
DESIGN AND ANALYSIS OF AN ATM NETWORK TRAFFIC SECURITY

DEVICE

A Thesis

by

DAN CRISTIAN TEODOR

Submitted to the OQice of Graduate Studies of
Texas ARM University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 1997

Major Subject: Computer Science

DESIGN AND ANALYSIS OF AN ATM NETWORK TRAFFIC SECURITY

DEVICE

A Thesis

by

DAN CRISTIAN TEODOR

Submitted to Texas A&M University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Wei Zhao
(Chair of Committe

dM
William Lively

(Member)

Pierce Cantrefi

(Member)

Richard A. Volz
(Head of Department)

August 1997

Major Subject: Computer Science

ABSTRACT

Design and Analysis of an ATM Network Traffic Security Device.

(August 1997)

Dan Cristian Teodor, B. S. , State University of New York at Buffalo

Chair of Advisory Commiffee: Dr. Wei Zhao

Wide access distributed area network services are increasing in range and capacity at an exponential rate.

With the continuation of this growth, the requirements of providing uniform security management will

become more and more difficult to manage without occupying a significant portion of the network traffic

capability available to the end-users the network is intended to service. Current methods rely on the network

architecture itself to provide the mechanisms by which traffic is monitored and, when the situaffon warrants,

suppressed in order to ensure that security methods are enforced. With the introduction of ATM/SONET

technologies into this arena, the possibility of integrating every class of inforirmtion service into a common

transmission framework comes closer to reality through its high bandwidth capability and very large

scalability. However, this expansion of types of services available and range offenxt complicates the task of

minimizing the possibility that unauthorized persons may rely on covert traff creation and reception in

order to use the network in a manner not permitted by its controlling bodies.

To address this deficiency, this thesis presents the groundwork for thc implementation of a dedicated security

framework which should be able to accomplish the task of minimizing the potential for covert channels in

such networks without creating the associated traffic overhead normally associated with such operaffons

within the network itself For this security framework, the system described presents a design which

incorporates both the mechanisms for the detection and suppression of covert traffic, as well as, the

implementation by which these mechanisms may be linked to a unifying control authority.

Performance analyses of the design show that it may be feasibly implemented with current levels of

semiconductor manufacturing technology and incorporates elements that are readily available on the market.

Secondly, these analyses show that the associated response delay experienced by transiting network traffic is

minimal with respect to the overall time the information spends while en route through the nehvork. Thirdly,

the delays associated with connection management are constant under all global traffic conditions. Finally,

the design is shown to incur no overhead in excess network traffic due to the enforcement functions which it

implements.

TABLE OF CONTENTS

Page

ABSTRACT

TABLE OF CONTENTS . . rv

LIST OF FIGURES .

LIST OF TABLES

CHAPIER

. Vill

I INTRODUCTION .

II ISSUES IN ATM NETWORK SECURITY . .

III SECURITY DEVICE SPECIFICATION

IV SECURITY DEVICE DESIGN . , 10

IV. A Design Overview . .

IV. B Transminer and Receiver Design .

IV. C Analysis Module Design.

. 10

. 14

IV. C. I Basic Building Blocks of the Analysis Module Design . .

IV. C. 2 Shift Register Design .

IV. C. 3 Multiplexer and Data Gate Design.

IV. C. 4 Memory Lookup Module Design.

IV. C. 5 Sequence / Detect Module Design .

. 20

. 21

. 23

. 28

, . 45

IV. D Control Moduk Design 52

V SIMULATION OF SECURITY DEVICE

VI PERFORMANCE ISSUES .

VII CONCLUSION.

57

75

VII. A Future Work . 76

REFERENCES 77

Page

APPENDIX

A "PATH-ONLY" ANALYSIS MODULE SIMULATION CODE. 80

A. A Verilog Simulation. . 80

B "PATH AND VOLUME" ANALYSIS MODULE SIMULATION CODE 117

B. A Verilog Simulation. . 117

. 166

LIST OF FIGURES

FIGURE Page

1 Block diagram of ATM switch security device . 10

2 Timing diagram for new cell arrival on low byte of Receiver output. 12

3 Timing diagram for new cell arrival on high byte of Receiver output 13

4 Analysis Module block diagram . 15

5 Sequence of operations under full data load of the Analysis Module. 16

6 Some of the atomic circuit units used in the design of the Analysis Module . . . 20

7 SR-Latch used in the design of the Analysis Module . 21

8 Positive edge-triggered D-type flip flops used in the design of the Analysis Module . . .

9 Shift register used in the design of the Analysis Module.

10 Boolean expressions governing operation of multiplexers

11 Boolean expressions governing operation of data gate

. . . . 21

. 22

. 23

. 24

12 Circuits governing operation of multiplexers . . 24

13 Circuit governing operation of data gate

14 Four-bit by two-line multiplexer used in the design of the Analysis Module . .

. 25

. . . 26

15 Twelve-bit by four-line multiplexer used in the design of the Analysis Module 27

16 Product characteristics information as it appears in product data document for the

Texas Instruments SMJ416100 Dynamic RAM (DRAM) . 31

17 Hidden-Refresh-Read Cycle timing diagram as it appears in product data document

for the Texas Instruments SMJ416100 Dynamic RAM (DRAM) . 32

18 Write Cycle timing diagram as it appears in product data document for the Texas

Instruments SMJ416100 Dynamic RAM (DRAM) .

19 Memory lookup module used in the design of the "path-only" version of the

Analysis Module

20 "Counter with control'* for the memory lookup module used in the design of the

"path and volume" version of the Analysis Module

FIGURE Page

21 Circuitry for an example three-bit equality tester for the memory lookup module

used in the design of the *'path and volume" version of the Analysis Module 41

22 Window control module for the memory lookup module used in the design of the

"path and volume" version of the Analysis Module with "k" bits of control granularity 43

23 Block diagram for the "path and volume" version of thc Analysis Module. . .

24 State diagram for the state machine internal to the sequence / detect module within

the Analysis Module

25 Logic blocks which make up the sequence / detect module of the Analysis Module 50

26 A possible configuration for using a Motorola 68PM302 microcontroller as a Control

Module for multiple Analysis Modules .

27 Granularity versus number of window control modules which may be implemented in

one Analysis Module for fixed component weights . 70

28 Component weight versus number of window control modules which may be

implemented in one Analysis Module for fixed module granularities. 72

29 High level view of the interconnections of Security Modules in a simple extensible

implementation. . 73

LIST OF TABLES

TABLE Page

I Timing characteristics as they appear in the product data for the Texas
Instruments SM3416100-70 Dynamic RAM (D~ . 30

II Operational states of the "counter with control" to be implemented in the
"path and volume" version of ihe memory lookup module

III Boolean expressions necessary to implement the decode logic for the five

lowest-order non-terminal bits of a fully decoded count-up counter with no

rotlwver.

IV Boolean expressions necessary to implement the decode logic for the five

lowest-order terminal bits of a fully decoded count-up counter with no rofi-over 39

V Boolean expressions necessary to implement the decode logic for the five

lowest-order non-terminal bits of a fully decoded countdown counter with no
roll-over. . . . 39

VI Boolean expressions necessary to implement the decode logic for the five

lowest&rder terminal bits of a fully decoded count-down counter with no

roll-over. . . 40

VII Boolean expressions necessary to implement the decode logic for the five
lowest-order bits of a simple up~unter with reset control . . 42

VIII Signal names and descriptions of the control lines set by the state machine

internal to the sequence / detect module . 45

IX Signal names and descriptions of the external signals the state machine internal

to the sequence / detect module requires . 47

X Signal states for every valid state in the state machine diagram for the sequence /

detect module of the Analysis Module . 49

XI Next state decode logic for each bit of the state machine controlling the operation

of the sequence / detect module 51

XII Decode logic for the control lines which the sequence / detect module uses

to operate sub-units of the Analysis Module 51

XIII Next state decode logic for each bit of the presettable down-counters with no

roll-over in the sequence / detect module 52

XIV Module names and the submodules of which they consist for the simulation of
the "path-only*' Analysis Module

TABLE Page

XV Module names and the submodules of which they consist for the simulation ol'

the "path and volume" Analysis Module . 62

XVI Composition and component weight of the modules in the "path-only" version

of the Analysis Module . . 67

XVII Composition and component weight of the sub-modules composing one "window

control module" used in the "path and volume" version of the Analysis Module

XVIII Composition and component weight of the modules in the "path and volume"

version of the Analysis Module . . 69

XIX Order of magnitude correlation of the component weight of the "path and volume"

Analysis Module as the number and granularity of "window control modules"

implemented varies . 70

CHAPTER I

INTRODUCTION

As thc size of wide-area public access backbones increases, so does the complexity of the task of monitoring

and enforcing security standards across the entire range of services provided by these communications

services. Current methods of providing a uniform framework for security enforcement across the network

attempt to use the network itself as a tool for performing the necessary management functions. Their aim is to

provide this uniform enforcement while providing the highest level of accessibility and responsiveness for

which the network is equipped. The contributions of this thesis are as follows:

~ Presentation of a framework within which uniform and rapid security enfortxment may be

provided while still offering the greatest amount of network bandwidth with as fast a response

time as possible to the end user. This is presented in Chapters II and III.

~ A complete design for the implementation of this security framework which is implementable

using current semiconductor manufacturing technologies and relies on widely available and

cost-effective components. This design is intended to minimize the network response

degradation, as well as, the overhead incurred by the administrative functions of transferring

management data. This is presented in Chapters IV and VI.

~ A simulated implementation of the design which would allow for verification of correct

operation of the device. Additionally, the simulation would allow the researcher to evaluate the

creative process used in order to add future optimizations or expand the functionality of the

device as component availabilities and technologies evolve. This is presented in Chapter V.

The main focus of the work for this thesis has been on creating a design suitable for use in evaluating the

efficacy of a distributed security enforcement method for wide area ATM networks. The implementation is

intended as a starting point for future expansion of the security enforcement capacity of a dedicated

supervisory network for wide-area ATM networks.

The journal model is IEEE Transactions oa Computers.

CHAPTER II

ISSUES IN ATM NETWORK SECURITY

At its very core, the ATM standard defines a wide-bandwidth network as an interconnection topology of

digital switches that transport data between themselves in small packets of data called cells. Each cell consists

of a 48 byte payload and a 5 byte header [I]. In order for a cell to be communicated from one computer to

another it must first be transmiued to the nearest switch in the ATM network to the source computer This

switch then uses local information to send this packet to another switch in the ATM network. This process is

repeated until the cell is transmitted to the switch closest to the destination computer and that switch, in turn,

delivers the cell to that destination. The ATM network switches rely on a store-and-forward method of

transmitting to another switch in the ATM network to which it has access. A switch to which another switch

has access in an ATM network is defined to be one to which the seoond switch has a direct physical

connection (by whatever physical medium chosen).

Switch to switch routing in an ATM network is performed based on local information at every switch in

which a given cell amves. This local information is stored in a look-up table which consists of virtual path

idennfiers (VPI) and virtue/ connection identifiers (VCI) [I]. These two pieces of information define to

which switch the data should be Iorwarded on its next hop, based on the VPI/VCI information in the header

of the amving celL When such a cell arrives, its VPI/VCI data is found in thc switch's internal data and,

based on this, the cell's header is updated and queued at the output that leads to the ATM switch that forms

the next link along the logical path specified by the VPI/VCI pair.

At present, almost all of the available security enforcement methods for these network architectures involve

sofiware solutions in the switches and the network management functions found in the industry

specifications. These software methods perform a series of transformations and tests on cells transiting

through the network to ensure that they fulfill certain characteristics [2-16]. These software enforcement

methods are designed to reside either in the ATM switches themselves or on the source / destination

machines where the data originates or arrives.

Qurently, there are two distinct approaches to network security enforcement. The first approach proactively

attempts to prevent an intruder from ever gaining access to the system while the second approach reactively

attempts to detect and track an intruder after they have gained unauthorized access.

The proactive approach attempts to solve the problem through five different methods:

~ Access Control refers to a mechanism that restricts access to various subsystems only to those

parties that are able to provide a key known only to the subsystem and the set of authorized

users. lt is the responsibility of the subsystem to allow only those transactions that are

accompanied by an authorized key and, likewise, Lhe responsibility of the users not to allow their

keys to pass on to unauthorized parties. These approaches have been proven effective many

times and are currently in use in most major operating systems. By using careful management of

password keys, it has been shown that access control mechanisms may be effectively

implemented in large distributed environments.

~ Encryption requires all parties participating in communication across the network to use a well-

known algorithm to hide their plain text data according to a key known by all parties and to

unhide this data according to a key known only by themselves. This security method requires the

communicating parties to be within a domain that is considered to be secure and it also implies

the existence of a globally centralized key management authority that also exists within a secure

domain, The only area that is assumed to be non-secure is the wide area network or inter-

network itself. Overhead is generated within these systems in order to implement covert-channel

free mechanisms in order to manage and transfer keys while, at the same time, ensuring the

security of the centralized authority [3, 16]. However, through careful selection of an encryption

algorithm and keys of reasonable length it is possible to apply encryption for data transfer in

large distributed systems.

~ pttysicat Lockout simply describes the physical infrastructure that protects the various hardware

components of a distributed system and only allows authorized parties to access the various

hardware terminals such as display terminals, keyboards and assorted input devices. Since there

is no global information migration required to maintain the locks and gates to the access

terminals this approach does not present any significant obstacles to its use for guarding

distributed systems.

~ Neutral transmissir&n patterns and modal operation relies on a combination of generating traffic

padding with meaningless packets, conditionally rerouting segments of traftic and controlling

the creation and destruction of connections within the network. The objective of this method of

security enforcement relies on the masking of actual traffic in order to reduce the possibility that

an attacker will gain any useful information through the passive monitoring of network links

[17, 18]. Here again, the end-user workstations are assumed to exist within a secure domain

while the network or inter-network is the only component that is not secure. Overhead is

generated both by padding tra%c and by thc extra work done by using inefficient routes to pass

data. In addition, significant restrictions are generally placed on the capacity of client

workstations to create connections with one another in order to perform meaningful work [19]

The reactive approach attempts cofiect information regarding system activities and analyze this information

in order to establish patterns for "typicaf' system use. Once these patterns are established, the system then

restricts the access of those users that initiate activities of a type or with a frequency that deviates from those

calculated norms of "typical" system use [5-14]. The major problems encountered in attempting to design

such systems have come &om three sources. First, the quantity of information generated by tracking every

system activity in a large system is orders of magnitude too large to store and not significantly impact system

performance. Second, the computation time required to analyze and create system profiles can become

significant, which can lead to a poor reaction time when attempting to detect users performing activities that

do not fit the calculated system profile. Third, malicious users may attempt to fool these systems by

performing activities that differ from the '*typical" profile by a small amount. Through continued activity of

this type, new system norms would be established that account for the patterns generated by the malicious

activity. These systems may be categorized into two classes which differ by the method used to calculate their

system profiles:

~ Heuristic profilmg and expert systems rely on the use of a system's past experience to create

heuristics by which to judge the capability of a particular user to be an intruder. These heuristics

can be either a set of learned rules based on a history of system security breakdowns or a pre-

defined set of rules created by a system administrator. In either case, this class of inuuder

detection systems require lmge amounts of resources (both storage and computational) in order

to track the necessary heuristics and to test all heuristics continually against the current system

state. Lant [13] showed that it is possible to accomplish this task, but. only at tremendous

expenditure of system resources of a type that would only be available on a large workstation.

~ Statistical profiling makes the simplifying assumption that an intruder's activities should be

detectable by only monitoring the statistical averages of various types of system activity.

Therefore, intruders should be detectable if any given subset of the system's monitored activities

deviate significantly from their normal profile. In this way, it is possible to eliminate the need to

track a large set of heuristics and the computation time required is now bounded only by the

number of system statistics which are tracked.

Out of all of the individual methods described, some do not lend themselves well to implementation in the

distributed environment of a large number of semi4umb switching stations which is envisioned for the

current and future implementation of ATM networks. Those methods which rely heavily on being aware of

the current global state of the distributed system are not suitable in an ATM environment since network

bandwidth must be expended in order to maintain the aocuracy of that information, Modal operation and

neutral transmission pauerns have been shown to require a large amount of information about. thc global state

of the distributed system and, as such, their performance will degrade as networks become larger in size.

Also, methods which require a large amount of memory or computation will also be difficult to implement

effectively in the world of ATM networks since the necessary resources will need to be replicated many times

over as the number of nodes in these networks grow. Intruder detection through heuristic profiting have been

shown to require the resources provided by an entire workstation in order to provide timely information and,

thus, would be difficult to scale to the number of nodes that would be required by a large network.

Of the methods discussed, intruder prevention through access control, data encryption and physical lockout

show the most promise for implementation in a wide-area ATM environment. For intruder detection,

statistical profiling has a definite performance advantage in a wide-area ATM environment. Since the

capacity and range of services ofFered by global networks continues to grow at an astonishing pace the

performance and cost advantages of these methods can only increase in the future [20, 21].

Data encryption, access control and statistical profiling all rely on the proper opemtion of a software module

within the nodes of the ATM network. No matter how efficient or adaptive these approaches are, they all, as a

whole, are susceptible to unfriendly attack by other sofiware systems which may be connected to the network

and which mimic the behavior of network nodes assigned to network management tasks [22J. Such attacks

include the possibility of modifying virtual connection and path data in a switch in such a way that it is

beneficial to the attacker (i. e. diversion or insertion of traffic in an unauthorized manner). Also, with the

proliferation of inter-networking technologies, it becomes more and more tfifftcult for an admimstmtive body

to manage and patrol the tmffic of every node on the network due to the very large size and distributed nature

of these inter-networks. Those sofiware security methods which reside within the network nodes themselves

are prone to uneven enforcement since every organization that controls individual mactunes connected to the

inter-network apply their own slandards and methods of security enforcement. Thus, an attacker may be able

to use a combination of partial weaknesses that exist within the security management of different nodes across

the network in order to perform unauthorized operations.

Therefore, in order to reach a more complete state of enforcement, the ATM network should not rely on the

ATM switches or client computer nodes to perform these functions. A separate hardware entity that is

controlled by one management authority, devoted solely to the purpose of security management and to which

no network user or local manager has direct access would be the most appropriate solution. This centralized

authority would be tasked with the responsibility of ensuring that all network traffic entering or exiting the

secured backbone belongs to a virtual connection through that backbone that has been registered with the

central securing authority. Thus, an attacker would be unable to use the network to carry traflic that has not

been explicitly registered with the centralized authority body. Further, this supervisory network would be

responsible for verifying not only the correlation of traffic with an existing, registered virtual connection, but

also that this trafllc is not exceeding any volume bounds placed on that connection. In this way, an attacker

would be restricted from using an existing, authorized connection on which to piggyback covert trafhc.

Aside from the assumed secure network on which the authorizing body would rely, hardware modules would

be required at each entry and exit point into and from the backbone which would perfortn the actual

monitoring of backbone traffic, This monitoring would be performed based on directives from the supervising

authority body. Toward this goal, the design and implementation of application specific hardware has already

been shown to be a cost-effective method of realizing such a security governance snucture [23, 24). A next

step in providing ATM network security in a cost-effective manner is to encapsulate access control,

encryption and statistical profiling for network traffic into application specific hardware and which will reside

in the hardware modules at the entry and exit of every access path into the secure backbone.

CHAPTER III

SECURITY DEVICE SPECIFICATION

The ATM forum specifies two communication protocols by which cells are to be transferred across an ATM

network. The first specification is called the Network to Network Interface (NNI) and describes the data

formats to be used when two ATM switches in a public network communicate wdth one another [25]. The

second of these is called the User to Network Interface (UM) and describes the data formats to be used when

communicating between a public service ATM switch and a private network ATM switch or between two

private network ATM switches. Therefore, any given connection in an ATM inter-network fotwards data

according to the following sequence:

1. The data is relayed from the source computer to the first switch in the source private (local /

organizational) ATM network using UNI.

2. The data is relayed from switch to switch within the source private ATM network using UNI.

3. The data is relayed from the last switch in the private ATM network to the first switch in the

public ATM network using UNI.

4. The data is relayed &om switch to switch within the public ATM network using NNI.

5. The data is relayed from the last switch in the public ATM network to the first switch in the

destination private ATM nelwork using UNI.

6. The data is relayed from switch to switch in the destination private ATM network using UNI.

7. The data is relayed from the last switch in the destination private ATM network to the

destination node (computer) using UNI.

Fmm this sequence of events it is possible to conclude that the majority of steps in the transmission relv on

the UNI interface to transfer data. Further, since there are no user nodes (computers) connected directly to the

public ATM network and, if we can ensure that no covert traffic exists among the nodes that communicate

through the UNI, then we can also guarantee that all traffic in the public ATM network will also be covert

element free. Therefore, the first specification of the external security device is that it correctly implements

the data elements of the UNI in its network interfaces.

It is also necessary to address the method by which virtual connection information is maintained inside of

each ATM switch for the purposes of routing information. The currently accepted method involves the

transmission ol' specialized cells that contain "management data". These cells are originated by user nodes on

the ATM inter-network for the purpose of setting up new connections. They inform the switches to which

they are transmitted that a new connection is desired through that switch and that the switch should allocate a

unique VPI/VCI pair in their internal data tables for that connection. Since it is this very method of new /

existing connection management that is in question with regard to the detection of covert traffic, the external

security device must rely on some other communication device that is external to the ATM network to acquire

information about new connections as they are created within the network.

The design ol' this security device is intended to be applied to the current state of ATM network specifications.

Therefore, the device should support placement within networks that utilize all of the currently published

physical interface standards. In order to keep this requirement within reasonable bounds, those physical layer

standards that are developed by any one organization and, therefore, considered "proprietary" will not be

considered for support. Instead, those smndard that were written to be "industry wide' and, supposedly, do

not favor technologies controlled by any one specific manufacturer will be the basis for physical layer suppon

in the design of this device. These standards are those physical layer interface specifications published by the

ATM forum.

Currently, there are five standards published and officially recognized by the ATM Forum. These are (in

order of increasing data rates):

~ DS-I (1. 544 Mb/sec) physical interface specification [26]

~ 25. 6 Mb/sec over twisted pair physical interface specification [27]

~ DS-3 (44. 21 Mb/sec) physical interface specification [28]

~ 155 Mb/sec over twisted pair physical interface specification [29]

~ 622. 08 Mb/sec Synchmnous Optical Network (SONET) physical interface specification [30]

The device must perform the funciions of detection, suppression and alert, when illegal traffic is found to be

passing through the network, in a timely manner. Detection refers to determining if a cell being transmitted

out of a particular port on a specific switch is in accordance with a VPI/VCI pair defined to be valid traffic for

that switch's output. Detection also, optionally, involves verification if that cell is in accordance with a valid

VPI/VCI pair but violates the traffic capacity of that channeL Suppression involves the discarding of the

offending cell and alert refers to a method by which the security device reports the VPI/VCI pair of the

offending cell and the switch output which produced it. Optionally, alert also refers to the reporting of the

reason for which the cell is found to be in violation, whether it be due to an illegal VPVVCI pair or due to a

connection capacity violation. The issue of performing these functions in a timely manner is best described by

setting a target of reporting a traffic infraction within one cell transmission time on the physical media of that

network, regardless of what the transmission bandwidth may be.

The device must be able to perform effectively under periods of peak network traific without hampering or

significantly delaying the operation of the network itself. Tlus means that, when a particular switch output is

generating cells at its maximum rate for a sustained period of time, the device must be able to correctly

process and retransmit those cells which are not found to cause any tylre of violation within a bounded delay

of no more than one cell time.

Therefore, the device must conform to the following specifications:

~ Support the ATM forum UNI data specification.

~ Provide an external interface thmugh which to report network traific violations.

~ Support all the physical interface specifications currently recognized by the ATM forum.

~ Perform covert network tratftc detection, suppression and alert.

~ Perform its intended functions in a timely fashion even under peak tratfic conditions.

~ Be designed in such a fashion that its implementation is both cost effective and stable.

10

CHAPTER IV

SECURITY DEVICE DESIGN

IV. A Design Overview

The determining factor in the design was the need to implement the device with components that are widely

available, inexpensive and of a proven stability. Because of the high data rates involved in the transmission of

cells in ATM networks, it was necessary to use as much parallelization of functions as possible in hardware in

order to implement the design with standard components and realizable clock speeds.

Control Module

iN RQM sw Receiver Analysis Module Transmitter

ITGH Receiver Analysis Module Transmitter ur o swncH

IN RQM swlTGH Receiver Analysis Module Transmitter ourroswwr H

Fig. 1. Bhx:k diagram of ATM switch securily device

As shown in figure 1, the device relies on three units functioning in tandem to handle the trafhc produced by

each ATM network switch output. These three units, labeled Receiver, Analysis Module and Transmitter,

function in sequence to capture, analyze and retransmit the network traffic from one ATM network switch

output port. The Receivers queue the incoming data from the ATM network switch and present the data to the

Analysis Modules in manageable pieces. The Analysis Modules capture the data from the Receivers and

11

perform the necessary functions of detection, suppression and alert and pass this data to the Transmitters if it

is found to be valid. The Transmitters capture the outgoing data from the Analysis Modules and transmit it to

the subsequent switch in the ATM network.

Overseeing the operation of the Receivers, Analysis Modules and Transmitters is the Control Module. It is the

responsibility of this module to accept data from the Supervisory Interface regarding new connections that

need to be admitted in the ATM network and pass this data to the appropriate Analysis Module. Additionally,

the Control Module must detect a traffic alert from any one of the Analysis Modules and, when it occurs,

must capture the data regarding the cell which caused the alert from the appropriate Analysis Module. Then,

the Control Module must transmit this data to the supervisory interface.

When all of these units function correctly, the end result will be a device that can capture, analyze and

retransmit the ATM network traffic on the multiple output ports of an ATM switch, update path information

and report traffic infractions under conditions of peak data rate transmission. The analysis portion of the

device's function may be of two types. Under the first variant, aniving network trafiic will be checked for

validity in terms of whether or not the connection with which that traffic is associated does indeed pass

through the network switch and port from which the data origirmted. The second variant will perform exactly

the same verification as the first variant and, in addition, will also verify that traffic that has been found to be

traveling across a valid connection has not exceeded the tmtfic limits placed on that connection. The design

of both variants is presented.

IV. B Transmitter and Receiver Besign

The receivers and transmitters capture and send the cell data from and to the physical outputs and inputs of

the ATM switches between which the device lies and process it according to the particular physical interface

characteristics of those switches. This includes any functions of decryption, decompression and bit-level

synchronization. The exact design of these units will be highly physical media dependent and beyond the

scope of this design description. The physical blocks comprising these modules is not a matter of choice since

12

CLOCK

LOW BYTE byte 1, cell 1 byte 3, cell 1 byte 5, cell 1 byte 7, cell 1

HIGH BYTE byte 2, cell 1 byte 4, cell 1 byte 6, cell 1 byte 8, cell 1

NEW CELL
LOW

NEW CELL
HIGH

Fig. 2. Timing diagram for new cell anivat on low byte of Receiver output

it is already described in the ATM forum literature [26-30] and components for use in these modules have

already been implemented as prototypes [24], The only design issue which needs to be noted with regard to

the function of the receivers and transmitters are that they present data to the Analysis Modules in parallel

sixteen-bit words and synchronize the presentation of these 16-bit words to thc Analysis Module clock.

Receivers use two control lines, with one conductor each, carrying a digital signal, to indicate each of the

following two conditions:

1. (New Ce/I how) If asserted high on the rising edge of the Analysis Module's clock, it indicates

that the data on the low-order eight bits of the outputs of the receiver is the first byte in a ne~ly

arriving cell.

2. (New Cell High) If asserted high on the rising edge of the Analysis Module's clock, it indicates

thai. the data on the highwrder eight bits of the outputs of the receiver is the first byte in a newly

arriving cell. This will occur only when a cell arrives immediately afier its predecessor. If this is

not the case, then the Transmitter will present its data with the first byte on the lower eight bits

of its outputs and use the signal New Cell how to inform the Analysis Module of this status.

The graphical representation of the timing characteristics of these interface signals is shown in figure 2 and

in figure 3.

13

In turn, the Analysis Modules use the same two one-conductor, digital stgnals to inform the transmitters of

these same conditions in order to pass a cell which has been found to be valid to the Transmitter at the rate of

one sixteen-bit word per Analysis Module clock cycle. The implication is that the output stage of the Receiver

and the input stage of the Transmitter must be synchronized to the same clock as the Analysis Module

The Receivers will present their data words and assert their control signals on the falling edge of the clock

cycle within which the data arrives in order to allow the Analysis Modules to use positive edge triggered logic

to sample this data. The same is true for the Transmitters which will capture the data being sent out by the

Analysis Modules on the falling edge of the clock.

CLOCK

LOW BYTE yte 51, cell 1 yte 53, cell1 byte 2, cell 2 byte 4, cell 2

HIGH BYTE yte 52, cell 1 byte 1, cell 2 byte 3, cell 2 byte 5, cell 2

NEW CELL
LOW

NEW CELL
HIGH

Fig. 3. Timing diagram for new cell amval on high byte of Receiver output

The stipulation that data be presented to and read from the Analysis Modules in sixteen-bit words arises out

of the need to have this device operate at clock speeds that are reasonable for implementation in integrated

circuit designs that utilize the major logic families currently available. At the highest speed scenarios of data

rates of 622. 08 Mbps, it implies that 38. 880 million sixteen-bit words will need to be processed by every

Analysis Module which, in turn, implies a maximum clock rate of 38. 880 MHz for the Analysis Modules.

14

IV. C Analysis Module Desitpt

The Analysis Module will admit a new cell into a 16-bit shift register, word by word from the receiver. In

parallel, as components of the VPI/VCI pair belonging to the cell in transit are received from the Receiver

(contained in the cell header, consisting of the first five bytes of data) they will also be copied into six 4-bit

latches. This transfer will occur in a stepwise fashion over the course of morc than one clock cycle since

different portions of the ATM cell header become visible at the Receiver*s outputs on ditfi:rent 16-bit words.

Multiplexers will be used to select which words of the header will be loaded into these latches based on

whether the arriving cell entered the Analysis Module with its first byte in the low or the high order eight bits

of the register input from the receiver.

Once all 24 bits ol' the VPI/VCI pair associated with the cell in transit have been captured in these 4-bit

latches, the twenty four bits of output from them will be presented to the memory lookup module in two 12-bit

words, with one word being presented at a time. The control to present these two 12-bit words will be

performed by a 12-bit by 4-input multiplexer

The two words that are presented to the memory lookup module will be interpreted by this module as an

address which it uses to perform the actual analysis of the cell's validity. Depending on the version of the

Analysis Module to be implemented, this function will change. Primarily, the memory lookup module will

verify if the cell belongs to a connecuon that does indeed pass through the switch and pon &om which it

originated. Optionally, the module will also verify if the network connection along which the cell in question

is traveling has not exceeded the limits of tra%c volume allowed for that connection.

This result will be used by the sequence / detect module to determine if the cell is valid or noh If the cell is

valid, it will enable the output from the last set of latches in the 16-bit shiit register to be sent out to the

transmitter. If the cell is not valid, the sequence / detect module will suppress output of the cell from the shift

register to the transmitter by simply presenting null data (all zero bits) to the input stage of the Receiver. In

this case, the sequence / detect module will also will trigger interrupt logic in the Control Module. The

Control Module will then know that an invalid cell has been detected and will perform the necessary

operations to read the VPI/VCI pair of the offending cell from the outputs of the six 4-bit latches which have

been storing this informafion throughout the entire process.

All of the devices used in this circuit are currently feasible in TTL and HC logic families. In addition, a

number of tri-state buifers are implicitly being used in this design to allov the Control Module to select

between the data inputs and outputs of the difierent Analysis Modules to which it is attached. The

interconnection of the functional blocks of the Analysis Module is shown in figure 4.

15

The sequence / detect module which will be a simple sequential state machine with external decode logic will

control all of the inputs and outputs required to perform the functions just described. This state machine witt

be designed using the same type of edge triggered D-type latches and combinational logic used to construct

the other component blocks of the Analysis Module.

The reasoning behind the design of the Analysis Modules was to be able to take advantage of the large

number of operations which can be performed in parallel in order to reduce the number of clock cycles

necessary for the device to perform its function.

