DESIGN AND ANALYSIS OF AN ATM NETWORK TRAFFIC SECURITY

DEVICE

A Thesis
by

DAN CRISTIAN TEODOR

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 1997

Major Subject: Computer Science

DESIGN AND ANALYSIS OF AN ATM NETWORK TRAFFIC SECURITY

DEVICE

A Thesis
by
DAN CRISTIAN TEODOR
Submitted to Texas A&M University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE
Approved as to style and content by:

Wei Zhao Pierce Cantrell

(Chair of Committe (Member)
/u' 7 - o P ,,w)f‘
U ellsey | Wiy i
William Lively 7/ Richard A. Volz
(Member) (Head of Department)

Aupust 1997

Major Subject: Computer Science

iid

ABSTRACT

Design and Analysis of an ATM Network Traffic Security Device
(Aungust 1997)
Dan Cristian Teodor, B.S_, State University of New York at Buffalo
Chair of Advisory Committce: Dr. Wei Zhao

‘Wide access distributed area network services are increasing in range and capacily at an exponential rate.
With the continuation of this growth, the requirements of providing uniform sccurity management will
become more and more difficult to manage without occupying a significant portion of the network traffic
capability available to the end-users the network is intended to service. Current methods rely on the network
architecture itself to provide the mechanisms by which traffic is monitored and, when the situation warrants,
suppressed in order o ensure that security methods are enforced. With the introduction of ATM/SONET
technologies into this arena, the possibility of integrating every class of information service into a common
transmission framework comes closer to reality through its high bandwidth capability and very large
scalability. However, this expansion of types of services available and range offered complicates the task of
minimizing the possibility that unauthorized persons may rely on covert traffic creation and reception in
order to use the network in a manner not permitted by its controlling bodies.

To address this deficiency, this thesis presents the gr d for the i ion of a d security

framework which should be able to lish the task of minimizing the potential for covert channels in

such networks without creating the associated traffic overhead normally associated with such operations
within the network itself For this security framework, the system described presents a design which

both the i for the d ion and ion of covert traffic, as well as, the
implementation by which these mechanisms may be linked to a unifying control authority.

Performance analyses of the design show that it may be feasibly implemented with current levels of
du i logy and i] ts that are readily available on the market.
Secondly, these analyscs show that the associated response delay experienced by transiting network traffic is
minimal with respect to the overall time the information spends while en route through the network, Thirdly,
the delays iated with are constant under all global traffic conditions. Finally,

the design is shown to incur no overhead in excess network traffic due to the enforcement functions which it
implements.

ABSTRACT ...

TABLE OF CONTENTS

TABLE OF CONTENTSottt e e et aan e oo s iv

LIST OF FIGURES ..

LIST OF TABLES ...ttt e re e e e i e e viii
CHAPTER
I INTRODUCTION .ottt e e et a s s a e 1
Il ISSUES IN ATM NETWORK SECURITY ..
I SECURITY DEVICE SPECIFICATION.......oouuiiiiiniime it 7
IV SECURITY DEVICE DESIGN
IV.A Design OVEIVIEWc..uun. e imiiiee st er e e et enee e 10
IV.B Transmilter and Receiver Design .
IV.C Analysis Module DESIZN........coouuuinrmiine e 14
1V.C.1 Basic Building Blocks of the Analysis Module Design.................... 20
TV.C.2 Shift Register DESIBNoocovviiiiuiinrieiiiiiae e 21
IV.C.3 Multiplexer and Data Gate Design..............ouvmrimmmmiiiiiiniaanen 23
1V.C.4 Memory Lookup Module DESIgNoveeieeiieiiniiiiiiiiiaaas 28
IV.C.5 Sequence / Detect Module Design .
IV.D Control Module DESINcoeuuiuuiiiniin e 52
V SIMULATION OF SECURITY DEVICE.
VI PERFORMANCE ISSUES0oiitnimnnemiasiaiiiiieee e ie i nia e 65
VII CONCLUSION...

VILA FUIE WOLKoouuiiiiiiinininan e oo oesemimiicn i 76

Page

APPENDIX
A “PATH-ONLY” ANALYSIS MODULE SIMULATION CODEccoviieeeni i 80
AA Verilog SImulAtion...........uuueneeeeeee et 80
B “PATH AND VOLUME” ANALYSIS MODULE SIMULATION CODE 117
BA Verilog SImulationcoeeeeeierieiri it 117

LIST OF FIGURES

FIGURE Page

1 Block diagram of ATM switch security deviCecooviormeeiiiiiniiiimii s 10

2 Timing diagram for new cell arrival on low byte of Receiver output
3 Timing diagram for new cell artival on high byte of Receiver oumtput.........ccovveriivenneennes 13
4 Analysis Module block diagrammc.ooiiiiiiiiiiiiini i 15

5 Sequence of operations under full data load of the Analysis Module

6 Some of the atomic circuit units used in the design of the Analysis Module 20
7 SR-Latch used in the design of the Analysis Modulecoooviviiiiiiiiii 21
8 Positive edge-triggered D-type flip flops used in the design of the Analysis Module 21
9 Shift register used in the design of the Analysis Module................coovin 22
10 Boolean ions governing operation of MUIHPIEXELScovvviiiiirmmiin 23
11 Boolean expressions governing operation of data gale ... 24
12 Circuits governing operation of MultipleXersoooriiiii 24

13 Circuit governing operation of data gate
14 Four-bit by two-line multiplexer used in the design of the Analysis Module 26
15 Twelve-bit by four-line multiplexer used in the design of the Analysis Module..................... 27

16 Product characteristics information as it appears in product data document for the
Texas Instruments SMJ416100 Dynamic RAM (DRAM)oviiiiimiiiiiiniini 31

3

Hidden-Refresh-Recad Cycle timing diagram as it appears in product data document
for the Texas Instruments SMJ416100 Dynamic RAM (DRAM)ooiiviiiiiinninnns 32

18 Write Cycle timing diagram as it appears in product data document for the Texas
Instruments SMJ416100 Dynamic RAM (DRAM) _.........c.ooimiiniiiiiciiiiii 33

19 Memory lookup module used in the design of the “path-only” version of the
ADALYSIS MOBUICeoouiiiiiiuitie e ee e 35

20 “Counter with control” for the memory lookup modulc used in the design of the
“path and volume” version of the Analysis Module

vi

FIGURE Page
21 Circuitry for an example three-bit equality tester for the memory lookup module

used in the design of the “path and volume” version of the Analysis Module 41
22 Window control module for the memory lookup module used in the design of the

“path and volume” version of the Analysis Module with “k” bits of contro} granularity 43
23 Block diagram for the “path and volume” version of the Analysis Module........................... 44
24 State diagram for the state machine internal to the sequence / detect module within

the Analysis Module -
25 Logic blocks which make up the scquence / detect module of the Analysis Module 50
26 A possible ion for using a M la 68PM302 mi ler as a Control

Module for multiple Analysis MOQUIESuvuuseini i e oo e 54
27 Granularity versus number of window control modules which may be implemented in

one Analysis Module for fixed component Weightsoooeeioieiiiiiiiines 70
28 Component weight versus number of window control modules which may be

implemented in one Analysis Module for fixed module granularities..............ccoooeieieeienes 72
29 High level view of the interconnections of Security Modules in a simple extensible

TABLE Page
1 Timing characteristics as they appear in the product data for the Texas

Instruments SMJ416100-70 Dynamic RAM (DRAM)ccouiiiiirinrmmmiaiee 30
)il Operational states of the “counter with control” to be implemented in the

