Input[31:28], Select, Selectlnv, Out[7] ); 

FourLineSelector Select8 (input[35:32], Select, Selectlnv, Out[8] ); 
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FourLineSelcctor Select9 (Input[39:36], Select, Selectlnv, Out[9] ); 

FourLineSelector Select10 (Input[4'3:40J, Select, Selectlnv, Out[10]); 

FourLincSclector Selectl I (Input[47:44], Select, Selectlnv, Out[11]); 

endmodule 

// Name: ThrecBySevenDemux 

// Inputs: In [2:0] - Input lines to be demultiplexed (all zero bits 

state is not decoded) 

// Outputs: Out [6:0] - Output lines to be asserted based on the state 

of the input lines 

module ThreeBySevenDemux (In, Out); 

input [2:0] In; 

output [6:0] Out; 

wire [2:0] Inlnv; 

wire [6:0] Outlnv; 

Inverter Gate0 (In[0], Inlnv[OJ); 

Inverter Gate 1 (In[1], Inlnv[1]); 

Inverter Gate2 (In[2], Inlnv[2]); 

ThreelnputNANDGate Gate3 (Inlnv[0], Inlnv[1], In[2], Outlnv[0]); 

ThreelnputNANDGate Gate4 (Inlnv[0], in[1], Inlnv[2], Outlnv[1]); 

ThreelnputNANDGate Gate5 (Inlnv[OJ, In[1], In[2], Outlnv[2]); 

ThreelnputNANDGate Gate6 (In[0], Inlnv[IJ, lnlnv[2], Outlnv[3]); 

ThreelnputNANDGate Gate7 (In[0], Inlnv[1 J, In[2], Outlnv[4]); 

ThreelnputNANDGate Gate8 (In[0], In[1], Inlnv[2], Outlnv[5]); 

ThreelnputNANDGate Gate9 (In[0], In[i], In[2], Outlnv[6]); 

Invetter Gate 1 0 (Outlnv[0], Out[0]); 

Inverter Gate I I (Outlnv[1], Out[1]); 

Invertcr Gate12 (Outlnv[2], Out[2]); 
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Inverter Gate13 (Outlnv[3], Out[3]); 

Inverter Gate14 (Outlnv[4], Out[4]); 

Inverter Gate15 (Outlnv[S], Out[5]); 

Inverter Gate16 (Outlnv[6], Out[6]); 

endmodule 

// Name: ClockGen 

// Inputs: None. 

// Outputs: Clock - Square wave that cycles up and down every 13 nsec 

thereby producing a signal with a period of 

26 nscc. 

module ClockGen (Clock); 

output Clock; 

reg Clock; 

initial 

Clock = I; 

always 

begin 

¹13 Clock = 0; 

¹13 Clock = I; 

end 

endmodule 

// Name: NewpathStore - Simulates the storage elements that accept and 

hold data about a new path to bc loaded into 
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the memory lookup module by the sequence / 

detect module at the appropriate time 

// Inputs: Load - The Set input on the SR latch indicating 

whether the unit still contains new data 

// UnLoad - The Reset input on the SR latch indicating 

whether the unit still contains new data 

// Dataln - Input indicating how thc new path is to be 

validated or invalidated 

// Addressln [23:0]- The input for the new path which is to be 

validated or invalidated 

// Outputs: Full - The Q output on the SR latch which, if high, 

indicates the unit contains new data. 

// Empty - The Q' output on the SR latch which, if high, 

indicates the unit does not contain ncw data. 

// DataOut - Output indicating whether the ncw path 

currently stored is to be validated or 

invalidated 

// AddrcssOut[23:0]- The output of the new path which is to be 

validated or invalidated 

module NewPathg tore (Load, UnLoad, Addressln, Detain, 

Full, Empty, AddressOut, DataOut); 

input Load, UnLoad; 

input [6:0] Detain; 

input [23:0] Addressln; 

output Full, Empty; 

output [6:0] DataOut; 

output [23:0] AddrcssOut; 

wire [6:0] DataOutlnv; 

EightBitRegister Low (Load, Addressln[7:0), AddressOut[7:0] ); 

EightBitRegister Middle (Load, Addressln[15: 8], AddressOut[15: 8] ); 
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EightBitRegister High (Load, Addressln[23:16], AddressOut[23: 16]); 

PosEdgeTrigLatch Dat0 (Load, Dataln[0], DataOut[0], DataOutlnv[OJ); 

PosEdgeTrigLatch Datl (Load, Dataln[1], DataOut[l], DataOutlnv[1J); 

PosEdgeTrigLatch Dat2 (Load, Dataln[2], DataOut[2], DataOutlnv[2]); 

PosEdgeTrigLatch Dat3 (Load, Detain[3], DataOut[3], DataOutlnv[3J); 

PosEdgeTrigLatch Dat4 (Load, Dataln[4], DataOut[4], DataOutlnv[4]); 

PosEdgeTrigLatch Dat5 (Load, Detain[5], DataOut[5], DataOutlnv[5]); 

PosEdgeTrigLatch Dat6 (Load, Detain[6], DataOut[6], DataOutlnv[6]); 

SRLatch Status (Load, UnLoad, Full, Empty); 

cndmodule 

// Name: DynamicRAM - Simulates a Texas Instruments SMJ416100-70 

dynamic random access memory 

// Inputs: Address [11:0] - DRAM address lines 

// RAS - Row address select 

// CAS - Column address select 

// W - Read/Write select 

// D - Data input on memory writes 

// Outputs: Q - Data output on memory reads 

module DyrmmicRAM (Address, RAS, CAS, W, D, Q); 

input [11:0] Address; 

input RAS, CAS, W, D; 

output Q; 

rcg [11:0] Row, Column; 

reg Q, Dataln; 

initial 



always 

begin 

wait (! RAS) 

Row = Address; 

wait (! CAS) 

Column = Address; 

if (W == 0) 

begin 

// we are per!arming a write cycle 

Dataln = D; 

wait (CAS) 

Q= 13)z; 

end 

else 

begin 

// we are performing a read cycle 

// for this simulation just present the low bit of thc address 

//18 Q = Address[0]; 

wait (CAS) 

Q = 1'bz; 

cnd 

endmodule 

// Name: NetworkReceiver 

// Inputs: Clock - Clock on whose negative edge to present 

// Outputs: Out [1fc0] - Present data produced by the receiver. 