Thc effect on the performance of the physical communication link passing thmugh this device will be that

any cell in transit will be delayed by the amount of time necessary to read in the cell's header and perform the

lookup of the VPI/VCI pair contained in these five bytes in the memory lookup module. This means that the

controlling factor of the transmission delay a cell will experience in every security device through which it

passes will be the sum of these two periods of time.

R
E
C
E
I

E
R

N

P
U

T

new celt high

new cell low

ging:'

'P&;

contro

nQW Call low

c t l

'1

'

L

C ODULE

Fig. 4. Analysis Module block diagram

fCD

fG)

10

15

20

'CD

25

CD
9)

35

40

50

!

clock
cycle

data seen data sent to
from Receiver Transmitter

memory module

operation

Fig, 5. Sequence of operations under full data load of the Analysis Module

The final issue is that the Control Module*s interrupt logic will be triggered within less than one cell transmit

time if the transiting cell is found to be invalid (nine clock cycles, to be precise). This means that the Control

Module will know about thc violation in less than one cell time and can begin sending data about the

17

violation to its supervisory control interface within less than one cell time. The timing diagram for cell

arrivals and departures from the Analysis Module is shown in figure 5.

The exact sequence of events within the Analysis Module will be:

1. Bytes I and 2 of cell one are presented on the inputs from the Receiver. These bytes are pushed into the

shiA register. The sequence / detect module is informed that a new cell has arrived through the assertion

of the New Cell Low control line from the Receiver. The low order 4 bits ofbyte I and all 8 bits of byte 2

are presented and latched into the three high-order 4-bit latches.

2. Bytes 3 and 4 of cell one are presented and pushed into the shiA. register. All 8 bits of byte 3 and the high

order four bits of byte 4 are presented and latched into the three low-order 4-bit latches.

3. Bytes 5 and 6 of cell one are presented and pushed into the shift register. The data in the three high order

4-bit latches is presented to the memory lookup module through the multiplexer.

4. Bytes 7 and 8 of cell one are presented and pushed into the shift register. The row address select is

asserted on the memory lookup module.

5. Bytes 9 and 10 of cell one are presented and pushed into the shift register. The data in the three low order

4-bit latches is presented to the memory lookup module tltrough the multiplexer,

6. Bytes I I and 12 of cell one are presented and pushed into the shift register. The column address select is

asserted on the memory lookup module.

7. Bytes 13 and 14 of cell one are presented and pushed into the shift register. The result concerning the

validity of the cell will be read from the memory lookup module. If this result shows that ihe cell is

invalid, the interrupt logic of the Control Module is triggered. Starting at this point, the Control Module

may read the VPI/VCI pair stored in the six 4-bit latches in order to transmit this data about the traflic

violation to the supervisory interface. The Control Module must complete the reading of this data within

the next 20 clock cycles.

8. Bytes 15 and 16 of cell one are presented and pushed into the shifl register. The sequence / detect module

finishes the read cycle in the memory lookup module by deasserling the row address select line.

9. Bytes 17 and 18 of cell one are presented and pushed into the shift register. If the cell currently being

received was found to be valid and the New Cell Low control input is asserted (meaning we are still

receiving a cell with a starting b14e on the low order bits of the Receiver input), the sequence / detect

module sets the control on the low-order eight bits of the data gate to the Transmitter to reflect the inputs

from the shift-register for the next 26 cycles. In this case, the sequence / detect module also sets ihc

control on the high-order eight bits of the data gate to the Transmitter to reflect the inputs fmm the shifl-

register for the next 27 cycles. The sequence / detect inodule asserts the New Cell Low line to the

Transmitter and bytes I and 2 of cell one are presented at the inputs of the Transmitter. If the cell

currently being received was found to be valid and the New Cell High control input is asserted (meaning

18

we are receiving a cell with a starting byte on the high order bits of the Receiver input), the sequence /

detect module sets the control on both the low-order and highwrdcr eight bits of the data gate to the

Transmitter to reflect the inputs from the shift-register for the next 27 cycles. The sequence / detect

module asserts the New Cell High line to the Transmitter and byte 53 of cell one along with byte I of cell

two are presented at the inputs of the Transmitter.

lb. Bytes 19 and 20 of cell one are presented and pushed into the shifl register. Either bytes 3 and 4 of cell

one or bytes 2 and 3 of cell two are presented at the input of the Transmiuer.

I l. Bytes 21 and 22 of cell one are presented and pushed into the shift register. The sequence / detect module

initiates a refresh cycle in the memory lookup module by asserting the row address select line. Either

bytes 5 and 6 of cell one or bytes 4 and 5 of cell two are presented at the input of the Transmitter.

12. Bytes 23 and 24 of cell one are presented and pushed into the shiA. register. Either bytes 5 and 6 of cell

one or bytes 4 and 5 of cell two are presented at the input of the Transmitter.

13. Bytes 25 and 26 of cell one are presented and pushed into the shift register. Either bytes 7 and 8 of ceII

one or bytes 6 and 7 of cell two arc presented at the input of the Transmitter.

14. Bytes 27 and 28 of cell one are presented and pushed into the shift register. The sequence / detect module

continues the refresh cycle of the memory lookup module by deasserting the row address select line.

Either bytes 9 and 10 of cell one or bytes 8 and 9 of cell two are presented at the input of the Transmitter.

15. Bytes 29 and 30 of cell one are presented and pushed into the shift register. Either bytes 11 and 12 of cell

one or bytes 10 and 11 of cell two are presented at the input of the Transmitter.

16. Bytes 31 and 32 of cell one are presented and pushed into the shiA register. Either bytes 13 and 14 of cell

one or bytes 12 and 13 of cell two are presented at the input of the Transmitter.

17. Bytes 33 and 34 of cell one are presented and pushed into the shiA register. The sequence / detect module

continues the refresh cycle of the memory lookup module by asserting the row address select line. Either

bytes 15 and 16 of cell one or bytes 14 and 15 of cell two are presented at the input of the Transmitter.

18. Bytes 35 and 36 of cell one are presented and pushed into the shift register. The sequence / detect module

finishes the refresh cycle of the memory lookup module by deasserting both the row address select line

and the column address select line. Either bytes 17 and 18 of cell one or bytes 16 and 17 of cell two are

presented at the input of the Transmitter.

19. Bytes 37 and 38 of cell one are presented and pushed into the shift register. If the Control Module needed

to add or remove a valid path to or from the memory lookup module, it should have loaded a 24-bit latch

with the appropriate VPI/VCI pair to bc updated, an n-bit latch with the appropriate data about the path

(the "n" bits depend on the design version chosen) and an SR-latch to indicate that path data needs to be

updated by this point. If this SR-latch has been set, then the sequence / detect module begins a write cycle

on the memory lookup module by setting the 12-bit line selector to reflect the high-order twelve bits of

the 24-bit latch to the memory lookup module. Either bytes 19 and 20 of cell one or bytes 18 and 19 of

cell two are presented at the input of the Transmitter.

19

20. Bytes 39 and 40 of cell one are presented and pushed into the shiA register. If the SR-latch has been set,

the sequence / detect module continues the write cycle by asserting the row address select line of the

memory lookup module. Either bytes 21 and 22 of cell one or bytes 20 and 21 of cell two are presented at

thc input of the Transmitter.

21. Bytes 41 and 42 of cell one are presented and pushed into the shifl register. If the SR-latch has been set,

the sequence / detect module continues the write cycle on the memory lookup module by setting the 12-

bit line selector to reflect the low-order twelve bits of the 24-bit latch. Either bytes 23 and 24 of cell one

or bytes 22 and 23 of cefl two are presented at the input of the Transmitter.

22. Bytes 43 and 44 of cell one are presented and pushed into the shift register. If the SR-latch has been set,

the sequence / detect module continues the write cycle by asserting the column address select line of the

memory lookup module. Either bytes 25 and 26 of cell one or bytes 24 and 25 of cell two are presented at

the input of the Transmitter.

23. Bytes 45 and 46 of cefl one are presented aud pushed into the shiA register. If the SR-latch has been set,

both the column and row address select lines on the memory lookup module are deasserted. Either blues

27 and 28 of cell one or bytes 26 and 27 of cell two are presented at the input of the Transmitter.

24. Bytes 47 and 48 of cell one are presented and pushed into the shift register. Either bytes 29 and 30 of cell

one or bytes 28 and 29 of cell two are presented at the input of the Transmitter.

25. Bytes 49 and 50 of cell one are presented and pushed into the shifl register. Either bytes 31 and 32 of cell

one or bytes 30 and 31 of cell two are presented at the input of the Transmitter.

26. Bytes 51 and 52 of cell one are presented and pushed into the shifl register. Either bytes 33 and 34 of cell

one or bytes 32 and 33 of cell two are presented at the input of the Transmitter.

27. Byte 53 of cell one and byte I of cell two are presented and pushed into the shifl register. Thc New Cell

Low control input from the Receiver is deasserted and the New Cell High control input is asserted to

inform the sequence / detect module that a new cell has arrived. The low-order 4 bits of byte I from cell

two are presented and latched into the highest-order 4-bit latch. Either bytes 35 and 36 of cell one or

bytes 34 and 35 of cell two are presented at the input of the Transmitter.

28. Bytes 2 and 3 of cell two are presented and pushed into the shift register. All bits from bytes 2 and 3 are

presented and latched into the four 4-bit latches next to the highest-order 4-bit latch. Either bytes 37 and

38 of cell one or bytes 36 and 37 of ceB two are presented at the input of the Transmitter,

29. Bytes 4 and 5 of cell two are presented and pushed into the shifl register. The high-order 4 bits of byte 4

are presented and latched into the lowest order 4-bit latch. The data in the three high order 4-bit latches

is presented to thc memory lookup module through the multiplexer. Either bytes 39 and 40 of cell one or

bytes 38 and 39 of cell two are presented at the input of the Transmitter.

30. Operation continues at step 4 with data continuing to be pumped out of the last stage of the shiA register

and into the Transmitter on every cycle and the remainder of cell two being pushed into the first stage of

the shifl register, two bytes at a time, on every cycle.

20

IV. C. I Basic Building Blocks of the Analysis Module Design

The Analysis Module's design was conceived for gate-level implementation. Therefore, the atomic elements

considered were NAND and NOR gates since they are the simplest building blocks for all the logic families

currently in widespread digital semiconductor production. Due to the many different Boolean functions that

needed to be implemented in order to make the design feasible, many versions of these gates were used, from

the simplest two input gates up to six and seven input gates. The circuit symbol designations for the smaflest

of these basic gates are shown in figure 6.

2-input NAND gate 3-input NAND gate

2-input NOR gate 3-input NOR gate

Fig. 6. Some of the atomic circuit units used in the design of the Analysts Module

Beginning with these basic units the flrst level of integration involved the construction of elementary latches

and flip-flops. The nature of this design relies on two components for difl'erent elements of its operation.

First, it relies, to a great extent, on positive edge-triggered latches for counters, state machines, storage

elements and shift registers. Next, the design requires some SR type flip-flops for status tracking. Both of

these devices were implemented and used as basic building blocks throughout the design. The circuit schemes

for these devices are shown in figure 7 and figure 8.

21

RESET

Fig. 7 SR-latch used in the design of the Analysis Module

CLOCK

I

p&~

DATA

Fig. 8. Positive edge-triggered D-type flip-flops used in the design of the Analysis Module

IV. C. 2 Shift Register Design

The Analysis Module relies on a shtfl register in order to temporarily store a portion of a cell that is received

during the time required by the Analysis Module to determine if that cell can bc further transmitted to the

Transmitter block. In order for the Analysis Module to complete this task, 9 clock cycles are required.

Therefore, this shiA register must be able to delay incoming data by this same number of clock cycles. In

addition, since data is presented from the Receiver in 16-bit words, the shift register must be able to capture

all of this data on every clock cycle.

22

INPUT FROM RECEIVER

bank of 16 positive edge-triggered D-type latches in parallel

bank of 16 positive edge-triggered D-type latches in parallel

bank of 16 positive edge-triggered D-type latches in parallel

bank of 16 positive edge-triggered D-type latches in parallel

bank of 16 positive edge-triggered D-type latches in parallel

bank of 16 positive edge-triggered D-type latches in parallel

bank of 16 positive edge-triggered D-type latches in parallel

bank of 16 positive edge-triggered D-type latches in parallel

bank of 16 positive edge-triggered D-type latches in parallel

OUTPUT TO DATA GATE

Fig. 9. Shift register used in the design of the Analysis Module

23

The shift register is built using positive edge-triggered D-type latches in 9 banks of 16 latches apiece. Each

bank of 16 latches is linked in series to the next so that the output of a latch at position "n** will be captured

and reflected at output "n+I*' on the rising clock edge of the next clock cycle. The block diagram for this

device is shown in figure 9.

IV. C. 3 Multiplexer and Data Gate Design

The Analysis Module uses multiplexers in order to present dltferent data to certain modules at the appropriate

times. At its simplest, the multiplexer requires **n'* inputs and "Iogr n" control hnes. Based on the state of the

control lines, one of the inputs will be reflected at the output. A two-line multiplexer presents one of two

inputs at its output, depending on the state of one control line. A four-line multiplexer presents one of four

inputs at its output, depending on the state of two control lines. The Analysis Module relies on two-line and

four-line multiplexers to parse the VPI/VCI pair from a newly arriving cell's header and to load this data into

the memory lookup module. To implement these two forms of multiplexers, their output is expressed as a

minimized Boolean expression. The Boolean expressions to implement these two devices are shown in

figurc 10.

Output = Input-I~Control' + Input-2+Control two-line multiplexer

Output = Input-I~Control-I 'oControl-2' +
Input-2 ~Control-I'~Control-2 +
Input-3 ~Control-I+Control-2' +
Input-4~Control-I ~Control-2

E. four-line multiplexer

Fig. 10. Boolean expressions governing operation of multiplexers

The Analysis Module uses a data gate to control transmission of data from the shiA register to the

Transmitter. In its simplest form, the data gate requires an input and a control line. If the control line is

asserted, the data gate's output will reflect what is presented at the input, otherwise, a value of zero will be

presented, Once again, the output of this module can be expressed as a minimized Boolean expression. The

Boolean expression to implement this device is showu in figure 11.

24

Output = InputoControl

Fig. 11. Boolean expressions governing operation of data gate

Both the inultiplexers and data gates are expressed at the gate level as a series of NAND gates implementing

the Boolean expressions governing the operation of these two devices. The circuit schemes governing the

operation of the multiplexers and the data gate are shown in figure 12 and figure 13, respectively.

I rl put- 'I

Input-2

C I -II dt l t

Control

Input-I

Input 2

input-3
Output

four-line data selecto~r
2

Input-4

Control-1

Control-2

Fig, 12. Circuits governing opemtion of multiplexers

25

Contro

Fig. 13. Circuit governing operation of data gate

The design of the Analysis Module uses two types of multiplexers. The data latches used to store the VPI/VCl

pair of the incoming cell rely on a series of six 4-bit by 2-line multiplexers to present different portions of this

path information when new cells arrive with their first byte being presented on the low-order eight bits of the

Receiver input and on the high-order eight bits of this input.

The second type of multiplexers are required to load data into the memory lookup module. There are four

possible sources of data required by this module. Two of these sources are the high and low order bytes from

the latches that store the VPI/VCI pair of the transiting cell. The remaining two sources are the high and low

order bytes from the latches that store new path information that the Control Module requests to be loaded in

the Analysis Module. Therefore, a 12-bit by 4-line data multiplexer is implemented.

The block diagrams for the implementation of the four-bit by two line multiplexer and the twelve-bit by four-

line multiplexer are shown in figure 14 and figurc 15, respectively.

26

IN-1

IN-2

Input-1
Output

Input-2
Control

OUT

IN-2

Input-1
Output

Input-2
Control

OUT

CONTROL

IN-1

IN-2

Input-1
Output

Input-2
Control

OUT

IN-1

IN-2

Input-1
Output

Input-2
Control

OUT

Fig. 14. Four-bit by two-line multiplexer used in the design of the Analysis Module

27

0
f-

0 0 0

N

0

ffl

'5 a

D

0 0

a 0

0
N

0
C

a 0

0 0

0 0 0 0
f

a 0

a
0

N

ll 0
Pl

0 f

e
0 0 0 0 0

f

C 0 a 0

f

0
Pl

a 0

0 S
8
0 0

Pl

0 a 0 0 0

2 2 2
Pi '0
2 2

N Pl
2 2 2 Z 2

0 0 0 0

0.

0
N

0. a 0 0

e
0 0 0 0

f
'5

LL 0

0
N

C

0 D

'0 a a 0 0

a

ff
5

0

s e
D 0 0 0

lv 'f
'5

K CL 0

0
N

a
C

a 0

0 S
8 0
0

0. 0

2 2
Pl 0

2 2 2 2
N
2 2 2 2

f Pl f
2 2 2

0 0

a

N
5
CL C

Pl

a 0

0
0

0

0 0

C
D. 0

a
0

a

a
0

a 0 0- 0

0

0 0 0 0

f
C

LL

0
a

0 j'5

C 0 0 0 0

f
2 2 2

N
2

ff
2 N

Z Z

0
f Z

2

Fig. 15. Twelve-bit by four-line multiplexer used in the design of the Analysis Module

28

IV. C. 4 Memory Lookup Module Design

The primary purpose of the Analysis Module is to verify if network trafFic passing through it docs not violate

any path or, in the alternative implementation, path and volume restrictions. These two possible

implementations are referred to as the "path-only" implementation and the "path and volume"

implementation.

The key to performing the path validation of a transiting cell is to perform a lookup of its VPI/VCI pair in a

table that associates a data field of one bit with each possible VPI/VCI pair. This table is implemented in a

semiconductor memory external to the Analysis Module with an address bus that has the same width as a

VPI/VCI pair and a data bus width of one bit. The ATM Forum's specification for the User Network Interface

(version 3. 0) requires that twenty-four bits be allocated for VPI/VCI information in the header of every cell,

Therefore, this external memory must have a data bus width of twenty-four bits. Such a memory will have a

total capacity of 16 megabits. The speed of the memory will dictate how many clock cycles the Analysis

Module must wait before being able to determine if the transiting cell may be forwarded to the Transmitter.

With the current state of senuconductor technology, memories of the necessary density and speed have been

implemented as monolithic integrated circuits. Once such product is the SMJ416100 d&uamic random access

memory (DRAM) from Texas Instruments. It oR'ers an address bus width of twenty-four bits and a data bus

width of one bit. After the necessary data has been presented on its address bus, the data for that address will

become available within a maximum of 18 nanoseconds (for the SMJ416 100-70 package). Since the Analysis

Module clock is assumed to be operating at 38. 88 MHz (thereby implying a clock period of 25. 72

nanoseconds), we can guarantee that the data regarding whether or not a cell is valid will be available within

one clock cycle afier the VPI/VCI information has boen presented.

Dynamic RAMs such as the SMJ416100 require that some maintenance be periodically performed in order to

guarantee that the data stored within them will not become volatile. This maintenance consists of performing

a series of refresh cycles within a specified period of time. For the SMJ416100 specifically, 4096 refresh

cycles must be performed within every 35 millisecond time period in order to ensure that no data stored

within the device will be altered inadvertently. This maintenance requirement can be resolved by combining

the memory read operation required by the VPI/VCI pair lookup with one refresh cycle. Therefore, whenever

a cell arrives and its path information has been parsed out of the header and presented to the memory, a read

operation and a refresh operation can be performed in sequence. This operation is called a Hidden-Refresh-

Read-Cycle in the literature of the SMJ416100.

29

The network data rate that the Analysis Module is required to support is 622. 08 Mbits per second arriving in

cells of 53 bytes apiece and with each byte consisting of 8 bits. This means that, under peak traffic conditions,

1. 467 million cells will arrive per second. Since we are performing one read with refresh operation on every

cell arrival, this implies that we will be performing the same number of refresh operations per second as there

are cells that anive. From this, it is possible to conclude that 46949 refresh operations will be performed

every 35 milhseconds under peak traffic conditions, which well exceed the minimum number of 4096

established for this device.

lt is fairly evident that the number of refresh cycles that will be performed on the memory well exceeds the

required minimum (by a factor of ten). However, reducing the number of refresh cycles performed to less than

one for every cell anival significantly complicates the design of the state machine inside of the memory

lookup module, thereby, increasing the component count required for its implementation. Due to the fact that

nothing in the literature about tlus device states or implies that performing such a large number of refresh

cycles on it will lead to an increased chance of device failure before the expected end of its functional life, it

was not seen as necessary to incorporate this reduction in refresh cycles within this design.

On every cell arrival, it is necessary to perform two operations. The first of these is the Hidden-Refresh-Read

Cycle to verify the cell's validity and to perform the necessary maintenance on the memory. The second

operation that must be performed is a Write Cycle to update valid path information that the Control Module

has requested to be entered into the Analysis Module's local information. Each of these operations are

initiated and carried out by following a sequence of events on the address bus (control lines AO through Al 1)

and data bus (control line D) of the memory and on the RAS' and CAS' control lines.

30

TABLE I
Timing characteristics as they appear in pmduct data for the Texas Instruments SMI416100-70 Dynamic

RAM (DRAM)

tRC

tRAS

tc su

tRS

tRCD

tRSH

tr
tCAS

tRAO

tca

tASC

tASR

tRAS

tcAR

tRCS

tcAR

tssu
tcArr

tCAC

IAA

terr
tRAC

tcs
tcwr.

tRWC

tvr
trra

twsur

twsr

cycle time, random read or write

pulse duration, RAS' low

delay time, RAS' low to CAS' going high

pulse duration, RAS' high

delay time, CAS' high to RAS' going low

delay time, RAS' low to CAS' low

delay time, CAS' low to RAS' going high
transition time

pulse duration, CAS' low

delay time, RAS' low to column address

pulse duration, CAS' high

setup time, colunm address before CAS' going low

setup time, row address before RAS' going low

delay time, column address to RAS' going high
hold time, row address after RAS' low

delay time, column address to CAS' going high

setup time, W' high before CAS' going low

hold time, column address atter CAS' lrnv

hold time, W' high atter RAS' high
hold time, column address after CAS' low

access time from CAS' low

access time from column address

output disable time after CAS' high
access time from RAS * low

setup time, data

setup time, W' low before CAS' going high

setup time, W' low before RAS' going high

pulse duration, W' low
hold time, data

delay time, RAS' low to CAS' going high

hold time, W' high after RAS' low

sctu time, W hi hbeforeRAS' oin low

130 ns
70 ns

70 ns

50 ns

5 ns

20 ns

18 ns
3 llS

18 ns
15 ns

10 ns

0 ns

0 ns

35 ns

10 ns
35 ns

0 ns

15 ns
0 ns

15 ns

0 ns

0 ns
18 ns

18 ns

10 ns
15 ns
10 ns

10 ns

10 ns

10, 000 ns

52 ns

30 ns

10, 000 ns
35 ns

18 ns

35 ns
18 ns

70 ns

The descriptions of the timing diagram designations for these dynamic RAMs, along with their minimum and

maximum values, may be found in table I. Also, the refresh operation requirements are shown in figure 16.

1677721('P BIT
DYNAMIC RANDOM-ACCESS MEMORY

80»%»fE — »CIIEMSES I sea - SEua Eo Nnftfxt lme

~ Organization. . . 16777216 x 1 Bit
~ Single 8-V Power Supply (10% Tolemnce)
~ Performance Rsagsst

Accnss AccE$8 AccEss SEAC
TSSE llNE TINE on WNTE

ISAC IOAC IAA CYCLE

SSAIO tuaxt Otaxi SSN)
'418100-70 70 ns 18 r» 35 ns 130 ne

'4ISI0080 sons 20 no 40ns 150 no

'41SIOO-10 turns 25 ns 45 no 180 ne

~ Enhanced Page-Mode Operation for Faster
Memory Access

~ CAS-Before-RAS (CBR) Refresh
~ Long Refresh Psriodl

40INFCyclo Refresh ln 32 ms
~ 3-Stats Unletched Output

~ Low Power Olsslparion
~ Ag Inputs, Outputs snd Ckfcks Are

TTL Compatible
~ Operating Free-Air Temperature Range

— 58'C to 125'C

description

The SMJ416100 series is a Set of high-speed
16777216-bit dynamic random-access
memories (DRAMS), organized as 167T7216
wards of one bit each. The series empioyS
enhanced performance implanted CMOS
(EPIC») technology for high pwforrnance,
reliability, and law Power. These dsykws feature
maximum %E aocess timeS Of 70 ns, 80 ns, and
100 ns.

AN Inputs, outpost, SIKI clocks sfe colTlpaitrie wlNI

Series 54 TTL. AN adfkesses and data-in lines are
latched anezlip to simplify system design. Dala
aut is unlatched to allow greater system flexNINNy.

The SMJ4161 00 is offered in 5 450-mil
24/28-terminal surface-mount smay-ouNine
leadless chip camer (FNC Suriix) and a 450-mil
28-terminal flalpack (HKB suffix). The packages
are characterized for operation fmm -55 C to
125'C.

Vcc
0

NC
W

RAS
A f 1

NC

NC

AI 0
AO

Al

A2

A3

Vcc

PNC PACKAGE
llOP VIEW)

Vcc
0

NC

W

RAS
Alt

I 28
2 27

28
4 25
5 24

S 23

Vaa
ct
NC

CAS
NC

As

Al 0
Aa
At
A2

Az

Vcc

)9 20

10 10
18

12 17
13 tsl
14 15

As
A7
As
A5
A4

Vss

NKS PACKAGE
(TOP VIEW)

1

2
3
4
5
8

7
8
5
10
11

12
13
14

28

28

24
23
22
2t
20
10
18
17
18
15

Pm NQWNCIATUSE

AO-All
CAS
0
NC
0
RAs
W
Vcc
VSS

Address Inpuh
Colunmufddlem strobe
Oats In

No Inlomal Connscson
Oats Cul
nov-Address Wrobs
WIXs Enabl ~
S-V Suade
Gfotmd

Vas
0
NC
~g
NC

Ae
NC
NC
AS
A7
AS
A5
A4

Vaa

Please be snare thol an Important noses oneemlns suansb50y, ~ landerd varranty, and ues In crlllcal sppl»sXons of
8 8 Texas Insbuments semkondudor psdude snd sedate»» thereto appears at tha erd d Ins dda sheet

EPIC le a bsdemerh of 1'exes Instrument ~ In

mneeonm Isla Smm ~ ~ e nemm fm.
mal»melon»»admi elv vx

1NSIUMEPgrS

Ccpfdom e lese, Tmm lneuunlolm llccl»»net

Fig. 16. Product characteristics information as it appears in product data document for the Texas Instruments
SM)416100 Dynamic RAM (DRAM)

32

16777216-BIT
DYNAMIC RANDOM-ACCESS MEMORY
sGMsIHIE — HovEMEER I sss — REvlsEC MARcH I ms

PARAMETER MEASUREMENT INFORMATION

Ie — Reeese Cyde — RI

I

I

I

I

IARR I I

I

I

I I

I I

I I

I I

I I

I I

I I

I I

IRAR + ldi

Ie — Nsmory eyel ~ — RI Ia — Rseeea cteas ~
I

I I

I

I I
I ICHR

I
I

AS-AII

IRRH ~ I

IRce
I la — IIIRR

I

I
~ REIRP

I I ~ I ~Iwmp

I
~ — Iemn

Ie-~c

Figure 11. Hidden-RefreehCycle (Reed) Timing

Fig. 17. Hidden-Refresh-Read Cycle timing diagram as it appears in product data document for the Texas
Instruments SMJ416100 Dynamic RAM (DRAM)

33

't6TI721 6-BIT
DYNAMIC RANDOM-ACCESS MEMORY

SDVStSVSE — HOVE MSEA 1 SEE — SEVRES MARCH 1 %El

PARAMETER MEASUREMENT INFORMATION

AS-Atl

ie—
I

Ie — taco ~ Iet — teae ~
I

I

tASR

+ tRAO

P4 — taws Ie

oss t ears

Ie — tvve ~ I

Flaum 4. Write-Crete Timing

0 1hxAs
JFISIUMEFTTS

Fig. 18. Write Cycle timing diagram as it appears in product data document for the Texas Instruments
SMJ416100 Dynamic RAM (DRAMI

34

The timing diagrams for the Hidden-Refresh-Read and Write operations on these dynamic RAMs are shown

in figurc 17 and figure 18, respectively.

In order to perform a Hidden-Refresh-Read Cycle, the following must occur in sequence (assuming that,

initially, the memory's RAS', CAS' and W' control lines are unasserted):

1. The high-order twelve bits of the address are presented on the address bus (read).

2. The RAS' control line is asserted by being driven low and the data on the address bus continues to be

held there for 10 nanoseconds more (read).

3. The low-order twelve bit of the address are presented on the address bus (read).

4, The CAS' control line is asserted by being driven low and the data on the address bus continues to be

held there for 15 nanoseconds more (read).

5. Wait for 3 nanoseconds to ensure that, at least, 18 nanoseconds have elapsed since the CAS' line was

asserted and read or latch the data at the address from the Q output (read).

6. Wait for 42 nanoseconds to ensure that, at least, 70 nanoseconds have elapsed since the RAS' line was

asserted and deassert the RAS' control line by driving it high (read).

7. Wait for 50 nanoseconds and reassert the RAS' control line by driving it low (refresh).

8. Wait for 70 nanoseconds and deassert the RAS' control line by driving it high (refresh).

9. Wait for 50 nanoseconds and reassert the RAS' control line by driving it low (refresh).

10. Wait for 10 nanoseconds and deassert both the RAS' and CAS' control lines by driving them both high

(refresh).

In order to perform a Write Cycle, the following must occur in sequence (assuming that, initially, the

memory's RAS', CAS' and W' control lines are unasserted):

1. The high-order twelve bits of the address are presented on the address bus.

2. The RAS' control line is asserted by being driven low and the data on the address bus continues to be

held there for 10 nanoseconds more.

3. The low-order twelve bits of the address are presented on the address bus and the data to be written to

that address is presented on the data bus.

4. The RAS' and W' control lines are asserted by driving them low and the data on the address bus

continues to be held for 10 nanoscconds more while the data on the data bus continues to be held lor 15

nanoseconds more.

5. Wait for 3 nanoseconds to ensure that, at least, 18 nanoseconds have elapsed since the CAS' line was

asserted and deassert both the RAS' and CAS' control lines.

35

With these details regarding the operation of the external dynamic RAM on which the memory lookup

module will rely having been presented, the design of this module for the '*pathwnly" version of the Analysis

Module will simply direct the control lines of this external memory (pins RAS', CAS' and W') into the

sequence detect module, the address bus (pins AO through Al 1) into the twelve-bit by I'our-line selector, the

data bus gin D) to the output of the "n-bit latch" and the data output (pin Q) to a latch within the sequence /

detect module. Also, in the "path-only" implementation the "n-bit latch" will only be required to capture one

bit of information since only this one bit is required to indicate whether or not the newly amving cell is valid.

The use of a dynamic RAM as a memory lookup module in the "path-only'* version of the Analysis Module

implementation is shown in figure 19.

x
p
0
UJ

UJ
cO ~

O
LLI

Z ~-—

Kl
I
—

~
IZI

c(t

0

AO

A1

A3

A4

A5

AB

A7

AB

A9

A10

A11

ff)

~ O
(D

EO
O

V) (0
C
(0
R Q X ~
I—

RAS

CAS

~ LU

00
Z p p
LU

0 I—
LU 0 ~ co LLI

p I—
~ LLI

CI

K z zo
o~
I—

Fig. 19. Memory lookup module used in the design of the "pathwnly" version of the Analysis Module

The design of the memory lookup module for the "path and volume" version of the analysis module requires a

significant amount of addifional circuitry in order to ensure that transiting cells will experience a delay of less

than one cell time. The "path and volume" version requires that we maintain two pieces of information

regarding each possible network connection through the security device. First, as in the "path-only"

implementation, it is necessary to determine whether or not a transiting cefi belongs to a connection which is

valid for the Analysis Module. Second, it is necessary to be able to store a short term history about every valid

connection passing through a given Analysis Module. This short term history is the number of cells which

have passed through the Analysis Module along a particular valid connection within a known window of

time. Therefore, this requirement stipulates that no more than a certain known number of cells will be

allowed to pass through the Analysis Module along a particular connection within that known window ot

time.