“path and volume™ version of the memory lookup module................cooveiiiiiiiiiis 37
it} Boolean ions necessary to impl the decode logic for the five

lowest-order non-terminal bits of a fully decoded count-up counter with no

L PP 39
IV Boolean necessaty to i the decode logic for the five

lowest-order terminal bits of a fully decoded count-up counter with no roll-over
A% Boolean ions necessary to i the decode logic for the five

lowest-order non-terminal bits of a fully decoded count-down counter with no

B PP PP PP PP PP PPN 39
VI Boolean expressions necessary to i the decode logic for the five

lowest-order terminal bits of a fully decoded count-down counter with no

)L S N SRS .40
VI Boolean necessary to impl the decode logic for the five

lowest-order bits of a simple up~counter with reset control ..o 42
VIII Signal names and descriptions of the control lines set by the state machine

internal to the sequence / detect MOAUICot 45
IX Signal names and descriptions of the external signals the state machine internal

fo the sequence / detect mOAuULe TEQUITESuvvruiein i 47
X Signal states for every valid state in the state machine diagram for the sequence /

detect module of the Analysis Module ... 49
XI Next state decode logic for cach bit of the state machine controlling the operation

of the sequence / detect MOAUIEvviuuniiioi e 51
XII Decode logic for the control lines which the sequence / detect modute uses

to operate sub-units of the Analysis Moduleo.ooooiiiiiii 51
XIII Next state decode logic for each bit of the presetiable down-counters with no

roll-over in the sequence / detect module.oooiveniiiiiii 52
XIV Module names and the submodules of which they consist for the simulation of

LIST OF TABLES

the “path-only” Analysis MOdUIEccuuuiiiiiioio e 60

viil

TABLE

XV Module names and the submodules of which they consist for the simulation of

the “path and volume” Analysis Moduleocooviiiiiiimmmiii
XVI Composition and component weight of the modules in the “path-only” version

of the Analysis Moduleooiiiiiiiemi
XVII C ition and weight of the sub-modull ing one “window

control module” used int the “path and volume” version of the Analysis Module
XVIII Composition and component weight of the modules in the “path and volume”

version of the Analysis MOGUIEieeeeeennrrioiiaitii i
XIX Order of itud ion of the weight of the “path and volume”

Analysis Module as the number and granularity of “window control modules”

implemented VAIES vivunueererii ettt

CHAPTER 1

INTRODUCTION

As the size of wide-area public access backt i so does the of the task of monitoring

and enforcing security standards across the entire range of services provided by these communications

services. Current methods of providing a uniform for security across the network

attempt to use the network itsclf as a tool for performing the necessary management functions. Their aim is to
provide this uniform enforcement while providing the highest level of accessibility and responsiveness for
‘which the network is equipped. The contributions of this thesis are as follows:

e Presentation of a framework within which uniform and rapid security enforcement may be
provided while still offering the greatest amount of network bandwidth with as fast a response
time as possible to the end user. This is presented in Chapters I and TIL

o A plete design for the impl ion of this security f

which is i

using current du ing technologies and relies on widely available and

cost-cffective components. This design is intended to minimize the network response

degradation, as well as, the overhead incurred by the administrative functions of transferring
data. This is in Chapters TV and VL.

e A simulated implementation of the design which would allow for verification of correct

operation of the device. Additionally, the simulation would allow the rescarcher to evaluate the
creative process used in order to add future optimizations or expand the functionality of the
device as component availabilities and technologies evolve. This is presented in Chapter V.

The main focus of the work for this thesis has been on creating a design suitable for use in evaluating the
efficacy of a distributed security enforcement method for wide area ATM networks. The implementation is

intended as a starting point for future expansion of the security capacity of a
supervisory network for wide-area ATM networks.

‘The journal model is JEEE Transactions on Computers.

CHAPTER TI

ISSUES IN ATM NETWORK SECURITY

At its very core, the ATM standard defines a wide-bandwidth network as an interconnection topology of
digital switches that transport data between themselves in small packets of data called cells. Each cell consists
of a 48 byte payload and a 5 byte header {1]. In order for a cell to be communicated from one computer to
another it must first be transmilted to the nearest switch in the ATM network to the source computer. This
switch then uses local information 10 send this packet to another switch in the ATM network. This process is
repeated until the cell is transmitted to the switch closest to the destination computer and that switch, in turn,
delivers the cell to that destination. The ATM petwork switches rely on a store-and-forward method of
transmitting to another switch in the ATM network to which it has access. A switch to which another switch
has access in an ATM network is defined to be one to which the second switch has a direct physical

connection (by whatever physical medium chosen).

Switch to switch routing in an ATM network is performed based on local information at every switch in
which a given cell arrives. This local information is stored in a look-up table which consists of virtual path
identifiers (VPI) and virtual connection identifiers (VCI) [1]. These two pieces of information define to
which switch the data should be forwarded on its next hop, based on the VPI/VCI information in the header
of the arriving cell. When such a cell arrives, its VPI/VCI data is found in the switch’s internal data and,
based on this, the cell's header is updated and queued at the output that leads to the ATM switch that forms
the next link along the logical path specified by the VPI/VCI pair.

At present, almost all of the available security enforcement methods for these network architectures involve
software solutions in the switches and the network management functions found in the industry
specifications. These software methods perform a series of transformations and tests on cells transiting
through the network to ensure (hat they fulfill certain characteristics [2-16]. These software enforcement
methods are designed to reside cither in the ATM switches themselves or on the source / destination
machines where the data originates or artives.

Currently, there are two distinct approaches to network security The first h p

attemnpts to prevent an intruder from ever gaining access to the system while the second approach reactively
attempts to detect and track an intruder after they have gained unauthorized access.

The proactive approach attempts to solve the problem throngh five different methods:

Access Control refers to a mechanism that restricts access to various subsystems only to those
parties that are able to provide a key known only to the subsystem and the set of authorized
users. It is the responsibility of the subsystem to allow only those transactions that are
accompanied by an authorized key and, likewise, the responsibility of the users not to allow their
keys to pass on to unauthorized parties. These approaches have been proven effective many
times and are currently in use in most major operating systems. By using careful management of
password keys, it has been shown that access control mechanisms may be effectively

implemented in large distributed environments.

Encryption requires all parties participating in communication across the network to use a well-
known algorithm to hide their plain text data according to a key known by all parties and to
unhide this data according to a key known only by themselves. This security method requires the
communicating parties to be within a domain that is considered to be secure and it also implies

the exi: of a globally key authority that also exists within a secure
domain. The only area that is assumed to be non-secure is the wide arca network or inter-
network itself. Overhead is generated within these systems in order to implement covert-channel
free mechanisms in order to manage and transfer keys while, at the same time, ensuring the
security of the centralized authority [3, 16]. However, through careful selection of an encryption
algorithm and keys of reasonable length it is possible to apply encryption for data transfer in
large distributed systems.

Physical Lockout simply describes the physical i that protects the various hardware

components of a distributed system and only allows authorized parties to access the various
hardware terminals such as display terminals, keyboards and assorted input devices. Since there
is no global information migration required to maintain the locks and gates to the access
terminals this approach docs not present any significant obstacles to its use for guarding
distributed systems.

Neutral transmission patterns and modal operation Telies on a combination of ing traffic

padding with i packels, it i of traffic and controlling

the creation and destruction of connections within the network, The objective of this method of
security enforcement relies on the masking of actual traffic in order to reduce the possibility that
an attacker will gain any useful information through the passive monitoring of network links

{17, 18]. Here again, the end-user workstations are assumed to exist within a secure domain

while the network or inter-network is the only component that is not secure, Overhead is
generated both by padding traffic and by the extra work done by using inefficient routes to pass
data. In addition, significant restrictions are generally placed on the capacity of client

‘workstations to create connections with one another in order to perform meaningful work [19].