// NewCellEven — Asserted when the starting byte of the cell 

currently being transmitted was presented on 

the high-order byte of the output. 

// NewCellOdd - Asserted when the starling byte of the cell 



140 

currendy being transmitted was presented on 

the low-order byte of the output. 

module Network(receiver (Clock, NewCellLow, NewCellHigh, Out); 

input Clock; 

output [15:OJ Out; 

output NewCcllLow, NewCellHigh; 

reg [15:0] Out, Tmnp; 

reg NewCellLow, NewCellHigh; 

initial 

begin 

@ (negedge Clock) Out[15:8] = 8'b00000000; 

Out[7:OJ = 8'b00000001; 

NewCellLow = 0; 

NewCellHigh = 0; 

end 

always 

begin 

Pa1 (negcdge Clock) Temp[15. 8] = Out[15:8] + 2; 

Temp[7:0] = Out[7:0] + 2; 

if (Temp[15:8] & 52) 

begin 

Temp[15-8] = Temp[15:8] - 53; 

if(Temp[15-8] == 0) NewCellLow = 1, 

cnd 

else 

NewCellLow = 0; 

if(Temp[7:0] & 52) 

begin 

Temp[7;OJ = Temp[7:0] -53; 



if (Temp[7:0] == 0) NewCellHigh = I, 

end 

else 

NewCellHigh = 0; 

end 

Out[15:0] = Temp[15:0]; 

endmodule 

// Name: NetworkTransmi tier 

// Inputs: Data [15;0] - The data to bc transmitted out onto the 

network. 

// NewCellEven - Asserted when the starting byte of the cell 

currently being transmitted was presented on 

the high-order byte of the input. 

// NewCellOdd - Asserted when thc starting byte of the cell 

currently betng transmincd was presented on 

the low-order byte of the input. 

module NetworkTransmitter(Clock, NewCeliEvcn, NewCellOdd, Data); 

input Clock, NewCellEven, NewCeIIOdd; 

input [15:0] Data; 

endmodule 

module I(esetControl (Clock, Input, Output); 

input Clock, Input; 

output Output; 

reg Output; 
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initial 

begin 

Output = 0; 

¹26 Output = Input; 

// r¹(negedge Clock) Output = Input; 

Clld 

always 

Output = Input; 

endmodule 

// Name: Con trolModule 

//Inputs: LatchSet 

// LatchRcset 

- If high, indicates that the new path storage 

module still contains new data. 

- If high, indicates that the new path storage 

module has been clcarcd of new data. 

// Output: SetLatch 

// Data 

// Address 

— If high, indicates that new data has been 

presented and should be latched. 

- If high, indicates that thc new path 

being modified is to be a valid path. 

Olhenvise, the new path is to be an invalid 

one. 

- Indicates the VPVVCI pair of the path whose 

status is to be modified. 

module ControlModule (Address, Data, SetLatch, LatchSet, LatchReset); 

input LatchSet, LatchReset; 

output SetLatch; 

output [6:0] Data; 

output [23:0] Address; 
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reg SetLatch; 

reg [6:0] Data; 

reg [23:0] Address; 

initial 

SetLatch = 0, Data = 0; Address = 0; 

end 

always 

begin 

¹1 if (LatchSet == 0) 

begin 

Address = Address + 1; 

// For the purposes of this simulation, assign the lower 

// ihree bits of the address to point to the wdndow 

// control module and let thc next four higher order bits 

// bc the value the gets loaded into the window control 

// module's trigger register 

Data[0] = Address[0]; 

Data[1] = Address[1]; 

Data[2] = Address[2]; 

Data[3] = Address[3]; 

Data[4] = Address[4]; 

Data[5] = Address[5]; 

Data[6] = Address[6]; 

¹1 SetLatch = 1; 

¹1 SetLatch = 0; 

end 

enthnodule 

// Name: DovtmCounterWithpreset (this counter does not roll over) 
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// Inputs: Clock 

// Set26 

// Set27 

- Signal on whose positive edge, the counter 

must change state 

- If high on a rising edge of "Clock", then 

it forces the next state of the counter to 

bc 26 transitions away from zero. 

- If high on a rising edge of "Clock", then 

it forces the next state of the counter to 

be 27 transitions away from zero. 

//Output: BitO. . 4 - Individual lines of the output of the five 

! atches that store the current state of the 

counter. BitO refers to the lowest order 

bit and Bit4 to the highest order bit. 

module DownCounter Withpresct (Clock, Set26, Set27, 

Bit0, Bitl, Bit2, Bit3, Bit4); 

input Clock, Set26, Set27; 

output Bit0, Bitl, Bit2, Bit3, Bit4; 

wire BitOlnput, Biillnput, Bit21nput, Bit31nput, Bit41nput; 

wire Set261nv, Set271nv; 

wire [22:0] Line; 

// Memory elements to store the current state 

PosEdgeTrigLatch BitZero (Clock, Bitolnput, BitO, BitOInv). , 

PosEdgeTrighatch BitOne (Clock, Bitllnput, Bitl, Bitllnv); 

PosEdgeTrigLatch BitTwo (Clock, Bit21nput, Bit2, Bit21nv); 

PosEdgeTngLatch BitThree (Clock, Bit31nput, Bit3, Bit31nv); 

PosEdgeTrigLatch BitFour (Clock, Bit41nput, Bit4, Bit41nv); 

// Prepare inputs 

Invcrter 

Invcrter 

Gate0 (Set26, Set261nv); 

Gate I (Sct27, Set271nv); 

// Decode logic for bit 0 



145 

TwolnputNORGate Gatc2 (BitOInv, Set27, Line[2[); 

TwolnputNORGate Gate3 (Set261nv, Set27, Line[3J); 

SixlnputNORGate Gatc4 (Bit0, Bitl, Bit2, Bit3, Bit4, Set27, 

Line [4J 

ThreelnputNORGate Gate5 (Line[2], Line[3], Line[4], Bit0 input); 

// Docode logic for bit I 

FourlnputNORGate Gate6 (Bito, Bit 1lnv, Set26, Set27, Line[6]); 

FourlnputNORGate Gate7 (Bitulnv, Bit I, Set26, Set27, Line[7]); 

SevenlnputNORGate GateS (Bit0, Bitl, Bit2, Bit3, Bit4, Set26, Set27, 

Line[8] 