In order to implement this second requirement, a small storage unit must be used which will track the number

of cells that are allowed to pass through the Analysis Module along a particular connection. Every single time

that a cell belonging to that path passes through the module, the binary value stored within this storage unit

will be decremented to reflect the event.

However, a mechanism must also exist by which this number of allowable cells can be replenished.

Otherwise, the volume of tratflc along a particular connection could only be monitored for an infinitely long

window of time. Therefore, in addition to the ability to decrement the value in this storage unit, it is also

necessary to be able to periodically increment this value. This implies a storage device with two control lines,

If one control line is asserted, then, on the next clock cycle, the device must increment the value which it

stores and, if the other control line in asserted, then, on the next clock cycle, the device must decrement the

value which it stores.

This device can most easily be implemented as a simple counter with two sets of counting logic. If the

decrement control line is asserted, then the oount down logic is enabled on the next clock cycle. If the

increment control line is asserted, then the count up logic is enabled on the next clock cycle. If both or neither

the increment and decrement control lines are asserted, then the device will retain tts current value on the

next clock cycle.

According to the logic of its operation, this device will be able to alert the Analysis Module if a valid

transiting cell has exceeded its traffic volume restrictions when the value stored internally reaches zero.

However, as currently described, the device could conceivably also come to store an internal value of zero if,

on some particular clock cycle, the internal value is the maximum value that the device can store (all bits set

to one) and the increment control line is asserted. Likewise, a valid alarm due to a zero internal value may be

stopped if another cell transits through the Analysis Module while the alarm is triggered because the internal

state of the device would shift from all zero bits to all one bits, if the count down logic is operating properly.

In order to prevent these two events from occurting, we must restrict the count up and count down logic from

wrapping around to all zeroes or all ones when the extremes of the counting range have been reached.

37

This device will be called a "counter with control" for the purposes of this design and its block diagram is

shown in figure 20. The operational states of the device are shown in table II.

TABLE II
Operational states of the "counter with control" to be implemented in the "path and volume" version of the

memory lookup module

asserted

unasserted

unasserted

asserted

the replenishment time period has elapsed

a valid cefi is transiting through the device

if (current state w all ones)
current state + 1

else
current state

if (current state w all zero)
current state - I

else
current state

asserted asserted a valid cell is transiting through the device and

the replenishment time period has elapsed

current state

unasserted unasserted no event occurred current state

The entire design of the Analysis Module centers around being able to perform the individual steps of capture

and analysis of newly arriving cells within one cell time and synchronized to a clock whose period is equal to

the time that is required to receive two bytes from the external network. Because of this requirement, this

"counter with control** must be able to update its internal state within a bounded period of time. The reason

this bounded period of time is important is that we cannot stipulate that the internal state of this counter

consist of any certain fixed number ofbits. Therefore, the implementation of this device as a ripple counter or

any series of partial adders is ruled out due to the fact that the time required for complete state update from

one clock cycle to the next in these devices is linearly dependent on the number of bits which make up the

internal state of the device.

Additionally, it is necessary to determine if a valid cell has violated the volume restrictions for its connections

without delaying that cell more than one cell transmission time. It has already been shown that the "path-

only" version of the Analysis Module requires almost one complete cell time to perform its function leaving

only seven byte times short of a complete cell, which translates to only 3'A clock cycles. Since the "counter

with control" will be performing a function that is in addition to that of the "path-only" version, it must be

38

able to provide this result within less than this period of time. In order to keep within this time restriction for

state updates when the internal state of the counter is made up of an indeterminate number of bits, it is

necessary to employ logic to fully decode the current state of the device on every state transition.

Increment Control
(Lip to "n" latches)

Decrement Control

COUNT-UP
DECODE

LOGIC

EDGE
TRIGGERED

LATCH

EDGE
TRIGGERED

LATCH

DATA
SELECTOR

COUNT-
DOWN

DECODE
LOGIC

Z
u
C

INPUT-

EDGE
TR I G GER ED

LATCH

EDGE
TRIGGERED

LATCH

Fig. 20. "Counter with control*' for the memory lookup module used in the design of the "path and volume"

version of the Analysis Module

The logic necessary to implement the count-up and count-down logic blocks of the "counter with control"

depends only on the number of latches that determine the internal state of the counter and whether or not the

40

TABLE VI
Boolean expressions necessary to implement the decode logic for the five lowest-order terminal bits of a fully

decoded count-down counter with no roll-over

bi

bi
br

bg

(bo)(b,
bo+ 0»)(bi)
o+bi +br

(ho + bi + br + b,)(b,)

The design of the multiplexer will not be presented here as this mea has already been covered by other

sections of the Analysis Module design.

To build on the functionality provided by the "counter with control", it is necessary to provide a method by

which this counter may be incremented in order to continually replenish the bandwidth available to any valid

connection. However, it is necessary to do this in such a fashion that every connection be allowed to maintain

their own rate of replenishment and, in addition, to be able to update thc replenishment rate for any new

connection that is created. Therefore, the output of a simple fixed clock divisor will not be su15cient to drive

the "Increment Control" on the "counter with control". For a connection that is valid, it is necessary to allow

for this replenishment rate to be programmable.

This can be accomplished with a multiple-bit latch (called a register from this point on) and a simple counter

with reset control which counts up on every clock cycle. When the internal state of the counter with reset

control exactly matches the internal state of the register, an equality tester can be used to trigger an event.

This event wig reset the simple counter to an null internal state (all bits zero) and will also act as the

"Increment Control" for the "counter with control". Once this collection of register, simple counter with reset,

equality tester and '*counter with control" has been implemented, the entire system should work in tandem to

provide a unit that replenishes its allowable data at a rate which is programmable and sets of an alarm signal

whenever the tratfic rate (signaled by the "Decremcnt Control") has exceeded the rate allowed within the

programmable window (i. e. the *'counter with control" has reached an internal state consisting of all zero

bits). This module will be referred to as a "window control module".

The simple counter with reset used in the window control module must also be a fully decoded counter since

it too must change states in a fashion that is independent of the number of bits that make up its internal state.

However, since there is no requirement that this device not roll over from a smte of all one bits to all zero bits,

the decode logic necessary for each bit is greatly simpliified over that of the '*counter with control'*. Moreover,

41

there is no longer any difference in the logic required for terminal and non-terminal bits in the expressions

describing the next state decode logic.

input-1 bit-0

input-0 bit-0

input-1 bit-0

input-0 bit-0

input-1 bit-1

input-0 bit-1

input-1 bit-1

input-0 bit-1

input-1 bit-2

input-0 bit-2

input-1 bit-2

input-0 bit-2

Fig. 21. Circuitry for an example three-bit equality tester for the memory lookup module used in the design of
the "path and volume" version of the Analysis Module

The Boolean expressions necessary to implement the decoding of all bits in the simple counter with reset

control is shown in table VII for the five lowest order bits (the Boolean expressions for additional higher

order bits may be generalized from these expressions).

42

TABLE VII
Boolean expressions necessary to implement the decode logic for the five lowest-order bits ot a simple

u -counter with reset control

bp

bi

b,

bp'

i' + Ibo')0»)

Ibo)0»)tbz') + Ibi')Ibz + ')
Ibo)tbz)tbz)tbz') + Ibz')Ibz) + 0»')Ibz) + Ibo')Ibz)

Ibc)tbi)tbz)tbz)tbz') + Ibz')Ibz + ')Ibi) + 0»')Ibi) + (bo')(ba)

The zero tester unit of the window control module must simply assert its result if and only if all bits of its

input are zeroes. This can very easily be accomplished with a multiple input NOR gate. Therefore, for an "n-

bit*' zero tester, all that is required is an n-input NOR gate.

The equality tester unit of the window control module must compare all of the bits of one input against all of

the bits of the other input and assert its result output if and only if all of these bits match. The comparison of

the individual bits would best be performed by an XNOR gate. However, due to the low level nature of this

design, the XNOR function will be implemented with component NAND gates. Once each of the

corresponding bits &om the two inputs have been tested with the XNOR function, the resulting equality may

be tested by applying the results of all the XNOR functions to a multiple input NAND gate. The circuitry for

this device is shown in figure 21.

The interconnection of all of these sub-units in the make up of one window control module for the "path and

volume" version of the Analysis Module is shown in tigure 22. Once the window control module's

functionality has been described, it becomes feasible to implement the "path and volume" version of thc

Analysis Module so that valid path enforcement and connection volume enforcement both oocur with the cell

in transit experiencing a delay of less than one cell time. The design will rely on the same dynamic RAMs on

which the "path-only'* version relied. However, more than one memory will now be used to provide more

detailed information about the path along which an arriving cell is traveling.

Instead of simply using the DRAM to provide information about whether the connection to which the

transiting cell belongs exists, this memory will now be used to provide a mapping from a VPI/VCI pair to one

specific window control module within the Analysis Module that controls the volume information regarding

that cell. As before, the first steps will be to present the VPI/VCI pair of the transiting cell as an address to

the DRAM. However, the data provided by the memory will now be richer in content. If the data returned is

null, then the VPI/VCI pair for the transiting cell will be assumed to belong to an invalid connection, an alert

will be raised for this reason and the cell will be dropped. However, if the data presented by the memory for a

particular VPI/VCI pair is not null, then the transiting cell is passing along a connection that is valid for the

Analysis Module. This result data from the memory will be forwarded through a data gate to a demultiplexer

which will, in turn, assert the "valid cell arrived" control line on one unique window control module.

new volume data

input oad ata,

K-BIT REGISTER

output J
K-BIT COUNTER

out ut reset

input-1 input-2

valid cell arrived

k-bit by k-bit

equality tester

clock

result

decrement increment V

K-BIT COUNTER WITH CONTROL

out ut

input

K-BIT ZERO TESTER result voiume alarm

Fig. 22, Window control module for the memory lookup module used in the design oi' the "path and volume'*

version of the Analysis Module with "k" bits of control granularity

44

This use of DRAMs in the memory lookup module implies that more than one DRAM unit will be required.

The total number of these memories that are required is a function of the total number of window control

modules available within the Analysis Module. As an example, if the Analysis Module is equipped with

sixteen window control modules, then four bits will be required to uniquely select one of these modules

which, in turn, implies that four Texas Instruments SMJ416100 devices would be required in order to provide

the necessary four bits of data. These four bits of data would then be passed to a four-to-sixteen demultiplexer

which will, in turn, assert the "valid cell arrived'* signal on one unique control module. The block diagram for

a four-window control module "path and volume" Analysis Module is shown in figure 23.

As a general result, for every "W" window control modules available in an Analysis Module, a total of

(logs W) DRAMs will be required, each with a density of 16 Mbits, along with a "(Iogt W) to W"

demultiplexer.

control from sequence I detect module

VPINCI information

traffic volume violation

p!$jgiffr:

Fig. 23. Block diagram for the "path and volume" version of the Analysis Module

IV. C. 5 Sequence / Detect Module Design

The sequence / detect module performs all of the necessary functions within the Analysis Module that guide it

through the various functions it has to perform when receiving new cells fmm the Receiver. The sequence /

detect module asserts and deassetts the control lines on the major logic blocks described in the top-level

layout of the Analysis module and it does this only at the appropriate times. To be more specific, it sets the

control lines to the dynamic memory or memories, the 4-bit multiplexers, the 4-bit data latches, thc 12-bit by

4-line multiplexer, the memory lookup module, the traific alert latch or latches and the New Cell High and

New Cell Low lines to the Transmitter and the data gate that controls cell output to the Transmitter.

The core of the sequence / detect module is a state machine that cycles through a total of 28 states in order to

perform all of the necessary operations on the control lines leading to the various blocks of logic. The actual

signals that must be controlled are shown in table VIII.

TABLE VIII
Signal names and descriptions of thc control lines set by the state machine internal to the sequence / detect

module

4BDS[1]
4BDS[2]
4BDS[3]
4BDS[4]
4BDS[5]
4BDS[6
4BDL[1]
4BDL[2]
4BDL[3]
4BDL[4]
4BDL[5]
4BDL[6]
12BDS[B]
12BDS[S]

Controls which of the two possible inputs are reflected at the outputs of the 4-bit
multiplexers. Each of the six bits control one multiplcxcr and each multiplexer is numbered ¹I to ¹6 with ¹ I being the highest order and ¹6 being the lowest order multiplexer. (Found
on both the "pathwnly" and the "path aud volume" implementations of the Analysis

Module.)

Controls the latching on the 4-bit latches that store the VPI/VCI information regarding a
transiting cell. These are positive edge-tnggered latches, therefore, latching occurs when

these signals transition from low to high. Each of the six bits control one 4-bit latch and
each latch is numbered ¹I to ¹6 with ¹I being the highest order and ¹6 being the lowest

order latch, (Found on both the "path-only" and the "path and volume" implementations of
the Anal sis Module.)
Controls which of the four possible inputs are reflected at the outputs of the 12-bit by 4-line

multiplexer. When the "B" signal is high, the high order twelve bits of the possible inputs

will be reflected at the output and when the "B" signal is low, the low order twelve bits of
the possible inputs will be reflect at the output. When the "S" signal is high, the VPI/VCI

pair information will be reflected at the output and when the "S" signal is low, the new

path information will be reflected at the output. (Found on both the "path-only" and the
" ath and volume'* im lementations of the Anal is Module.)
Controls the latching on the latch or latches (depending on thc implementation) which

store the result of the memory read on the memory lookup module. These are positive edge-

triggered latches, therefore, latching occurs when this signal transitions from low to high.
(Found on both the "path-only" and the "path and volume" implementations of thc
Analysis Module.)

46

TABLE VIII
(continued)

RSRL

LLODG26

LLODG27

LHODG27

RAS'

CAS'

SDDG

When asserted high, this signal will reset the SR-latch that indicates to the Control Module
whether the information about a new path tlmt was last loaded has been stored in the

memory lookup module. (Found on both the '*path-only" and the "path and volume**

im lementations of the Anal 's Module.)
When asserted high, this sigrml will load the counter that controls whether the data gate to
the transmitter will allow to pass the low order byte from the shiA register. When asserted,
this signal will load flmt counter with a value of 26, indicating that the data gate will allow

the next sequence of 26 bytes on the low-order byte output from the shift register to pass
through it and on to the Transmitter. Pound on both the "path-only" and the "path and
volume" im lementations of the Anal 's Module.)
When asserted high, this signal will load the counter that controls whether the data gate to
the transmitter will allow to pass the low order byte from the shiA register. When asserted,
this signal will load that counter with a value of 27, indicating that the data gate will allow

the next sequence of 27 bytes on the low-order byte output from the shift register to pass
through it and on to the Transmitter. (Found on both the "path-only" and the "path and
volume" im lementations of the Anal 's Module.)
When asserted high, this signal will load the counter that controls whether the data gate to
the transmitter will allow to pass the high order byte from the shiA register. When asserted,
this signal will load that counter with a value of 27, indicating that the data gate will allow

the next sequence of 27 bytes on the high-order byte output from the shift register to pass
through it and on to the Transmitter. (Found on both the "path-only" and the "path and
volume" im lementations of the Anal sis Module.)
This is the row address select control line to the external dynamic RAM that is found in the

memory lookup module. This line is used to latch address information when read and write

cycles are being performed on the memory. This signal is asserted low when these two

operations are being performed according to the data sheets describing these two

prtxxdures for the Texas Instruments SMJ416100 DRAM. (Found on both the "path-only"

and the " ath and volume" im lementations of the Anal sis Module.

This is thc column address select control line to the external dynamic RAM that is found in
the memory lookup module. This line is used to latch address information when read and

write cycles are being performed on the memory. This signal is asserted low when these

two operations are being performed according to the data sheets describing these two
procedures for the Texas Instruments SMJ416100 DRAM. (Found on both the "path-only"

and the" ath and volume" im lementations of the Anal is Module.)
This is the read I write control line to the external dynamic RAM that is found in the

memory lookup module. This line is used to indicate whether a write or a read operation is
being performed on the memory. This signal is asserted low when a write opemtion is in

progress and deasserted high when a read operation is in progress according to the data

sheets describing these two procedures for thc Texas Instruments SMJ416100 DRAM.
(Found on both the "path-only" and the "path and volume** implementations of the
Anal sis Module.)
Controls the latching on the latches which store the result of the window control module

activity performed after the memory read in the memory lookup module. These are positive
edge-triggered latches, therefore, latching occurs when this signal transitions from low to
high. (Found on both the "path-only" and the "path and volume" implementation of the
Anal sis Module.)
When asserted high, this signal instructs the data gate at the input to the demultiplexer in

the window control module to reflect the data on the data bus of the memories at its output.

When not asserted, the data te will reflect null values at its out uts (all zero bits).

47

The state machine guiding the operation of the sequence / detect module requires some external information

about the events of new cell arrivals. New cells can arrive at the Analysis Module with either the first byte

being presented on the low-order eight bits of the Receiver's output stage or with the first byte being

presented on the high-order eight bits of the Receiver's output stage. In order to be able to detenuine when

these events are occurring, the state machine uses, as external controls, the New Cell High and New Cell Low

signals which are generated by the Receiver. The meihod in which these signals behave is described in the

section devoted to the Receiver's design. The designations for these signals are shown in table IX.

TABLE IX
Signal names and descriptions of the external signals the state machine internal to the sequence / detect

module r uires

When asserted high, it indicates the arrival of a new cell from the Receiver with the first

byte of that cefi being presented on the high-order eight bits of the Receiver's output stage.

NCLIN When asserted high, it indicates the arrival of a new cell from the Receiver with the first

byte of that cell being presented on the high-order eight bits of the Receiver's output stage.

The exact states of each of the signals controlled by the state machine for each state in the state diagram are

shown in table X (don't care conditions appear as blank fields in the table). Internal values which have not

been assigned to any specific state are naturally assumed to produce a don't care condition for all signals. Thc

state diagram for the state machine guiding the actions of the sequence / detect module are shown in

figure 24.

48

- 1'3
Wait for cell to NCLIN low,

start on low byte I NCHIN low

NCLIN high,
NCHIN low

r State 14
Continue DRAM

ref'rash cycle

State 15
Continue DRAM

refresh oyde

State 2
Latch VPIFVCI

date

State 13
Continue DRAM

refresh cycle

State 16
Continue DRAM

refresh cycle

State 27
Latch VPINCI

data

State 3
Latch VPINCI

data

State 4
Start memory read

For VPINCI data

State 12
Continue DRAM

refresh cycle

State 11
Continue DRAM

refresh cycle

State 17
Continue DRAM

F8fi'esh cycle

State 16
Finish DRAM
refresh cycle

0
Z
o
'Z
0 Z
2

State 26
Latch V PINCI

data

NCLIN low,
NCHIN high

State 25
Latch VPINCI

data

State 5
Memory read for

VPINCI data

State 6
Memory read for

VPI FVCI data

State 7
Latch result of memory read
(Start traffic volume check 4

"path and volume"
implementation)

!
State 10

Start DRAM
refresh cycle

State 9
If tetched result of

operation is QK then
start the rransmrher data

gate countem

State
(Latch trallo

volume result if

"path and volume"
implementation)

r
ata(e'1 9

If new path data is
available, start a

memory write

operation
RS-Latch

Set

State 20
If new path data is

available,
continue memory
wnte operation

Slate 21
If new path data is

'

available,
continue memory
write operstioii

etch
Reset r State 24

Wait for new cell
to start on high

byte

State 23
If new path data is

available, finish memory
wrac operation and clear

new path data

State 22
If new path data is

available,
continue memou
wnte operation

Fig 24. State diagram for the state machine internal to thc sequence / detect module within thc Analysis

Module

TABLE X
Signal states for every valid state in the state machine diagram for the sequence I detect module of the

Anal sts Module

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

00000
00001
00011 4W, J ll
00010
00110
00111
00101
00100
01100
01101
01111
01110
01010
01011
01001
01000
11000
11001
11011
11010
11110
lllll
11101
11100 TTTTTT
10100 771111
10101
10111

Aside from this central state machine and decode logic blocks guiding the actions of the control signals, there

are also some additional logic units that provide for support operation which allows the state machine to

continue on with other activities. One such unit is the logic that. controls the data gate which feeds a cell's

contents to the input stage of the Transmitter (and controls the state of the New Cell High and New Cell Low

lines to the Transmitter). The state machine only devotes one state to setting in motion the chain of events

which will present an entire cell to the Transmitter. Once the state machine has passed through this state, a

count-down with no roll-over counter takes over and continues holding the data gate in pass mode unlil all of

the b&res of the transiting cell have been passed on to the Transmitter.

50

Clock

New Cell High

New Cell Low

Next state
decode logic

for state
machine

Bank of 5
latches with

current state
of state
machine

4btt D. S. ¹1

4-bit D. S. ¹2

4-bit D. S ¹3

4-bit
multiplexer
control line

decode logic

4-bit
multiplexer
control line

decode logic

Presettable
dowll-

counter with

no roil-over

Presettable
down-

counter with

no roll-over

4-bit D. S. ¹4

4-ba D. S. ¹6

4-bit D. S. ¹6

4-bit
multiplexer
control line

decode logic

4-bit
multiplexer
control line

decode logic

o
n
8

5
S

'S
O

0
n
8

ta
Cl

12-bit
multiplexer l

control line
decode logic

RAS', CAS'

and W'

decode logic

latching
decode logic

L

Fig. 25. Logic blocks which trmke up the sequence / detect module of the Analysis Module

51

Other blocks of logic necessary for the correct functioning of the analysis modu)e are those that control the six

4-bit multiplexers which present the VPI/VCI information to the 4-bit latches. These additional blocks arc

shown in the block diagram of the sequence / detect module in figure 25.

TABLE XI
Next state decode logic for each bit of the state machine controlling the operation of the sequence / detect

module

bi

b&

bp

0»)0&z)0»') + (bp')0»)0»')0») + (bo')0&&')0&z)(b&) + 0&&')0&z')0&f)(bo) +
0»')0»')(b& ')(b, ')(New Cell Low) + (b4)(b&)(bz') + (bp)(b&')(bo) + (bp)(b&)(bo') +

(bp')(b&) 'i p ew Cell Hi h)

(bz)(bz)(bo) + 0&p')(b&)(bz)0&o) + 0&o)(b&)(bo) + (b4)(bz')0»')(bp) + (bo)0»')0»)(bo)(La«h Sm) +
0&i)0&o')

(bi')(b&')(bz) + 04')(bz)(b& ') + (bp')(bzg&o) + (b&')(b&)0&o') + 0&o)0&i)0&o') + (b4)(b&)(bz) +
3 (bt) o')(New Cell Hi h + p

'
i o Latch Reset +) i (bp

(bo')(b&) + (bp')(bz)(b& ')(bo') + (b4)(bz')(b&)(bo)(Latch Set) + 0»)(bz)(b&) + 0»)(bi)(bo') + (bi)(bi ')(bp)
+ (bz)(bz' (b&'

4 3 + (bi (bi)(bp) + (bp)(bz')(bp')(New Cell Hi h + (b,)(bz')(b, ')(b, ')

TABLE XII
Decode logic for the control lines which the sequence / detect module uses to operate sub-units of the Analysis

Module

PVRL
RSRL

LLODG26
LHODG27
LLODG27

RAS'
CAS'

VVRL
SDDG

4BDS 1. . . 6
4BDL [0]

4BDL [2/. . 3]
4BDL [4. . . 5]

4BDL [61
12BDS [8]
12BDS L

0&p')0»' (bz)0»')(bp)

(b,)0&,)(bz) i')(bp)

04')0») 0») 0» ') 0&p')(New Cell Low)

(b, ') &)(bz)(b&')(bp')(New Cell Hi h)
(bo') + &') + (bz') + 0»') + 0&o')

0&p')(b&')0&o') + (b&)(bi')(bo) + (bz')(bp) + 0&4W»') + 0&o)(bz)(b&')

(bi 0&2 + 3 0&1 0&o') + 0&4N&&)0&&)0&o' + (bp) i i' o) + (bo)0&&)0&z')0&&)

(bp')(b&')(bz)(bi ')(bo')(Memory Lookup Result)

z)

04')(b&')(bz')0&&') o + p)(b&') z)(b&') o')

0&p')(b&')(bz')0&i')(bo) + (bp)0»')0&z (b&')0&o)

(bo')(b&') z') i 0&o) + 0&i)(b&')(bz)(b&')(bo)

(bo')(b&')0&z' 0&i (bp (bp)(b&)(bz)0&l)(bo)

(bz')

52

TABLE XIII
Next state decode logic for each bit of the presettable down-counters with no roll-over in the sequence I detect

module

bo

bi

bz

bq

(b, '+ Setzz)(bz + bz + bz + b, + b0+ Setzz)(Setzs' + Setzz)
z' + bp+ Setzs+ Setzz (bz + b0 + Setzs+ Setzz) (b4+ bz+ bz+ bz + bp+ Setzs + Setzz)

(bz' + bz + b0) + bz' + bp' (bs + br + bz+ bz + bp) Setzs') Setzz'

(bz' + bz + bi + b0+ Setzs + Setzz) (bz + bz' + Setzs + Setzz)(bz + bi' + Setzs + Setzz)

(bz + b0' + Setzs + Setzz)(b4 + br + bz + b) + bo + Setzs + Setzz)

, + b, + b, + b0 + Setzs + Setzz 0)n + Setzs + Setzz

Afier minimization, table XI shows that the logic necessary to decode the next state of each of the bit inputs

to the down-counters, the state machine and the control lines to the other modules is considerable. Also, as is

shown in tables XII and XIII, the decode logic for the presettable down-counters and external control lines is

not trivial either.

IV. D Control Module Desi)Fr

The Control Module must do its work asynchronously from the Analysis Modules. It's job is to handle

communication with the supervisory interface and with the hardware in the Analysis Modules to which it is

attached. To the supervisor interface, the Control Module must report tratftc violations detected and read

from the Analysis Modules and get information about new valid data paths that have been created in the

network. When the Control Module receives data about a new valid path, it must be able to distinguish

through which Analysis Module the path passes and must update the valid path information within this

module. Implied in this responsibility is the job of maintaining the coherency of all the DRAMs in the

Analysis Modules, as well as getting the data from a given security module as quickly as possible once a

traffic violation has occurred.

A Motorola 68PM302 Integrated Multiprotocol Processor would be an ideal candidate in this design because

of its current availability at reasonable cost and its capability to provide a broad range of built-in features that

closely match the needs of this application. It provides sufficient VO to be able to perform all the necessary

read and write operations to and from the Analysis Module hardware. It offers the interrupt circuitry

necessary for the Analysis Module to alert the Control Module of a uaffrc violation. Finally, it provides a

high-speed serial interface which could be used in conjunction with a DSI compliant transceiver in order to

communicate with the Control Module's supervisory interface. Those transactions which are considered

necessary are:

53

~ Informing the security device by the supervisor hardware that a new VPI/VCI pair is valid on

one of the ports of the ATM switch which the device is monitoring.

~ Informing the supervisor hardware that a traiffc violation has oocurred, on which port it has

occurred and what the VPVVCI pair of the offending cell was.

The event which is considered crucial to the operation of the device will be assigned to the interrupl. logic of

the MC68PM302. This is the presence of a traffic &dolation on one of the data streams passing through an

Analysis Module. Since the timing requirements of the design are so stringent, it would bc recommended that

no interrupt be shared within these tasks because the time required to perform the additional job of

determining exactly which module triggered a particular interrupt is likely to make the processor unable to

capture the necessary information in a timely fashion (a timely fashion is defined as one that is performed

suificiently fast that data due to a traffic alarm in one of the Analysis Modules is lost) due to the entry of a

new cell into that Analysis Module. Therefore, since the MC68PM302 has 8 interrupt levels, this design

should be able to handle the security requirements of traffic originating from an ATM switch with up to 8

outputs (one interrupt per switch output).

While it is not the express purpose of this discussion to describe how the interconnection between the Control

Module and Analysis Module should be created, in order to show that it is feasible to have a Control Module

consisting of one MC68PM302 controlling up to eight Analysis Modules, one possible arrangement for the

assignment of the microcontmller's available exterrml I/O controls follows:

~ VO ports A and C are assigned to load VPI/VCI information into the latches that store data

about new connections within the Analysis Modules. This data will become the physical address

which will be updated in the dynamic RAM of the Analysis Modules in order to track the new

information about that data path,

~ VO port B, upper nibble is assigned to loading the state of a new path into the latches that store

data about new connecuons within the Analysis Modules (this, together with the VPI/VCI

information forms the complete data regarding a new path that needs to be set up).

~ VO port B, lower tubble is assigned to select the Analysis Modules whose data needs to be

updated. These signals are used to ensure that only one Analysis Module out of those to which

the Control Module is attached, will latch the data regarding a new connection which needs to

be created.

This interconnection is shown as a block diagram in figure 26. It should be noted that a good portion of the

reaction time and efficiency of this module relies on the manner in which the controlling sofiware within the

54

microcontroller behaves. It is possible to code this soffware in such a way that it reacts to tratftc violations

extremely quickly while information coming in from the supervisory interface regarding new connections that

must be created is allowed to wait a lengthy period of time. Alternatively, the reverse could be true, where

new path information is applied to the Analysis Modules very quickly, while traffic violations not always be

picked up or may wait for a period of time before being reported to the supervisory interface.

It is beyond the scope of this document to make statements regarding how thc soffware in this module should

bc coded. The exact mechanics and operating characteristics of the supervisory interface and the format in

which it transmits data are only outlined in broad strokes.

DS1
compliant

transmitter/
receiver

'c:

I/O Port B, Bit 4 to ~ DRAM data bit in

Analysis Modules

e
r0 g Z o
CI
(o B

MO68PM 302
Integrated

Multiprotocol
Processor

data
Us

artdress
Us

sufficient
DRAM to

store
control
code

[I/O Port B bits
select
logic

e
g. — "eB

iv 8 " co us= o
0

~interru t ~ P Analysis Module
clrcu~rry . ~ra ic vio ation a1eh ~logic

Fig. 26. A possible configuration for using a Motorola 68PM302 microcontroffer as a Control Module for
multiple Analysis Modules

55

For thc implementation of this Control Module with "path-only" Analysis Modules, the functions described

thus far do not require anything more involved than thc functionality necessary to receive commands along an

ISDN compliant serial communications link, decode it and write the new path information to the registers on

the appropriate Analysis Module. Since the only information regarding any virtual path that is required is

whether the path is valid or not, there is no prolonged processing involved in order to decide what.

information needs to be written to the Analysis Module. This means that the time required to begin allowing

cells to pass along a newly created valid connection is bounded by only those clock cycles in the 68PM302

necessary to decode the command from the serial link and write it to the Analysis Module.

However, in the case of the Control Module* s implementation with "path and volume" Analysis Modules, the

situation changes significantly. With the "path and volume" implementation, the data that the Control

Module must write to the Analysis Modules is no longer a simple statement describing thc validity of a

particular path. In this case, this data describes a mapping from the VPI/VCI pair of an arriving cell to one of

the "window control modules" on the target Analysis Module. This implies that the Control Module must

know, a priori, which "window control modules" on which Analysis Modules have already been assigned to

existing paths. When information arrives along the serial link regarding a new connection, the Control

Module must be able to determine which "window control module" in the target Analysis Module to map to

the new connection.

It becomes evident from this situation that, if the 68PM302's sofiware were to be allowed to handle the

mapping of a new path onto a particular "window control module" in the appropriate Analysis Module, then a

search algorithm must bc implemented in order to ensure that the new path is not being mapped onto a

"window control module" already assigned to another path. The table that would need to be searched would

contain the state of every "window control module" in a particular Analysis Module. Each element in this

table would indicate the assignment state of one lxtiticular "window contml module". Further, this search

space would be a linear function of the number of "window control modules" in each Analysis Module. In

order to have this search execute in constant time, the sofiware would be required to create a last-in, first-out

(LIFO) queue for every Analysis Module. It is assumed that the operations of pushing and pulling new values

onto and from these queues, respectively, would require constant computational time.

The length of each of these queues would be the number of "window control modules" on each Analysis

Module. Initially, the Control Module, would completely fill each queue with the indexes of all the "window

control modules'* on every Analysis Module (indicating that no valid paths exist in any Analysis Module).

Then, as new paths are created through command fiom the serial link, the 68PM302 would need to pull the

first index off the LIFO queue which pertains to the appropriate Analysis Module and write this value to the

Analysis Module, along with the VPI/VCI pair of the new connection. ln this way, the connection setup time

56

will be constant, since the critical operation of pulling the first value off a LIFO queue is assumed to be

accomplished in constant time.