The reactive approach attempts collect information regarding system activities and analyzc this information
in order to establish patterns for “typical” system use. Once these patterns are established, the system then
restricts the access of those users that initiate activities of a type or with a frequency that deviates from those

calculated norms of “typical” system use [5-14]. The major in ing to design
such systems have coms from three sources. First, the quantity of information generated by tracking every
system activity in a large system is orders of magnitude too large to store and not significantly impact system
performance. Second, the computation time required to analyze and create system profiles can become
significant, which can lead to a poor reaction time when attempting to detect users performing activities that
do not fit the calculated system profile. Third, malicious users may attempt to fool these systems by
performing activities that differ from the “typical” profile by a small amount. Through continued activity of
this type, new system norms would be established that account for the patterns gencrated by the malicious
activity, These systems may be categorized into two classes which differ by the method used to calculate their
system profiles:

o Heuristic profiling and expert systems rely on the use of a system’s past experience to create
heuristics by which to judge the capability of a particular user to be an intruder. These heuristics
can be either a set of learned rules based on a history of system security breakdowns or a pre-
defined set of rules created by a system administrator. In either case, this class of intruder
detection systems require large amounts of resources (both storage and computational) in order
10 track the necessary heuristics and to test all heuristics continually against the current system
state. Lunt {13] showed that it is possible to accomplish this task, but only at tremendous
expenditure of system resources of a type that would only be available on a large workstation.

s Statistical profiling makes the simplifying assumption that an intruder’s activities should be

by omly itoring the istical averages of various types of system activity.
Therefore, intruders should be detectable if any given subset of the system’s monitored activities
deviate significantly from their normal profile. In this way, it is possible to eliminate the need to
track a large set of heuristics and the computation time required is now bounded only by the
number of system statistics which are tracked.

Out of all of the individual methods described, some do not lend well to impl ion in the

distributed environment of a large number of semi-dumb switching stations which is envisioned for the
current and future implementation of ATM networks. Those methods which rely heavily on being aware of
the current global state of the distributed system are not suitable in an ATM environment since network
bandwidth must be expended in order to maintain the accuracy of that information. Modal operation and
neutral transmission patlerns have been shown to require a large amount of information about the global state
of the distributed system and, as such, their performance will degrade as networks become larger in size.
Also, methods which require a large amount of memory or computation will also be difficuit to implement

effectively in the world of ATM networks since the necessary will need to be repli many times
over as the number of nodes in these networks grow. Intruder detection through heuristic profiling have been
shown to require the resources provided by an entire workstation in order to provide timely information and,

thus, would be difficult to scale to the number of nodes that would be required by a large network.

Of the methods discussed, intruder prevention through access control, data encryption and physical lockout

show the most promise for impl in a wid ATM il For intruder d
statistical profiling has a definite performance ad: in a wide-area ATM envi Since the
capacity and range of services offered by global i to grow at an ishing pace the

performance and cost advantages of these methods can only increase in the future [20, 21].

Data encryption, access control and statistical profiling all rely on the proper operation of a software medule
within the nodes of the ATM network. No matter how efficient or adaptive these approaches are, they all, as a
whole, are susceptible to unfriendly attack by other software systems which may be connected to the network
and which mimic the behavior of network nodes assigned to network management tasks [22). Such attacks
include the possibility of virtual ion and path data in a switch in such a way that it is

beneficial to the attacker (l e. diversion or insertion of traffic in an unauthorized manner). Also, with the
proli ion of i king tech ies, it becomes more and more difficuit for an administrative body

1o manage and patrol the traffic of every node on the network due to the very large size and distributed nature
of these inter-networks. Those software security methods which reside within the network nodes themselves

are prone to uneven since every ion that controls indivi hi d to the

inter-network apply their own standards and methods of security enforcement. Thus, an attacker may be able
{0 use a combination of partial weaknesses that exist within the security management of different nodes across

the network in order to perform unauthorized operations.

Therefore, in order to reach a more complete state of enforcement, the ATM network should not rely on the
ATM switches or client computer nodes to perform these functions. A separate hardware entity that is
controlled by one management authority, devoted solely to the purpose of security management and to which

no network user or local manager has direct access would be the most appropriate solution. This centralized
authority would be tasked with the responsibility of ensuring that all network traffic entering or exiting the
secured backbone belongs to a virtual connection through that backbone that has been registered with the
central securing authority. Thus, an atiacker would be unable to use the network to carry traffic that has not
been i with the i authority body. Further, this supervisory network would be

P

rtesponsible for verifying not onty the correlation of traffic with an existing, registered virtual connection, but
also that this traffic is not exceeding any volume bounds placed on that connection. In this way, an attacker
would be restricted from using an existing, authorized connection on which to piggyback covert traffic.

Aside from the assumed secure network on which the authorizing body would rely, hardware modules would
be required at cach entry and exit point into and from the backbone which would perform the actual
monitoring of backbone traffic. This monitoring would be performed based on directives from the supervising
authority body. Toward this goal, the design and i ion of application specific hardv has already

‘been shown to be a cost-cflective method of realizing such a security governance structure [23, 24]. A next
step in providing ATM network sccurity in a cost-cffective manner is to encapsulate access control,
encryption and statistical profiling for network traffic into application specific hardware and which will reside
in the hardware modules at the entry and exit of every access path into the secure backbone.

CHAPTER HI

SECURITY DEVICE SPECIFICATION

The ATM forum specifies two communication protocols by which cells are to be transferred across an ATM

network. The first specification is calted the Network to Network Interface (NNI) and describes the data

formats to be used when two ATM switches in a public network communicate with one another [25]. The

second of these is called the User to Network Interface (UNI) and describes the data formats to be used when

communicating between a public service ATM switch and a private network ATM switch or between two

private network ATM switches. Therefore, any given connection in an ATM inter-network forwards data
ding to the

1. The data is relayed from the source computer to the first switch in the sonrce private (local /
organizational) ATM network nsing UNL

2. The data is relayed from switch to switch within the source private ATM network using UNL

3. The data is relayed from the last switch in the private ATM network to the first switch in the
public ATM network using UNL

4. The data is relayed from switch to switch within the public ATM network using NNL

5. The data is relayed from the last switch in the public ATM network to the first switch in the
destination private ATM network using UNIL.

6. The data is relayed from switch to switch in the destination private ATM network nsing UNI.

7. The data is relayed from the last switch in the destination private ATM network to the
destination node (computer) using UNL

From this sequence of events it is possible to conclude that the majority of steps in the transmission rely on
the UNI interface to transfer data. Further, since there are no user nodes (computers) connected directly to the
public ATM network and, if we can ensure that no covert traffic exists among the nodes that communicate
through the UNL, then we can also guarantee that all traffic in the public ATM network will also be covert
clement free. Therefore, the first specification of the external security device is that it correctly implements
the data clements of the UNI in its network interfaces.

It is also necessary to address the method by which virtuat jon information is maintai inside of

each ATM switch for the purposes of routing information. The currently accepted method invelves the
transmission of specialized cells that contain “management data”. These cells are originated by user nodes on
the ATM inter-network for the purpose of sefting up new connections. They inform the switches to which

they are transmitted that a new connection is desired through that switch and that the switch should allocate a
unique VPY/VCI pair in their internal data tables for that connection. Since it is this very method of new /
existing connection management that is in question with regard to the detection of covert traffic, the external
security device must rely on some other communication device that is external to the ATM network to acquire
information about new connections as they are created within the network.

The design of this security device is intended to be applied to the current state of ATM network specifications.
Therefore, the device should support placement within networks that utilize all of the currently published
physical interface standards. In order to keep this requirement within reasonable bounds, those physical layer
standards that are developed by any one ization and, idered ietary” will not be
considered for support. Instead, those standard that were written fo be “industry wide” and, supposedly, do

ot favor technologies controlled by any one specific manufacturer will be the basis for physical layer support
in the design of this device. These standards are those physicai layer interface specifications published by the
ATM forum.

Currently, there are five standards published and officially recognized by the ATM Forum. These are (in
order of increasing data rates):

o DS-1 (1.544 Mb/sec) physical interface specification (26]

« 256 Mb/sec over twisted pair physical interface specification [27]

e DS-3 (44.21 Mb/sec) physical interface specification [28]

e 155 Mb/sec over twisted pair physical interface specification [29]

* 622.08 Mb/sec Synchronous Optical Network (SONET) physical interface specification [30]

The device must perform the functions of detection, suppression and alert, when illegal traffic is found to be

passing through the network, in a timely manner. Detection refers to ining if a cell being

out of a particular port on a specific switch is in accordance with a VPI/VCI pair defined to be valid traffic for
that switch’s output. Detection also, optionally, involves verification if that cell is in accordance with a valid
VPI/VCI pair but violates the traffic capacity of that channel. Suppression involves the discarding of the
offending cell and alert refers to a method by which the security device reports the VPI/VCI pair of the
offending cell and the switch output which produced it. Optionally, alert aiso refers to the reporting of the
reason for which the cell is found to be in violation, whether it be due to an illegal VPI/VCI pair or due to a
connection capacity violation. The issue of performing these functions in a timely manner is best described by
setting a target of reporting a traffic infraction within one cell transmission time on the physical media of that
network, less of what the ission b idth may be.