ThreelnputNORGate Gate9 (Line[6J, Line[7], Line[8], Bitllnput); 

// Decode logic for bit 2 

TwolnputNORGate Gate10 (Bitllnv, Bit2, Line[10]); 

TwolnputNORGate Gatel I (Bit01nv, Bit2, Line[11]); 

ThreelnputNORGate Gate12 (Bit0, Bit 1, Bit21nv, Line[12]); 

FivelnputNORGatc Gate13 (Bit0, Bit 1, Bit2, Bit3, Bit4, Line[13]); 

SixlnputNORGatc Gate14 (Line[10], Line[I 1], Line[12], Line[13], 

Set26, Set27, Bit21nput ); 

// Decode logic for bit 3 

FourlnputNORGate Gate15 (Bit21nv, Bit3, Set26, Set27, Line[15]); 

FourlnputNORGate Gate16 (Bit 1lnv, Bit3, Set26, Set27, Line[16]); 

FourlnputNORGate Gate17 (BitOInv, Bit3, Set26, Set27, Line[17]); 

SixlnputNORGate Gate18 (Bit0, Bitl, Bit2, Bit31nv, Set26, Set27, 

Line[18] 

ScvenlnputNORGate Gate19 (Bit0, Bit 1, Bit2, Bn3, Bit4, Set26, Set27, 

Line [19J 

FivelnputNORGate Gate20 (Line[15], Line[16], Line/17], Line[18J, 

Line[19J, Bit3lnput 

// Decode logic for bit 4 

ThreelnputNORGate Gate21 (Bit4, Set26, Set27, Line[21]); 

SixlnputNORGate Gate22 (Bit0, Bitl, Bit2, Bit3, Set26, Set27, 

Line[22] 
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TwolnputNORGate Gate23 (Line[2)], Line[22], Bit4lnput); 

endmodule 

// Name. StateControl 

// Inputs: NewCcllLow - When tugh, indicates a new cell is coming 

in with the first byte starting on the low 

order bits of the input. 

NewCellHigh - When high, indicates a new cell is coming 

in with the first byte starting on the high 

order bits of the input. 

LookupRes - Result of the path lookup. 

Bit [4:0] - The state of the five bits which define the 

Bitlnv [4 

current state of the state machine for which 

the control lines must be decoded. 

0] - The negated state of the five bits specified 

by the "Bit" input. 

//Output: PVRL 

RSRL 

LLODG26 

LLODG27 

LHODG27 

CAS 

- Latch thc results of the read from the 

memory lookup module. 

Clear the new path information in the new 

path registers (by setting the SR-Latch 

indicating the validity of the data as 

being false) 

— Start the low-hyle counter at 26 

- Start the low-byte counter at 27 

— Start the high-byte counter at 27 

- Not applicable to "path-only" Analysis Mod. 

- Row address select line on the memory 

lookup module 

- Column address select line on the memory 

lookup module 

- Read/Write control line on the memory 

lookup module 
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// FourBDS [5:0] - Control lines to the four bit multiplexer 

that shunt different portions of the 

incoming data words from the Receiver 

// FourBDL [5:0] - Latch control lines on the latches that store 

the path information of the currently 

transiting cell 

// TwelveBDS [I:0] - Control lines to the twelve bit by four line 

multiplexer that presents data from 

various latch groups to the memory lookup 

module 

module StateControl (Bit, Bitlnv, NewCellLow, NewCellHigh, LookupRes, 

FourBDS, FourBDL, TwelveBDS, PVRL, RSRL, 

LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W), ' 

input NewCcllLow, NewCellHigh, LookupRcs; 

input [4:0] Bit, Bitlnv, 

output PVRL, RSRL, LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W; 

output [5:0] FourBDS, FourBDL; 

output [1:0] TwelveBDS; 

wire LowStart, HighStart; 

wire [4:0] Stage; 

urire [28:0] Line; 

assign FourBDL[0] = Stage[1], FourBDL[l] = Stage[2], 

FourBDL[2] = Stage[2], FourBDL[3] = Stage[3], 

FourBDL[4] = Stage[3], FourBDL[5] = Stage[4], 

TwelveBDS[0] = Bitlnv[2], TwelveBDS[1] = Bit[4], 

LLODG26 = LowStart, LHODG27 = LowStart, 

LLODG27 = HighStart; 

// Logic for PVRL 

FivelnputNANDGate Gate0 (Bitlnv[4], Bitlnv[3], Bit[2], Bitlnv[1], 

Btt[0], Line[0] 

Invcrter Gate 1 (Line[0], PVRL); 
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//Logic for RSRL 

FivelnputNANDGate Gate2 (Bit[4], Bit[3], Bit[2], Bitlnv[1], Bit[0], 

Line[2] 

Inverter Gate3 (Line[2], RSRL); 

// Logic for LxODG2x 

SeveninputNANDGate Gate4 (Bitlnv[4J, Bit[3], Bit[2], Bitlnv[1], 

Bitlnv[0], LookupRes, NewCellLow, Line[4]); 

SevenlnputNANDGatc Gate5 (Bitlnv[4], Bit[3], Bit[2], Bitlnv[1], 

Bitlnv[0], LookupRes, NewCellHigh, Line[5]); 

Inverter 

Inverter 

Gate6 (Line[4], LowStart); 

Gate7 (Line[5], HighStart); 

// Logic for VVRL 

FivelnputNANDGate Gate8 (Bitlnv[4], Bitlnv[3], Bit[2], Bitlnv[1], 

Inverter 

Bitlnv[0], Linc[8] 

Gate9 (Line[8], VVRL); 

// Logic for RAS 

TwolnputNANDGate Gate10 (Bit [4J, Bitlnv[3], Line[10]); 

TwolnputNANDGate Gate I I (Bitlnv[2], Bit[0], Line[11]); 

ThreelnputNANDGate Gate12 (Bit[4], Bit[2], Bitlnv[1], Line[12]); 

ThreelnputNANDGate Gate13 (Bit[3J, Bitlnv[1], Bit[0], Line[13]); 

ThreelnputNANDGate Gate14 (Bitlnv[4], Bitlnv[1], Bitlnv[0], Line[14]); 

FivelnputNANDGate Gatel5 (Line[10], Linc[11], Line[12], Line[13], 

Line[14], RAS 

// Logic for CAS 

TwolnputNANDGate Gate16 (Bitlnv[3], Bitlnv[2], Line[16]); 