When commands arrive along the serial link which invalidate existing paths, the actions necessary to

invalidate the path can no longer be accomplished in constant time according to this approach. In order to

invalidate an existing path, the Control Module must first determine to which "window control module", in

the appropriate Analysis Module, the path had originally been mapped. Using the design described thus far,

this would need to be accomplished through a series of tables which would have been updated at connection

setup time. The action of determining which "window control module" has been freed by the path just

invalidated would be accomplished by searching this table. Since there are no constraints being placed on the

order in which new connections are created and invalidated, then the most optimal search of this table could

only be accomplished in computational time that is a linear function of the size of each table, i. e. , the number

of "window control modules" implemented in each Analysis Module. Once the appropriate "window control

module" has been determined, then its index in the appropriate table would be updated and that index would

be pushed back onto the LIFO queue which pertains to the Analysis Module on which that "window control

module*' resides.

However, this linear search time does not imply that the time required to invalidate an existing connection is,

itself, linear and not constant. When a command arrives along the serial link to invalidate a path, the

command will contain the exact VPI/VCI pair which needs to be invalidated. This means that all of the

information necessary to invalidate that path in the appropriate Analysis Module is already available. The

6gpM302, would write to that Analysis Module indicating that the Vpl/VCI pair in question just maps to a

null value (this null value being zero, as described in the Analysis Module's design). Once this is

accomplished, then the previously mentioned table search could be performed without the danger that a cell

will transit through that Analysis Module along the neu ly invalidated connection.

Therefore, both new connection creation and invalidation may both be accomplished in constant time within

the Control Module's software for the "path and volume" implementation of the Analysis Module.

57

CHAPTER V

SIMULATION OF SECURITY DEVICE

As already stated, the determining factor in the design was the need to tmplement the device with circuits of a

proven stability and which are inexpensive, in terms of transistor count. Because of the high data rates

involved in the transmission of cells in ATM networks, it was necessary to use as much parallelization of

functions as possible in hardware in order to implement the design with these stable circuits and at realizable

clock speeds.

The objective of this design was to determine whether it is possible to assemble all of the necessary logic units

into one or a few monolithic ASICs which will comply with all of the specifications set forth in Chapter 3.

Therefore, the deciding factor in the technology chosen for this simulation was that technology which would

allow for an accurate determination of the necessary component count and also provide a rough estimate of its

operating characteristics for some known value of the signal delay intrinsic in each gate in the circuit. A

secondary issue involved was the simulation cost in terms of simulation development time and computational

complexity of the simulation itself. Finally, due to the nature of the conclusions to be drawn, the simulation

had to be free of logic family specific manufacturing issues. One such example is the dttference in the

importance of correct transistor sizing between different logic families. In bipolar logic families the sizing of

individual transistors is much more important than it would be in a design relying on FET technologies due

to the large difference in bipolar base currents drawn versus those of field-efFect transistor gates. Another

example would be the differences in component counts which may be mounted on an emitterwoupled logic

die versus other logic families. Since the devices in emitter coupled logic circuits are not intended to ever be

driven into their saturation region during normal circuit operation, these circuits typicafiy reach the die

package heat dissipation limits at much lower component counts than would similar circuits in other logic

families.

In order to cover these issues, the simulation was laid out as a behavioral description of the circuits involved,

with individual logic gates as the atomic element. The design of the entire security device was simulated

using the Verilog hardware description language in order to verify that the circuit indeed performs its

intended function. The actual circuit is expected to operate with a clock period of 25. 88 nanoseconds. For the

purposes of this implementation, this clock period was approximated to 26 nanoseconds, in order to make

simulation of the device less computationally intensive. This approximation may be found in the Verilog

definition of the "ClockGen" module.

58

The Receivers, Transmitters, Control Module and dynamic RAM of the device use a purely behavioral

description. The pmcedure used for the Receivers, Transmitters and Control Module is a direct extension of

the earlier discussion regarding their design. The procedure used for the dynamic RAM is drawn from the

manufacturer's product data and implements the functions of "Read with Hidden Refresh*' and "Write"

according to the timing specifications described therein.

The Analysis Module was modeled as a series of behaviorally described "NAND" and "NOR" gates whose

operation is assumed to be ideal except for a known, fixed signal propagation delay. As shown in the source

code included in Appendices A and B, this propagation delay is set to one nanosecond, this is to say, l/26 of

the clock cycle time.

Based on these gate description, all of the remaining sub-modules necessary to construct the Analysis Module

were simulated, with latches and multiplexers appearing as the most basic building blocks and continuing all

the way up to complete state machines at the highest orders of complexity.

The results of this simulation indicate that the device will, indeed, perform its function satisfactorily for a

range of gate delays, with the highest acceptable delay being 2/26 of the clock period of the Analysis Module.

The device operation breaks down at some point between a gate delay of 2/26 and 3/26 of the clock period

The entire simulation for both versions of the Analysis Module was implemented with a modular approach in

order to make debugging, testing and compilation feasible. The resulting simulation consists of a large

number of functional module units which are interdependent among themselves. These modules and the

submodules upon which they depend are shown in table XIV for the "path-only" version of the Analysis

Module.

The logic which makes up each of the individual blocks of logic described in the design sections were

grouped as closely as possible within one complete circuit module with the same name. This was not precisely

possible in all cases due to the interdependence of similar reusable blocks that could be used as submodules

for ditferent design components. However, every simulation module is a faithful representation of the exact

circuit logic and Boolean expressions described in the section concerning the design of the device.

Component count optimizations within each of the logic blocks were implemented as far as possible without

having the logic block deviate from the circuit described in the design section. While a carefid analysis will

reveal certain optimizations still lefi unimplcmcnml, these optimizations will have a non-significant impact

on the overall component count of the entire device. For example, the number of literals in the decode logic of

59

many of the counters could have been reduced somewhat by implementing the states of the counters as Gray-

code counters. However, this optimization would reduce overall component count by less than one percent.

The correctness of the simulation's operation, and the subsequent inference that the device, if constructed

would operate properly, relies on the generation of test pattern cell arrivals and new path updates from the

modules entitled "ControlModule" and "Receiver". Both of these modules are behaviorally defined with the

"Receiver" logic block generating an alternating sequence of non-unique complete cell arrivals and the

"ControlModule" generating a continuous stream of new path updates for loading into the device's memory

For the purposes of this simulation, it was not feasible to implement the entire sixteen megabit memory space

of all of the memories involved. Instead, in the "path-only" version of the Analysis Module, the dynamic

RAM's procedural definition specifies that it will recognize a cell's path as being valid if the last bit of thc

address presented to it is asserted. In the "path and volume" version of the Analysis Module, an arriving

cell's path will be mapped to an existing path if the lower three bits of the address correspond to a sequence

that has already been generated by the "ControlModule".

It is evident that some simplifications had to be made in order to encapsulate thc entire design into the

simulation environment chosen, however, the artificial data sequence created by the test modules simulated

show cases of the device operating under all possible combinations of circumstances. This is to say that the

data streams generated by the "ControlModule" and the "Receiver" force the Analysis Module to show its

behavior both when a valid cell arrives and when an invalid cell arrives, on either starting byte of the

'Receiver' module's output. In addition, it shows that the Analysis Module will correctly load new path data

within one cell time of the "ControlModule" block's having presented it.

60

TABLE XIV
Module names and the submodules of which they consist for the simulation of the "path-only" Analysis

Module

Inverter

Twoln utNANDGate

Threcln utNANDGate

Fourln utNANDGate

Fiveln utNANDGate

Sixln utNANDGate

Sevenln tNAND Gate

¹nein utNANDGate

Twoln utNORGate

Threeln utNORGate

FourIn utNORGate

Fiveln utNORGate

Sixln utNORGate

Sevenln utNORGatc

SRLatch
PosEdge TrigLatch

FourBitRegister

Ei htBitRegistcr

SixteenBitRe ster

ShifiRcgister

DataGate
FourBitDataGate

EightBitDataGate

TwoLine Selector

FourBitTwoLineSelector

FourLineSelector

TwelveBitFourLine Selector
ClockGen

NewPathStore

D namicRAM
NetworkReceiver

NetworkTransmitter

ControlModule

DownCounterWithpresct

Proccdura)I defined

Procedurall defined.

Procedurall defined

Procedurall defined

Procedurall defined.

rocedurall defined.

rocedurall defined

rocedurall defined.

rocedurall defined.

rocedurall defined.

rocedurall defined.

rocedurall defined.

rocedurall defined

rocedurall defined.
~ (Twoln utNANDGate)
~ (Twoln utNANDGate) + I~(Threeln utNANDGate)

~ osEd eTri atch)
~ osEd eTri atch

16~(posEd eTri tch)
~ SixteenBitRe ister)

1~(Twoln utNANDGate) + 1~(lnverter)

~ (DataGate)
~ FourBitDataGate)

3 ~(Twoln utNANDGate
~ (TwoLineSelector) + I ~ (Invertcr
~ Threeln utNANDGate) + 1~(Fourln utNANDGate)

12~(FourLineSelcctor + 2o Inverter)

rocedurall defined.

3~(Ei tBitRe ister) + I ~ PosEd eTri atch) + 1~(SRLatch)

Procedurall defined.

Procedurall defined

ocedurall defined.

rocedurall defined.

5~(posEdgeTrigLatch) + 2~(inverter) + 5~(TwolnputNORGate) +
3~(ThreeinputNORGate) + 5~(FourinputNORGate) +
2~(FiveinputNORGate) + 4~(SrxlnputNORGatc) +
2~(SeveninputNORGate)

61

TABLE XIV
(continued)

S tate Control

StateMachine

SequenceDetect

Network Security

5O(lnverter) + 7~(TwolnputNANDGate) + 4v(TltreeinputNANDGate) +
3 ~(FourinputNANDGate) + I I ~ (FivelnputNANDGate) +

2O Sevenln utNANDGate)

5O(PosEdge TrigLatch) + 5~(ResetControl) + 3 ~(TwoinputNANDGate) +
1gv(ThreelnputNANDGate) + 9o(FourlnputNANDGate) +
6O(FivelnputNANDGate) + I o(SevenlnputNANDGate) +

2~(Niacin utNANDGate)

lo(StateMachine) + la(StateControl) + 2o(DownCounterWithpreset) +
2» iveln utNANDGate)

le(ClockGen) + I ~ (NetworkReceivcr) + le(NetworkTransmitter) t
1~(ControIModule) + 1~(ShifIRegister) + 2~(EightBitDataGatc) +

l~(SequenceDetect) + I ~(NewPathStore) + 6~(FourBitTwoLineSelector) +
6o ourBitRe ister) t 1 o(TwelveBitFourLineSelector) + I ~ (namicRAM)

The modules and the submodules upon which they depend are shown in table XV for the "path and volume"

version of the Analysis Module.

It must be noted that, to simulate the entire device as one complete unit requires a very considerable amount

of computation time, The device's simulation code presented here had, itself, to be broken down into

component sections, Each of those sections were simulated with a known generator pattern of signals, their

results captured and then passed along to the standalone simulation of the next logic block in the sequence.

However, the Verilog code presented here allows a designer to look at the behavior of the signals of every

phase of the design in order to analyze where improvements could be made. Therefore, the simulation's

purpose as a "proof of concept" has been realized.

62

TABLE XV
Module names and the submodules of which they consist for the simulation of the "path and volume"

Anal sis Module

Inverter

Twoln utNANDGate

Threeln utNANDGate

Fourln utNANDGate

Fiveln utNANDGate

Sixln utNANDGate

Sevenln utNANDGate

Nineln utNANDGatc

Twoln utNORGate

Threeln utNORGate

Fourln utNORGate

Fiveln utNORGate

Sixln utNORGate

Sevenln utNORGate

SRLatch

PosEdge TrigLatch

FourBitRegister

Ei tBitRe 'ster

SixteenBitRegister

ShiftRegister

DataGate

Four BitDataGate

EightBitDataGate
TwoLineSelector

FourBit TwoLineSelector

FourLineSelector

TwelveBitFourLine Selector

ClockGen
NewPath Store

NetworkReceiver

NetworkTransmitter

Con trolModule

DownCounterWithpreset

Procedurall defined

Procedurall defined

Procedurall defined.

Procedurall defined.

Procedurall defined

Procedurall defined

Procedurall defined.

Procedurall defined.

Procedurall defined

Procedurall defined.

Procedurall defined.

Procedurall defined.

Procedurall defined

Procedurall defined.

2o(Twoin utNANDGate)

5o(Twoin utNANDGate) + 1~(Threeln utNANDGate)

4~(posEd eTri atch

8~ osEd eTri atch)

16~(PosEd eTri atch

9~(SixteenBitRe ster

1~(Twoln utNANDGate) + I ~ (Inverter)

4~(DataGate)

2o(FourBitDataGate)

3~(Twoln utNANDGate)

4~ woLineSelector) + I~(invcrter)

4~(Threeln utNANDGate) + 1~(Fourin utNANDGate)

12~(FourLineSelector + 2~(inverter)
Procedurall defined.

3~(Ei tBitRe ister) + 7~ PosEd eTri atch) + I ~ (SRLatch)
Procedurall defined

Procedurall defined.

Procedurall defined.

Procedurall defined.

5~(posEdge TrigLatch) + 2~(lnverter) + 5~(TwolnputNORGate) +
3~(ThreelnputNORGate) + 5~(FourinputNORGate) +

2~(FiveinputNORGate) + 4~(SixlnputNORGate) +
2o(SeveninputNORGate)

63

TABLE XV
(continued)

CounterGate

BitEqualTest

ThreeBitDataGate
ThreeBySevenDemux

ResctControl

CounterWithZero Test

CounterWithReset

WindowCounter

Wind owControl

SiateControl

StatcMachine

ScquenceDetcct

NetworkSecurity

2~ Inverter) + 4~(Threein utNANDGate) + I ~ Fourln utNANDGate

3~ Twoln utNANDGate

3 o(DataGate

10~(lnverter) + 7~(Threeln utNANDGate)

Procedurall defined.

4~(posEdge TrigLatch) + 4~(CounterGate) + 6~(TwoinputNANDGate) +
6~(TwoinputNORGate) + 3~(ThreelnputNANDGate) +
3~(ThreelnputNORGate) 4 2~(FourinputNANDGatc) +

3~(Fourin utNORGate)

4o(PosEdge TrigLatch) + 4~(DataGatc) + 3~(inverter) +
5~(Twoln utNANDGate) + 3~(Threein utNANDGatc)

4v(PosEdgeTrigLatch) + 1~(CounterWithReset) + 4~(BitEqualTest) +
I o(lnverter) + 1~(Fourin utNANDGate)

1~(WindowCounter) + lv(Counter WithZero Test) + 1~(lover(or)

5~(inverter) + 7~(TwoinputNANDGate) + 4~(ThreelnputNANDGate) t
3~(FourlnputNANDGate) + 11~(FiveinputNANDGate) +

2~ Sevenln utNANDGate)

Se(PosEdge TrigLatch) + 5~(ResetControl) + 3v(TwoinputNAND Gate) +
18~(ThreeinputNANDGate) + 9~(FourinputNANDGate) +
6~(FtvelnputNANDGate) + tv(SeveninputNANDGate) +

2~ ineln utNANDGate

I~(StateMachine) + I~(StateControt) + 2~(DownCounterWithpreset) +
2~(Fiveln utNANDGate)

1~(ClockGen) + 1~(NetworkReceiver) + l~pqetworkTransmitter) +
1~(ControlModule) + 1~(ShitIRegister) + 2~(EightBitDataGate) +

I ~(SequenceDetect) + I ~(NewpathStore) + 6~(FourBitTwoLineSelector) +
6~(FourBitRcglster) + le(TwelveBitpourLineSeiector) + 3~(DynamicRAM)

+ 3~(PosEdgcTrigLatch) + lv(ThreeBitDataGate) +
2e(ThreeBySevenDemux) + 7~(WindowControl) + 2~(lnverter) +

7o(Twoln utNANDGate t I v(Sevenln utNORGate)

For the designer's reference, the entry point into the simulation (the highest level block of integration) for

both versions of the Analysis Module is the "NetworkSecurity" Verilog module. Additionally, the "path and

volume" version of thc Analysis Module simulated implements seven window control modules with each

window control module having a granularity of four bits. This means that the "path and volume" Analysis

Module described in thc Verilog simulation is capable of supporting up to seven valid connections and that

the leaky bucket traffic meter on each connection will support a traific credit system with a maximum of

sixteen credits per connection and that the lowest credit generation rate possible will be one credit every

sixteen clock cycles.

64

If, at some future date, it is necessary to extend this simulation to support morc simultaneous connections, it

is only necessary to add more traffic control modules (and, the appropriate number of dynamic RAMs) to the

"NetworkSecurity" module in the Vcrilog source code. However, the changes necessary to change the

granularity of the window control modules will be more extensive since this will involve changes, not only to

the counters that manage the credit system within these window control modules but also to the latches that

control how often to generate a credit. Not to be excluded from these changes, are thc equality testcrs thai

check when it is time to generate a new credit and when a connection tratfic volume has overflowed. All of

the changes necessary to change the granularity of ihe credit system would be in the "WindowControl**

module of the Verilog source code.

65

CHAPTER VI

PERFORMANCE ISSUES

The digital circuits assembled indicate that this design can correctly handle traffic from all of the ATM forum

data rate spcciffcations. These calculations were made using worst case network traffic assumptions with full

traffic violation rates. This means that the basic assumption regarding traffic arrival characteristics werc that

no link bandwidth was being lett unutilized and that the arriving traffi could be either completely invalid for

all arriving cells or completely valid for all arriving cells.

All of the components mentioned in this design can easily be implemented in the TTL (trausistor-transistor

logic), ECL (emitter-coupled logic) and HC (high-speed CMOS) logic families as evidenced by the range of

products available in any catalog from the major digital applications semiconductor manufacturers. The

external micmcontrollers and dynamic memories have been available for considerable periods of time and,

thus, are considered to be very stable from the point of view of reliability of operating characteristics.

Therefore, this design should be feasible utilizing only standard, off the shelf components for the

implementation of three of thc major components of the design which are not specifically laid out in this

document: Receivers, Transmitters and Control Module. The Analysis Module should be implementable

through current one-micron and sub-micron production pmcedures coupled with current VLSI design tools.

Again, current product literature allows for the conclusion that two, three and four million transistor count

microchip designs are feasible on a scale that allows for mass manufacturing [31, 32].

In order to assess the feasibility of the implementation of the design of this device, it is necessary to establish

what the approximate transistor counts for the various versions of the device will be, as well as, the maximum

gate delays necessary to make the device feasible. In order to accomplish both of these measurements, the

circuits described in the design portion of this document will be used. Approximate transistor counts will be

reached by counting the gates necessary to implement these circuits and maximum gate delays necessary will

be calculated by finding the longest series chain of gates through which a signal must pass in any one clock

cycle and still allow the device to accomplish its function correctly.

The design of the Analysis Module was described to be as logic family independent as possible. While it is

not feasible to use the exact same circuit to perform the necessary functions in all of the logic families, the

circuit, as described, could be implemented in all of the logic families and be quite close to optimal in

component count. In the RTL (archaic), DTL (archaic), TTL and ECL logic families, the circuit description is

very close to optimal. In the CMOS and High Speed CMOS logic families, the circuit description could vary

66

somewhat due to the availability of very low part count latches within these logic families. However, these

low part count latches, are of the level-triggered variety and would require additional logic in order to ensure

device stability. Therefore, an assumption involved in using the part count estimates described here for the

CMOS logic family implementations is that the additional logic necessary to account for the level-triggered

nature of CMOS latches would balance out the transistors lost by using these lower component count latches.

In an attempt to calculate the necessary component count in a way that is independent of a particular logic

family implementation, this component count will be assessed based on gate counts with each gate being

assigned a component weight based on the number of inputs. Since all of the logic families sharc the common

characteristic that the transistor count necessary to implement an "n" input logic gate is directly and linearly

proportional to "n" (the number of inputs to the gate), we can accurately approximate the component count by

summing the weight of each gate used. This sum of input-normalized gate weights would then be multiplied

by a constant in order to predict the component count for the device's construction within each logic family,

For RTL (the most primitive of the logic families; largely archaic) this multiplication constant would be

exactly one, since one transistor is required for every gate input. For the CMOS families, this multiplication

constant would be approximately two and the TTL/ECL families would fall somewhere in between [33J.

The component count for the "path-only" version of the Analysis Module will remain fixed for all situations

since the design, as presented, has sufficient capabilities to support invalid cell suppression for arrivals with

any path information. However, the additional circuitry necessary to implement the "path and volume"

version of the Analysis Module is significant and has the ability to grow to an untenable component count, In

order to keep this version of the design within a reasonable component count, the component weights are

calculated based on two variables. The number of "window control modules" and size of the window control

module demultiplex selector in this version of the design is in direct relation to the number of valid paths for

which the Analysis Module may provide traffi volume verification. Therefore, the first variable in the

component count for the design of the "path and volume" Analysis Module will bc the number of valid

connection paths supported by the Analysis module which will be referred to as "W".

The granularity with which the leaky bucket mechanism in the "path and volume" Analysis Module can

verify traffi along each valid connection path is directly related to the number of bits in the internal states of

the two counters, the size of the input words of the equality testers and the size of the storage register which

compose the window control modules. Therefore, the second variable in the component count for the design

of the "path and volume'* Analysis Module will be the granularity supported by each leaky bucket mechanism

controlling each valid connection which will be referred to as "K'.

TABLE XVI
Com sition and corn nent wei t of the modules in the" ath-onl " version of the Anal is Module

4-bit multiplexer for loading cell
header data (six units)

4-bit latch for storing cell header
data (six units)

12-bit by 4-line multiplexer for
presenting data to memory

12-bit latch for new path data
(two units)

I-bit latch I'or new path data state

latch for memory lookup result

SR-latch for status of new path
re isters

memory lookup module for path
verification

alert latch for result from
memo looku

sequence I detect module for
ovendl control

12-bit shiA register with 9 stages
for cell data transit area

data gate for cell ou ut control

72~(Two Input) + 6~(One Input)

24~(Three Input) + 120s(Two Input)

12e(Four Input) + 48v(Three Input) +
2~(One In ut)

24s(Three Input) + 120s(Two Input)

1~(Three In ut) + 5v(Two In ut)

I ~ Three In ut + Ss Two In ut

2s(Two Input)

External Unit

ls(Three Input) + 5~(Two Input)

9~(Onc Input) + 95v(Two Input) +
43 ~(Three Input) + 22~(Four Input) +

23s(Five Input) + 8s(Six Input) t
7o Seven In ut) + 2~(Nine In ut)

720~(Two Input) + 144~(Three Input)

16s(One In ut) + 16~ Two In ut)

150

312

194

312

13

13

646

1872

As shown in table XVI and table XVII, the part count in the Analysis Module is sufficiently low to lend itself

to VLSI implementation only if the "pathwnly" version is implemented or if the "path with volume" version

is implemented with a limited number of window control modules. As the analysis shows, the "path-only"

version could be implemented with a component weight of only three to four thousand, which is trivial by

modern VLSI standards. However, it is evident that for the "path and volume" version, the component weight

depends heavily on the number of window control modules implemented and their associated granularity. In

fact, there is a square relationship between the component weight and the granularity of each window control

module while there is a linear times log relationship between the component weight and the number of

window control modules implemented.

TABLE XVII
Composition and component weight of ihe sub-modules composing one *'window control module'* used in the

th and volume" version of the Anal is Module

"N"-bit register
"K'-bit counter (with reset)

5N~(Two In ut) + N~ Three In ut

N~(One Input) + 'A(N t13N+4)~(Two Input) +
(N)~(Three In ut + 2~ E, x In ut)

13N
2N + 16N

"N'*-bit by "N"-bit equality tester 3N~(Two In ut) + l~ "N" In ut)
**N"-bit counter with control (N'+4N+6)o(Two Input) + 5N~(Three Input) +

N~(Four Input) + 6~(Z» Input) +
2N~("N" In ut

7N

6N +23N+4

"bf'-bit zero tester I ~ "N" In ut)

However, the component weights required to implement the "path and volume" version of the Analysis

Module are not so great as to make them unfeasible at current VLSI densities. The governing relationships

necessary to calculate the component weight of the "path and volume" implementation as a function of the

number of window control modules added and their associated granularity is are shown in table XVIII. With

a component weight of one million, it is feasible to implement 100 window control modules with each inodule

having a granularity of 32 bits. If the component weight is allowed to grow to two million, then it becomes

feasible to implement 200 window control modules with 32 bits of granularity apiece. Also, it should be noted

that if the window control module granularity is halved, the corresponding number of modules which can be

added to keep the component weight at the same level more than doubles. To extend the example, if the

window control module granularity is reduced to 16 bits, then 329 window control modules may be placed

within an Analysis Module at a component weight of one million with this figure growing to 658 window

control modules at a component weight of two million. Table XIX shows the order of magnitude correlation

between the number of window control modules constructed within a "path and volume" Analysis Module,

their associated granularities and the resulting component weight of that Analysis Module.

Since the component weights of one million and two million components correspond to an actual transistor

count of up to two to four million transistors, respectively (depending on the logic family used for its

implementation) it is evident that these design goals are not unrealisuc.

69

TABLE XVIII
Com sition and corn nent wei ht of the modules in the ** th and volume" version of the Anal sis Module

4-bit multiplexer for loading cell
header data six units

4-bit latch for storing cell header
data (six units)

12-bit by 4-line multiplexer for
presenung data to memory

12-bit latch for new path data
(two units)

n-bit latch for new path data state
(sufficient bits to load a word

describing a unique window

control module

latch for memory lookup result

(sufflcient units to store a word

describing a unique window

control module

SR-latch lor status of new path
re sters

Memory lookup module for path
verification

Demultiptexer to select window

control module (suificient outputs

to select one of all window

contml modules — two units: load
new data and react to a memory

looku

Alert latch for result fmm

memory lookup (sufficient bits to
load a word describing a unique

window control module)

Window control module with "N"
bits of granularity (W units)

sequence I detect module for
overall control

12-bit shiA register with 9 stages
for cell data transit area

data gate for cell ou ut control

6~(One Input) + 72~(Two Input)

120~(Two Input) + 24o(Three Input)

2~(One Input) + 48'(Three input) +
12~(Four In ut)

120~(Two Input) + 24~(Three Input)

Slogz(W)~(Two Input) + logz(W)~(Three Input)

Slogz(W)~(Two Input) + Iogz(W)o(Three Input)

2o(Two Input)

External Unit

2W~(logz(W) Input)

Stogz(W)~(Two Input) + logz(W)~(Three Input)

N~(One Input) +
~/z(3N' + 37N + 4)~(Two Input) +

7N~(Three Input) + N~(Four Input) +
go(Z3 zz la ut) + (2N+ 2)~("N" In ut)

9~(One Input) + 95o(Two Input) +
43~(Three Input) + 22~(Four Input) +

23'(Five Input) + 8~(Six Input) +
7~(Seven In ut + 2~(Nine In ut)

720~(Two Input) + 144~(Three Input)

16~(One In ut + 16~ Two In ut

150

312

194

312

13(iogz W)

13(log, W)

2W(logz W)

13(logz W)

8WN + 60WN+
4W

646

1872

48

70

TABLE XIX
Order of magnitude correlation of the component weight of the "path and volume" Analysis Module as the

number and ranularit of "window control modules'* im lemented varies

tt of window control modules 0 Wlo W)

ulari of each window control module (e ressed in number of bits) O(N)

Granularity versus number of window control modules for a fixed
component weight

80

C 0

I
l7

50

40
o

e 30

e 20

10

igffli

f2ik, "jf', Ifl, '

fh
' 'l

'jljleff

fl'l' .

(~g!1, 1!i

j:

. II4I', ff

I,
'fl

I, "4lfif,
I'

tfff', " "

+jlfl

jP~jig! If, '!I

Q
lo Io ol cv lo I

Number of window control modules

Fig. 27. Granularity versus number of window control modules which may be implemented in one Analysis

Module for fixed component weighf 8

Therefore, it has been shown that the component weight necessary to implement the device is significantly

impacted by the granularity of the "window control modules" placed on each Analysis Module. Figure 27

shows this in graphical form as the design component weights begin in increase exponentially if the window

control module granularity is increased linearly. Figure 28 presents this component weight information as a

71

function of the number of window control modules implemented and allows the conclusion that the

component weight is a linear function of the number of window control modules.

All "window control modules", regardless of their granularity, exhibit an upper limit on the traflic volume

they will permit to pass of one cell credit per clock cycle, which translates to one credit per cell time (if the

Analysis Modules' clock is divided by 26. 5 for all window control modules). However, their granularity

affects the minimum allowable traFtc rate per connection, as well as, the greatest number of traflic credits

any one connection is allowed to accumulate when that connection is utilizing less than its declared allowable

bandwidth. Therefore, with "window control modules" of greater granularity, the Analysis Module is capable

of successfully controlling virtual connections with lower trafflc limits and, also, of allowing unintenupted

traffic flow for connections with "bursty" traFtc patterns. All of this is possible while still verifying that they

do not exceed their allowable "mean" traFtc limits. Both of these characteristics are favorable to supporting

the wide range of traffic types envisioned for the distributed nature of wide-area backbones [34, 35]

The remaining issue which pertains to the components necessary to implement this design are those of the

amount of dynamic RAM memory that will be required oF-chip for the Analysis Module. In the case of the

"path-only" Analysis Module, it is only necessary to place one 16 megabit RAM in the circuit in order to

support complete screening of all possible connection paths. However, in the "path and volume"

implementation, the amount of memory which will be required will be a function of the number of valid paths

which must be supported by each Analysis Module. To be more precise, sufhcient memory will be required in

order to generate a data word wide enough to support the selection of one unique window control module for

any random address within a 244nt address space. Therefore, in the case where "W" window control modules

have been implemented within an Analysis Module, a data word with a width of log, (W) will be required in

order to select one of them. By extension, this means that log, (W) memories of 16 megabits apiece will be

necessary to support an Analysis Module with **W" window control modules. Therefore 2~Iogr(W) megabytes

of memory would be required by this design (with one byte equaling to eight bits). If we were to place 16

megabytes of memory in one Analysis Module, this would allow for the support of 256 window control

modules. Likewise, 8 and 4 megabytes in each Analysis Module would support 128 and 64 window control

modules, respectively. These memory ranges are not unreasonable, given the current market availability of

these components.

72

Component weights for fixed window control module granujarities

e

7 -':

c

c

4 c

R
6

3

L
l)fgl

Rj'

ff'jg

iIif

l)

r

!f';!c

-)l)fji::;:, -;f. ;, =-. gf

%f~QI fjig-

sv,

, th

it(i

rmrf(4

':i'~fthm~),

I ', ~i) ~gj',)) ~ *.

— - — - — - Gran=a
— — — — — Gran = 16

Gmn = 32
-. ---. . . . Gran = 64

RR RR RB
Number ol window

RQRRoRR)oR
control modules

Fig. 28. Component weight versus number of window control modules which may be implemented in one

Analysis Module for fixed module granularities

Up to this point, it has been shown that the component count of this security device is significantly impacted

by the number of simultaneous network virtual connections the device will support. This impact it so great

thai for security devices connected to nodes through which a large amount of traffic passes, the number of

simultaneous connections could very well exceed the number of components that may feasibly be mounted on

one or a few dies. Likewise, it does not make sense to make the investment to develop a high component chip

only to install it into a security device that monitors a gateway to the backbone where only a few connections

may simultaneously exist. Therefore, an approach should be discussed by which an extensible version of this

security device may be implemented. Extensibility of the chip in this design refers to an implementation that

73

uses this same core of design decision in such a fashion that multiple identical devices may be interconnected

to operate as one device which can handle a greater number of simultaneous virtual connections than any one

chip would normally be able to.

The issue at thc heart of creating a series of devices which can behave as one is to divide the set of virtual

connections which may exist simultaneously among ditferent units. In this way, every individual unit can test

incoming trafiic for validity or volume violations and only forward that portion of the trafiic found to belong

to a valid connection, for which it is responsible, to the network backbone. That tratfic for which a particular

module is not responsible will be forwarded to the next security unit in the sequence. This extensible

approach is described graphically in figure 29.