The device must be able to perform effectively under periods of peak network traffic without hampering or
ly delaying the operation of the network itself. This means that, when a particular switch output is

cells at its i rale for a ined period of time, the device must be able to correctly

Pprocess and retransmit those cells which are not found to cause any type of violation within a bounded delay

of no more than one cell time.

Therefore, the device must conform to the following specifications:

* Support the ATM forum UNI data specification.

e Provide an extcrnal interface through which to report network traffic violations.

s Support all the physical interface specifications currently recognized by the ATM forum.
® Perform covert network traffic detection, suppression and alert.

e Perform its intended functions in a timely fashion even under peak traffic conditions.

e Be designed in such a fashion that its implementation is both cost effective and stable.

CHAPTER IV

SECURITY DEVICE DESIGN

IV.A Design Overview

The determining factor in the design was the need to implement the device with components that are widely
available, inexpensive and of a proven stability. Because of the high data rates involved in the transmission of
cells in ATM networks, it was necessary to use as much parallelization of functions as possible in hardware in
order to implement the design with standard components and realizable clock speeds.

— Control Module

Analysis Module

Receiver

L

- Receiver ||

LreRoRSwITCH >(Receiver [———3 Analysis Module

|
Transmitter_ OUT T SWI

Fig. 1. Block diagram of ATM switch security device

As shown in figure 1, the device relies on three units functioning in tandem to handle the traffic produced by
each ATM network switch output. These three units, labeled Receiver, Analysis Module and Transmitter,
function in sequence to capture, analyze and retransmit the network traffic from one ATM network switch
output port. The Receivers queue the incoming data from the ATM network switch and present the data to the
Analysis Modules in manageable pieces. The Analysis Modules capture the data from the Receivers and

11

perform the necessary functions of detection, suppression and alert and pass this data to the Transmitters if it
is found to be valid. The Transmitters capture the outgoing data from the Analysis Modules and transmit it to
the subsequent switch in the ATM network.

O ing the operation of the ivers, Analysis Modules and Transmitters is the Control Module. It is the
responsibility of this module to accept data from the Supervisory Interface regarding new connections that
need to be admitted in the ATM network and pass this data to the appropriate Analysis Module. Additionally,
the Conirol Module must detect a teaffic alert from any one of the Analysis Modules and, when it occurs,
must captute the data regarding the cell which caused the alert from the appropriate Analysis Module. Then,

the Control Module must transmit this data to the supervisory intcrface.

When all of these units function correctly, the end result will be a device that can capture, analyze and
retransmit the ATM network traffic on the multiple output ports of an ATM switch, update path information
and report traffic infractions under conditions of peak data rate transmission. The analysis portion of the
device’s function may be of two types. Under the first variant, arriving network traffic will be checked for
validity in terms of whether or not the connection with which that traffic is associated does indeed pass
through the network switch and port from which the data originated. The second variant will perform exactly
the same vetification as the first variant and, in addition, will also verify that traffic that has been found to be
traveling across a valid connection has not exceeded the traffic limits placed on that connection. The design

of both variants is presented.

IV.B Transmitter and Receiver Design

The receivers and transmitters capture and send the cell data from and to the physical outputs and inputs of
the ATM switches between which the device lies and process it according to the particular physical interface

characteristics of those switches. This includes any i of ypti d ion and bit-level
synchronization, The exact design of these units will be highly physical media dependent and beyond the
scope of this design description. The physical blocks comprising these modules is not a matter of choice since

cLock m_
byte 3, cell 1 {byte 5, cell 1HCbyte 7, cell 1>C
byte 4, cell 1 byte 8, cell 1

LOW BYTE

HIGH BYTE

NEW CELL
Low

NEW CELL
HIGH

Fig. 2. Timing diagram for new cell arrival on low byte of Receiver oﬁtpul

it is already described in the ATM forum literature [26-30] and components for use in these modules have
already been implemented as prototypes [24]. The only design issue which needs to be noted with regard to
the function of (he receivers and transmitters are that they present data to the Analysis Modules in parallel
sixteen-bit words and synchronize the presentation of these 16-bit words to thc Analysis Module clock.
Receivers use two control lines, with one conductor each, carrying a digital signal, to indicate each of the

following two conditions:

1. (New Cell Low) If asserted high on the rising edge of the Analysis Module’s clock, it indicates
that the data on the low-order eight bits of the outputs of the receiver is the first byte in a newly
arriving cell.

2. (New Cell High) If asserted high on the rising edge of the Analysis Module’s clock, it indicates
that the data on the high-order eight bits of the outputs of the receiver is the first byte in a newly
arriving cell. This will occur only when a cell arrives immediately after its predecessor. If this is
not the case, then the Transmitter will present its data with the first byte on the lower eight bits
of its outputs and use the signal New Cell Low to inform the Analysis Module of this status.

The graphical representation of the timing characteristics of these interface signals is shown in figure 2 and
in figure 3.

13

n turn, the Analysis Modules use the same two one-conductor, digital signais to inform the transmitters of
these samc conditions in order to pass a cell which has been found to be valid to the Transmitter at the rate of
one sixteen-bit word per Analysis Module clock cycle. The implication is that the output stage of the Receiver
and the input stage of the Transmitter must be synchronized to the same clock as the Analysis Module.

The Receivers will present their data words and assert their control signals on the falling edge of the clock
cycle within which the data arrives in order to allow the Analysis Modules to use positive edge triggered logic
to sample this data. The same is true for the Transmitters which will capture the data being sent out by the
Analysis Modules on the falling edge of the clock.

eorx | [L[L LT LT

Low BYTE (byte 51, celi 1)<byte 563, cell 1) byte 2, cell 2 X byte 4, cell 2

HIGH BYTE (byte 52, cell 1) byte 1, cell 2 X byte 3, cell 2 X byte 5, cell 2
NEW CELL _"ﬁ

Low
NEW CELL

HIGH

Fig. 3. Timing diagram for new cell arrival on high byte of Receiver output

The stipulation that data be presented to and read from the Analysis Modules in sixteen-bit words arises out
of the need to have this device operate at clock speeds that are ble for i ion in i d

circuit designs that utilize the major logic families currently available. At the highest speed scenarios of data
rates of 622.08 Mbps, it implics that 38.880 million sixteen-bit words will nced to be processed by every
Analysis Module which, in turn, implies a maximum clock rate of 38.880 MHz for the Analysis Modules.

IV.C Analysis Module Design

The Analysis Module will admit a new cell into a 16-bit shift register, word by word from the receiver. In
parallel, as components of the VPI/VCI pair belonging to the cell in transit arc received from the Receiver
(contained in the cell header, consisting of the first five bytes of data) they will also be copied into six 4-bit
latches. This transfer will occur in a stepwise fashion over the course of morc than one clock cycle since
different portions of the ATM cell header become visible at the Receiver’s outputs on different 16-bit words.
Multiplexets will be used to select which words of the header will be loaded into these latches based on
whether the arriving cell entered the Analysis Module with its first byte in the low or the high order eight bits

of the register input from the receiver.

Once all 24 bits of the VPI/VCI pair associated with the cell in transit have been captured in these 4-bit
latches, the twenty four bits of output from them will be presented to the memory lookup module in two 12-bit
words, with one word being presented at a time. The control to present these two 12-bit words will be
performed by a 12-bit by 4-input multiplexer.