ThreelnputNANDGate Gate17 (Bitlnv[3], Bit[1], Bitlnv[0], Line[17]); 

FourlnputNANDGate Gate18 (Bit[4], Bit[3], Bit[I J, Bitlnv[0], Line[18]); 

FourlnputNANDGate Gate19 (Bit[4], Bit[3], Bitlnv[1], Bit[0], Line[19]), 

FourlnputNANDGate Gate20 (Bit[4], Bit[3], Bitlnv[2], Bit[1], Line[20]); 

FivelnputNANDGate Gate21 (Line[16], Line[17], Line[18], Line[19], 

Line[20], CAS ); 
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// Logic for W 

FivelnputNANDGatc Gate22 (Bit[4], Bn[3], Bit[2], Bit[1], Bit[0], W); 

// Logic for 4BDL 

FivelnputNANDGate Gate23 (Bitlnv[4], Bitlnv[3], Bitlnv[2], Bitlnv[ I J, 

Bit[0], Line[23] 

FivclnputNANDGatc Gate24 (Bit[4], Bitlnv[3], Bit[2], BitInv[1], 

Bitlnv[0], Line[24] 

FivelnputNANDGate Gate25 (Bit[4], Bitlnv[3], Bit[2J, Bitlnv[1], 

Bit[0], Line[25] 

FivelnputNANDGate Gate26 (Bitlnv[4], BitInv[3], Bitlnv[2], Bit[1], 

Bit[0], Line[26J 

FivelnputNANDGate Gate27 (Bit[4], Bitlnv[3], Bit[2], Bit[1], Bit[0], 

Line[27] 

TwolnputNANDGate Gate28 (Line[23], Line[24], Stage[1]); 

TwolnputNANDGate Gate29 (Line[23], Line[25], Stage[2J); 

TwolnputNANDGate Gate30 (Linc[26], Line[25], Stage[3]); 

TwolnputNANDGate Gate31 (Linc[26], Line[27], Stage[4]); 

// No logic block necessary for 12BDS[B, S] 

endmodule 

// Name: StateMachine 

// Inputs: Clock - Signal on whose rising edge the state 

machine must make a state change 

// NewCellLow - When high, indicates a new cell is coming 

in with the first byte starting on the low 

order bits of the input. 

// NewCellHigh - When high, indicates a new cell is coming 

in with the first byte starting on the high 

order bits of the input. 

// LatchSet - Output of the SR-Latch which, if high, 

indicates thcrc is new path data to be loaded 
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into the memory lookup module. 

// LatcltReset - The negated state of the LatchSet input. 

// Output: Bit [4:0] - The state of the five bits which define the 

current state of thc state machine. 

// Bitlnv [4:0] — The negated state of the five bits specified 

by the "Bit" input. 

module StateMachine (Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset, 

Bit, Bitlnv 

input Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset; 

output [4:0] Bit, Bitlnv; 

wire [4:0] BitDecodc, Bitlnput; 

wire [39:0] Line; 

// Memory elements to store the current state 

PosEdgeTrigLatch BitZero (Clock, Bitlnput[0], Bit[0], Bitlnv[0]); 

PosEdgcTrigLatch BitOnc (Clock, Bitlnput[1], Bit[1J, Bitlnv[1]); 

PosEdgcTrigLatch BitTwo (Clock, Bitlnput[2], Bit[2], Bitlnv[2]); 

PosEdgcTrigLatch BitThrce (Clock, Bitlnput[3], Bit[3], Bitlnv[3]); 

PosEdgeTrigLatch BitFour (Clock, Bitlnput[4], Bit[4], Bitlnv[4]); 

// Decode logic for bit 0 

ThreelnputNANDGate Gate0 

ThreelnputNANDGate Gate 1 

ThreelnputNANDGate Gate2 

ThreelnputNANDGate Gate3 

FourlnputN AND Gate Gate 4 

Line[4] 

(Bit[3], Bit[2], Bitlnv[1], Linc[0]); 

(Bit[4], Bit[3], Bit[2], Linc[1]); 

(Bit[4], Bitlnv[1], Bit[0], Line(2]); 

(Bit[4], Bit[3], Bitlnv[0], Line[3]); 

(Bitlnv[4], Bit[3], Bitlnv[2], Bit[I J, 

FourlnputNANDGate Gate5 (Bitlnv[4J, Bitlnv[3], Bit[2], Bit[1], 

Line[5] 

FourlnputNANDGatc Gate6 (Bitlnv[3], Bitlnv[2], Bitlnv[l], Bit[0], 

Linc[6] 
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FivelnputNANDGate Gate7 (Bitlnv[3], Bidnv[2], Bitlnv[1], Bitlnv[0], 

NcwCellLow, Line[7] ); 

FivelnputNANDGate Gate8 (Bit[4], Bitlnv[3], Bitlnv[1], Bitlnv[0], 

NewCellHigh, Line[8] ); 

NinelnputNANDGate Gatc9 (Line[0], Line[1], Line[2], Line[3[, 

Line[4], Line[9], Line[6], Line[7], 

Line[SJ, BitDecode[0] ); 

ResetControl ResetO (Clock, BitDecode[0], Bitlnput[0]); 

// Decode logic for bit I 

TwolnputNANDGate Gate10 (Bit[1], Bitlnv[0], Line[10]); 

ThreelnputNANDGate Gate 1 I (Biilnv[3], Bitlnv[2], Bit[0], Line[11J); 

ThreelnputNANDGate Gate12 (Bit[4], Bitlnv[3], Bit[0], Line[12]); 

FourlnputNANDGate Gate13 (Bitlnv[4J, Bit[3], Bit[2], Bit[0], Line[13]); 

FourlnputNANDGate Gate14 (Bit[4J, Bitlnv[2], Bitlnv[1], Bit[0], 

Line[14] 

FtvelnputNANDGate Gate15 (Bit[4], Bitlnv[2], Bit[1], Bit[0], 

LatchSet, Line[15J ); 

SixinputNANDGate Gate16 (Ltne[10], Linc[11], Line[12], Line[13], 

Line[14], Line[15], BitDecode[1J ); 

ResetControl Resetl (Clock, BitDecode[l], Biilnput[1]); 