Cell found
and verified

Security
FROM

NETwoRK' , Module
Cell found

and verified

FlFP DUTPUT
TO

i Queue NE QRK

Security
«iect~ Module

Cell found
and verified

Security
Reject' Module

BAD CELL
(rejected)

Fig. 29. High level view of the interconnections of Security Modules in a simple extensible implementation

Using this approach, every security module is responsible only for those cells belonging to connections that

are found within its own window control modules. The additional hardware necessary to implement such an

approach consists only of a first-in first-out (FIFO) queue which would capture those cells that are found to be

74

valid and within volume limits by any of the Security Modules and forward them to the network. Since, in the

worst case, cells will be fed into the first Security Module in the chain at the network's peak transmission

rate, and the interconnections between the Security Modules will pass these cells to one another at this same

rate, at most one cell may exist within one Security Module at any given time. Due to this, the greatest

number of cells that may be passed to the FIFO queue is the same as the number of Security Modules to which

it is connected. Therefore, the FIFO queue's depth need be no greater than the number of Security Modules to

which it is connected.

The impact on the overall performance of the device in terms of cell delay time are significant. In the best

case, the cell will be found to be valid and to be within volume limits within the first Sccurip Module to

which it is transmitted. In this case the cell will experience one-half cell time delay within that module and

negligible delay within the FIFO queue (assuming it is empty). Therefore, in the best case, cell delay

experienced within this extensible configuration will be the same as that of the non-extensible device. In the

worst case, a cell will not be found to bc valid until it reaches the last Security Module in the chain. Also,

when that ceff is finally transmitted to the FIFO queue, it may experience additional delays due to cells that

may already be in that queue. Since every Security Module delays a cell by one-half of a cell time and every

cell already in the FIFO queue will delay tliat cell by an additional cell time, the worst~so delay a valid cell

(N
may experience while travelling though this device will be — + X — 1 cell times for N Security Modules

Therefore, if there were four Security Modules chained together outputting their valid data to a FIFO queue

with a depth of four cells, the worst-case cell delay would be five cell times.

The Control Module in this configuration would have to oversee the operation of a number of Security

Modules for every data path, instead of just one, as in the non-extensible configuration. In order to determine

whether or not a cell truly belongs to an invalid path, it would have to correlate the invalid cell alarms from

all of the Security Modules along one data path together. However, as in the nonwxtensible configuration, a

connection volume violation alarm from any one of the Security Modules will suffice in order to detect a

traffic volume idolation. Finally, in order to create new valid connections along any one data path, ihe

Control Module will not only have to determine into which memory slot to place the connection, but it will

also have to select one of the Security Modules along that data path first. This decision will finther be

complicated by the fact that the cells belonging to connections which are tracked in the first Security Module

in the chain will experience a smaller delay than those being tracked in the last Security Module in the chain.

Therefore, before adopting this extensible configuration, the fact that cell delay in these security devices will

be a linear function of the number of Security Modules used in each data path should be duly noted.

75

CHAPTER VII

CONCLUSION

The primary goals of this thesis work were to create a design by which basic covert tratfic minimization

mechanisms could be implemented in hardware with the scope of providing a mechanism for uniform security

enforcement across a wide-area ATM/SONET technology network backbone.

A module level description of the device has been presented and shown to be implementable with currently

available ofl'-the-shelf components and custom application specific integrated circuitry (ASIC) available at

current levels of integration technology. The performance of the device has been evaluated under worst-case

conditions for network trafilc. Is has been shown that the delay experienced by network trafilc in existing

virtual connections in the network is trivial when compared to its expected transit time within the network

and that the management functions of creating and destroying virtual connections are not a function of the

creation / destruction rate of these connections. Through the description of its operation, it is evident that,

while utilizing such a framework of traffic security enforcement, the full bandwidth of the network is

available to all users for authorized utilization and that through trafhc delays network cells will experience

are constant even under sustained peak traific conditions.

The possibility of implementing fixed-window leaky bucket trafilc control mechanisms, whether for actual

security enforcement purposes or others, was actually shown to be feasible. While actual performance

measurements on thc correlation between the "burstiness" of connection trafiic and size of the leaky bucket

mechanism window have not been taken, this information is amply documented in [36J and [37]. Even

though no guidelines have been given with regard to the window size of the leaky bucket mechanism that

should be implemented, there is sufiicient research to allow for an educated decision with regard to the

tradeoff between the component count of the ASIC that would need to be implemented and the "burstiness" of

the connection traffic that should be allowed to be admitted thmugh the network.

The device was tested by simulation for proper operation with the Verilog hardware description language and,

according to its specifications, and was found to meet its design goals for any design whose gate delays are

less than two nanoseconds. While integrated circuit gate delays are highly logic family dependent, this

requirement should not be a significant hindrance to the implementation of the ASIC since large

microcontmller designs have already been shown to have the capacity to operate at clocking speeds in excess

of thirty-eight MHz (the intended clocking speed for this device).

76

VILA Future Work

The details for the components of the security framework presented here have concentrated primarily on the

mechanisms by which actual enforcement should occur and how to limit the impact which it has on overall

network performance. Many portions of the larger issues of this method of security enforcement have been

glossed over, Foremost among these issues is the topology and physical architecture which should be used to

impleinent the network by which supervisory control data is transferred between the modules that actually

provide the enforcement and the workstations which keep the operators of the security body appraised of the

state of the network. Toward this end, a significant amount of work lies ahead in order to assess which

topologies and implementation technologies would be optiinal for this overlying network. An integral

component of this decision will be an assessment of exactly what criteria to use in order to derive the level of

enforcement that the modules designed in this document will be required to perform. Based on this,

assessments may be made with regard to what the overall bandwidth and worst-case delays of the overlying

network must be in order to provide an interface to the individual enforcement modules that is deemed to be

acceptable l'rom the network management perspective.

Another issue of paramount importance which needs to be addressed are the mechanisms that will be used to

protect the overlying "security trafflc only" network which allow the enforcement modules to communicate

with the operator workstations. While trying to avoid a *'who guards the guardian" paradox, it will be

necessary to produce a methodology by which "sufficient" impenetrability for this network may be assessed.

A final area for future work is an examination of how many connections are lypically supported in tandem on

any given port of a switch in a wide-area ATM network. Such an assessment will be necessary in order to

decide at which level to implement the integration of the security enforcement ASIC in order to provide the

level of required traffic support at a minimal cost. Without such surveys, it is possible to construct devices

that are prohibitively expensive yet provide support for many more connections than actually exist or,

alternauvely, to construct devices whose connection support is so limited as to severely handicap the

capability of the network to provide the level of service for which it was designed. As a possible alternate

approach to the solution of this problem, it may be possible to modify the design presented here in such a

fashion that it becomes scaleable with respect to the number of connections a security module may support.

This modification would allow for the addition of inexpensive, readily available option modules in those areas

where connection support is found to be insufficient.

77

REFERENCES

[I] Uyless Black, ATM: Foundation for Broadband Networks, Prentice Hall PTR, Englewood Ctitfs,

Ncw Jersey, 1995

[2] V. L. Voydock and S. T. Kent, "Security Meclranisms in High-Level Network Protocols, " ACM

Computing Surveys, vol 15, no. 2, June 1983, pp. 135-171

[3] R. H. Deng, L. Gong and A. A. Lazar, "Securing Data Transfer in Asynchronous Transfer Mode

Networks, " Proceedings of Global Telecommunicotions Conference '95, Singapore, November 13-17,
1995, vol. 2, pp. 1198-1202

[4] J. McHugh and L. Young, "A Taxonomy of Covert Channels in ATM Networks, with Examples, "
Computer Science Dept. , Portland State University, Portland, Oregon, Technical Report 94-3, July 1994

[5] G. E. Liepins, H. S. Vaccaro, "Detection of Anomalous Computer Session Activity,
" in Proceedings of

IEEF Computer Society Symposium on Security und Privacy '89, Oakland, California, May 1-3, 1989,

pp. 280-289

[6] W. J. Page, J. R. Winkler, '*Intmsion and Anomaly Detection in Trusted Systems,
" Proceedings of Fifih

Annual Computer Secunty Applications Conference, Tucson, Arizona, December 4-8, 1989, pp. 39-45

[7] M. Becker, H. Debar, D. Siboni, "A Neural Network Component for an Intrusion Detection System, " in

Proceedings of IFEE Computer Soci ety Symposium on Research in Secunty ond Privacy '92, Oakland,

California, May 4-6, 1992, pp. 240-250

[8] L. Heberlein, K. Levitt, B. Mukherjec, "Network Intrusion Detection, " IEEE Network, Vol. 8, Issue 3,
May 1994, pp. 26-41

[9] W. Page, J. Winkler, "Intrusion and Anomaly Detection in Trusted Systems,
" in Proceedings of Fifth

Annual Computer Security Appii canons Conference, Tucson, Arizona, December, 1989, pp. 39-45

[10] J. Brentano, G, V. Dias, T. L. Goan, T. Grance, L. T. Heberlein, C. L. Ho, K. N. Lcvitt, D. L. Mansur, B.
Mukherjee, K. L. Pon, S. E. Smaha, S. R. Snapp, "A System for Distributed Intrusion Detection, " in

Proceedings ofIEEE COMPCON Spri ng '9I, San Francisco, California, February, 1991, pp, 170-176

[11] S. E. Smaha, "Haystack: An Intrusion Detection System,
" in Proceedings of IEEE Fourth Aerospace

Computer Security Applications Conference, Orlando, Florida, December, 1988, pp. 37-44

[12]R. Jagannathan, R. Lee, S, Listgarten, T. F. Lunt, A. Whitehurst, "Knowledge-Based Intrusion

Detection, " in Proceedings of the Annual AI Systems in Government Conference '89, Washington, DC,
March 27-31, 1989, pp. 102-107

[13] T. F. Lunt, '*Real-Time Intrusion Detection, '* in Proceedings of Thirty-Fourth IEEE Computer Society

International Conference: Inieiiectuoi I. everoge, San Francisco, California, February 27 — March 3,
1989, pp. 348-353

[14]H. S. Javitz, A. Valdes, "The SRI IDES Statistical Anomaly Detector, " in Proceedings of IFEF.
Computer Society Symposium on Research in Security ond Privacy, Oakland, California, 20-22 May,

1991, pp. 316-326

[15]K. Tan, "The Application of Neural Networks to UNIX Computer Security,
" in Proceedings of

International Conference on Neural Networks '95, Perth, Wales, Australia, 1995, pp. 476-481

[16] M. H. Rahman, J. H. Weigelt, "Securing Asynchronous Transfer Mode Based Networks Through the Use

of Encryption,
*' in Proceedings of Global Telecommunications Conference '95, Montreal, Quebec,

pp. 1198-1202

[17] G. C. Girling, "Covert Channels in LANs, " IEEE Transactions on Software Engineering, vol. SE-13, no,

2, February, 1987, pp. 292-296

[18] J. K. Millen, "Covert Channel Capacity,
" in Proceedings of the IREE Computer Society Symposi um on

Research in Security and Privacy 'tt7, Oakland, California, April 27-29, 1987, pp. 60-66

[19] R. Browne, *'Mode Security: An Infrastructure for Covert Channel Suppression,
'* in Proceedings of the

IEEE Computer Society Symposium on Research in Security and Privacy '94, Oakland, California,

May 16-18, 1994, pp. 39-55

[20]T. Aoki, "Future Switching System Requirements,
*' IEEE Communications Magazine, January 1993,

pp, 34-38

[21]R. Barker, "Broadband Networking in a National Security and Emergency Preparedness (NS/EP)
EnvironmcnC' in Proceedings of Global Telecommunications Conference '93, Boston, Massachusetts,

Oct. 11-14, 1993, pp. 140-144

[22] J. R. Cleveland, N. K. Cranfill, "Emerging Technologies for the Control of the Defense Red Switch

Network,
'*

in Proceedings of Military Communications Conference '94, Fort Monmouth, NJ, pp,
664-668

[23]T. J. Robe, K. A. Walsh, "A SONET STS-3c User Network Interface IC, " in Proceedings of IEEE
Custom Integrated Circuitry Conference '9/, San Diego, California, May 1991

[24] H. J. Chao, C. A. Johnston, "The ATM Layer Chip: An ASIC for B-ISDN Applications,
" IEEE Journal

on Selectedztreas in Communications, Vol. 9, Issue 5, June 1991, pp. 741-750

[25] ATM Forum, **ATM User-Network Interface Specification (v3. I), " ATM Forum, September, 1994
Available through the World Wide Web at:

11 // atmforum. com/ /a roved-s cs/af-uni-0010. 002. . tar. Z

[26] ATM Forum, "DS I Physical Layer Specification, " ATM Forum, September, 1994
Available through the World Wide Web at:

ft // atmforum. com/ ub/ roved- ccs/af- h -0016. 000 s

[27] ATM Forum, "Physical Interface Specification for 25. 6 Mb/s Over Twisted Pair Cable, " ATM Fonun,

November, 1995
Available through the World Wide Web at:

'// . atmforum. com/ ub/a roved-s s/af- h -0040 000. s

[28] ATM Forum, *'DS3 Physical Layer Specification, " ATM Forum, January, 1996
Available through the World Wide Web at:

fi .
//11 atmforum. com/ b/a roved- s/af- -0054 000. s

79

[29]ATM Forum, **ATM Physical Medium Dependent Interface Specification for 155 Mb/s Over Twisted

Pair Cable, " ATM Forum, September, 1994
Available through the World Wide Web at:

fi / . atmforum. corn/ ub/a roved-s s/af- h -0047. 000.

[30] ATM Forum, "622. 08 Mbps Physical Layer Specification, '* ATM Forum, January, 1996
Available through the World Wide Web at:

//It . atmforum. com/ ub/a roved-s s/af- h 4046. 000.

[31]Motorola Microprocessor and Memory Technologies Group, **MC68302 Integrated Multiprotocol

Processor User's Manual, " Motorola Corp. , 1995
Available thmugh the World Wide Wcb at:

htt://www. mot. com/netcomm/aeso 683XX/302/302UM.

[32]Motorola Microprocessor and Memory Technologies Group, "MC68PM302 Integrated Multiprotocol

Processor with PCMCIA Reference Manual, " Motorola Corp. , 1995
Available through the World Wide Web at:

htt //www. mot. com/netcomm/aeso /683 XX/302/PM302UM,

[33] Morris Mano, Digital Design, 2nd edi ti on, PrenticeHall Publishers, Englewood Cliffs, NJ 1991

[34] H. Ahmadi, R. Guerin, K. Sohraby, "Analysis of Leaky Bucket Access Control Mechanism with Batch

Arrival Process, " Proceedings of G/obal Telecommunications Conference '90, San Diego, California,

Dec. 2-5, 1990, pp. 344-349

[35] J. Chao, "Design of Leaky Bucket Access Control Schemes in ATM Networks, " in Proceedings of
International Conference on Communications '91, Denver, Colorado, June 23-26, 1991, pp. 180-187

[36] Department of Defense, "Department of Defense Trusted Computer Systems Evaluation Criteria, Report

DOD 5200. 28-STD, " Department of Defense, Washington D. C. , December 1985

[37] National Computer Security Center, "A Guide to Understanding Security Modeling in Trusted Systems,

Report NCSC-TG-010 Version-l, " National Computer Security Center, Ft. George G. Meade, Maryland,

October 1992

[38] National Computer Security Center, "Trusted Network Interpretation. Report NCSC-TG-005 Version-l, "
National Computer Security Center, Ft. George G. Meade, Maryland, July 1987

[39] L. S. Rutledge and L. J. Hoffman, "A Survey of Issues in Computer Network Security,
"

Comps ters and

Secunty, vol. 5, 1986, pp. 296-308

[40]Randy H. Katz, Contemporary Logic Design, The Benjamin/Cummings Publishing Company,

Redwood City, CA, 1993

80

APPENDIX A

"PATH-ONLY" ANALYSTS MODULE SIMULATION CODE

This appendix contains the Verilog hardware description language code necessary to implement a gate-level

simulation of the "pathwnly" version of the Analysis Module. The Receivers, Transmitters and memories

involved in the destgn of the network security device were simulated at the procedural level and the Analysis

Module was simulated at the gate level.

All sub-module inputs and outputs are fully commented.

A. A Verilog Simulation

module Inverter (In, Out);

input In;

output Out;

reg Out;

always

¹I Out = -In;

endmodule

module TwoinputNANDGate (InOne, InTwo, Out);

input InOne, In Two;

output Out;

reg Out;

¹I Out = -(InOne k In Two);

endmodule

module ThreelnputNANDGate (InOne, InTwo, InThree, Out);

input InOne, In Two, In Three;

output Out;

reg Out;

always

¹ I Out = -(InOne k, In Two k In Three);

endmodule

module FourlnputNANDGate (InOne, InTwo, InThree, InFour, Out);

input InOne, lnTwo, InThree, InFour;

output Out;

reg Out;

always

¹ I Out = -(InOne & In Two & In Three k InFour);

endmodule

module FivelnputNANDGate (InOne, In Two, In Three, InFour, InFive, Out);

input InOne, InTwo, InThree, InFour, InFivc;

output Out;

82

reg Out;

always ¹I Out = -(InOne k InTwo & ln Three k InFour &. InFive);

endmodulc

module SixlnputNANDGate (InOne, InTwo, InTIvce, lnFour, InFive, InSix, Out);

input lnOnc, InTwo, InThree, InFour, InFivc, InSix;

output Out;

reg Out;

always

¹I Out = -(InOne & InTwo k lnThree & InFour k InFive & lnSix);

cndmodule

module SevenlnputNANDGate (InOnc, In Two, In Three, InFour, InFive, InSix,

InSeven, Out

input InOne, InTwo, InThree, lnFour, lnFive, InSix, InSeven;

output Out;

reg Out;

ahvays ¹I Out = -(lnOne & In Two & InThree k lnFour &. InFive & InSix & InSeven);

endmodule

83

module NinelnputNANDGate (InOne, InTwo, ln Three, InFour, InFive, InSix,

InSevcn, InEight, InNine, Out

input InOne, In Two, InThree, InFour, InFivc, lnSix, InSeven,

InEight, lnNme;

output Out;

reg Out;

always

¹1 Out = -(InOne k, In Two k ln Three & InFour k InFive k InSix k
InSeven k InEight k InNine

endmodulc

module TwolnputNORGate (InOne, InTwo, Out);

input lnOne, In Two;

output Out;

reg Out;

always ¹I Out = -(InOne
~
InTwo);

endmodule

module ThreelnputNORGate (InOne, InTwo, InThree, Out);

input. InOne, In Two, lnTltree',

output Out;

reg Out;

always ¹I Out = -(InOnc
~
lnTwo

~
InThree);

cndmodule

module FourlnputNORGate (lnOne, InTwo, InThree, InFour, Out);

input InOne, InTwo, lnThree, InFour;

output Out;

reg Out;

always

¹I Out = -(InOne
~
InTwo InThree

~
InFour);

endmodule

module FivelnputNORGate (InOne, InTwo, ln Three, InFour, InFive, Out);

input InOne, In Two, In Three, InFour, InFive;

output Out;

reg Out;

always ¹I Out = -(InOne
~
la Two

~
InThree

~
InFour) InFive);

endmodule

module SixlnputNORGate (InOne, In Two, InThree, InFour, lnFive, InSix, Out);

85

input InOne, InTwo, lnThree, lnFour, InFive, InSix;

output. Out;

reg Out;

always

¹I Out = -(InOne
~
In Two

(
In Three

~
InFour

~
InFive

~
InSix);

endmodule

module SevenlnputNORGate (InOne, InTwo, In Three, InFour,

InFivc, InSix, InSeven, Out);

input InOne, In Two, In Three, InFour, InFive, InSix, InScvcn;

output Out;

reg Out;

always ¹I Out = QlnOne
~
InTwo

~
lnThrec

~
InFour) InFive

~
InSix

~
InSeven);

endmodule

module SRLatch (Set, Reset, Out, InvertOut);

input Set, Reset;

output Out, InvertOut;

TwoinputNANDGate GateOne (Set, InvertOut, Out);

TwolnputNANDGate Gate Two (Reset, Out, InvertOut);

endmodule

module PosEdgeTrigLatch (Clock, Data, Out, InvertOut);

input Clock, Data;

output Out, InvertOut;

wire wl, w2, w3, w4;

TwolnputNANDGate GateOnc (w4, w2, wl);

TwolnputNANDGate GateTwo (wl, Clock, w2);

ThreelnputNANDGate Gate Three (w2, Clock, v 4, w3);

TwolnputNANDGate GateFour (w3, Data, w4);

TwolnputNANDGate GateFive (w2, lnvcrtOut, Out);

TwolnputNANDGate Gategix (Out, w3, InvertOut);

endmodulc

// Name: FourBitRegister

// Inputs: Data [3:0] - The data to be latched by thc register on the

next. rising clock edge.

// Clock - The clocking signal which controls data latching.

// Outputs: Out [3:0] - The data latched on the last rising clock edge.

module FourBitRegister (Clock, Data, Out),

input [3:0] Data;

input Clock;

output [3:0] Out;

wire [3:0] Outlnv;

PosEdgeTrigLatch BitZero (Clock, Data[0], Out[0], Outluv[0]);

PosEdgcTrigLatch BitOne (Clock, Data[1], Out[1], Outlnv[l]);

PosEdgeTrigLatch BitTwo (Clock, Data[2], Out[2], Outlnv[2]);

PosEdgeTrigLatch BitThree (Clock, Data[3], Out[3], Outinv[3]);

endmodule

// Name: EightBitRegister

// Inputs: Data [7:0J - The data to be latched by the register on the

// Clock

next. rising clock edge.

- The clocking signal which controls data latching.

// Outputs: Out [7:OJ - The data latched on the last rising clock edge.

module EightBitRegister (Clock, Data, Out);

input [7:0] Data;

input Clock;

output [7:0] Out;

FourBitRegister LowNibblc (Clock, Data[3:0], Out[3:0]);

FourBitRegister HighNibble (Clock, Data[7:4], Out[7:4]);

endmodule

// Name; SixteenBitRegister

// Inputs: Data [15:0] - The data to be latched by the register on the

// Clock

next rising clock edge.

- The clocking signal which controls data latching.

// Outputs: Out [15:0] - The data latched on the last rising clock edge.

module SixteenBitRegistcr (Clock, Data, Out);

input [15:0] Data;

input Clock;

output [15:0] Out;

EigluBitRegister LowByte (Clock, Data[7:0], Out[7:0]);

EightBitRegister HighByte (Clock, Data [15: 8], Out[15:8]);

endmodule

// Name: ShiftRegister

// Inputs: Data [15;0] - The data to be latched by the shift register on

// Clock

the next rising clock edge.

- The clocking signal which controls data latching.

// Outputs: Out [15:0] - The data latched on the rising clock edge twenty

seven clock cycles ago

// Outlnv [15:0] - The negation of the data latched on the rising

clock edge nine clock cycles ago.

module ShiftRegister (Clock, Data, Out);

input [15:0] Data;

input Clock;

output [15:0] Out;

wire [15:0] Ll, L2, L3, L4, L5, L6, L7, L8;

SixteenBitRegistcr Stage0

SixteenBitRegistcr Stagel

SixteenBitRegister Stage2

SixteenBitRegister Stage3

SixteenBttRegister Stage4

SixteenBitRegister Stagc5

SixteenBitRegister Stagc6

SixteenBitRegister Stage7

(Clock, Data, Ll);

(Clock, L I, L2);

(Clock, L2, L3);

(Clock, L3, L4);

(Clock, L4, L5);

(Clock, L5, L6);

(Clock, L6, L7);

(Clock, L7, L8);

89

SixteenBitRegister Stage8 (Clock, Lg, Out);

endmodule

// Name; DataGate

//Inputs: In

// Select

- Data input.

— If asserted low. the bit value at "In" will be

reflected at "Out". Otherrvisc. "Out" will

reflect zero.

// Outputs; Out — Reflect "In" if Select is low, otherwise low

regardless of the state of "In".

module DataGate (Jn, Select, Out);

input In, Select;

output Out;

wire Outlnvert;

TwolnputNANDGate Gate (In, Select, Outlnvert);

lnverter Invert (Outlnvert, Out);

endmodule

// Name: FourBitDataGate

// Inputs: In [3:0] - Data input.

// Select — If asserted high, the bit values at "In" will be

reflected at "Out". Otherwise, "Out" will

reflect all zeroes.

// Outputs: Out [3:0] - Reflect "In" if Select is high, otherwise just

90

set all bits to low.

module FourBitDataGate (In, Select, Out);

input [3:0] In;

input Select;

output [3:0] Out;

DataGate Bit0 (In[0], Select, Out[0]);

DataGate Bitl (In[1], Select, Out[1]);

DataGate Bit2 (In[2], Select, Out[2]);

DataGate Bit3 (In[3], Select, Out[3]);

endmodule

// Nmne: EightBttDataGate

// Inputs: In[7:0] - Data input.

// Select - If asserted high, the bit. values at "In" will be

// reflected at "Out". Otherwise, "Out. " will

reflect all zeroes.

//Outputs: Out[7:0] -Reflect 'ln" if Select is high, otherwisc just

go low on all bits.

module EightBitDataGate (In, Select, Out);

input [7:0] ln;

input Select;

output [7:0] Out;

FourBitDataGatc LowNibble (la[3:0], Select, Out[3:0]);

FourBitDataGate HighNibble (in[7:4], Select, Out[7:4]);

endmodule

// Name: TwoLineSelector

// Inputs: In[I:OJ

// Select

- Two bits of data input

- Input that must be asserted in order to control

which of the two bits of input will be rctlected

at the output.

// Selectlnv - Input which is the inverse of "Select"

// Outputs: Out - Reflec the value at "In[1]" if "Select" is

high and "Selectlnv" is low. Reflect the vahic

at "In[0]" if "Select" is low and "Selectlnv" is

high. Behavior is unpredictable otherwise.

module TwoLineSelector (In, Select, Selectlnv, Out);

input [1:0] In;

input Select, Selectlnv;

output Out;

wire [1;OJ Con;

TwolnputNANDGate GateZero (In[0], Selectlnv, Con[0]);

TwolnputNANDGate GateOne (In[IJ, Select, Con[1]);

TwolnputNANDGate Gate Two (Con[0], Con[1], Out);

endmodule

// Name: FourBitTwoLineSelector

// Inputs: InZero [3:0] - The first input line

// InOne [3:0] - The second input line

// Select - Input (hat must be asserted in order to contml

which of thc two nibbles of input will be

92

reflected at the output nibble.

// Outputs: Out [3:OJ - Reflec the nibble at "InOne" if "Select" is

lugh. Otherwise, reflect the nibble at "InTwo".

module Fouri3itTwoLineSe)cctor (lnZero, InOne, Select, Out);

input [3:0] InZero, InOne;

input Select;

output[3:0] Out;

Sclectlnv,

wire [7:OJ Input;

assign Input[0] = InZero[0], Input[I J
= lnOne[0],

Input[2] = InZero[1], Input[3] = InOnc[1],

Input/4] = InZero[2], Input[5] = lnOne[2],

Input[6] = lnZero[3], Input[7] = InOne[3];

Inverter Invert (Select, Selectlnv);

TwoLineSelector Sclect0 (Input[I:0], Select, Selectlnv, Out[0]);

TwoLineSelector Selectl (Input[3:2], Select, Selectlnv, Out[1]);

TwoLineSelector Select2 (Input[5:4], Select, Selectlnv, Out[2]);

TwoLineSelector Select3 (Input[7:6], Select, Selectlnv, Out[3]);

enthnodule

// Name: FourLineSelector

// Inputs: In[3:0] - Four bits of data input

// Sclcct[1:0] - Inputs that must be asserted in order to control

which of the four bits of input will be

reflected at the outpuh

// Selectlnv[l:0] - Input which is the inverse of "Select[1:0]" on

afl bits.

// Outputs: Out - Depending on thc state of the "Select" inputs,

this signal will reflect the state of one of the

bits at the "In" input, according to the table

below. Behavior is unpredictable for conditions

not covered in the table.

Sel[0] Sellnv[0] Sel[1] Sellnv[1]
~

Out

Low High Low High
~
In[0]

Low High High Low [In(1J

High Low Low High
~
In(2]

High Low High Low
~
In[3]

module FourLineSelector (In, Select, Selectlnv, Out);

input [3:0] In;

input [1:0] Select, Selectlnv;

output Out;

wire [3:0] Con;

ThreelnputNANDGate GateZero (In[0], Selectlnv[0], Selectlnv[1], Con[0]);

ThreelnputNANDGate GateOne (In[I], Selectlnv[0], Select[1], Con[1]);

ThreelnputNANDGate GateTwo (In[2J, Select[0], Selectlnv[1], Con[2]);

ThreelnputNANDGate GateThree (In[3], Sclcct[0], Select[1], Con[3]);

FourlnputNANDGate GateFour (Con[OJ, Con[1], Con[2], Con[3], Out);

endmodule

// Name: TwelveBitFourLineSelector

// Inputs: InZero [11;0] - The first input line

94

// InOnc [11:0] — The second input linc

// InTwo [11:OJ - The third input line

// InThrce [11:0] — The fourth input linc

// Select [I:0] - Consols whose state govern which of the four

inputs will be reflected at the output.

rcflccied at the output.

//Outputs: Out [11:0] - Depending on the state of the "Select" inputs,

this signal will reflect the state of the twelve

bits at one of the four inputs. Behavior is

unpredictable for conditions not covered in the

table.

Selcct0 Selectl
(

Out

Low Low
~

InZero

Low High
~

InOne

High Low
~

In Two

High High
~

InThree

module TwctveBitpourLineSelector (InZcro, InOne, InTwo, InThree, Select, Out)',

input [11:0] InZero, InOne, InTwo, InThrce;

input [I:0] Select;

output [11:OJ Out;

wire [I:0] Selcctlnv;

wire [47:OJ Input;

assign Input(0] =InZero[0], Input[1] =InOne[0],

Input[2] = lnTwo[0], Input[3] = InThree[0],

Input[4] = InZero[1], Input[5] = InOne[1],

Input[6J = InTwo[l], Input[7] = InThree[1 J,

Input[SJ = InZero[2], Input[9] = InOne[2],

Input[10] = ln Two[2], Input[11] = InThree[2],

Input[12] = InZero[3], Input[13] = InOne[3],

Input[14] = InTwo[3J, Input[15] = In Three[3],

95

Input[16] = InZero[4], Input[17J = lnOne[4],

Input[18] = InTwo[4], Input[19] = InThrec[4],

input[20] = InZero[5], Input[21J = InOne[5],

Input[22] = InTwo[5], Input[23] = InThree[5],

Input[24] = InZero[6], Input[25] = InOne[6J,

Input[26J = InTwo[6], Input(27] = InThree[6J,

Input[28J = InZero[7], Input[29] = InOne[7],

Input[30] = lnTwo[7], Input[31] = InThree[7],

Input[32J = lnZcro[8], Input[33] = InOne[8],

Input[34] = InTwo[8], Input[35] = InThree[8],

Input[36[= InZero[9], Input[37] = InOne[9],

Input[38] = InTwo[9], Input[39] = InThree[9],

Input[40] = InZero[10], Input[41] = InOne[10],

Input[42] = InTwo[10], Input[43] = InThree[10],

Input[44] = InZero[1 I J, Input[45] = InOne[11],

Input[46] = InTwo[11], Input[47] = InThree[11];

Invcrtcr Invert0 (Select[0], Selectlnv[0]);

Inverter Invertl (Select[1], Selectlnv[1 J);

FourLineSelector Select0 (Input[3:0], Select, Selectlnv, Out[0]);

FourLineSelector Selectl (Input[7:4], Select, Selectlnv, Out[1]);

FourLineSclector Select2 (Input[11:8], Select, Selectlnv, Out[2]);

FourLineSelector Select3 (Input[15:12], Select, Sclectlnv, Out[3]);

FourLineSelector Select4 (Input[19:16], Select, Selcctlnv, Out[4]);

FourLineSelcctor SelectS (Input[23:20], Select, Sclectlnv, Out[5]);

FourLineSelector Select6 (Input[27:24], Select, Selcctlnv, Out[6]);

FourLineSelector Select7 (Input[31:28], Select, Selectlnv, Out[7]);

FourLineSelector Select8 (Input[35:32], Select, Selectlnv, Out[SJ);

FourLineSelector Sc)ect9 (Input[39:36], Select, Selectlnv, Out[9J);
FourLineSelector Selcct10 (Input[43:40], Select, Selectlnv, Out[10]);

FourLineSelector Select I I (Input[47: 44], Select, Selectlnv, Out[11]);

endmodule

96

// Name: ClockGen

// Inputs. None.