The two words that are presented to the memory tookup module will be interpreted by this module as an
address which it uses to perform the actual analysis of the cell’s validity. Depending on the version of the
Analysis Module to be implemented, this function will change. Primarily, the memoty lookup module will
verify if the cell belongs to a connection that does indeed pass through the switch and port from which it
originated. Optionally, the module will also verify if the network connection along which the cell in question
is traveling has not exceeded the limits of traffic volume allowed for that connection.

This result will be used by the sequence / detect module to determine if the cell is vahid or not. If the cell is
valid, it will enable the output from the last set of latches in the 16-bit shift register to be sent out to the
transmitter. If the cell is not valid, the sequence / detect module will suppress output of the cell from the shift
register to the transmitter by simply presenting null data (all zero bits) to the input stage of the Receiver. In
this case, the sequence / detect module will also will trigger interrupt logic in the Control Module. The
Control Module will then know that an invalid cell has been detected and will perform the necessary
operations to read the VPI/VCI pair of the offending ccll from the outputs of the six 4-bit latches which have
been storing this information throughout the entire process.

All of the devices used in this circnit are currently feasible in TTL and HC logic families. In addition, a
number of tri-state buffers are implicitly being used in this design to allow the Control Module to select
between the data inputs and outputs of the different Analysis Modules to which it is attached. The
interconnection of the functional blocks of the Analysis Module is shown in figure 4.

15

The sequence / detect module which will be a simple sequential state machine with external decode logic will
control all of the inputs and outputs required to perform the functions just described. This state machine will
be designed using the same type of edge triggered D-type latches and combinational logic used to construct
the other component blocks of the Analysis Module.

The reasoning behind the design of the Analysis Modules was to be able to take advantage of the large
number of operations which can be performed in parallel in order to reduce the mumber of clock cycles
‘necessary for the device (o perform its function.

The effect on the performance of the physical communication link passing throngh this device will be that
any cell in transit will be delayed by the amount of time necessary to read in the cell’s header and perform the
lookup of the VPI/VCI pair contained in these five bytes in the memory lookup module. This means that the

lling factor of the ission delay a cell will experience in every security device through which it
passes will be the sum of these two periods of time.

f—new cell high-

e
]
[
F
]
}

In

—moOma

m

vZ =
ImodA-Zmzen

=

;
-

Fig. 4. Analysis Module block diagram

CONTRO

0 T
5 =
. @
o
‘Q.
—lo $ — — :
g g
=
ot 3 g
l:‘\'
-
~——20 8 E
=
S il
= 3
— —
}-1
N g
o
—35 —
8 — 3
= =
i <D
2 »
—140 Q) =,
=
—145 o ;’
|
{ i
—Isp J 1.
clock data seen data sent to memory module
cycle from Receiver Transmitter operation

Fig. 5. Sequence of operations under full data load of the Analysis Module

The final issue is that the Control Module's interrupt logic will be triggered within less than one cell transmit
time if the transiting cell is found to be invalid (nine clock cycles, to be precisc). This means that the Control
Module will know about the violation in less than one cell time and can begin sending data about the

17

violation to its supervisory control interface within less than one cell time, The timing diagram for cell
arrivals and depattures from the Analysis Module is shown in figure 5.

The exact sequence of events within the Analysis Module will be:

1. Bytes 1 and 2 of cell one are presented on the inputs from the Receiver, These bytes are pushed into the
shift register. The sequence / detect module is informed that a new cell has atrived throngh the assertion
of the New Cell Low control line from the Receiver. The low order 4 bits of byte 1 and all 8 bits of byte 2
are presented and latched into the three high-order 4-bit latches.

2. Bytes 3 and 4 of cell one are presented and pushed into the shift register. All 8 bits of byte 3 and the high
order four bits of byte 4 are presented and latched into the three low-order 4-bit latches.

3. Bytes 5 and 6 of cell one are presented and pushed into the shift register. The data in the three high order
4-bit latches is presented to the memory lookup module throngh the multiplexer.

4. Bytes 7 and 8 of cell one are presented and pushed into the shift register. The row address select is
asserted on the memory lookup module.

5. Bytes 9 and 10 of cell one are presented and pushed into the shift register. The data in the three low order
4-bit latches is presented to the memory lookup module through the multiplexer.

6. Bytes 11 and 12 of cell one are presented and pushed into the shift register. The column address select is
asserted on the memory lookup module.

7. Bytes 13 and 14 of cell one are presented and pushed into the shift register. The result concerning the
validity of the cell will be read from the memory lookup module. If this fesult shows that the cell is
invalid, the interrupt logic of the Control Module is triggered. Starting at this point, the Control Module
may read the VPI/VCI pair stored in the six 4-bit latches in order to transmit this data about the traffic
violation to the supervisoty interface. The Control Module must complete the reading of this data within
the next 20 clock cycles.

8. Bytes 15 and 16 of cel! one are presented and pushed into the shift register. The sequence / detect module
finishes the read cycle in the memory lookup module by deasserting the row address select line.

9. Bytes 17 and 18 of cell one are presented and pushed into the shift register. If the cell currently being
received was found to be valid and the New Cell Low control input is asserted (meaning we are still
receiving a cell with a starting byte on the low order bits of the Receiver input), the sequence / detect
module sets the control on the low-order cight bits of the data gate to the Transmitter to reflect the inputs
from the shift-register for the next 26 cycles. In this case, the sequence / detect module also sets the
control on the high-order eight bits of the data gate to the Transmitter to reflect the inputs from the shift-
register for the next 27 cycles. The sequence / detect module asserts the New Cell Low line to the
Transmitter and bytes 1 and 2 of cell onc are presented at the inputs of the Transmitter. 1f the cell
currently being received was found to be valid and the New Cell High control input is asserted (meaning,

)

o

18

we are receiving a cell with a starting byte on the high order bits of the Receiver input), the sequence /
detect module sets the control on both the low-order and high-order eight bits of the data gate to the
Transmitter fo reflect the inputs from the shift-register for the next 27 cycles. The sequence / detect
module asserts the New Cell High line to the Transmitter and byte 53 of cell one along with byte 1 of cell
two are presented at the inputs of the Transmitter.

Bytes 19 and 20 of cell one are presented and pushed into the shift register. Either bytes 3 and 4 of cell
one or bytes 2 and 3 of cell two arc presented at the input of the Transmitter.

. Bytes 21 and 22 of cell one are presented and pushed into the shift register. The sequence / detect module

initiates a refresh cycle in the memory lookup module by asserting the row address select line. Either
bytes 5 and 6 of cell one or bytes 4 and 5 of cell two are presented at the input of the Transmitter.

. Bytes 23 and 24 of cell ong are presented and pushed into the shift register. Either bytes 5 and 6 of cell

one or bytes 4 and 5 of cell two are presented at the input of the Transmitter.

. Bytes 25 and 26 of cell one are presented and pushed into the shift register. Either bytes 7 and 8 of cell

onc or bytes 6 and 7 of cell two are presented at the input of the Transmitter.

. Byles 27 and 28 of cell one are presented and pushed into the shift register. The sequence / detect module

continues the refresh cycle of the memory lookup module by deasscrting the row address select line.
Either bytes 9 and 10 of cell one or bytes 8 and 9 of cell two are presented at the input of the Transmitter.

. Bytes 29 and 30 of cell one are presented and pushed into the shift register. Either bytes 11 and 12 of cell

one or bytes 10 and 11 of cell two are presented at the input of the Transmitter.

. Byles 31 and 32 of cell one are presented and pushed into the shift register. Either bytes 13 and 14 of cell

one or bytes 12 and 13 of cell two are presented at the input of the Transmitter.

Bytes 33 and 34 of cell one are prescnted and pushed into the shift register. The sequence / detect module
continues the refresh cycle of the memory lookup module by asserting the row address select line. Either
bytes 15 and 16 of cell one or bytes 14 and 15 of cell two are presented at the input of the Transmitter.
Bytes 35 and 36 of cell one are presented and pushed into the shift register. The sequence / detect module
finishes the refresh cycle of the memory lookup modnle by deasserting both the row address select line
and the column address select line. Either bytes 17 and 18 of cell one or bytes 16 and 17 of cell two are
presented at the input of the Transmitter.