// Decode logic for bit 2 

ThreelnputNANDGaic Gate17 (Bitlnv[4], Bitlnv[3], Bi i[2J, Line[17]); 

ThreelnputNANDGatc Gate18 (Bitlnv[4], Bit[2], Bitlnv[1], Line[18]); 

ThreelnputNANDGatc Gate19 (Bitlnv[4], Bit[2], Bit[0], Line[19]); 

ThreelnputNANDGate Gate20 (Bitlnv[3], Bit[I], Bitlnv[0], Line[20]); 

ThreelnputNANDGate Gate21 (Bit[4], Bit[1], Bitlnv[0], Line[21]); 

ThreelnputNANDGate Gate22 (Bit[4], Bit[3], Bit[2], Linc[22J); 

ThreelnputNANDGate Gate23 (Bit[2], Bitlnv[1], Bit[0], Line[23]); 

FivelnputNANDGate Gaic24 (Bit[4], Bitlnv[3], Bitlnv[1], Bitlnv[OJ, 

NewCellHigh, Line[24] ), 

FivclnputNANDGate Gate25 (Bit[4], Bitlnv[2], Bit[1], Bit[0], 

LatchReset, Line[25] ); 

NinelnpuiNANDGate Gate26 (Linc[17], Line[18], Line[19], Line[20], 

Line[21], Line[22], Linc[23], Line[24], 
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Line[25], BitDecode[2J 

ResetControl Reset2 (Clock, BitDecodc[2J, Bitlnput[2]); 

// Decode logic for bit 3 

TwolnputNANDGate Gate27 (Bitlnv[4], Bit[3J, Line[27]); 

TlueelnputNANDGatc Gate28 (Bit[3], Bit[2], Bit[I J, Line[28]); 

ThreelnputNANDGate Gate29 (Bit[3], Bit[1], Bitlnv[0], Line[29]); 

ThreelnputNANDGate Gate30 (Bit[3], Bitlnvf1], Bit[0], Line[30]); 

ThreelnputNANDGate Gate31 (Bit[3], Bitlnv[2], Bitlnv[1], Line[31]); 

FourlnputNANDGate Gate32 (Bitlnv[4], Bit[2], Bitlnv[1], Bitlnv[0], 

Line [32J 

FivclnputNANDGate Gatc33 (Bit[4], Bitlnv[2], Bit[1 j, Bit[0], LatchSet, 

Line[33] 

SevenlnputNANDGate Gatc34 (Line[27], Line[28], Line[29], Line[30], 

Ltne[31J, Line[32], Line[33], BitDecode[3]); 

ResetControl Reset3 (Clock, BitDecode[3], Bitlnput[3]); 

// Decode logic for bit 4 

Twolnpu(NANDGate Gate35 (Bit[4], Bit[3], Line[35]); 

ThreelnputNANDGate Gate36 (Bit[4J, Bitlnv[1], Bit[0], Line[36]); 

FourlnputNANDGate Gate37 (Bit[3J, Bitlnv[2], Bitlnv[1], Bitlnv[0], 

Line[37] ); 

FourlnputNANDGate Gate38 (Bit[4], Bitlnv[3], Bitlnv[0], NewCcllHigh, 

Line[38] 

FourlnputNANDGate Gate39 (Line[35J, Line[36], Line[37], Line[38J, 

BitDecode[4] 

ResetControl Rcset4 (Clock, BitDecode[4J, Bitlnput[4]); 

cndmodule 

// Name: CounterWithZero Test (this counter does not roll-over) 

// Inputs: Clock 

// CountUp 

- Signal on whose positive cdgc, the counter 

must change state 

- If high on a rising edge of "Clock", then 
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it forces the counter to increment in the 

next state 

// CountDown - If high on a rising edge of "Clock", then 

it forces the counter to decrement in the 

next state 

// Output: Zero Test - High only when thc internal state of the 

counter is zero (zero value on all bits) 

module CounterWithZeroTest (Clock, CountUp, CountDown, ZeroTest); 

input Clock, CountUp, CountDown; 

output Zero Test; 

wire [3:0] BitlnUp, BitlnDown, Bitln, Bit, Bitlnv; 

wire [20:0] Line; 

// Internal state storage elements 

PosEdgeTrigLatch Bit0 (Clock, Bitln[0], Bit[0], Bitlnv[0]); 

PosEdgeTrigLatch Bitl (Clock, Bitln[l], Bit[I], Bitlnv[1]); 

PosEdgeTrigLatch Bit2 (Clock, Bitln[2], Bit[2], Bitlnv[2]); 

PosEdgeTrigLatch Bit3 (Clock, Bitln[3], Bit[3], Bitlnv[3]); 

// Decode input for bit 0 when counting up 

FourinputNANDGate Gate0 (Bit[0], Bit[1], Bit[2], Bit[3], Line[0]); 

TwolnputNANDGate Gate 1 (Bit[0], Line[0], BitlnUp[0]); 

// Decode input for bit 0 when counting down 

FourInputNORGate Gate2 (Bit[0], Bit[1], Bit[2], Bit[3], Line[2]); 

TwolnputNORGate Gate3 (Bit[0], Line[0], BitlnDown[0]); 

// Decode input for bit I when counting up (reuse from bit 0) 

TwolnputNANDGatc Gate4 (Bitlnv[0], Bit[1], Line[4]); 

TwolnputNANDGate Gate5 (Bit[0], Bitlnv[1], Line[5]); 

ThreelnputNANDGate Gate6 (Line[0], Line[4], Line[5], BitlnUp[1]). , 
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// Decode input for bit I when counting down (reuse from bit 0) 

TwolnputNORGate Gate7 (Bitlnv[OJ, Bit[1], Line[7]); 

TwolnputNORGate Gateg (Bit[0], Bitlnv[1], Line[8]); 

TlueelnputNORGate Gate9 (Line[2], Line[7], Line[8], BitlnDown[1]); 

// Decode input for bit 2 when counttng up (reuse from bit 0) 

TwolnputNANDGate Gate10 (Bitlnv[OJ, Bit[2], Line[10]); 

TwolnputNANDGatc Gatel 1 (Bitlnv[1], Bit[2], Line[11]); 

ThreelnputNANDGate Gate12 (Bit[0], Bit[1], Bitlnv[2], Line[12]); 

FourlnputNANDGatc Gate13 (Line[0], Line[10], Line[11], Line[12], 

BitlnUp[2] 