// Outputs: Clock - Square wave that cycles up and down every

13 nanoseconds thereby producing a signal with a

period of 26 nanoseconds.

module ClockGen (Clock);

output Clock;

reg Clock;

imttat

Clock = I;

always

begin

¹13 Clock = 0;

¹13 Clock = 1;

endmodule

// Name: NewpathStore - Simulates the storage elements that accept and

hold data about a ncw path to be loaded into

the memory lookup module by the sequence /

detect module at the appropriate time

// Inputs: Load

// UnLoad

- The Set input on I bc SR latch indicating

whether the unit still contains new data

- The Reset input on the SR latch indicating

whether the unit still contains new data

// Dataln — Input indicating whcthcr the new path is to be

validated or invalidated

// Addressln [23:0]- The input for thc new path which is to be

validated or invalidated

// Outputs; Full — The Q output on the SR latch which, if high,

indicates the unit contains new data.

// Empty - The Q' output on the SR latch which, if high,

indicates the unit does not contain new data.

// DataOut - Output indicating whether the ncw path

currently stored is to be validated or

invalidated

// AddressOut[23:0]- The output of the new path which is to be

validated or invalidated

module NewPathStore (Load, UnLoad, Addressln, Detain,

Full, Empty, AddressOut, DataOut);

input Load, UnLoad, Dataln;

input [23:0] Addressln;

output Full, Empty, DataOut;

output [23:0] AddressOut;

wire DataOutlnv;

EightBitRcgister Low (Load, Addressln[7;OJ, AddressOut[7:0]);

EightBitRcgister Middle (Load, Addressln[l fag], AddressOut[15:8]);

EightBitRegister High (Load, Addressln[23:16], AddressOut[23:16]);

PosEdgeTrigLatch Data (Load, Dataln, DataOut, DataOutlnv);

SRLatch Status (Load, UnLoad, Full, Empty);

endmodule

//Name: DynamicRAM -Simulates a Texas Instruments SMJ416100-70

dynamic random access memory

98

// Inputs: Address [11:0] — DRAM address lines

// RAS — Row address select

// CAS - Column address select

// W - Read/Write select

// D - Data input on memory writes

// Outputs: Q - Data output on memory reads

module DynamicRAM (Address, RAS, CAS, W, D, Q);

input [11:0] Address;

input RAS, CAS, W, D;

output Q;

rcg [11:0] Row, Column;

reg Q, Dataln;

initial

Q = 1'bz;

always

begin

wait (!RAS)

Row = Address;

wait (!CAS)

Column = Address;

if (W == 0)

begin

// we are performing a write cycle

Detain = D;

wart (CAS)

Q = 1bz;

end

else

// we are performing a read cycle

// for thts simulation just present the low bit of the address

¹18 Q = Address[0];

wait (CAS)

Q= lbz;

end

end

cndmodule

// Name: NetworkReceiver

// Inputs: Clock - Clock on whose negative edge to present data

// Outputs: Out [15:0] - Present data produced by the receiver.

// NewCclIEven - Asserted when the starting byte of dtc cell

currently being transmitted was presented on

the high-order byte of the output.

// NewCellOdd - Asserted when the starting byte of the cell

currently being transmitted was presemed on

thc low-order byte of the output.

module NetworkReceiver (Clock, NewCellLow, NewCeIIHigh, Out);

input Clock;

output [15:0] Out;

output NewCellLow, NewCellHigh;

reg [15:0] Out, Temp;

reg NewCellLow, NewC:IIHigh;

initial

begin

Pol (negedge Clock) Out[15:8] = 8'b00000000;

Out[7:0] = 8'b00000001;

100

end

NewCellLow = 0;

NewCellHigh = 0,

always

@ (negedge Clock) Temp[15: 8] = Out[15. 8] + 2

Tnnp[7:0] = Out[7;0] + 2;

tf (Temp[15:8] & 52)

Temp[15:8] = Temp[15:8] - 53;

if (Temp[15:8] == 0) NewCellLow = I;

end

else

NewCelILow = 0;

if(Temp[7:0] & 52)

begin

Temp[7. 01 = Temp[7:0] -53,

if (Temp[7:0] == 0) NcwCellHigh = I;

end

else

NewCeIIHrgh = 0;

end

Out[15:0] = Temp[15:0];

endmodule

// Name: NetworkTransmitter

// Inputs: Data [15:0] - The data to be transmitted out onto the

network.

// NewCeIIEven - Assettcd when the starting byte of the cell

currently being transmitted was presented on

the high-order byte of the input.

// NewCellOdd - Asserted when the starting b)ue of the cell

currently being transmitted was presented on

the low-order byte of the input.

moduleNetworkTransmittcr (Clock, NewCellEven, NewCellOdd, Data);

input Clock, New CellEven, NewCcllOdd;

input [15:0] Data;

cndmodule

module ResetContro((Clock, Input, Output);

input Clock, Input;

output Output;

reg Output;

initial

Output = 0;

¹26 Output = Input;

// @(negedge Clock) Output = Input;

Clld

always

Output = Input;

endmodule

// Name: ControlModutc

// Inputs: Latchget - If high, indicates that the new path storage

102

// LatchReset

module still contains new data.

- If high, indicates that the new path storage

module has been cleared of new data.

// Output: SetLatch

// Data

// Address

- If high, indicates that new data lies been

presented and should be latched.

- If high, indicates that the new path

being modified is io be a valid path.

Otherwise, the new path is to be an invalid

one.

- Indicates the VPI/VCI pair of the path whose

status is to be modifie.

module ControlModulc (Address, Data, SetLatch, LatchSet, LatchReset);

input LatchSet, LatchReset;

output SetLatch, Data;

output [23:0] Address;

reg SetLatch, Data;

reg (23:0j Address;

inilial

SetLatch = 0; Data = 0; Address = 0;

end

always

begin

¹I if (LatchSet == 0)

begin

Address = Address + I;

if (Data == 0) Data = 1;

if (Data == I) Data = 0;

¹I SetLatch = I;

¹I SetLatch = 0;

103

end

cnd

end module

// Name: DownCounterWithPreset

//Inputs: Clock

// Set26

// Set27

- Signal on whose positive edge, the counter

must change state

- If high on a rising edge of "Clock", then

it forces the next state of the counter to

be 26 transitions away from zero.

- If lugh on a rising edge of "Clock", then

it forces the next state of the counter to

be 27 transitions away from zero.

// Output: Bit0. . . 4 — Individual lines of the output of the five

latches that store the current state of the

counter. BitO refers to the lowest order

bit and Bit4 to the highest order bit.

module DownCounterWithPreset (Clock, Set26, Set27,

BitO, Bitl, Bit2, Bit3, Bit4);

input Clock, Set26, Set27;

output Bit0, Bit l, Bit2, Bit3, Bit4;

wire BitOInput, Bit 1 Input, Bit2lnput, Bi(3input, Bit4lnput;

wire Set261nv, Set27lnv;

wire [22:0) Linc;

// Memory elements to store the current state

PosEdgeTrigLatch BitZcro (Clock, BitOInput, BitO, BitOInv);

PosEdgeTrigLatch BitOne (Clock, Bitllnput, Bitl, Bitllnv);

PosEdgeTrigLatch BitTwo (Clock, Bit2lnput, Bit2, Bit2lnv);

104

PosEdgeTrigLatch BitThree (Clock, Bit31nput, Bit3, Bit3lnv);

PosEdgeTrigLatch BitFour (Clock, Bit41nput, Bit4, Bit41nv);

// Prepare inputs

lnverter

lnverter

Gatc0 (Set26, Set261nv);

Gate 1 (Set27, Set27lnv);

// Decode logic for bit 0

TwolnputNORGate Gate2 (BitOInv, Sct27, Line[2]);

TwolnputNORGate Gate3 (Set261nv, Set27, Line[3]);

SixlnputNORGate Gate4 (Bit0, Bit 1, Bit2, Bit3, Bit4, Set27,

Line[4]

ThreclnputNORGate Gate5 (Line[2], Line[3J, Line[4], Bit01nput);

// Decode logic for bit I

FourlnputNORGate Gate6 (Bit0, Bitllnv, Set26, Set27, Line[6]);

FourlnputNORGate Gate7 (BitOInv, Bitl, Set26, Set27, Line[7]);

SevenlnputNORGate GateS (Bit0, Bit 1, Bit2, Bit3, Bit4, Set26,

Set27, Line[8]

ThreelnputNORGate Gate9 (Line[6], Line[7], Line[SJ, Bitllnput);

// Decode logic for bit 2

Twolnpu(NORGate Gatel0 (Bit 1lnv, Bit2, Line[10]);

TwolnputNORGate Gate 1 I (BitOInv, Bit2, Line[11]);

ThrcclnputNORGate Gate12 (Bit0, Bitl, Bit21nv, Line[12]);

FiveinpuiNORGate Gate13 (Bit0, Bitl, Bit2, Bit3, Bit4, Linc[13]);

SixlnputNORGate Gate14 (Line[10], Line[11], Line[12J, Line[13],

Set26, Set27, Bit21nput

// Decode logic for bit 3

FourlnputNORGate Gate15 (Bit21nv, Bit3, Set26, Set27, Linc[15]);

FourlnputNORGate Gatel6 (Bitl lnv, Bit3, Set26, Set27, Line[16J);

FourlnputNORGate Gate17 (BitOInv, Bit3, Set26, Set27, Line[17J);

SixlnputNORGatc Gate lg (Bit0, Bill, Bit2, Bit31nv, Set26, Set27,

Line[18]

SevenlnputNORGate Gate19 (Bit0, Bitl, Bit2, Bit3, Bit4, Set26, Se(27,

105

Linc[19]

FivelnputNORGate Gate20 (Line[15], Line[16], Line[17J, Line[18],

Linc[19], Bit31nput

// Decode logic for bit 4

ThreelnputNORGate Gate21 (Bit4, Set26, Set27, Line[21]);

SixinputNORGate Gatc22 (Ilit0, Bit 1, Bit2, Bit3, Set26, Set27,

Line[22J

TwoInputNORGate Gate23 (Line[21], Line[22], Bit41nput);

endmodule

// Name: StateControl

// Inputs: NewCeIILow - When high, indicates a new cell is coming

in with the first byte starting on the low

order bits of the input.

// NewCellHigh - When high, indicates a new cell is coming

in vdth the first byte starting on the high

order bits of the input.

// LookupRes - Path validity result of the memory lookup

for the transitting cell

// Bit [4;0] - The state of the five bits which define the

current state of the state machine for which

the control lines must be decoded.

// BitInv [4-OJ - The negated state of the five bits specified

by the "Bit" input,

// Output: PVRL

// RSRL

// LLODG26

- Latch the results of the read from the

memory lookup module.

- Clear the neiv path information in the new

path registers (by setting the SR-Latch

indicating the validity of the data as

being false)

- Start the low-byte counter at 26

106

// LLODG27 - Start the low-byte counter at 27

// LHODG27 - Start the high-byte counter at 27

// VVRL - Not applicable to "path-only" Analysis Mod.

// RAS — Row address select line on the memory

lookup module

// CAS - Column address select line on the memory

// W

lookup module

- Read/Write control line on the memory

lookup module

// FourBDS [5:0] - Control lines to the four bit multiplexer

that shunt different portions of the

incoming data words from the Receiver

// FourBDL [5:0] - Latch control lines on the latches tlmt store

thc path information of the currently

transiting cell

// TwelveBDS [1;0] - Control lines to the twelve bit by four line

multiplexer that presents dais from

various latch groups to the memory lookup

module

module StateControl (Bit, Bitlnv, NewCellLow, NewCellHigh, LookupRes,

FourBDS, FourBDL, TwelveBDS, PVRL, RSRL,

LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, WJ;

input

input

outpllt

NewCellLow, NewCellHigh, LookupRes;

[4:0] Bit, Bitlnv;

PVRL, RSRL, LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W;

output [5:0] FourBDS, FourBDL;

output [1:0] TwelveBDS;

wire LowStart, HighStart;

wire [4:0] Stage;

wire [28:0] Line;

assign FourBDL[0] = Stage[1], FourBDL[1] = Stage[2],

FourBDL[2] = Stage[2], FourBDL[3] = Stage[3],

107

FourBDL[4] = Stage[3], FourBDL[5] = Stage[4],

TwelveBDS[0] = Bitlnv[2], TwelveBDS[1] = Bit[4],

LLODG26 = Lowg tart, LHODG27 = LowStart,

LLODG27 = HighStart;

// Logic for PVRL

FivelnputNANDGate Gatco (Bitlnv[4], Bitlnv[3J, Bit[2], Bitlnv[1],

Bit[0], Line[0]

Inverter Gate I (Line[0], PVRL);

// Logic for RSRL

FivelnputNANDGate Gate2 (Bit[4], Bit[3], Bit[2], Bitlnv[1], Bit[0],

Line[2]);

Inverter Gate3 (Line[2J, RSRL);

// Logic for LxODG2x

SevenlnputNANDGate Gate4 (Bitlnv[4], Bit[3], Bit[2], Bitlnv[1],

Bitlnv[0], NewCcllLow, LookupRes, Line[4]);

SevcnlnputNANDGate Gate5 (Bitlnv[4], Bit[3], Bit[2], Bitlnv[l],

Bitlnv[0], NewCellHigh, LookupRes, Linc[5]);

Inverter Gate6 (Line[4], LowStart);

Invcrtcr Gate7 (Line[5], HighStart);

// Logic for VVRL

FivelnputNANDGate GateS (Bitlnv[4], Bitlnv[3], Bit[2], Bitlnv[l J,

Bitlnv[0], Line[8]);

Inverlcr Gate9 (Line[8], VVRL);

//Logic for RAS

TwolnputNANDGate Gate10 (Bit[4], Bitlnv[3J, Line[10]);

TwolnputNANDGate Gatel I (Bitlnv[2], Bit[0], Line[11]);

ThreelnputNANDGate Gatc12

ThreelnputNANDGate Gate13

ThreelnputNANDGate Gate] 4

(Bit[4], Bit[2], Bitlnv[1], Line[12]);

Gilt[3], Bitlnv[1], Bit[0], Line[13]);

(Bitlnv[4], Bitlnv[1], Bitlnv[0], Line[14]);

FivelnputNANDGate Gate15 (Line[10], Line[11], Line[12], Line[13],

Line[14], RAS);

108

// Logic for CAS

TwolnputNANDGate Gate16 (Bitlnv[3], Bitlnv[2], Line[16]);

ThreelnputNANDGate Gatc17 (Bitlnv[3], Bit[I], Bitlnv[0], Line[17]);

FourlnputNANDGate Gate18 (Bit[4], Bit[3], Bit[1], Bitlnv[0], Line[18]);

FourlnputNANDGate Gate 19 (Bit[4], Bit[3], Bitlnv[1], Bit[0], Line(19]);

FourlnputNANDGate Gate20 (Bit[4], Bit[3], Bitlnv[2], Bit[1], Line/20]);

FivelnputNANDGate Gate21 (Line[16], Line[17], Linc[18], Line[19],

Line[20] CAS

// Logic for W

FivelnputNANDGate Gate22 (Bit[4], Bit[3], Bit[2], Bit[1 J, Bit[0], W);

// Logic for 4BDL

FivclnputNANDGate Gate23 (Bitlnv[4], Bitlnv[3], Bitlnv[2],

Bitlnv[1], Bit[0], Line[23]), '

FivclnputNANDGate Gate24 (Bit[4], Bitlnv[3], Bit[2], Bitlnv[l J,

Bitlnv[0], Line[24]);

FivelnputNANDGate Gate25 (Bit[4], Bitlnv[3], Bit[2], Bitlnv[1],

Bit[0], Line[25]

FivelnputNANDGate Gate26 (Bitlnv[4], Bitlnv[3], Bitlnv[2], Bit[1],

Bit[OJ, Line[26]);

FivelnputNANDGate Gate27 (Bit[4], Bitlnv[3], Bit[2], Bit[1], Bit[0],

Line[27]

TwolnputNANDGate Gate28

TwolnputNANDGate Gate29

TwolnputNANDGate Gatc30

);

(Line[23], Line[24], Stage[1]);

(Line[23], Line[25], Stage[2]);

(Line[26], Line[25], Stage[3]);

TwolnputNANDGate Gate31 (Line[26], Line[27], Stage[4]);

// No logic block necessary for 12BDS[B, S]

endmodule

// Name: StateMachine

// Inputs: Clock - Signal on whose rising edge the state

109

machine must make a state change

// NewCellLow - When high, indicates a ncw cell is coming

in with the first byte starting on the low

order bits of the input.

// NewCellHigh - When high, indicates a new cell is coming

in with thc first byte starting on thc high

order bits of the input.

// LatchSet - Output of ihe SR-Latch which, if higlt,

indicates there is new path data to be loaded

into the memory lookup module.

// LatchReset - The negated state of the LatchSet input,

//Output: Bit [4:0] - The state of the five bits which define the

current state of the state machine.

// Bitlnv [4:0] — The negated state of the five bits specified

by the "Bit" input.

module StateMachinc (Clock, NewCellLow, NcwCellHigh, LatchSet, LatchReset,

Bit, Bitlnv

input Clock, NewCcllLow, NewCellHigh, LatchSet, LatchReset;

output [4:0] Bit, Bitlnv;

wire [4:0] BitDecode, Bitlnput;

wire [39:0] Line;

// Memory elements to store the current state

PosEdgeTrigLatch BitZero (Clock, Bitlnput[0], Bit[0], Bitlnv[0]);

PosEdgeTrigLatch BitOne (Clock, Bitlnput[1], Bit[1], Bitlnv[1]);

PosEdgeTrigLatch BitTwo (Clock, BitInput[2], Bit[2], Bitlnv[2]);

PosEdgeTrigLatch BitThrec (Clock, Bitlnput[3], Bit[3], Bitlnv[3]);

PosEdgeTrigLatch BitFour (Clock, Bitlnput[4], Bit[4], Bitlnv[4]);

// Decode logic for bit 0

ThreeinputNANDGate Gateo (Bit[3], Bit[2], Bitlnv[1], Line[0]);

110

ThreelnputNANDGate Gatel (Bit[4], Bit[3], Bit[2], Line[1]);

ThreelnputNANDGate Gate2 (Bit[4], Bitlnv[1], Bit[0], Linc[2]);

ThreelnputNANDGate Gate3 (Bit[4J, Bit[3], Bitlnv[0], Linc[3]);

FourlnputNANDGate Gate4 (Bitlnv[4], Bit[3], Bitlnvf2], Bit[1],

Line[4]

FourlnputNANDGatc Gate5 (Bitlnv[4], Bitlnv[3], Bit[2f, Bit[1J,

Linc[5]

FourlnputNANDGate Gate6 (Bitlnvf3], Bitlnv[2], Bitlnv[1], Bit[0],

Line[6]

FivelnputNANDGate Gate7 (Bitlnv[3], Bitlnv[2], Bitlnv[1],

Bitlnv[O], NewCeBLow, Line/7]);

FivelnputNANDGate Gateg (Bit[4], Bitlnv[3], Bitlnv[1], Bitlnv[0],

NewCclIHigh, Line[8]

NinelnputNANDGate Gate9 (Line[0], Line[1], Line[2], Line[3],

Line[4], Line[9], Line[6], Line[7],

Line[S], BitDecode[0]);

ResetControl Reset0 (Clock, BitDecode[0], Bitlnput[0]);

// Decode logic for bit I

TwolnputNANDGate Gatel0 (Bit[1], BitlnvfO], Line[10]);

ThreelnputNANDGate Gatel I (Bitlnv[3], Bitlnv[2], Bit[0], Line[11]);

ThreelnputNANDGate Gate12 (Bit[4], Bitlnv[3], Bit[OJ, Line[12]);

FourlnputNANDGate Gate13 (Bitlnv[4], Bit[3], Bit[2J, Bit[0], Line[13]);

FourlnputNANDGate Gate14 (Bit[4J, Bitlnv[2], Bitlnv[1], Bit[0],

Line[14]

FivelnputNANDGate Gate 15 (Bit[4J, Bitlnv[2], Bit[1], Bit[OJ,

Latchget, Line[15]);

SixinputNANDGate Gate16 (Line[10], Line[11], Line[12J, Line[13],

Line[14], Line[15], BitDecode[1]);

ResctControl Resctl (Clock, BitDecode[l], Bitlnput[1]);

// Decode logic for bit 2

ThrcelnputNANDGatc Gate17 (Bitlnv[4], Bitlnv[3], Bit[2], Line[17]);

ThreelnputNANDGate Gate18 (Bitlnv[4], Bit[2], Bitlnv[1], Line[IS]);

ThreelnputNANDGate Gate19 (Bitlnv[4], Bit[2J, Bit[0], Line[19]);

ThreelnputNANDGate Gatc20 (Bitlnv[3], Bit[1], Bitlnv[0], Line f 20]);

ThreclnputNANDGate Gate21 (Bit[4], Bit[1], Bitlnv [OJ, Line[21]);

ThreelnputNANDGate Gate22 (Bit[4], Bit[3], Bit[2], Linc(22]);

ThreelnputNANDGate Gatc23 /lit[2], Bitlnv[1], Bit[OJ, Line[23]);

FivelnputNANDGate Gate24 (Bit[4J, Bitlnv[3], Bitlnv[1], Bitlnv[0],

NewCeIIHigh, Line[24]

FivelnputNANDGate Gate25 (Bit[4], Bitlnv[2], Bit[1], Bit[0],

LatchReset, Line(25]);

NinelnputNANDGate Gate26 (Linc[17], Line[18], Line[19], Linc[20],

Line[21], Line[22J, Line[23], Line[24],

Line[25], BitDecode[2J

ResetControl Reset2 (Clock, BitDecode[2], Bitlnput[2]);

// Decode logic for bit 3

TwolnputNANDGate Gate27 (Bitlnv[4], Bit[3J, Line[27]);

ThreelnputNANDGatc Gate28 (Bit[3], Bit[2], Bit[I J, Line[28]);

ThreelnputNANDGate Gate29 (Bit[3], Bit[I], Bitlnv[0], Line[29]);

ThreelnputNANDGate Gate30 (Bit[3], Bitlnv[IJ, Bit[0], Line[30]);

ThrcelnputNANDGate Gate31 (Bit[3], Bitlnv[2], Bitlnv[1], Line[31]);

FourlnputNANDGate Gate32 (Bitlnv[4], Bit[2], Bitlnv[1], Bitlnv[0],

Line[32J

FivclnputNANDGate Gate33 (Bit[4], Bitlnv[2], Bit[1], Bit[0], LatchSet,

Line[33J

SevenlnputNANDGate Gate34 (Line[27], Line[28], Line[29], Line[30],

Line[31], Line[32], Line[33], BitDecode[3]);

ResctControl Reset3 (Clock, BitDecode[3], Bitlnput[3]);

// Decode logic for bit 4

TwolnputNANDGate Gate35 (Bit[4], Bit[3], Line[35]):

ThreelnputNANDGate Gate36 (Bit[4], Bitlnv[1], Bit[0], Linc[36]);

FourlnputNANDGate Gate37 (Bit[3], Bitlnv[2], Bitlnv[1], Bitlnv[0],

Line[37]

FourlnputNANDGate Gate38 (Bit[4], Bitlnv[3], Bitlnv[0], NewCcllHigh,

Line[38]

FourlnputNANDGate Gate39 (Line[35J, Line[36], Line[37], Line[38J,

BitDecode[4]

ResetControl Resct4 (Clock, BitDecode[4], Bitlnput[4]);

endmodule

// Name: SequenceDetect

// Inputs: Clock - Signal on whose rising edge the state

machine must make a state change.

NewCcllLow - When high, indicates a new cell is coming

in wdth the first byte starting on l. he low

order bits of the input.

NewCettHigh - When lugh, indicates a new cell is coming

Latch Set

Late hRe set

in with the first byte starting on the high

order bits of the input.

— Output of the SR-Latch which, if high,

indicates there is new path data to be loaded

into the memory lookup module.

- The negated state of the LatchSet input.

//Output: PVRL

LLODG26

LLODG27

LHODG27

RAS

CAS

LowChokc

— Latch the rcsul ts of the read from thc

memory lookup module.

- Clear the new path information in the new

path registers gaby setting the SR-Latch

indicating the validity of thc data as

being false)

- Start the low-byte counter at 26

- Start the low-byte counter at 27

- Start the high-byte counter at 27

- Not applicable to "path-only" Analysis Mod.

- Row address select line on the memory

lookup module

- Column address select line on the memory

lookup module

- Read/Write control line on thc memory

lookup module

- Control line to the data gate that informs

113

it whether to transmit the low byte of the

data words exiting from the shift register

// HighChoke - Control line to the data gate that informs

it whether to transmit the high byte of the

data words exiting from the shiA register

// FourBDS [5:0] - Control lines to the four bit multiplexer

that shunt different portions of the

incoming data words from the Receiver

// FourBDL [5:0] - Latch control lines on the latches that store

the path information of the currently

transiting cell

// TwelveBDS [I:0] - Control lines to the twelve bit by four line

multiplexer that presents data from

various latch groups to the memory lookup

module

module SequenccDctect (Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,

LookupRes, FourBDS, FourBDL, TwelveBDS, PVRL, RSRL,

VVRL, RAS, CAS, W, LowChoke, HighChoke);

input Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,

LookupRes;

output PVRL, RSRL, VVRL, RAS, CAS, W;

output LowChoke, HighChoke;

output [I:0] TwelveBDS;

output [5:0] FourBDS, FourBDL;

wire LLODG26, LLODG27, LHODG27, Ground;

wire [th0] Bit, Bitlnv, LowByte, HighByte;

assign Ground = 0;

StateMachine Core (Clock, NewCeBLow, NewCellHigh, LatchSet,

LatchReset, Bit, Bitlnv

StateControl Signal (Bit, Bitlnv, NewCellLow, NewCeIIHigh, LookupRes,

FourBDS, FourBDL, TwelvcBDS, PVRL, RSRL,

114

LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W);

DownCounterWithPreset LowByteCounter

(Clock, LLODG26, LLODG27, LowByte[0], LowByte[l],

LowByte[2], LowBy7e[3], LowByte[4]);

DownCounterWithPreset HighByteCounter

(Clock, Ground, LHODG27, HighByte[0], HighByte[1],

HighByte[2], HighByte[3], HighByte[4]);

FivelnputNAND Gate LowByte Choke

(LowBytc[0], LowB&We[I], LowByte[2], LowByte[3J,

LowByte[4], LowChoke);

FivelnputNANDGate HighByteChoke

(HighByte[0], HighByte[l], HighByte[2], HighBySe[3],

HighByte[4J, HighChoke);

endmodule

// Let's bring the whole thing together

module NetworkSecurity;

wire

wire

wire

Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,

PVRL, RSRL, VVRL, RAS, CAS, W, LowChokc, HighChoke,

NewPathDataln, NewPathDataOut, LoadNewData, UnLoadNewData,

PathState;

[I:0] TwelveBDS;

[4:0] StateBit, StateBitlnv;

wire [5:0] FourBDS, FourBDL;

wire [11:0] RAMAddress;

wire [15:0] Dataln, ShiftOut, GateOut;

wire [23:0] NewPathAddressln, NewPathAddressOut, Latchln, LatchOut;

initial

begin

// generate our report

// $shm open;

// $shm~robc("AC");

//¹5000 $shm close;

¹5000 $finish;

// $monitor ($time„

// "SO='/ob Sl='/b ¹I='/od ¹2=9ad ¹3='rM ¹4=o/vd 0='/od"

// Se10, Sell, One, Two, Three, Four, Out);

cnd

ClockGen Timer (Clock);

NetworkReceiver Receive (Clock, NewCellLow, NewCellHigh, Dataln);

NetworkTransmitter Transmit (Clock, NewCellLow, NewCellHigh, GateOut);

ControlModule PathGcn (NewPathAddressln, NewPathDataln, LoadNewData,

LatchSet, LatchReset);

ShiftRegister Shifter (Clock, Dataln, ShiftOut);

EightBitDataGate LowGatc (ShiftOut[7:0], LowChokc, GateOut[7: 0]);

EightBitDataGate HighGate (ShiftOut[15:8], HighChokc, GateOut[15:8]);

SequenceDetect Control (Clock, NewCellLow, NewCcllHigh, LatchSet,

LatchReset, PathState, FourBDS, FourBDL,

TwelveBDS, PVRL, RSRL, VVRL, RAS, CAS, W,

LowChoke, HighChoke

NewPathStore NewPath (LoadNcwData, UnLoadNewData, NewPathAddressln,

NewPathDataln, LatchSet, LatchReset,

NewPathAddressOut, NewPathDataOut);

FourBitTwoLincSe)cctor Sl (Detain[11:8], Detain[3:0], FourBDS[0],

Latchln[23:20]

FourBitTwoLineSelcctor S2 (Dataln[7:4], Detain[15:12], FourBDS[1],

Latchin[19: IG]

FourBitTwoLineSelector S3 (Detain[3:0], Dataln[11:8], FourBDS[2],

Latcldn[15:12]

FourBitTwoLineSelector S4 (Dataln[15:12], Dataln[7:4], FourBDS[3],

Latchln[11: 8]

116

FourBitTwoLineSelector S5 (Dataln[l I:8], Dataln[3;0], FourBDS[4],

Latchln[7:4]

FourBitTwoLineSelector S6 (Dataln[7:4], Detain[15:12], FourBDS[5],

Latchln[3:0]

FourBitRcgister

FourBitRegister

FourBitRegister

FourBitRegister

FourBttRegi ster

FourBitRegister

Ll (FourBDL[0], Latchln[23:20], LatchOut[23:20]);

L2 (FourBDL [I], Latchln [19: 16], Laic hOut [19: 16]);

L3 (FourBDL[2], Latchln[15:12], LatchOut[15:12]);

L4 (FourBDL[3], Latchln[ll:8], LatchOut[11:8]);

L5 (FourBDL[4], Latchln[7:4], I atchOut[7:4]);

L6 (FourBDL[5], Latchln[3:0], LatchOut[3:0]);

TwelveBitFourLincSelector SM(LatchOut[23:12],

LatchOut[11:00],

NewPathAddressOut[23:12],

NewPathAddressOut[11:0],

TwelveBDS, RAMAddress);

DynamicRAM Lookup (RAMAddress, RAS, CAS, W, NewPathDataOut,

Path State

endmodule

117

APPENDIX B

"PATH AND VOLUME" ANALYSIS MODULE SIMULATION CODE

This appendix contains the Verilog hardware description language code necessary to implement a gate-level

simulation of the "path and volume" version of the Analysis Module. The Receivers, Transmiucrs and

memories involved in the design of thc network security device were simulated at the procedural level and the

Analysis Module was simulated at thc gate level.

All sub-module inputs and outputs are fu))y commented.

B. A Vertlog simulation

module Inverter (In, Out);

input In;

output Out;

rag Out;

always

¹I Out = -In;

endmodule

module TwolnputNANDGate (InOne, InTwo, Out);

input InOne, In Two;

output Out;

reg Out;

always

118

¹ I Out = -(InOnc k InTwo);

endmodule

module ThreeInputNANDGatc (InOne, InTwo, InThree, Out);

input InOne, InTwo, InThree;

output Out;

reg Out;

always

¹ I Out = -(InOne k In Two & In Three);

endmodulc

module FourlnputNANDGate (InOne, In Two, In Three, InFour, Out);

input InOne, In Two, In Three, InFour;

output Out;

reg Out;

always

¹ I Out = -(InOne k ln Two k In Three k InFour);

endmodule

module FivelnputNANDGate (InOnc, In Two, InTluee, InFour, InFive, Out);

input InOne, InTwo, InThree, InFour, InFive;

output Out;

119

reg Out;

always ¹I Out = -(InOne & InTwo & InThree & InFour &. InFive);

endmodule

module SixlnputNANDGate (InOne, ln Two, In Three, InFour, lnFive, InSix, Out);

input InOne, InTwo, In Three, InFour, InFive, InSix;

output Out;

reg Out;

always

¹I Out = -(InOnc & In Two & In Three & InFour &. InFive &. InSix);

endmodule

module SevenlnputNANDGate (InOne, InTwo, In Three, InFour, InFive, 1nSix,

InSeven, Out

input InOne, InTwo, InThree, InFour, InFive, InSix, InSeven;

output Out;

reg Out;

always

¹I Out = -(lnOne & InTwo & In Three &, InFour & InFive & lnSix & InSeven);

endmodule

120

module NinelnputNANDGate (InOne, InTwo, InThrce, lnFour, InFive, InSix,

InSeven, InEight, InNine, Out

input InOne, InTwo, lnThree, InFour, InFive, InSix, InSeven,

InEight, InNine;

output Out;

reg Out. ;

always

¹ I Out = -(lnOne k In Two k In Three k InFour k InFive k lnSix k InSeven &.