Bytcs 37 and 38 of cell one are presented and pushed into the shift register. If the Control Module needed
to add or remove a valid path to or from the memory lookup module, it should have loaded a 24-bit latch
with the appropriate VPI/VCI pair 1o be updated, an n-bit latch with the appropriate data about the path
(the “n” bits depend on the design version chosen) and an SR-fatch to indicate that path data needs to be
updated by this point. ¥ this SR-latch bas been set, then the sequence / detect module begins a write cycle
on the memory lookup module by setting the 12-bit line selector to reflect the high-order twelve bits of
the 24-bit latch to the memory lookup module. Either bytes 19 and 20 of cell one or bytes 18 and 19 of
cell two are presented at the input of the Transmitter.

2

2

2

23.

o

24.

25.

26.

&

27

28.

29.

°

30.

=4

=

1

19

Bytes 39 and 40 of cell one are presented and pushed into the shift register. If the SR-latch has been set,
the scquence / detect module continues the write cycle by asserting the row address select line of the
memory lookup module. Either bytes 21 and 22 of cell one or bytes 20 and 21 of cell two are presented at
the input of the Transmitter.

Bytes 41 and 42 of cell one are presented and pushed into the shift register. If the SR-latch has been set,
the sequence / detect module continues the write cycle on the memory lookup module by setting the 12-
bit line selector to reflect the low-order twelve bits of the 24-bit latch. Either bytes 23 and 24 of cell one
or bytes 22 and 23 of cell two are presented at the input of the Transmitter,

Bytes 43 and 44 of cell one are presented and pushed into the shift register. If the SR-latch has been set,
the sequence / detect module continues the write cycle by asserting the column address select line of the
memory lookup module. Either bytes 25 and 26 of cell one or bytes 24 and 25 of cell two are presented at
the input of the Transmitter.

Bytes 45 and 46 of cell one are presented and pushed into the shift register. If the SR-Iatch has been set,
both the column and row address select lines on the memory lookup module are deasserted. Either bytes
27 and 28 of ccli one or bytes 26 and 27 of cell two are presented at the input of the Transmitter.

Bytes 47 and 48 of cell one are presented and pushed into the shift register. Either bytes 29 and 30 of cell
one or bytes 28 and 29 of cell two are presented at the input of the Transmitter.

Bytes 49 and 50 of cell one are presented and pushed into the shift register. Either bytes 31 and 32 of cell
one or bytes 30 and 31 of cell two are presented at the input of the Transmitter.

Bytes 51 and 52 of cell one are presented and pushed into the shift register. Either bytes 33 and 34 of cell
one ot bytes 32 and 33 of cell two are presented at the input of the Transmitter.

Byte 53 of cell one and byte 1 of cell two are presented and pushed into the shifi register. The New Cell
Low control input from the Receiver is deasserted and the New Cell High control input is asserted to
inform the sequence / detect module that a new cell has arrived. The low-order 4 bits of byte 1 from cell
two are presented and latched into the highest-order 4-bit latch. Either bytes 35 and 36 of cell one or
bytes 34 and 35 of cell two are presented at the input of the Transmitter.

Bytes 2 and 3 of cell two are presented and pushed into the shift register. All bits from bytes 2 and 3 are
presented and latched into the four 4-bit latches next to the highest-order 4-bit latch. Either bytes 37 and
38 of cell one or bytes 36 and 37 of cell two are presenied at the input of the Transmitter,

Bytes 4 and 5 of cell two are presented and pushed into the shift register. The high-order 4 bits of byte 4
are presented and latched into the lowest order 4-bit latch. The data in the three high order 4-bit latches
is presented to the memory lookup module through the multiplexer. Either bytes 39 and 40 of cell one or
bytes 38 and 39 of cell two are presented at the input of the Transmitter.

Operation continues at step 4 with data continuing fo be pumped out of the last stage of the shift register
and into the Transmitter on every cycle and the remainder of cell two being pushed into the first stage of
the shift register, two byics at a time, on every cycle.

20

w.C1 Basic Building Blocks of the Analysis Module Design

The Analysis Module’s design was ived for gate-level impl ion. Therefore, the atomic clements
considered were NAND and NOR gates since they are the simplest building blocks for all the logic families
currently in wi digital icond ion. Due to the many different Boolean functions that

needed to be implemented in order to make the design feasible, many versions of these gates were used, from
the simplest two input gates up to six and seven input gates. The circuit symbol designations for the smallest
of these basic gates are shown in figure 6.

> = »
2-input NAND gate 3-input NAND gate
2-input NOR gate Jinput NOR gate

Fig. 6. Some of the atomic circuit units used in the design of the Analysis Module

Beginning with these basic units the first level of i ion involved the ion of el y latches
and flip-flops. The nature of this design relies on two for different el ts of its

First, it relies, to a great extent, on positive edge-triggered latches for counters, state machines, storage
clements and shift registers. Next, the design requires some SR type flip-flops for status tracking. Both of
these devices were implemented and used as basic building blocks throughout the design. The circuit schemes
for these devices are shown in figure 7 and figure 8.

21

SET

Fig. 7. SR-latch used in the design of the Analysis Module

Fig. 8. Positive edge-triggered D-type flip-flops used in the design of the Analysis Module

v.C2 Shift Register Design

The Analysis Module relies on a shift register in order to temporarily store a portion of a cell that is received
during the time required by the Analysis Module to determine if that cell can be further transmitted to the
Transmitter block. In order for the Analysis Module to complete this task, 9 clock cycles are required.
Therefore, this shift register must be able to delay incoming data by this same number of clock cycles. In
addition, since data is presented from the Receiver in 16-bit words, the shift register must be able to capture
all of this data on every clock cycle.

22

30012

INPUT FROM RECEIVER

PILLITTT L b

bank of 16 positive edge-triggered D-type latches in parallel

bank of 16 positive edge-triggered D-type latches in parallel

EREEEREEEEEN

bank of 16 positive edge-triggered D-type latches in parallel

IRERENEERENN

|
: !l)le}S l't' ldl-'l l l lﬁ:nL l lu |l |
b kfﬂjc;l l l l lle lm‘IL l l|| |l t
£k1f116T 1dit1 ldD£ llﬁl l lu|l [
l iklfﬂ{‘I ldltl lle{ lltrj: l l|||l l‘
llllllllllljllil'
> bank of 16 posiive edge-triggered D-type latches in paraliel ‘
lllllllllllllll
| l

bank of 16 positive edge-triggered D-type latches in parallel

IHNNNEEEEREE.

L
I

OUTPUT TO DATA GATE

Fig. 9. Shift register used in the design of the Analysis Module

23

The shift register is built using positive edge-triggered D-type latches in 9 banks of 16 latches apiece. Each
bank of 16 latches is linked in series to the next so that the output of a latch at position “n” will be captured
and reflected at output “n+1” on the rising clock edge of the next clock cycle. The block diagram for this

device is shown in figure 9.

v.C3 Multiplexer and Data Gate Design

The Analysis Module uses multiplexers in order to present different data to certain modules at the appropriate
times. At its simplest, the multiplexer requires “n” inputs and “log, n” control lines. Based on the state of the
control lines, one of the inputs will be reflected at the output. A two-line multiplexer presents one of two
inputs at its ontput, depending on the state of one control line. A four-line multiplexer presents one of four
inputs at its output, depending on the state of two control lines, The Analysis Module relies on two-line and
four-line multiplexers to parse the VPI/VCI pair from a newly arriving cell’s header and to load this data into
the memory lookup module. To implement these two forms of multiplexers, their output is expressed as a
minimized Boolean expression. The Boolean expressions to implement these two devices are shown in

figure 10.
Output = Input-1eControl’ + Input-2eControl < two-line multiplexer
Output = Input-1eControl-1"eControl-2’ +
Input-2eControl-1'eControl-2 + < four-line multiplexer
Input-3eControl-1eControl-2’ +
Input-4eControl-1sControl-2

Fig. 10. Boolean ions g i ion of multipl

The Analysis Module uses a data gate to control transmission of data from the shift register to the
Transmitter. In its simplest form, the data gate requires an input and a control line. If the control line is
asserted, the data gate’s output will reflect what is presented at the input, otherwise, a value of zero witl be
presented. Once again, the output of this module can be as a minimized Boolean ion. The

Boolean expression to implement this device is shown in figure 11

2%

Output = InputeControl

Fig. 11. Boolean expressions governing operation of data gate

Both the multiplexers and data gates are expressed at the gate level as a series of NAND gates implementing

the Boolean ions governing the ion of these two devices. The circuit schemes governing the
operation of the multiplexers and the data gate are shown in figure 12 and figure 13, respectively.