// Decode input for bit 2 when counting down (reuse from bit 0) 

TwolnputNORGate Gate14 (Bitlnv[0], Bit[2], Linc[14]); 

TwolnputNORGate Gatc15 (Bitlnv[1], Bit[2], Linc[15]); 

ThreelnputNORGate Gatc16 (Bit[0], Bit[1], Bitlnv[2J, Line[16]); 

FourlnputNORGate Gate17 (Line[2], Line[14], Linc(15], Line[16], 

BitlnDown [2J ); 

// Decode input for bit 3 when counting up (terminal bit) 

ThreelnputNANDGate Gate18 (Bit[0], Bit[1], Bit[2], Line[18]); 

TwolnputNANDGate Gate19 (Bitluv[3], Line[18], BitlnUp[3]); 

// Decode input for bit 3 when counting down (terminal bit) 

ThreelnputNORGate Gate20 (Bit[OJ, Bit[1], Bit[2], Line[20J); 

TwolnputNORGate Gate21 (Bitlnv[3], Line[20], BitlnDown[3]); 

// Select which direction to count on thc next transitron 

CounterGate 

Counter&ate 

CounterGate 

CounterG ate 

Cont0 (BitlnUp[0], BitlnDown[0], Bit[0], CountUp, 

CountDown, Bitln[0] ); 

Conti (BitlnUp[1], BitlnDown[1], Bit[1], CountUp, 

CountDown, Bitlnf1] 

Cont2 (BitlnUp[2], BitlnDown[2], Bit[2], CountUp. 

CountDown, Bitln[2] ); 

ConG (BitlnUp[3], BitlnDoxvn[3], Bit[3], CountUp, 

CountDown, Bitln[3] ); 
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// Test if we are currently in state zero 

FourlnputNORGate Gate2(t (Bit[0], Bit[1], Bit[2], Bit[3], Zero Test); 

endmodule 

// Name: CountcrWithReset (this counter rolls-over) 

// Inputs: Clock 

// Reset 

— Signal on whose positive edge, the counter 

must count up 

- If high on a rising edge of "Clock", then 

it forces the counter to a zero state 

// Output: Bit 

// Bitlnv 

- Four bit output reflecting the internal 

state of the counter 

- Four bit output reflecting the negation 

of thc internal state of the counter 

module CounterWithReset (Clock, Reset, Bit, Bitlnv); 

input Clock, Reset; 

output [3:0] Bit, Bitlnv; 

wire Resetlnv; 

wire [3:0] BitlnUp, Bitln; 

wire [8:0] Line; 

// Internal state storage elements 

PosEdgeTrigLatch Bit0 (Clock, Bitln[0], Bit[0], Bitlnv[0]); 

PosEdgeTrigLatch Bitl (Clock, Bitln[1], Bit[I], Bitlnv[l]); 

PosEdgeTrigLatch Bit2 (Clock, Bitln[2], Bit[2], Bitlnv[2]); 

PosEdgeTrigLatch Bit3 (Clock, Bitln[3], Bit[3], Bitlnv[3]); 

// Decode input for bit 0 

Invcrter Gate0 (Bit[0], BitlnUp[0]); 
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// Decode input for bit I 

TwolnputNANDGate Gatel (Bitlnv[0], Bit[1], Line[1]); 

TwolnputNANDGate Gate2 (Bil. [OJ, Bitlnv[1], Line[2]); 

TwolnputNANDGate Gate3 (Line[I j, Line[2], BitlnUp[1]); 

// Decode input for bit 2 

TwolnputNANDGate Gate4 

TwolnputNANDGatc Gate5 

ThreelnputNANDGate Gate6 

ThreelnputNANDGate Gate7 

(Bitlnv[OJ, Bit[2], Line[4]); 

(Bitlnv[IJ, Bit[2], Line[5]); 

(Bit[0], Bit[IJ, Bitlnv[2], Line[6]); 

(Line[4], Linc(5], Line[6], BitlnUp[2]); 

// Decode input for bit 3 (terminal bit) 

ThrcelnputNANDGate Gateg (Bit[0], Bit[I], Bit[2J, Line[8]); 

Invcrter Gate9 (Line[8], BitlnUp[3]); 

// Select if we will count up or reset the counter 

Invertcr 

DataGate 

DataGate 

Data Gate 

DataGate 

Gatel0 (Reset, Resetlnv); 

ContO (BitlnUp[0], Resetlnv, Bitln[OJ); 

Conti (BitlnUp[1], Resetlnv, Bitln[1]); 

Cont2 (BitlnUp[2], Resetlnv, Bitln[2]); 

Cont3 (BitlnUp[3], Resetlnv, Bitln[3]); 

endmodule 

// Name: WindowCounter 

// Inputs: Clock - Signal on whose positive edge, the counter 

must count up 

// Dataln [3:0] - Data to be loaded into the trigger register 

// Load 

that controls at which counter value the 

counter will be react 

- Signal on whose positive edge, new data from 

the "Dataln" input will bc latched into the 

trigger register 
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// Output: Increment - Asserted for one clock cycle when the 

counter Iras reached the value stored in the 

trigger register (the counter will be reset 

on the following cycle and begin counting 

again) 

module WindowCounter (Clock, Dataln, Load, Increment); 

input Clock, Load; 

input [3:0] Dataln; 

output Increment; 

wire Equal; 

wire [3:0] RegOut, RegOutlnv, CntOut, CntOutlnv, Test, 

// Four bit trigger register 

PosEdgeTrigLatch Lal0 (Load, Dataln[OJ, RegOut[0], RegOutlnv[0]); 

PosEdgeTrigLatch Lail (Load, Dataln[1], RcgOut[1], RegOutlnv[1J); 

PosEdgeTrigLatch Lat2 (Load, Dataln[2], RegOut[2], RegOutlnv[2]); 

PosEdgcTrigLatch Lai3 (Load, Dataln[3], RcgOut[3], RegOutlnv[3]); 

// Resettable counter 

CounterWithReset Count (Clock, Equal, CntOut, CntOutlnv); 

// Equality tester 

BitEqualTest Test0 (RegOut[0], RegOutlnv[0], CntOut[0], 

CntOutlnv[OJ, Test[0] ); 

BitEqualTest Testl (RegOut[1], RegOutlnv[1], CntOut[1], 

CntOutlnv[1 J, Test[1] ); 