InEight & InNine

enthnodule

module TwolnputNORGate (InOne, InTwo, Out);

input InOne, fn Two;

output Out;

reg Out;

always

¹I Out = -(InOne
~
InTwo);

endmodule

module ThreelnputNORGate (InOnc, InTwo, InThree, Out);

input InOne, In Two, In Three;

output Out;

rag Out;

always ¹I Out = -(InOne
~
InTwo

~
InThree);

endmodulc

module FourlnputNORGate (InOnc, In Two, Iu Three, InFour, Out);

input lnOne, InTwo, InThrec, InFour;

output Out;

reg Out;

ahvays ¹I Out = -(InOnc
~
InTwo InThree

~
InFour);

endmodule

module FivelnputNORGate (InOne, In Two, In Three, InFour, InFive, Out);

input InOne, InTwo, lnThree, InFour, InFive;

output Out;

reg Out;

always ¹I Out = -(InOne
)
InTwo [InThree

~
InFour

~
InFive);

endmodule

module SixlnputNORGate (InOnc, InTwo, InThree, InFour, InFive, InSix, Out);

122

input InOne, InTwo, InThree, InFour, InFive, InSix;

output Out;

reg Out;

always

¹I Out = -(InOne
~
In Two

(
In Three

~
InFour

~
InFive

~
InSix);

endtuodule

module SevenlnputNORGate (InOne, InTwo, InThree, InFour,

InFive, InSix, InSeven, Out);

input InOne, lnTuo, InThree, InFour, InFive, InSix, InSeven;

output Out;

reg Out;

always

¹I Out = -(InOne
)
InTwo

~
InThree

~
InFour

~
InFive

~
InSix

~
InSeven);

endmodule

module SRLatch (Set, Reset, Out, InvertOut);

input Set, Reset;

output Out, InvertOut;

TwolnputNANDGate GateOne (Set, InvertOut, Out);

TwolnputNANDGate GateTwo (Reset, Out, InvertOut);

endmodule

123

module PosEdgeTrigLatch (Clock, Data, Out, InvertOut);

input Clock, Data;

output Out, Inveri Out;

wrre wl, w2, w3, w4;

TwolnputNANDGate GatcOne (w4, w2, w I);
TwolnputNANDGate GatcTwo (wl, Clock, w2);

TlueelnputNANDGate GateThree (w2, Clock, w4, w3);

TwolnputNANDGate GatcFour (w3, Data, w4);

TwolnputNANDGate GateFive (w2, InvertOut, Out);

TwolnputNANDGate GateSix (Out, w3, InvertOut);

endmodule

// Name: FourBitRegister

// Inputs: Data [3:0] - The data to be latched by the register on the

// Clock

next rising clock edge.

- The clocking signal which controls data latching.

// Outputs: Out [3:0] - The data latched on thc last rising clock edge.

module FourBitRegister (Clock, Data, Out);

input [3:0] Data;

input Clock;

output [3:0] Out;

wire [3:OJ Outlnv;

PosEdgeTrigLatch BitZero (Clock, Data[0], Out[OJ, Outlnv[0]);

PosEdgeTrigLatch BitOnc (Clock, Data[1], Out[1], Outlnv[1]);

PosEdgeTrigLatch BitTwo (Clock, Data[2], Out[2J, Outlnv[2]);

124

PosEdgeTrigLatch BitThree (Clock, Data[3], Out[3J, OutInv[3]);

endmodule

// Name EightBitRegister

// Inputs: Data [7:0J - The data tobe latched by the register on thc

// Clock

next rising clock edge.

- Thc clocking signal which controls data latching.

// Outputs: Out [7:0] - The data latched on the last rising clock edge.

module EightBitRegister (Clock, Data, Out);

input [7;0] Data;

input Clock;

output [7:0] Out, '

FourBitRegister LowNibble (Clock, Data[3:0], Out[3:0]);

FourBitRegister HighNibble (Clock, Data[7:4], Out[7:4J):

endmodule

// Name: SixteenBitRegister

// Inputs: Data [15:0] - The data to be latched by the register on the

// Clock

next rising clock edge.

- The clocking signal which controls data latching.

// Outputs: Out [15:OJ - The data latched on the last rising clock edge.

modtdc SixteenBitRegistcr (Clock, Data, Out);

input [15:0] Data;

125

input Clock;

output [15:0] Out;

EightBitRegister LowByte (Clock, Data[7:0], Out[7:0]);

EightBitRegister HighByte (Clock, Data[15:8], Out[15:8]);

cndmodule

// Name: ShiflRegister

// Inputs: Data [15:0] - The data to be latched by the shiA register on

// Clock

the next rising dock edge.

- The clocking signal which controls data latching.

// Outputs: Out [15:0] - The data latched on the rising clock edge twenty

seven clock cycles ago

// Outlnv [15:0] - The negation of the data latched on the rising

dock edge nine clock cycles ago.

module ShiARegister (Clock, Data, Out);

input [15:0] Data;

input Clock;

output F
15:0] Out;

wire [15:0] Ll, L2, L3, L4, L5, L6, L7, Lg;

SixteenBitRegistcr Stage0

SixteenBitRegister Stagel

SixteenBitRegistcr Stage2

SixteenBitRegister Stage3

SixteenBitRegister Stage4

SixteenBitRegister Stagc5

SixteenBitRegister Stage6

SixteenBitRegister Stage7

(Clock, Data, Ll);

(Clock, L I, L2);

(Clock, L2, L3);

(Clock, L3, L4);

(Clock, L4, L5);

(Clock, L5, L6);

(Clock, L6, L7)',

(Clock, L7, Lg);

126

SixtcenBitRegtster Stagcg (Clock, L8, Out);

endmodule

// Name; DataGate

// Inputs: In

// Select.

- Data input.

— If high, the bit value at "In" will be reflecte

at "Out". Otherwise, "Out" will reflect aero.

// Outputs: Out - Reflect "In" if Select is low, otherwise low

regardless of thc state of "In".

module DataGate (In, Select, Out);

input In, Select;

output Out;

wire Outlnvert;

TwolnputNANDGate Gate (In, Select, Outlnvert);

Inverter Invert (OutInvert, Out);

endmodule

// Name: CounterGate

// Inputs: InUp

// InDown

// InSame

// Incr

// Deer

- Data input to count up

- Data input to count down

- Data input to remain in same state

- If high, we must count up on next transition

- If high, we must count down on next transition

// Outputs: Out - Reflect the value to be loaded for the next

127

transition

module CounterGate (InUp, InDown, InSame, Incr, Deer, Out);

input InUp, InDown, InSame, Incr, Deer;

output Out;

wire Incrlnv, Decrlnv;

wire [3:0] Line;

// Provide the inverted logic controls

Invcrter

Invcrter

Gate0 (Incr, Incrlnv);

Gatel gkcr, DecrInv);

// Implement the data gate

ThreelnputNANDGate Gate2 (Incrlnv, Decrlnv, InSame, Line[0]);

ThrcclnputNANDGate Gate3 (Incr, Deer, InSame, Line[1]);

ThreelnputNANDGate Gate4 (Incrlnv, Deer, InDown, Line[2]);

ThreelnputNANDGate Gate5 (Incr, Decrlnv, InUp, Line[3]);

FourlnputNANDGate Gatco (Line[0], Line[1], Line[2], Line[3], Out);

endmodule

// Name: BitEqualTest

// Inputs: InZero - First data input

// InZerolnv - Negation of first data input

// InOne - Second data input

// InOnelnv - Negation of second data input

// Outputs: Result - Result of equality test

module BitEqualTest {InZcro, InZerolnv, InOnc, InOnelnv, Result);

input InZero, InZerolnv, InOne, InOnelnv;

128

output Result;

wire [I:0] Line;

TwolnputNANDGate Gate0 (InZerolnv, InOnelnv, Line[0]);

TwolnputNANDGate Gatel (lnZero, InOne, Line[1]);

TwolnputNANDGate Gate2 (Line[0], Line[1], Result);

endmodule

// Name: ThreeBitDataGate

// Inputs: In [2:0] - Data input.

// Select - If asserted high, the bit values at "In" will be

reflected at "Out". Otherwise, "Out" will

reflect all zeroes.

// Outputs: Out [2:0] - Reflect "In" if Select is high, otherwise just

set all bits to low.

module ThreeBitDataGate (In, Select, Out);

input [2:0] In;

input Select;

output [2:0] Out;

DataGate Bit0 (In[0], Seleci, Out[0]);

DataGate Bitl (In[1], Select, Out[1]);

DataGate Bit2 (In[2], Select, Out[2]);

endmodule

// Name: FourBitDataGate

129

//Inputs: In

// Select

[3:0] - Data input.

— If asserted high, the bit values at "In" will bc

reflected at "Oug'. Otherwise, "Out" will

reflect all zeroes.

// Outputs: Out [3:0] - Reflect "In" if Select is high, otherwise just

set all bits to low.

module FourBitDataGate (In, Select, Out);

input [3:0] In;

input Select;

output [3:0] Out;

DataGate Bit0 (In[0], Select, Out[0]);

DataGate Bit I (In[1], Select, Out[I]);

DataGate Bit2 (In[2], Select, Out[2]);

DataGate Bit3 (In[3], Select, Out[3]);

endmodule

// Name: EightBitDataGate

// Inputs: In[7;0] - Data input.

// Select — If asserted high, the bit values at "In" will bc

reflected at "Out". Otherwise, "Out" will

reflect all zeroes.

// Outputs: Out[7:0] — Reflect "In" if Select is high, otherwise just

go low on all bits.

module EightBitDataGate (In, Select, Out);

input [7:0] In;

input Select;

130

output [7:OJ Out;

FourBitDataGate LowNibble (In[3;0], Select, Out[3:0]);

FourBitDataGate HighNibble (In[7:4J, Select, Out[7:4]);

endmodule

// Name: TwoLineSelector

//Inputs: In[1:0]

// Select

- Two bits of data input

- Input that must be asserted in order to control

which of the two bits of input will be reflected

at the output.

// Selectlnv - Input which is the inverse of "Select"

// Outputs: Out - Reflect the value at "In[I]" il "Select" is

high and "Selectlnv" is low. Reflect the value

at "In[0]" if "Select" is low and "Selectlnv" is

high. Behavior is unpredictable otherwise.

module TwoLineSelector (In, Select, SelectInv, Out);

input [I:0] In;

input

output

Select, SelectInv;

Out;

wire [I:0] Con;

TwolnputNANDGate GateZero (In[0], Selectlnv, Con[0]);

TwolnputNANDGate GateOne (In[1], Select, Con[I]),

TwoInputNANDGate GateTwo (Con[0], Con[1], Out);

cndmodule

131

// Name: FourBitTwoLincSelector

// Inputs: InZero [3:0] - The flrst input line

// luOne [3:0] - The second input line

// Select - Input that must be asserted in order to control

wluch of thc two nibbles of input vill bc

reflected at the output nibble.

// Outputs: Out

//

[3:0] - Reflect the nibble at "InOne" if "Sclcct" is

high. Otherwise, rellect the nibble at "In Two".

module FourBitTwoLineSelector (InZero, InOne, Select, Out);

input [3:0] InZcro, InOne;

input Select;

output [3:0] Out;

wire Selectlnv;

wire [7:0] Input;

assign Input[OJ = InZero[0], Input[1] = InOne[0],

Input[2] = InZero[1], Input[3] = InOne[1],

Input[4] = InZero[2], Input[5] = InOne[2J,

Input[6] = InZcro[3], Input[7] = InOne[3J;

Inverter Invert (Select, Selectlnv);

TwoLineSelector Select0 (Input[1:0], Select, Selectlnv, Out[0]);

TwoLineSelector Selectl (Input[3:2], Select, Selectlnv, Out[1]):

TwoLineSelector Select2 (Input[5:4], Select, Selectlnv, Out[2]);

TwoLineSctector Select3 (Input[7:6], Select, Selectlnv, Out[3]);

endmodule

132

// Name: FourLineSelector

// Inputs: In[3:0] - Four bits of data input

// Select. [l:0] — Inputs that must be asserted in order to control

which of the four bits of input will be

reflected at the outpun

// Selectlnv[1:0] - Input which is thc inverse of "Select[1:0]" on

all bits.

// Outputs: Out — Depending on the state of the "Select" inputs,

this signal will reflect thc state of one of the

bits at the "In" input, according to the table

below. Behavior is unpredictable for conditions

not covered in the table.

Sel[OJ Sellnv[0] Sel[l] Sellnv[lj
~

Out

Low High Low High
~

In[OJ

Low High High Low
~
In[I]

High Low Low High
~
In[2]

High Low High Low
J In[3J

module FourLineSelector (In, Sclcct, Selectlnv, Out);

input [3:0] In;

input [I:0] Select, Selectlnv;

output Out;

wire]3:OJ Con;

ThreelnputNANDGate GateZero (In[OJ, Selectlnv[0], Selectlnv[1], Con[0]);

ThreelnputNANDGate GateOne (In[1 J, Selectlnv[0], Select[1], Con[1]);

ThreelnputNANDGate GateTwo (In[2], Sclcct[0], Selectlnv[1], Con[2]);

ThreelnputNANDGatc GateThree (In[3], Select[0], Select[1], Con[3]);

FourlnputNANDGate GateFour (Con[0], Con[I], Con[2], Con[3], Out);

133

endmodule

// Name: TwclveBitFourLineSelector

// Inputs: InZero [11:0] - The first input. line

// InOne [11:0] — The second input line

// InTwo [11:0] — The third input line

// In Three [11:0] - The fourth input line

// Select [I:0] - Controls whose state govern which of the four

inputs will be reflected at the output.

reflccted at the output.

// Outputs: Out [11:0] - Depending on the state of the "Select" inputs,

this signal will reflect the state of the twelve

bits at one of the four inputs. Behavior is

unpredictable for conditions not covered in the

table.

Selcct0 Selectl [Out

Low Low
~

InZero

Low High
~

InOne

High Low
~

In Two

High High
~

InThree

module TwelveBitFourLineSelector (InZero, InOne, InTwo, lnThree, Select, Out);

input [11;0] lnZero, InOne, InTwo, lnThree;

input [1:0] Select;

output [11:0] Out;

wire [I:0] Selectlnv;

wire [47:0] Input;

assign Input[0] = InZero[0], Input[I] = InOne[0],

Input[2] = InTwo[0], Input[3] = InThree[0],

134

Input[4] = lnZero[1], Input[5] = InOne[1],

Input[6] =InTwo[1], Input[7] =InThree[1],

Inputf8] = InZcro[2], Input[9] =InOne[2J,

Input[10] =

Input[12] =

In Two[2],

InZero[3],

Input[11] = InThree[2],

Input[13] = InOne[3],

Input[14] = InTwo[3], Input[15] = InTluee[3],

Input[16] = InZero[4], Input[17] = InOne[4],

Input[18] = InTwo[4], Input[19] = InThree[4],

Input[20] = InZero[5J, input[21] = InOne[5],

input[22] = InTwo[5], Input[23] = InThree[5],

input[24] = InZero[6], Input[25] = InOne[6],

Input[26] = InTwo[6], Input[27J = InThree[6],

Input[28] = InZero[7], input[29] = InOne[7],

Input[30] =

Input[32] =

Input[34] =

Input[36] =

Input[38] =

Input[40] =

Input f42] =

Input[44J =

Input[46] =

In Two[7]

InZero[8]

InTwo[8]

InZero [9],

In Two[9],

InZero [10]

In Two[10]

InZero[11]

lnTwo[11]

Input[31] = lnThree[7],

Input[33] = InOne[8],

Input[35] = InThree[8],

Input[37J = lnOne[9],

Input[39J = lnThree[9],

Input[41J = InOne[10],

Input[43] = In Three[10],

Input[45] = lnOne[11],

Input[47] = InThree[11];

Invcrter Invert0 (Select[0], Selectlnv[0]);

Invcrter Invert I (Sclcct[1], Selectlnv[l]);

FourLineSelector Select0 (input[3:0], Select, Selectlnv, Out[0]);

FourLineSelector Selectl (Input[7:4], Select, Selectlnv, Out[1]);

FourLincSelector Select2 (Input[11:8], Select, Selectlnv, Out[2]);

FourLincSelector Select3 (Input[15:12], Select, Selectlnv, Out[3]);

FourLineSelector Select4 (Input[19:16], Select, Selectlnv, Out[4]);

FourLineSclcctor Select5 (Input[23:20], Select, Selectlnv, Out[5]);

FourLineSclector Select6 (Input[27;24], Select, Selectlnv, Out[6]),

FourLineSelcctor Select7 (Input[31:28], Select, Selectlnv, Out[7]);

FourLineSelector Select8 (input[35:32], Select, Selectlnv, Out[8]);

135

FourLineSelcctor Select9 (Input[39:36], Select, Selectlnv, Out[9]);

FourLineSelector Select10 (Input[4'3:40J, Select, Selectlnv, Out[10]);

FourLincSclector Selectl I (Input[47:44], Select, Selectlnv, Out[11]);

endmodule

// Name: ThrecBySevenDemux

// Inputs: In [2:0] - Input lines to be demultiplexed (all zero bits

state is not decoded)

// Outputs: Out [6:0] - Output lines to be asserted based on the state

of the input lines

module ThreeBySevenDemux (In, Out);

input [2:0] In;

output [6:0] Out;

wire [2:0] Inlnv;

wire [6:0] Outlnv;

Inverter Gate0 (In[0], Inlnv[OJ);

Inverter Gate 1 (In[1], Inlnv[1]);

Inverter Gate2 (In[2], Inlnv[2]);

ThreelnputNANDGate Gate3 (Inlnv[0], Inlnv[1], In[2], Outlnv[0]);

ThreelnputNANDGate Gate4 (Inlnv[0], in[1], Inlnv[2], Outlnv[1]);

ThreelnputNANDGate Gate5 (Inlnv[OJ, In[1], In[2], Outlnv[2]);

ThreelnputNANDGate Gate6 (In[0], Inlnv[IJ, lnlnv[2], Outlnv[3]);

ThreelnputNANDGate Gate7 (In[0], Inlnv[1 J, In[2], Outlnv[4]);

ThreelnputNANDGate Gate8 (In[0], In[1], Inlnv[2], Outlnv[5]);

ThreelnputNANDGate Gate9 (In[0], In[i], In[2], Outlnv[6]);

Invetter Gate 1 0 (Outlnv[0], Out[0]);

Inverter Gate I I (Outlnv[1], Out[1]);

Invertcr Gate12 (Outlnv[2], Out[2]);

136

Inverter Gate13 (Outlnv[3], Out[3]);

Inverter Gate14 (Outlnv[4], Out[4]);

Inverter Gate15 (Outlnv[S], Out[5]);

Inverter Gate16 (Outlnv[6], Out[6]);

endmodule

// Name: ClockGen

// Inputs: None.

// Outputs: Clock - Square wave that cycles up and down every 13 nsec

thereby producing a signal with a period of

26 nscc.

module ClockGen (Clock);

output Clock;

reg Clock;

initial

Clock = I;

always

begin

¹13 Clock = 0;

¹13 Clock = I;

end

endmodule

// Name: NewpathStore - Simulates the storage elements that accept and

hold data about a new path to bc loaded into

137

the memory lookup module by the sequence /

detect module at the appropriate time

// Inputs: Load - The Set input on the SR latch indicating

whether the unit still contains new data

// UnLoad - The Reset input on the SR latch indicating

whether the unit still contains new data

// Dataln - Input indicating how thc new path is to be

validated or invalidated

// Addressln [23:0]- The input for the new path which is to be

validated or invalidated

// Outputs: Full - The Q output on the SR latch which, if high,

indicates the unit contains new data.

// Empty - The Q' output on the SR latch which, if high,

indicates the unit does not contain ncw data.

// DataOut - Output indicating whether the ncw path

currently stored is to be validated or

invalidated

// AddrcssOut[23:0]- The output of the new path which is to be

validated or invalidated

module NewPathg tore (Load, UnLoad, Addressln, Detain,

Full, Empty, AddressOut, DataOut);

input Load, UnLoad;

input [6:0] Detain;

input [23:0] Addressln;

output Full, Empty;

output [6:0] DataOut;

output [23:0] AddrcssOut;

wire [6:0] DataOutlnv;

EightBitRegister Low (Load, Addressln[7:0), AddressOut[7:0]);

EightBitRegister Middle (Load, Addressln[15: 8], AddressOut[15: 8]);

138

EightBitRegister High (Load, Addressln[23:16], AddressOut[23: 16]);

PosEdgeTrigLatch Dat0 (Load, Dataln[0], DataOut[0], DataOutlnv[OJ);

PosEdgeTrigLatch Datl (Load, Dataln[1], DataOut[l], DataOutlnv[1J);

PosEdgeTrigLatch Dat2 (Load, Dataln[2], DataOut[2], DataOutlnv[2]);

PosEdgeTrigLatch Dat3 (Load, Detain[3], DataOut[3], DataOutlnv[3J);

PosEdgeTrigLatch Dat4 (Load, Dataln[4], DataOut[4], DataOutlnv[4]);

PosEdgeTrigLatch Dat5 (Load, Detain[5], DataOut[5], DataOutlnv[5]);

PosEdgeTrigLatch Dat6 (Load, Detain[6], DataOut[6], DataOutlnv[6]);

SRLatch Status (Load, UnLoad, Full, Empty);

cndmodule

// Name: DynamicRAM - Simulates a Texas Instruments SMJ416100-70

dynamic random access memory

// Inputs: Address [11:0] - DRAM address lines

// RAS - Row address select

// CAS - Column address select

// W - Read/Write select

// D - Data input on memory writes

// Outputs: Q - Data output on memory reads

module DyrmmicRAM (Address, RAS, CAS, W, D, Q);

input [11:0] Address;

input RAS, CAS, W, D;

output Q;

rcg [11:0] Row, Column;

reg Q, Dataln;

initial

always

begin

wait (! RAS)

Row = Address;

wait (! CAS)

Column = Address;

if (W == 0)

begin

// we are per!arming a write cycle

Dataln = D;

wait (CAS)

Q= 13)z;

end

else

begin

// we are performing a read cycle

// for this simulation just present the low bit of thc address

//18 Q = Address[0];

wait (CAS)

Q = 1'bz;

cnd

endmodule

// Name: NetworkReceiver

// Inputs: Clock - Clock on whose negative edge to present

// Outputs: Out [1fc0] - Present data produced by the receiver.

// NewCellEven — Asserted when the starting byte of the cell

currently being transmitted was presented on

the high-order byte of the output.

// NewCellOdd - Asserted when the starling byte of the cell

140

currendy being transmitted was presented on

the low-order byte of the output.

module Network(receiver (Clock, NewCellLow, NewCellHigh, Out);

input Clock;

output [15:OJ Out;

output NewCcllLow, NewCellHigh;

reg [15:0] Out, Tmnp;

reg NewCellLow, NewCellHigh;

initial

begin

@ (negedge Clock) Out[15:8] = 8'b00000000;

Out[7:OJ = 8'b00000001;

NewCellLow = 0;

NewCellHigh = 0;

end

always

begin

Pa1 (negcdge Clock) Temp[15. 8] = Out[15:8] + 2;

Temp[7:0] = Out[7:0] + 2;

if (Temp[15:8] & 52)

begin

Temp[15-8] = Temp[15:8] - 53;

if(Temp[15-8] == 0) NewCellLow = 1,

cnd

else

NewCellLow = 0;

if(Temp[7:0] & 52)

begin

Temp[7;OJ = Temp[7:0] -53;

if (Temp[7:0] == 0) NewCellHigh = I,

end

else

NewCellHigh = 0;

end

Out[15:0] = Temp[15:0];

endmodule

// Name: NetworkTransmi tier

// Inputs: Data [15;0] - The data to bc transmitted out onto the

network.

// NewCellEven - Asserted when the starting byte of the cell

currently being transmitted was presented on

the high-order byte of the input.

// NewCellOdd - Asserted when thc starting byte of the cell

currently betng transmincd was presented on

the low-order byte of the input.

module NetworkTransmitter(Clock, NewCeliEvcn, NewCellOdd, Data);

input Clock, NewCellEven, NewCeIIOdd;

input [15:0] Data;

endmodule

module I(esetControl (Clock, Input, Output);

input Clock, Input;

output Output;

reg Output;

142

initial

begin

Output = 0;

¹26 Output = Input;

// r¹(negedge Clock) Output = Input;

Clld

always

Output = Input;

endmodule

// Name: Con trolModule

//Inputs: LatchSet

// LatchRcset

- If high, indicates that the new path storage

module still contains new data.

- If high, indicates that the new path storage

module has been clcarcd of new data.

// Output: SetLatch

// Data

// Address

— If high, indicates that new data has been

presented and should be latched.

- If high, indicates that thc new path

being modified is to be a valid path.

Olhenvise, the new path is to be an invalid

one.

- Indicates the VPVVCI pair of the path whose

status is to be modified.

module ControlModule (Address, Data, SetLatch, LatchSet, LatchReset);

input LatchSet, LatchReset;

output SetLatch;

output [6:0] Data;

output [23:0] Address;

143

reg SetLatch;

reg [6:0] Data;

reg [23:0] Address;

initial

SetLatch = 0, Data = 0; Address = 0;

end

always

begin

¹1 if (LatchSet == 0)

begin

Address = Address + 1;

// For the purposes of this simulation, assign the lower

// ihree bits of the address to point to the wdndow

// control module and let thc next four higher order bits

// bc the value the gets loaded into the window control

// module's trigger register

Data[0] = Address[0];

Data[1] = Address[1];

Data[2] = Address[2];

Data[3] = Address[3];

Data[4] = Address[4];

Data[5] = Address[5];

Data[6] = Address[6];

¹1 SetLatch = 1;

¹1 SetLatch = 0;

end

enthnodule

// Name: DovtmCounterWithpreset (this counter does not roll over)

144

// Inputs: Clock

// Set26

// Set27

- Signal on whose positive edge, the counter

must change state

- If high on a rising edge of "Clock", then

it forces the next state of the counter to

bc 26 transitions away from zero.

- If high on a rising edge of "Clock", then

it forces the next state of the counter to

be 27 transitions away from zero.

//Output: BitO. . 4 - Individual lines of the output of the five

! atches that store the current state of the

counter. BitO refers to the lowest order

bit and Bit4 to the highest order bit.

module DownCounter Withpresct (Clock, Set26, Set27,

Bit0, Bitl, Bit2, Bit3, Bit4);

input Clock, Set26, Set27;

output Bit0, Bitl, Bit2, Bit3, Bit4;

wire BitOlnput, Biillnput, Bit21nput, Bit31nput, Bit41nput;

wire Set261nv, Set271nv;

wire [22:0] Line;

// Memory elements to store the current state

PosEdgeTrigLatch BitZero (Clock, Bitolnput, BitO, BitOInv). ,

PosEdgeTrighatch BitOne (Clock, Bitllnput, Bitl, Bitllnv);

PosEdgeTrigLatch BitTwo (Clock, Bit21nput, Bit2, Bit21nv);

PosEdgeTngLatch BitThree (Clock, Bit31nput, Bit3, Bit31nv);

PosEdgeTrigLatch BitFour (Clock, Bit41nput, Bit4, Bit41nv);

// Prepare inputs

Invcrter

Invcrter

Gate0 (Set26, Set261nv);

Gate I (Sct27, Set271nv);

// Decode logic for bit 0

145

TwolnputNORGate Gatc2 (BitOInv, Set27, Line[2[);

TwolnputNORGate Gate3 (Set261nv, Set27, Line[3J);

SixlnputNORGate Gatc4 (Bit0, Bitl, Bit2, Bit3, Bit4, Set27,

Line [4J

ThreelnputNORGate Gate5 (Line[2], Line[3], Line[4], Bit0 input);

// Docode logic for bit I

FourlnputNORGate Gate6 (Bito, Bit 1lnv, Set26, Set27, Line[6]);

FourlnputNORGate Gate7 (Bitulnv, Bit I, Set26, Set27, Line[7]);

SevenlnputNORGate GateS (Bit0, Bitl, Bit2, Bit3, Bit4, Set26, Set27,

Line[8]

ThreelnputNORGate Gate9 (Line[6J, Line[7], Line[8], Bitllnput);

// Decode logic for bit 2

TwolnputNORGate Gate10 (Bitllnv, Bit2, Line[10]);

TwolnputNORGate Gatel I (Bit01nv, Bit2, Line[11]);

ThreelnputNORGate Gate12 (Bit0, Bit 1, Bit21nv, Line[12]);

FivelnputNORGatc Gate13 (Bit0, Bit 1, Bit2, Bit3, Bit4, Line[13]);

SixlnputNORGatc Gate14 (Line[10], Line[I 1], Line[12], Line[13],

Set26, Set27, Bit21nput);

// Decode logic for bit 3

FourlnputNORGate Gate15 (Bit21nv, Bit3, Set26, Set27, Line[15]);

FourlnputNORGate Gate16 (Bit 1lnv, Bit3, Set26, Set27, Line[16]);

FourlnputNORGate Gate17 (BitOInv, Bit3, Set26, Set27, Line[17]);

SixlnputNORGate Gate18 (Bit0, Bitl, Bit2, Bit31nv, Set26, Set27,

Line[18]

ScvenlnputNORGate Gate19 (Bit0, Bit 1, Bit2, Bn3, Bit4, Set26, Set27,

Line [19J

FivelnputNORGate Gate20 (Line[15], Line[16], Line/17], Line[18J,

Line[19J, Bit3lnput

// Decode logic for bit 4

ThreelnputNORGate Gate21 (Bit4, Set26, Set27, Line[21]);

SixlnputNORGate Gate22 (Bit0, Bitl, Bit2, Bit3, Set26, Set27,

Line[22]

146

TwolnputNORGate Gate23 (Line[2)], Line[22], Bit4lnput);

endmodule

// Name. StateControl

// Inputs: NewCcllLow - When tugh, indicates a new cell is coming

in with the first byte starting on the low

order bits of the input.

NewCellHigh - When high, indicates a new cell is coming

in with the first byte starting on the high

order bits of the input.

LookupRes - Result of the path lookup.

Bit [4:0] - The state of the five bits which define the

Bitlnv [4

current state of the state machine for which

the control lines must be decoded.

0] - The negated state of the five bits specified

by the "Bit" input.

//Output: PVRL

RSRL

LLODG26

LLODG27

LHODG27

CAS

- Latch thc results of the read from the

memory lookup module.

Clear the new path information in the new

path registers (by setting the SR-Latch

indicating the validity of the data as

being false)

— Start the low-hyle counter at 26

- Start the low-byte counter at 27

— Start the high-byte counter at 27

- Not applicable to "path-only" Analysis Mod.