LB %

]

7

[Cinpur 2>

Input-3>>-
"} four-line data selectur] > [Copid>

Control-1 jl t

e

o

Fig. 12. Circuits governing operation of multiplexers

25

[Trpi>-
e <O

Fig. 13. Circuit governing operation of data gate

The design of the Analysis Module uses two types of multiplexers. The data latches used to store the VPI/VCI
pair of the incoming cell rely on a series of six 4-bit by 2-line multiplexers to present different portions of this
path information when new cells arrive with their first byte being presented on the low-order eight bits of the
Receiver input and on the high-order eight bits of this input.

The second type of multiplexers are required to load data into the memory lookup module. There are four
possible sources of data required by this module. Two of these sources are the high and low order bytes from
the latches that store the VPI/VCI pair of the transiting cell. The remaining two sources are the high and low
order bytes from the latches that store new path information that the Control Module requests to be loaded in
the Analysis Module. Therefore, a 12-bit by 4-line data multiplexer is implemented.

The block diagrams for the implementation of the four-bit by two line multiplexer and the twelve-bit by four-
line myltiplexer arc shown in figure 14 and figure 15, respectively.

N npu |
Output ouT

{ -2
TP Control

Input-1
Output) ouT

Input-2

Control

Fig. 14. Four-bit by two-line multiplexer used in the design of the Analysis Module

26

27

—

[

—

05500 Eeey g
panduy [pansul P
oo) ko0
eindul——<CEN] €andu| endug
Zanduy| Zandul
110 o 1no > o 10 > o
vandyy Langul Landu
oy
yJ [__
oRies 5 o
peandy| NI Ayl ToReo p-indup
$—E-osuog Pz-10au00
eandul——en1_] sndu) gndul
Zanduy é Zandu| Zenduy
1o o 1no dno o
Landu) e | Landuy pandy; LN
| I | =
NS RS T
prindu| CYH p-indul pandu NI
p—F-ionuon t—-fonuos p—pioiuos
erindul NI eandul endu NI
Zandul—— | Zanduy zandul ——<zn]
100 > 0 F) 1no > A0
Lansul——Coni | Landuy sandu——nr |
ono oSS
G] D i o o]
L—-jonuog —onuen
—en] einau| gandu Ceni]
Zandy| Zandur ZNI
[Zno > ——pamo 16 oo (2o >——paro
Lindu) LN Leyndul Landul

Fig. 15. Twelve-bit by four-line muitiplexer used in the design of the Analysis Module

28

v.C4 Memory Lookup Module Design

The primary purpose of the Analysis Module is to verify if network traffic passing through it docs not violate
any path or, in the alternative implementation, path and volume restrictions. These two possible
implementations are referred to as the “path-only” implementation and the “path and volume”

implementation.

The key to performing the path validation of a transiting cell is to perform a lookup of its VPI/VCI pair in a
table that associates a data ficld of one bit with cach possible VPI/VCI pair. This table is implemented in a
semiconductor memory external to the Analysis Module with an address bus that has the same width as a
VPI/VCI pair and a data bus width of one bit. The ATM Forum’s specification for the User Network Interface
(version 3.0) requires that twenty-four bits be allocated for VPI/VCI information in the header of every cell.
Therefore, this external memory must have a data bus width of twenty-four bits. Such a memory will have a
total capacity of 16 megabits. The speed of the memory will dictate how many clock cycles the Analysis
Module must wait before being able to determine if the transiting cell may be forwarded to the Transmitter.

‘With the current state of semiconductor technology, memories of the necessary density and speed have been
implemented as monolithic integrated circuits. Once such product is the SMJ416100 dynamic random access
memory (DRAM) from Texas Instruments. Jt offers an address bus width of twenty-four bits and a data bus
width of one bit. After the necessary data has been presented on its address bus, the data for that address will
‘become available within a i of 18 ds (for the SMJ416100-70 package). Since the Analysis
Module clock is assumed to be operating at 38.88 MHz (thereby implying a clock period of 25.72
nanoseconds), we can guarantee that the data regarding whether or not a cell is valid will be available within
one clock cycle after the VPY/VCI information has been presented.

Dynamic RAMs such as the SMJ416100 require that some be periodicalty in order to
guarantee that the data stored within them will not become volatile. This mai consists of

a series of refresh cycles within a specified period of time. For the SMJ416100 specifically, 4096 refresh
cycles must be performed within every 35 millisecond time period in order to ensure that no data stored
within the device will be altered inad . This mai i can be resolved by combining
the memory read operation required by the VPI/VCI pair lookup with one refresh cycle. Therefore, whenever

a cell arrives and its path information has been parsed out of the header and presented to the memory, a read
operation and a refresh ion can be in This ion is called a Hidden-Refresh-
Read-Cycle in the literature of the SMJ416100.

29

The network data rate that the Analysis Module is required to support is 622.08 Mbits per second arriving in
cells of 53 bytes apiece and with each byte consisting of 8 bits. This means that, under peak traffic conditions,
1.467 million cells will arrive per second. Since we are performing one read with refresh operation on every
ceil arrival, this implies that we will be performing the same number of refresh operations pet sccond as there
are cells that arrive, From this, it is possible to concludc that 46949 refresh operations will be performed
every 35 milliseconds under peak traffic conditions, which well exceed the minimum number of 4096
established for this device.

It is fairly evident that the number of refresh cycles that will be performed on the memory well exceeds the
rtequired minimum (by a factor of ten). However, reducing the number of refresh cycles performed to less than
one for every cell arrival significantly complicates the design of the state machine inside of the memory
lookup module, thereby, increasing the component count required for its implementation. Due to the fact that
nothing in the literature about this device states or implies that performing such a large number of refresh
cycles on it will lead to an increased chance of device failure before the expected end of its functionat life, it

'was not seen as ssary 1o i this ion in refresh cycles within this design.

On every cell arrival, it is y to perform two operati The first of these is the Hidden-Refresh-Read
Cycle to verify the cell’s validity and to perform the necessary maintenance on the memory, The second
operation that must be performed is a Write Cycle to update valid path information that the Control Module
has tequested to be entered into the Analysis Module’s local information. Each of these operations are
initiated and carried out by following a sequence of events on the address bus (control lines AO through A11)
and data bus (conirol line D) of the memory and on the RAS' and CAS' control lines.

TABLE 1
Timing characteristics as they appear in product data for the Texas Instruments SMJ416100-70 Dynamic
RAM (DRAM)

e cycle , random read or write 130 ns

tras pulsc duration, RAS' low 70 ns 10,000 ns
losn delay time, RAS’ low o CAS' going high 70 ns

tre pulse duration, RAS' high 50 ns

tore delay time, CAS’ high to RAS’ going low 5ns
tren delay time, RAS' low to CAS' low 20 ns 52 ns
tesa delay time, CAS’ low to RAS' going high 18 ns

tr transition time 3ns 30ns
toas puise duration, CAS' low 18 ns 10,000 ns
trap delay time, RAS' low to column address 15ns 35ns
tep pulse duration, CAS' high 10 ns
tasc | setup time, column address before CAS’ going low Ons

tasr setup time, row address before RAS’ going low Ons
tRAL delay time, column address to RAS' going high 35ns
tran hold time, row address after RAS’ low 10 ns
teaL delay time, column address to CAS’ going high 35ns

tres setup time, W' high before CAS' going low Ons
tean hold time, column address after CAS' low 15ns
trre hoid time, W’ high aficr RAS' high 0 ns
loan hold time, column address after CAS' low 15 ns
teac access time from CAS' low 18 ns
taa access time from column address 35ns
torr output disable time after CAS’ high Ons 18 ns
trac access time from RAS’ low 70 ns
tos setup time, data 0ns
tows, setup time, W' low before CAS’ going high 18 ns
trwe setup time, W' low before RAS' going high 18 ns

twp pulse duration, W’ Iow 10 ns

tox hold time, data 15 ns
toam delay time, RAS' low to CAS’ going high 10ns
twrn hold time, W' high after RAS’ low 10 ns
twre sctup time, W' high before RAS' going low 10 ns

The descriptions of the timing diagram designations for these dynamic RAMS, along with their minimum and
maximum values, may be found in table 1. Also, the refresh operation requirements arc shown in figure 16.