BitEqualTesi Test2 (RegOut[2], RegOutlnv[2], CntOut[2], 

CntOutlnv[2J, Test[2] ); 

BitEqualTest Test3 (RegOut[3], RcgOutlnv[3], CntOut[3J, 

CntOutInv[3], Test[3] ); 

FourinputNANDGate Result (Test[0], Test[1], Test[2], Test[3], Equal); 



Inverter Inv0 (Equal, Increment); 

endmodule 

// Name: Window Control 

// Inputs: Clock 

// 

Arrival - Signal on whose positive edge, arrivals must 

be marked 

- If high, indicates that a cell has arrived 

on the path assigned to this window control 

// Detain [3:0) - Data to be loaded into the trigger register 

// Load 

that controls every how many clock cycles 

the window counter mill be decremented 

- Signal on whose negative edge, new data from 

the "Detain" input will be latched into the 

register that indicates how et(en to 

decrement the window counter. 

//Output: Alarm - If high, indicates that the window counter 

has reached zero and, therefore, to many 

cells have passed through the path assigned 

to this counter. 

module WindowControl (Clock, Arrival, Dataln, Load, Alarm); 

input Clock, Arrival, Load; 

input [3: 0] Dataln; 

output Alarm; 

wire Increment, Loadlnv; 

Invcrter Gate0 (Load, Loadlnv); 

WindowCounter Control (Clock, Dataln, Loadlnv, Increment); 

CountcrWithZeroTest Check (Clock, Increment, Arrival, Alarm); 
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endmodule 

// Name: SequenceDetect 

// Inputs: Clock — Signal on whose rising edge the state 

machine must make a state change. 

NewCellLow - When high, indicates a new cell is coming 

in with the first byte starting on the low 

order bits of the input. 

NewCellHigh - When high, indicates a ncw cell is coming 

in with the first byte starting on thc high 

order bits of the input. 

LookupRes 

Latch Set 

LatcllReset 

- Result of the memory lookup to see if new 

cell is valid. 

- Output of the SR-Latch which, if high, 

indicates there is new path data to be loaded 

into the memory lookup module. 

- The negated state of the LatchSet input. 

// Output: PVRL 

// 

RSRL 

LLODG26 

LLODG27 

LHODG27 

RAS 

CAS 

- Latch the results of the read I'rom thc 

memory lookup module. 

- Clear the new path information in the new 

path registers (by setting the SR-Latch 

indicating the validity of the data as 

being false) 

- Start the low-byte counter at 26 

- Start the low-byte counter at 27 

- Start the high-byte counter at 27 

- Turn on the data gate to make the demux 

assert one of its outputs, to trigger one of 

the window control modules 

- Row address select line on the memory 

lookup module 

Column address select line on the memory 
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lookup module 

// W - Read/Write control line on the memory 

lookup module 

// LowChoke - Control line to thc data gate that informs 

it whether to transmit thc low byte of the 

data words exiting from the shift register 

// HighChoke - Control line to the data gate that informs 

it whether to transmit the high byte of the 

data words exiting from the shiA register 

// FourBDS [5:0] - Control lines to the four bit multiplexer 

that shunt different portions of the 

incoming data words from the Receiver 

// FourBDL [5:0] - Latch control lines on the latches that store 

the path information of the currently 

transiting cell 

// TwclveBDS [1:0] - Control lines to the twelve bit by four line 

multiplexer that presents data from 

various latch groups to the memory lookup 

module 

module SequcnceDetect (Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset, 

LookupRes, FourBDS, FourBDL, TwelveBDS, PVRL, RSRL, 

VVRL, RAS, CAS, W, LowChoke, HighChoke ); 

input Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset, 

LookupRes; 

output PVRL, RSRL, VVRL, RAS, CAS, W; 

output LowChoke, HighChoke; 

output [1:0] TwelveBDS; 

output [5:0] FourBDS, FourBDL; 

wire LLODG26, LLODG27, LHODG27, Ground; 

wire [rk0] Bit, Bitlnv, LowByte, HighByte; 

assign Ground = 0; 



StateMachine Core (Clock, NewCellLov; NewCellHigh, LatchSet, 

LatchReset, Bit, Bitlnv 

StateControl Signal (Bit, Bitlnv, NewCellLow, NewCcllHigh, LookupRes, 

FourBDS, FourBDL, TwelveBDS, PVRL, RSRL, 

LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W); 

DownCounterWithPreset LowBytcCounter 

(Clock, LLODG26, LLODG27, LowByde[0], LowByte[1], 

LowByte[2], LowByte[3], LowByte[4] ); 

DownCounterWithPreset HighByteCounter 

(Clock, Ground, LHODG27, HighByte[0], HighByte[1], 

HighByte[2], HighByte[3], HighByte[4] ); 

FivelnputNAND Gate LowByteChoke 

(LowByte[0], LowByte[1], LowByte[2], LowByte[3], 

LowByte[4], LowChoke ); 

FivelnputNANDGate HighByteChoke 

(HighByte[0], HighByte[1], HighByte[2], HighByte[3], 

HighByte[4], HighChoke ); 

endmodulc 

// Let's bring the whole thing together 

module NetworkSecurity; 

wire Clock, NewCellLow, NewCellHigh, LatchSct, LatchReset, 

SDDG, PVRL, RSRL, VVRL, RAS, CAS, W, LowChoke, HighChoke, 

LoadNewData, UnLoadNewData, LookupRcs, LookupReslnv; 

wire [1:0] TwelveBDS; 

wire [2:0] PathState, PathStlnv, MuxTrigln, MuxLoadln, MemRes, PathData; 

wire [3:0] WindowData; 

wdre [4:0] StatcBit, StateBitlnv; 

wire [5:0] FourBDS, FourBDL; 

wire [6:0] WindowTrig, LoadWindow, Alarm, NewPathDataln, NewPathDataOut, 

LoadTrig; 
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wire [11:0] RAMAddrcss; 

wire [15:0] Dataln, ShiftOut, GateOut; 

wire [23:0] NewPathAddressln, NewPathAddressOut, Latchln, LatchOut, 

Address; 

assign 

PathData[0] = NewPathDataOut[0], PathData[1] = NewPathDataOut[l], 

PatbData[2] = NewPathDataOut[2], 

WindowData[0] = NewPathDataOut[3], WindowData[1] = NewPathDataOut[4], 

WindowData[2] = NewPathDataOut[5], WindowData[3] = NewPathDataOut[6]; 

initial 

begin 

// generate our report 

// $shm open; 