- Row address select line on the memory

lookup module

- Column address select line on the memory

lookup module

- Read/Write control line on the memory

lookup module

147

// FourBDS [5:0] - Control lines to the four bit multiplexer

that shunt different portions of the

incoming data words from the Receiver

// FourBDL [5:0] - Latch control lines on the latches that store

the path information of the currently

transiting cell

// TwelveBDS [I:0] - Control lines to the twelve bit by four line

multiplexer that presents data from

various latch groups to the memory lookup

module

module StateControl (Bit, Bitlnv, NewCellLow, NewCellHigh, LookupRes,

FourBDS, FourBDL, TwelveBDS, PVRL, RSRL,

LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W), '

input NewCcllLow, NewCellHigh, LookupRcs;

input [4:0] Bit, Bitlnv,

output PVRL, RSRL, LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W;

output [5:0] FourBDS, FourBDL;

output [1:0] TwelveBDS;

wire LowStart, HighStart;

wire [4:0] Stage;

urire [28:0] Line;

assign FourBDL[0] = Stage[1], FourBDL[l] = Stage[2],

FourBDL[2] = Stage[2], FourBDL[3] = Stage[3],

FourBDL[4] = Stage[3], FourBDL[5] = Stage[4],

TwelveBDS[0] = Bitlnv[2], TwelveBDS[1] = Bit[4],

LLODG26 = LowStart, LHODG27 = LowStart,

LLODG27 = HighStart;

// Logic for PVRL

FivelnputNANDGate Gate0 (Bitlnv[4], Bitlnv[3], Bit[2], Bitlnv[1],

Btt[0], Line[0]

Invcrter Gate 1 (Line[0], PVRL);

148

//Logic for RSRL

FivelnputNANDGate Gate2 (Bit[4], Bit[3], Bit[2], Bitlnv[1], Bit[0],

Line[2]

Inverter Gate3 (Line[2], RSRL);

// Logic for LxODG2x

SeveninputNANDGate Gate4 (Bitlnv[4J, Bit[3], Bit[2], Bitlnv[1],

Bitlnv[0], LookupRes, NewCellLow, Line[4]);

SevenlnputNANDGatc Gate5 (Bitlnv[4], Bit[3], Bit[2], Bitlnv[1],

Bitlnv[0], LookupRes, NewCellHigh, Line[5]);

Inverter

Inverter

Gate6 (Line[4], LowStart);

Gate7 (Line[5], HighStart);

// Logic for VVRL

FivelnputNANDGate Gate8 (Bitlnv[4], Bitlnv[3], Bit[2], Bitlnv[1],

Inverter

Bitlnv[0], Linc[8]

Gate9 (Line[8], VVRL);

// Logic for RAS

TwolnputNANDGate Gate10 (Bit [4J, Bitlnv[3], Line[10]);

TwolnputNANDGate Gate I I (Bitlnv[2], Bit[0], Line[11]);

ThreelnputNANDGate Gate12 (Bit[4], Bit[2], Bitlnv[1], Line[12]);

ThreelnputNANDGate Gate13 (Bit[3J, Bitlnv[1], Bit[0], Line[13]);

ThreelnputNANDGate Gate14 (Bitlnv[4], Bitlnv[1], Bitlnv[0], Line[14]);

FivelnputNANDGate Gatel5 (Line[10], Linc[11], Line[12], Line[13],

Line[14], RAS

// Logic for CAS

TwolnputNANDGate Gate16 (Bitlnv[3], Bitlnv[2], Line[16]);

ThreelnputNANDGate Gate17 (Bitlnv[3], Bit[1], Bitlnv[0], Line[17]);

FourlnputNANDGate Gate18 (Bit[4], Bit[3], Bit[I J, Bitlnv[0], Line[18]);

FourlnputNANDGate Gate19 (Bit[4], Bit[3], Bitlnv[1], Bit[0], Line[19]),

FourlnputNANDGate Gate20 (Bit[4], Bit[3], Bitlnv[2], Bit[1], Line[20]);

FivelnputNANDGate Gate21 (Line[16], Line[17], Line[18], Line[19],

Line[20], CAS);

149

// Logic for W

FivelnputNANDGatc Gate22 (Bit[4], Bn[3], Bit[2], Bit[1], Bit[0], W);

// Logic for 4BDL

FivelnputNANDGate Gate23 (Bitlnv[4], Bitlnv[3], Bitlnv[2], Bitlnv[I J,

Bit[0], Line[23]

FivclnputNANDGatc Gate24 (Bit[4], Bitlnv[3], Bit[2], BitInv[1],

Bitlnv[0], Line[24]

FivelnputNANDGate Gate25 (Bit[4], Bitlnv[3], Bit[2J, Bitlnv[1],

Bit[0], Line[25]

FivelnputNANDGate Gate26 (Bitlnv[4], BitInv[3], Bitlnv[2], Bit[1],

Bit[0], Line[26J

FivelnputNANDGate Gate27 (Bit[4], Bitlnv[3], Bit[2], Bit[1], Bit[0],

Line[27]

TwolnputNANDGate Gate28 (Line[23], Line[24], Stage[1]);

TwolnputNANDGate Gate29 (Line[23], Line[25], Stage[2J);

TwolnputNANDGate Gate30 (Linc[26], Line[25], Stage[3]);

TwolnputNANDGate Gate31 (Linc[26], Line[27], Stage[4]);

// No logic block necessary for 12BDS[B, S]

endmodule

// Name: StateMachine

// Inputs: Clock - Signal on whose rising edge the state

machine must make a state change

// NewCellLow - When high, indicates a new cell is coming

in with the first byte starting on the low

order bits of the input.

// NewCellHigh - When high, indicates a new cell is coming

in with the first byte starting on the high

order bits of the input.

// LatchSet - Output of the SR-Latch which, if high,

indicates thcrc is new path data to be loaded

150

into the memory lookup module.

// LatcltReset - The negated state of the LatchSet input.

// Output: Bit [4:0] - The state of the five bits which define the

current state of thc state machine.

// Bitlnv [4:0] — The negated state of the five bits specified

by the "Bit" input.

module StateMachine (Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,

Bit, Bitlnv

input Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset;

output [4:0] Bit, Bitlnv;

wire [4:0] BitDecodc, Bitlnput;

wire [39:0] Line;

// Memory elements to store the current state

PosEdgeTrigLatch BitZero (Clock, Bitlnput[0], Bit[0], Bitlnv[0]);

PosEdgcTrigLatch BitOnc (Clock, Bitlnput[1], Bit[1J, Bitlnv[1]);

PosEdgcTrigLatch BitTwo (Clock, Bitlnput[2], Bit[2], Bitlnv[2]);

PosEdgcTrigLatch BitThrce (Clock, Bitlnput[3], Bit[3], Bitlnv[3]);

PosEdgeTrigLatch BitFour (Clock, Bitlnput[4], Bit[4], Bitlnv[4]);

// Decode logic for bit 0

ThreelnputNANDGate Gate0

ThreelnputNANDGate Gate 1

ThreelnputNANDGate Gate2

ThreelnputNANDGate Gate3

FourlnputN AND Gate Gate 4

Line[4]

(Bit[3], Bit[2], Bitlnv[1], Linc[0]);

(Bit[4], Bit[3], Bit[2], Linc[1]);

(Bit[4], Bitlnv[1], Bit[0], Line(2]);

(Bit[4], Bit[3], Bitlnv[0], Line[3]);

(Bitlnv[4], Bit[3], Bitlnv[2], Bit[I J,

FourlnputNANDGate Gate5 (Bitlnv[4J, Bitlnv[3], Bit[2], Bit[1],

Line[5]

FourlnputNANDGatc Gate6 (Bitlnv[3], Bitlnv[2], Bitlnv[l], Bit[0],

Linc[6]

151

FivelnputNANDGate Gate7 (Bitlnv[3], Bidnv[2], Bitlnv[1], Bitlnv[0],

NcwCellLow, Line[7]);

FivelnputNANDGate Gate8 (Bit[4], Bitlnv[3], Bitlnv[1], Bitlnv[0],

NewCellHigh, Line[8]);

NinelnputNANDGate Gatc9 (Line[0], Line[1], Line[2], Line[3[,

Line[4], Line[9], Line[6], Line[7],

Line[SJ, BitDecode[0]);

ResetControl ResetO (Clock, BitDecode[0], Bitlnput[0]);

// Decode logic for bit I

TwolnputNANDGate Gate10 (Bit[1], Bitlnv[0], Line[10]);

ThreelnputNANDGate Gate 1 I (Biilnv[3], Bitlnv[2], Bit[0], Line[11J);

ThreelnputNANDGate Gate12 (Bit[4], Bitlnv[3], Bit[0], Line[12]);

FourlnputNANDGate Gate13 (Bitlnv[4J, Bit[3], Bit[2], Bit[0], Line[13]);

FourlnputNANDGate Gate14 (Bit[4J, Bitlnv[2], Bitlnv[1], Bit[0],

Line[14]

FtvelnputNANDGate Gate15 (Bit[4], Bitlnv[2], Bit[1], Bit[0],

LatchSet, Line[15J);

SixinputNANDGate Gate16 (Ltne[10], Linc[11], Line[12], Line[13],

Line[14], Line[15], BitDecode[1J);

ResetControl Resetl (Clock, BitDecode[l], Biilnput[1]);

// Decode logic for bit 2

ThreelnputNANDGaic Gate17 (Bitlnv[4], Bitlnv[3], Bi i[2J, Line[17]);

ThreelnputNANDGatc Gate18 (Bitlnv[4], Bit[2], Bitlnv[1], Line[18]);

ThreelnputNANDGatc Gate19 (Bitlnv[4], Bit[2], Bit[0], Line[19]);

ThreelnputNANDGate Gate20 (Bitlnv[3], Bit[I], Bitlnv[0], Line[20]);

ThreelnputNANDGate Gate21 (Bit[4], Bit[1], Bitlnv[0], Line[21]);

ThreelnputNANDGate Gate22 (Bit[4], Bit[3], Bit[2], Linc[22J);

ThreelnputNANDGate Gate23 (Bit[2], Bitlnv[1], Bit[0], Line[23]);

FivelnputNANDGate Gaic24 (Bit[4], Bitlnv[3], Bitlnv[1], Bitlnv[OJ,

NewCellHigh, Line[24]),

FivclnputNANDGate Gate25 (Bit[4], Bitlnv[2], Bit[1], Bit[0],

LatchReset, Line[25]);

NinelnpuiNANDGate Gate26 (Linc[17], Line[18], Line[19], Line[20],

Line[21], Line[22], Linc[23], Line[24],

152

Line[25], BitDecode[2J

ResetControl Reset2 (Clock, BitDecodc[2J, Bitlnput[2]);

// Decode logic for bit 3

TwolnputNANDGate Gate27 (Bitlnv[4], Bit[3J, Line[27]);

TlueelnputNANDGatc Gate28 (Bit[3], Bit[2], Bit[I J, Line[28]);

ThreelnputNANDGate Gate29 (Bit[3], Bit[1], Bitlnv[0], Line[29]);

ThreelnputNANDGate Gate30 (Bit[3], Bitlnvf1], Bit[0], Line[30]);

ThreelnputNANDGate Gate31 (Bit[3], Bitlnv[2], Bitlnv[1], Line[31]);

FourlnputNANDGate Gate32 (Bitlnv[4], Bit[2], Bitlnv[1], Bitlnv[0],

Line [32J

FivclnputNANDGate Gatc33 (Bit[4], Bitlnv[2], Bit[1 j, Bit[0], LatchSet,

Line[33]

SevenlnputNANDGate Gatc34 (Line[27], Line[28], Line[29], Line[30],

Ltne[31J, Line[32], Line[33], BitDecode[3]);

ResetControl Reset3 (Clock, BitDecode[3], Bitlnput[3]);

// Decode logic for bit 4

Twolnpu(NANDGate Gate35 (Bit[4], Bit[3], Line[35]);

ThreelnputNANDGate Gate36 (Bit[4J, Bitlnv[1], Bit[0], Line[36]);

FourlnputNANDGate Gate37 (Bit[3J, Bitlnv[2], Bitlnv[1], Bitlnv[0],

Line[37]);

FourlnputNANDGate Gate38 (Bit[4], Bitlnv[3], Bitlnv[0], NewCcllHigh,

Line[38]

FourlnputNANDGate Gate39 (Line[35J, Line[36], Line[37], Line[38J,

BitDecode[4]

ResetControl Rcset4 (Clock, BitDecode[4J, Bitlnput[4]);

cndmodule

// Name: CounterWithZero Test (this counter does not roll-over)

// Inputs: Clock

// CountUp

- Signal on whose positive cdgc, the counter

must change state

- If high on a rising edge of "Clock", then

153

it forces the counter to increment in the

next state

// CountDown - If high on a rising edge of "Clock", then

it forces the counter to decrement in the

next state

// Output: Zero Test - High only when thc internal state of the

counter is zero (zero value on all bits)

module CounterWithZeroTest (Clock, CountUp, CountDown, ZeroTest);

input Clock, CountUp, CountDown;

output Zero Test;

wire [3:0] BitlnUp, BitlnDown, Bitln, Bit, Bitlnv;

wire [20:0] Line;

// Internal state storage elements

PosEdgeTrigLatch Bit0 (Clock, Bitln[0], Bit[0], Bitlnv[0]);

PosEdgeTrigLatch Bitl (Clock, Bitln[l], Bit[I], Bitlnv[1]);

PosEdgeTrigLatch Bit2 (Clock, Bitln[2], Bit[2], Bitlnv[2]);

PosEdgeTrigLatch Bit3 (Clock, Bitln[3], Bit[3], Bitlnv[3]);

// Decode input for bit 0 when counting up

FourinputNANDGate Gate0 (Bit[0], Bit[1], Bit[2], Bit[3], Line[0]);

TwolnputNANDGate Gate 1 (Bit[0], Line[0], BitlnUp[0]);

// Decode input for bit 0 when counting down

FourInputNORGate Gate2 (Bit[0], Bit[1], Bit[2], Bit[3], Line[2]);

TwolnputNORGate Gate3 (Bit[0], Line[0], BitlnDown[0]);

// Decode input for bit I when counting up (reuse from bit 0)

TwolnputNANDGatc Gate4 (Bitlnv[0], Bit[1], Line[4]);

TwolnputNANDGate Gate5 (Bit[0], Bitlnv[1], Line[5]);

ThreelnputNANDGate Gate6 (Line[0], Line[4], Line[5], BitlnUp[1]). ,

154

// Decode input for bit I when counting down (reuse from bit 0)

TwolnputNORGate Gate7 (Bitlnv[OJ, Bit[1], Line[7]);

TwolnputNORGate Gateg (Bit[0], Bitlnv[1], Line[8]);

TlueelnputNORGate Gate9 (Line[2], Line[7], Line[8], BitlnDown[1]);

// Decode input for bit 2 when counttng up (reuse from bit 0)

TwolnputNANDGate Gate10 (Bitlnv[OJ, Bit[2], Line[10]);

TwolnputNANDGatc Gatel 1 (Bitlnv[1], Bit[2], Line[11]);

ThreelnputNANDGate Gate12 (Bit[0], Bit[1], Bitlnv[2], Line[12]);

FourlnputNANDGatc Gate13 (Line[0], Line[10], Line[11], Line[12],

BitlnUp[2]

// Decode input for bit 2 when counting down (reuse from bit 0)

TwolnputNORGate Gate14 (Bitlnv[0], Bit[2], Linc[14]);

TwolnputNORGate Gatc15 (Bitlnv[1], Bit[2], Linc[15]);

ThreelnputNORGate Gatc16 (Bit[0], Bit[1], Bitlnv[2J, Line[16]);

FourlnputNORGate Gate17 (Line[2], Line[14], Linc(15], Line[16],

BitlnDown [2J);

// Decode input for bit 3 when counting up (terminal bit)

ThreelnputNANDGate Gate18 (Bit[0], Bit[1], Bit[2], Line[18]);

TwolnputNANDGate Gate19 (Bitluv[3], Line[18], BitlnUp[3]);

// Decode input for bit 3 when counting down (terminal bit)

ThreelnputNORGate Gate20 (Bit[OJ, Bit[1], Bit[2], Line[20J);

TwolnputNORGate Gate21 (Bitlnv[3], Line[20], BitlnDown[3]);

// Select which direction to count on thc next transitron

CounterGate

Counter&ate

CounterGate

CounterG ate

Cont0 (BitlnUp[0], BitlnDown[0], Bit[0], CountUp,

CountDown, Bitln[0]);

Conti (BitlnUp[1], BitlnDown[1], Bit[1], CountUp,

CountDown, Bitlnf1]

Cont2 (BitlnUp[2], BitlnDown[2], Bit[2], CountUp.

CountDown, Bitln[2]);

ConG (BitlnUp[3], BitlnDoxvn[3], Bit[3], CountUp,

CountDown, Bitln[3]);

I55

// Test if we are currently in state zero

FourlnputNORGate Gate2(t (Bit[0], Bit[1], Bit[2], Bit[3], Zero Test);

endmodule

// Name: CountcrWithReset (this counter rolls-over)

// Inputs: Clock

// Reset

— Signal on whose positive edge, the counter

must count up

- If high on a rising edge of "Clock", then

it forces the counter to a zero state

// Output: Bit

// Bitlnv

- Four bit output reflecting the internal

state of the counter

- Four bit output reflecting the negation

of thc internal state of the counter

module CounterWithReset (Clock, Reset, Bit, Bitlnv);

input Clock, Reset;

output [3:0] Bit, Bitlnv;

wire Resetlnv;

wire [3:0] BitlnUp, Bitln;

wire [8:0] Line;

// Internal state storage elements

PosEdgeTrigLatch Bit0 (Clock, Bitln[0], Bit[0], Bitlnv[0]);

PosEdgeTrigLatch Bitl (Clock, Bitln[1], Bit[I], Bitlnv[l]);

PosEdgeTrigLatch Bit2 (Clock, Bitln[2], Bit[2], Bitlnv[2]);

PosEdgeTrigLatch Bit3 (Clock, Bitln[3], Bit[3], Bitlnv[3]);

// Decode input for bit 0

Invcrter Gate0 (Bit[0], BitlnUp[0]);

156

// Decode input for bit I

TwolnputNANDGate Gatel (Bitlnv[0], Bit[1], Line[1]);

TwolnputNANDGate Gate2 (Bil. [OJ, Bitlnv[1], Line[2]);

TwolnputNANDGate Gate3 (Line[I j, Line[2], BitlnUp[1]);

// Decode input for bit 2

TwolnputNANDGate Gate4

TwolnputNANDGatc Gate5

ThreelnputNANDGate Gate6

ThreelnputNANDGate Gate7

(Bitlnv[OJ, Bit[2], Line[4]);

(Bitlnv[IJ, Bit[2], Line[5]);

(Bit[0], Bit[IJ, Bitlnv[2], Line[6]);

(Line[4], Linc(5], Line[6], BitlnUp[2]);

// Decode input for bit 3 (terminal bit)

ThrcelnputNANDGate Gateg (Bit[0], Bit[I], Bit[2J, Line[8]);

Invcrter Gate9 (Line[8], BitlnUp[3]);

// Select if we will count up or reset the counter

Invertcr

DataGate

DataGate

Data Gate

DataGate

Gatel0 (Reset, Resetlnv);

ContO (BitlnUp[0], Resetlnv, Bitln[OJ);

Conti (BitlnUp[1], Resetlnv, Bitln[1]);

Cont2 (BitlnUp[2], Resetlnv, Bitln[2]);

Cont3 (BitlnUp[3], Resetlnv, Bitln[3]);

endmodule

// Name: WindowCounter

// Inputs: Clock - Signal on whose positive edge, the counter

must count up

// Dataln [3:0] - Data to be loaded into the trigger register

// Load

that controls at which counter value the

counter will be react

- Signal on whose positive edge, new data from

the "Dataln" input will bc latched into the

trigger register

157

// Output: Increment - Asserted for one clock cycle when the

counter Iras reached the value stored in the

trigger register (the counter will be reset

on the following cycle and begin counting

again)

module WindowCounter (Clock, Dataln, Load, Increment);

input Clock, Load;

input [3:0] Dataln;

output Increment;

wire Equal;

wire [3:0] RegOut, RegOutlnv, CntOut, CntOutlnv, Test,

// Four bit trigger register

PosEdgeTrigLatch Lal0 (Load, Dataln[OJ, RegOut[0], RegOutlnv[0]);

PosEdgeTrigLatch Lail (Load, Dataln[1], RcgOut[1], RegOutlnv[1J);

PosEdgeTrigLatch Lat2 (Load, Dataln[2], RegOut[2], RegOutlnv[2]);

PosEdgcTrigLatch Lai3 (Load, Dataln[3], RcgOut[3], RegOutlnv[3]);

// Resettable counter

CounterWithReset Count (Clock, Equal, CntOut, CntOutlnv);

// Equality tester

BitEqualTest Test0 (RegOut[0], RegOutlnv[0], CntOut[0],

CntOutlnv[OJ, Test[0]);

BitEqualTest Testl (RegOut[1], RegOutlnv[1], CntOut[1],

CntOutlnv[1 J, Test[1]);

BitEqualTesi Test2 (RegOut[2], RegOutlnv[2], CntOut[2],

CntOutlnv[2J, Test[2]);

BitEqualTest Test3 (RegOut[3], RcgOutlnv[3], CntOut[3J,

CntOutInv[3], Test[3]);

FourinputNANDGate Result (Test[0], Test[1], Test[2], Test[3], Equal);

Inverter Inv0 (Equal, Increment);

endmodule

// Name: Window Control

// Inputs: Clock

//

Arrival - Signal on whose positive edge, arrivals must

be marked

- If high, indicates that a cell has arrived

on the path assigned to this window control

// Detain [3:0) - Data to be loaded into the trigger register

// Load

that controls every how many clock cycles

the window counter mill be decremented

- Signal on whose negative edge, new data from

the "Detain" input will be latched into the

register that indicates how et(en to

decrement the window counter.

//Output: Alarm - If high, indicates that the window counter

has reached zero and, therefore, to many

cells have passed through the path assigned

to this counter.

module WindowControl (Clock, Arrival, Dataln, Load, Alarm);

input Clock, Arrival, Load;

input [3: 0] Dataln;

output Alarm;

wire Increment, Loadlnv;

Invcrter Gate0 (Load, Loadlnv);

WindowCounter Control (Clock, Dataln, Loadlnv, Increment);

CountcrWithZeroTest Check (Clock, Increment, Arrival, Alarm);

I 59

endmodule

// Name: SequenceDetect

// Inputs: Clock — Signal on whose rising edge the state

machine must make a state change.

NewCellLow - When high, indicates a new cell is coming

in with the first byte starting on the low

order bits of the input.

NewCellHigh - When high, indicates a ncw cell is coming

in with the first byte starting on thc high

order bits of the input.

LookupRes

Latch Set

LatcllReset

- Result of the memory lookup to see if new

cell is valid.

- Output of the SR-Latch which, if high,

indicates there is new path data to be loaded

into the memory lookup module.

- The negated state of the LatchSet input.

// Output: PVRL

//

RSRL

LLODG26

LLODG27

LHODG27

RAS

CAS

- Latch the results of the read I'rom thc

memory lookup module.

- Clear the new path information in the new

path registers (by setting the SR-Latch

indicating the validity of the data as

being false)

- Start the low-byte counter at 26

- Start the low-byte counter at 27

- Start the high-byte counter at 27

- Turn on the data gate to make the demux

assert one of its outputs, to trigger one of

the window control modules

- Row address select line on the memory

lookup module

Column address select line on the memory

160

lookup module

// W - Read/Write control line on the memory

lookup module

// LowChoke - Control line to thc data gate that informs

it whether to transmit thc low byte of the

data words exiting from the shift register

// HighChoke - Control line to the data gate that informs

it whether to transmit the high byte of the

data words exiting from the shiA register

// FourBDS [5:0] - Control lines to the four bit multiplexer

that shunt different portions of the

incoming data words from the Receiver

// FourBDL [5:0] - Latch control lines on the latches that store

the path information of the currently

transiting cell

// TwclveBDS [1:0] - Control lines to the twelve bit by four line

multiplexer that presents data from

various latch groups to the memory lookup

module

module SequcnceDetect (Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,

LookupRes, FourBDS, FourBDL, TwelveBDS, PVRL, RSRL,

VVRL, RAS, CAS, W, LowChoke, HighChoke);

input Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,

LookupRes;

output PVRL, RSRL, VVRL, RAS, CAS, W;

output LowChoke, HighChoke;

output [1:0] TwelveBDS;

output [5:0] FourBDS, FourBDL;

wire LLODG26, LLODG27, LHODG27, Ground;

wire [rk0] Bit, Bitlnv, LowByte, HighByte;

assign Ground = 0;

StateMachine Core (Clock, NewCellLov; NewCellHigh, LatchSet,

LatchReset, Bit, Bitlnv

StateControl Signal (Bit, Bitlnv, NewCellLow, NewCcllHigh, LookupRes,

FourBDS, FourBDL, TwelveBDS, PVRL, RSRL,

LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W);

DownCounterWithPreset LowBytcCounter

(Clock, LLODG26, LLODG27, LowByde[0], LowByte[1],

LowByte[2], LowByte[3], LowByte[4]);

DownCounterWithPreset HighByteCounter

(Clock, Ground, LHODG27, HighByte[0], HighByte[1],

HighByte[2], HighByte[3], HighByte[4]);

FivelnputNAND Gate LowByteChoke

(LowByte[0], LowByte[1], LowByte[2], LowByte[3],

LowByte[4], LowChoke);

FivelnputNANDGate HighByteChoke

(HighByte[0], HighByte[1], HighByte[2], HighByte[3],

HighByte[4], HighChoke);

endmodulc

// Let's bring the whole thing together

module NetworkSecurity;

wire Clock, NewCellLow, NewCellHigh, LatchSct, LatchReset,

SDDG, PVRL, RSRL, VVRL, RAS, CAS, W, LowChoke, HighChoke,

LoadNewData, UnLoadNewData, LookupRcs, LookupReslnv;

wire [1:0] TwelveBDS;

wire [2:0] PathState, PathStlnv, MuxTrigln, MuxLoadln, MemRes, PathData;

wire [3:0] WindowData;

wdre [4:0] StatcBit, StateBitlnv;

wire [5:0] FourBDS, FourBDL;

wire [6:0] WindowTrig, LoadWindow, Alarm, NewPathDataln, NewPathDataOut,

LoadTrig;

162

wire [11:0] RAMAddrcss;

wire [15:0] Dataln, ShiftOut, GateOut;

wire [23:0] NewPathAddressln, NewPathAddressOut, Latchln, LatchOut,

Address;

assign

PathData[0] = NewPathDataOut[0], PathData[1] = NewPathDataOut[l],

PatbData[2] = NewPathDataOut[2],

WindowData[0] = NewPathDataOut[3], WindowData[1] = NewPathDataOut[4],

WindowData[2] = NewPathDataOut[5], WindowData[3] = NewPathDataOut[6];

initial

begin

// generate our report

// $shm open;

// $shm~robc("AC");

//¹5000 $shm close;

¹5000 $ffnish;

// $monitor ($time„

// "SO='Ib Sl='/dt ¹I='/A ¹2="/M ¹3='/od ¹4='/ad 0='/M",

// Se10, Scil, One, Two, Three, Four, Out);

end

ClockGcn Timer (Clock);

NetworkReceiver Receive (Clock, NcwCellLow, NewCellHigh, Detain);

NetworkTransmitter Transmit (Clock, NewCcllLow, NewCellHigh, GateOut);

ControlModule PathGen (NewPatltAddressin, NewPathDataln, LoadNewData,

LatchSet, LatchReset

ShiflRegister Shifter (Clock, Detain, Shit)Out);

EightBitDataGate LowGate (ShfftOut[7:0], LowChoke, GateOut[7:0]);

EightBitDataGate HighGate (ShiflOut[15:8], HighChoke, GateOut[15:8]);

SequenceDetcct Control (Clock, NewCellLow, NewCellHigh, LatchSet,

LatchReset. LookupRes, FourBDS, FourBDL,

TwelveBDS, PVRL, RSRL, VVRL, RAS, CAS, W,

163

LowChoke, HighChoke);

NewPathStore NewPath (LoadNewData, UnLoadNewData, NewPathAddressln,

NewPathDataln, LatchSet, LatchReset,

NewPathAddressOut, NewPathDalaOut);

FourBitTwoLineSelector Sl (Detain[11:8], Detain[3:0], FourBDS[0],

Latchln[23:20]

FourBitTwoLineSelector S2 (Detain[7:4], Dataln[15;12], FourBDS[1],

Latchln[19;16J

FourBitTwoLincSelector S3 (Data)a[3:0], Datalnf1 I:8J, FourBDS[2],

Latchln[15:12]

FourBitTwoLineSclector S4 (Detain[15:12], Dataln[7:4], FourBDS[3],

Latchln[11:8]

FourBitTwoLineSclector S5 (Dataln[11:8], Dataln[3:0], FourBDS[4],

Latchln[7:4]

FourBitTwoLtnegelcctor S6 B)stain[7;4], Detain[15:12], FourBDS[5],

Latchln[3:0]);

FourBitRegister

FourBitRegister

FourBitRegi ster

FourBitRcgister

FourBitRegister

Ll (FourBDL[0], Latchln[23:20], LatchOut[23:20]);

L2 (FourBDL[1], Latchln[19:16], LatchOut[19:16]);

L3 (FourBDL[2], Latchln[15:12], LatchOut[15:12]);

L4 (FourBDL[3], Latchln[11:8], LatchOut[11:8]);

L5 (FourBDL[4], Latchln[7:4], LatchOut[7:4J);

FourBitRcgister L6 (FourBDL[5], Latchln[3:0], LatchOut[3:0]);

TwelveBitFourLineSelector SM(LatchOut[23:12],

LatchOut[11:00],

NewPathAddressOut[23: 12],

NewPathAddressOut[11:0],

TwelveBDS, RAMAddress),

DynamicRAM

DynamicRAM

Lookup0(RAMAddress, RAS, CAS, W, PathData[0],

MentRes [0]

Lookup 1(RAMAddress, RAS, CAS, W, PathData[1],

MemRes [I]);

Lookup2~ddress, RAS, CAS, W, PathData[2],

164

MemRe a [2]

// Path and volume version specific hardware

PosEdgeTrigLatch Latch0 (VVRL, MemRes[0], PathState[0], PathStInv[0]);

PosEdgeTrigLatch Latchl (VVRL, MemRes[1], PathState[1], PathStlnv[1]);

PosEdgeTrigLatch Latch2 (VVRL, MemRes[2], PathStatc[2], PathStlnv[2]);

ThreeBitDataGate Gate0 (PathStatc, VVRL, MuxTrigln);

ThrceBySevenDemux Mux0 (MuxTrigln, WindowTrig);

ThreeBySevenDemux Mux1 (PathData, LoadTrig);

Inverter Gate 1 (W, Wlnv);

TwolnputNANDGate Gate2 (LoadTrig[0], Wlnv, LoadWindow[0]);

TwolnputNANDGate Gate3 (LoadTrig[1], Wlnv, LoadWindow[1]);

TwolnputNANDGate Gate4 (LoadTrig[2J, Wlnv, LoadWindow[2]);

TwolnputNANDGate Gate5 (LoadTrig[3J, Wlnv, LoadWindow[3]);

TwolnputNANDGate Gate6 (LoadTrig[4], Wlnv, LoadWindow[4]);

TwolnputNANDGate Gate7 (LoadTrig[5J, Wlnv, LoadWindow[5]);

TwolnputNANDGate Gateg (LoadTrig[6], Wlnv, LoadWindow[6]);

WindowControl Cont0 (Clock, WindowTrig[0], WindowData,

LoadWindow[0], Alarm[0]

WindowControl Conti (Clock, WindowTrig[1], WindowData,

LoadWindow[1], Alarm[1]);

WindowControl Cont2 (Clock, WindowTrig[2J, WindowData,

LoadWindow[2], Alarm[2]);

WindowControl Cont3 (Clock, WindowTrig[3J, WindowData,

LoadWindow[3], Alarm[3]);

WindowControl Cont4 (Clock, Window Trig[4], WindowData,

LoadWindow[4], Alarm[4]);

WindowControl Cont5 (Clock, WindowTrig[5], WindowData,

LoadWindow[5], Alarm[5]);

WindowControl Cont6 (Clock, WindowTrig[6], WindowData,

LoadWindow[6], Alarm[6]);

ScvenlnputNORGate Gate9 (Alarm[0], Alarm[1], Alann[2J, Alarm[3],

Alarm[4], Alarm[5], Alarm[6], LookupReslnv);

Inverter Gatc10 (LookupReslnv, LookupRes);

166

VITA

Name: Dan Cristian Teodor

Date of Birth: December 9, 1970

Place of Birth; Bucharest, Romania

Parents: Liviu and Gabriela Teodor

Education: Master of Science, 1997
Texas AtttM University

College Station, TX
Major: Computer Science

Bachelor of Science, 1993
State University of New York at Buflato
Buflalo, NY
Major: Electrical Engineering

Professional Experience: Systems Engineer,
Electrospace Systems inc.
Dallas, TX

Design Engineer,
Eshcd Robotec
Princeton, NJ

Permanent Address: 66-48 Thornton Place

Rego Park, NY 11374