// $shm~robc("AC"); 

//¹5000 $shm close; 

¹5000 $ffnish; 

// $monitor ($time„ 

// "SO='Ib Sl='/dt ¹I='/A ¹2="/M ¹3='/od ¹4='/ad 0='/M", 

// Se10, Scil, One, Two, Three, Four, Out); 

end 

ClockGcn Timer (Clock); 

NetworkReceiver Receive (Clock, NcwCellLow, NewCellHigh, Detain); 

NetworkTransmitter Transmit (Clock, NewCcllLow, NewCellHigh, GateOut); 

ControlModule PathGen (NewPatltAddressin, NewPathDataln, LoadNewData, 

LatchSet, LatchReset 

ShiflRegister Shifter (Clock, Detain, Shit)Out); 

EightBitDataGate LowGate (ShfftOut[7:0], LowChoke, GateOut[7:0]); 

EightBitDataGate HighGate (ShiflOut[15:8], HighChoke, GateOut[15:8]); 

SequenceDetcct Control (Clock, NewCellLow, NewCellHigh, LatchSet, 

LatchReset. LookupRes, FourBDS, FourBDL, 

TwelveBDS, PVRL, RSRL, VVRL, RAS, CAS, W, 
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LowChoke, HighChoke); 

NewPathStore NewPath (LoadNewData, UnLoadNewData, NewPathAddressln, 

NewPathDataln, LatchSet, LatchReset, 

NewPathAddressOut, NewPathDalaOut ); 

FourBitTwoLineSelector Sl (Detain[11:8], Detain[3:0], FourBDS[0], 

Latchln[23:20] 

FourBitTwoLineSelector S2 (Detain[7:4], Dataln[15;12], FourBDS[1], 

Latchln[19;16J 

FourBitTwoLincSelector S3 (Data)a[3:0], Datalnf1 I:8J, FourBDS[2], 

Latchln[15:12] 

FourBitTwoLineSclector S4 (Detain[15:12], Dataln[7:4], FourBDS[3], 

Latchln[11:8] 

FourBitTwoLineSclector S5 (Dataln[11:8], Dataln[3:0], FourBDS[4], 

Latchln[7:4] 

FourBitTwoLtnegelcctor S6 B)stain[7;4], Detain[15:12], FourBDS[5], 

Latchln[3:0] ); 

FourBitRegister 

FourBitRegister 

FourBitRegi ster 

FourBitRcgister 

FourBitRegister 

Ll (FourBDL[0], Latchln[23:20], LatchOut[23:20]); 

L2 (FourBDL[1], Latchln[19:16], LatchOut[19:16]); 

L3 (FourBDL[2], Latchln[15:12], LatchOut[15:12]); 

L4 (FourBDL[3], Latchln[11:8], LatchOut[11:8] ); 

L5 (FourBDL[4], Latchln[7:4], LatchOut[7:4J ); 

FourBitRcgister L6 (FourBDL[5], Latchln[3:0], LatchOut[3:0] ); 

TwelveBitFourLineSelector SM(LatchOut[23:12], 

LatchOut[11:00], 

NewPathAddressOut[23: 12], 

NewPathAddressOut[11:0], 

TwelveBDS, RAMAddress ), 

DynamicRAM 

DynamicRAM 

Lookup0(RAMAddress, RAS, CAS, W, PathData[0], 

MentRes [0] 

Lookup 1(RAMAddress, RAS, CAS, W, PathData[1], 

MemRes [ I ] ); 

Lookup2~ddress, RAS, CAS, W, PathData[2], 
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MemRe a [2] 

// Path and volume version specific hardware 

PosEdgeTrigLatch Latch0 (VVRL, MemRes[0], PathState[0], PathStInv[0]); 

PosEdgeTrigLatch Latchl (VVRL, MemRes[1], PathState[1], PathStlnv[1]); 

PosEdgeTrigLatch Latch2 (VVRL, MemRes[2], PathStatc[2], PathStlnv[2]); 

ThreeBitDataGate Gate0 (PathStatc, VVRL, MuxTrigln); 

ThrceBySevenDemux Mux0 (MuxTrigln, WindowTrig); 

ThreeBySevenDemux Mux1 (PathData, LoadTrig); 

Inverter Gate 1 (W, Wlnv); 

TwolnputNANDGate Gate2 (LoadTrig[0], Wlnv, LoadWindow[0]); 

TwolnputNANDGate Gate3 (LoadTrig[1], Wlnv, LoadWindow[1]); 

TwolnputNANDGate Gate4 (LoadTrig[2J, Wlnv, LoadWindow[2]); 

TwolnputNANDGate Gate5 (LoadTrig[3J, Wlnv, LoadWindow[3]); 

TwolnputNANDGate Gate6 (LoadTrig[4], Wlnv, LoadWindow[4]); 

TwolnputNANDGate Gate7 (LoadTrig[5J, Wlnv, LoadWindow[5]); 

TwolnputNANDGate Gateg (LoadTrig[6], Wlnv, LoadWindow[6]); 

WindowControl Cont0 (Clock, WindowTrig[0], WindowData, 

LoadWindow[0], Alarm[0] 

WindowControl Conti (Clock, WindowTrig[1], WindowData, 

LoadWindow[1], Alarm[1] ); 

WindowControl Cont2 (Clock, WindowTrig[2J, WindowData, 

LoadWindow[2], Alarm[2] ); 

WindowControl Cont3 (Clock, WindowTrig[3J, WindowData, 

LoadWindow[3], Alarm[3] ); 

WindowControl Cont4 (Clock, Window Trig[4], WindowData, 

LoadWindow[4], Alarm[4] ); 

WindowControl Cont5 (Clock, WindowTrig[5], WindowData, 

LoadWindow[5], Alarm[5] ); 

WindowControl Cont6 (Clock, WindowTrig[6], WindowData, 

LoadWindow[6], Alarm[6] ); 

ScvenlnputNORGate Gate9 (Alarm[0], Alarm[1], Alann[2J, Alarm[3], 

Alarm[4], Alarm[5], Alarm[6], LookupReslnv); 

Inverter Gatc10 (LookupReslnv, LookupRes); 
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