31

SV TOTOU
16777216-BIT

DYNAMIC RANDOM-ACCESS MEMORY
e SO TSR RS

1962 - REVISED MARCH 1906

® Organization ... 16777216 x 1 Bit n::o:mm)z
® Single 5-V Power Supply {10% Tolerance) i
® Performance Rangoes: Vec[J1 280} vas
ACCESS ACCESS ACCESS READ bflz =ze
TME. E TIME ORWAITE nc[la =8 nc
thac Tcac (:AAAAx) 0:: _W [J+ 2s[] Cas
‘41610070 70ns 18ns S5ms 130ms T‘f %: :E :':
‘41610080 BOns ons wm 150 ne.
‘'416100-10 100 ns 25ns 180 ne
. ‘E‘r;r:on:;'d P-ye—uodcowmonfor Faster aolle 2] a8
ity Ap 110 19 A7
© TAS-Bafore-RAS (CBR) Refresh At ﬂ“ wlL a8
© Long Refrash Period: azllz 17(] as
4096-Cycle Refresh In 32ms X3 ARERRTI VY
® 3-State Unlatched Output Veo 3¢ 180] vgs
® Low Power Dissipation
® All Inputs, Outputs and Clocks Are HKB PACKAGE
TTL Compatible (TP ViEW)
® Operating Free-Air Temperature Range Voo T > Ves
~55°C to 125°C s 2 z
s 8
description k3 : = L
The SMJ416100 series is a set of hngh speed RAS N a N
16777216bit dynamic A s 2
memories (DRAMS), organized as 16777216 NG 7 =
words of one bit each. The series employs NC 2 2
enhanced performance implanted CMOS A10 20
{EPIC™) for high A0 10 b
reliability, and low power. These devices feature Al " 1
maximum FAS access times of 70 ns, 80 ns, and A2 2 7
100 ns. A3 1 18
Veo 14 15 Vss

Allinputs, outputs, and clocks are compatible with
series 54 TTL. All addresses and data-in lines are
latched on-chip 10 simplify system design. Data
out ig unlatched to allow greater system flexibility.

The SMJ416100 is offered in a 450-mil
24/28-terminal surface-mount small-outine
leadiess chip carrier (FNG suffix) and a 450-mil
28-terminal flatpack (HKB suffix). The packages
are eéwaueﬂzed for operation from —56°C to
126°C.

Taxas |

A Planse be aware fhal an mpartant notios conceming avaiiabifly, standard @ wareney, and use In ertical appiications of
instruments

EPIC

trademark of Taxas Instrument

v
PRODUCTION DATA ot m o ot . ‘Copyrioh © 1998, Texas (nstruments incorporated
P o et 7 Do e 1

EEEERNTUERE W
INSTRUMENTS

Fig.

16. Product characteristics information as it appears in product data d for the Texas

SMJ416100 Dynamic RAM (DRAM)

[SHIATETO0
16777216-BIT
DYNAMIC RANDOM-ACCESS MEMORY
SGMSO4SE — NOVEMBER 1522 _ REVISED MARCH 1986

PARAMETER MEASUREMENT INFORMATION

j4—— Refresh Cycie —-p|
f—— Memory Cycle —| lg—— Retraah Cycls —|
had e

tRas

XARXLRD
SOOI
P00 0]

le—t—ltaa torr—bl 4
- M-tcac

1
e ———-®{ Valid Osta :: }.

Figure 11. Hidden-Refresh-Cycle (Read) Timing

@'lbms

Fig. 17. Hidden-Refresh-Read Cycle timing diagram as it appears in product data document for the Texas
Instruments SMJ416100 Dynamic RAM (DRAM)

SMIATETO0 |
16777216-BIT
DYNAMIC RANDOM-ACCESS MEMORY

‘SGMEOIGE — NOVEMBER 1

1992 - REVISED MARCH 1908

PARAMETER MEASUREMENT INFORMATION

RAs — .
—
= I‘—hr—b_
T ———treH —————
[tRco ——3 crp
tesH
1
B ,m_‘_,g_ﬁ—k:u——-b/ "’_—’1\
; oaL
R T r‘ —» —toan
he1 tash o

O A 1

Figure 4. Write-Cycle Timing

TeExAs
INSTRUMENTS

Fig. 18. Write Cycle timing diagram as it appears in product data document for the Texas Instruments
SMJ416100 Dynamic RAM (DRAM)

34

The timing diagrams for the Hidden-Refresh-Read and Write operations on these dynamic RAMs are shown
in figure 17 and figure 18, respectively.

In order to perform a Hidden-Refresh-Read Cycle, the following must occur in sequence (assuming that,
initially, the memory’s RAS’, CAS’ and W' control lincs are unasserted):

1. The high-order twelve bits of the address are presented on the address bus (read).

2. The RAS’ control line is asserted by being driven low and the data on the address bus continues to be
held there for 10 nanoseconds more (read).

3. The low-order twelve bit of the address are presented on the address bus (read).

4, The CAS'’ control Iine is asserted by being driven low and the data on the address bus continues to be
held there for 15 nanoseconds more (read).

5, Wait for 3 nanoseconds to ensure that, at leasl, 18 nanoseconds have elapsed since the CAS’ line was
asserted and read or latch the data at the address from the Q output (read).

6. Wait for 42 nanoseconds to ensure that, at least, 70 nanoseconds have elapsed since the RAS’ line was
asserted and deassert the RAS’ control line by driving it high (read).

7. Wait for 50 nanoseconds and reassert the RAS' control line by driving it low (refresh).

8. Wait for 70 nanoseconds and deassert the RAS' control line by driving it high (refresh).

9. Wait for 50 nanoseconds and reassert the RAS' control line by driving it low (refresh).

=

. Wait for 10 nanoseconds and deassert both the RAS’ and CAS' control lines by driving them both high
(reftesh).

In order to perform a Write Cycle, the following must occur in sequence (assuming that, initially, the
memory’s RAS', CAS' and W' control lines are unasserted):

1. The high-order twelve bits of the address are presented on the address bus.

2. The RAS' control line is asserted by being driven low and the data on the address bus continues to be
held there for 10 nanoseconds more.

3. The low-order twelve bits of the address are presented on the address bus and the data to be written to
that address is presented on the data bus.

4. The RAS' and W' control lines are asserted by driving them low and the data on the address bus
continues to be held for 10 nanoseconds more while the data on the data bus continues to be held for 15
nanoseconds more,

5. Wait for 3 nanoseconds to ensure that, at least, 18 nanoseconds have elapsed since the CAS' line was
asserted and deassert both the RAS’ and CAS' control lines.

35

With these details regarding the operation of the external dynamic RAM on which the memory lookup
module will rely having been presented, the design of this module for the “path-only” version of the Analysis
Module will simply direct the control lines of this external memory (pins RAS’, CAS' and W') into the
sequence detect module, the address bus (pins A0 through Al1) into the twelve-bit by four-line selector, the
data bus (pin D) to the output of the “n-bit latch” and the data output (pin Q) to a latch within the sequence /
detect module. Also, in the “path-only” implementation the “n-bit latch” witl only be required to capture one
bit of information since only this one bit is required to indicate whether or not the newly arriving cell is valid.
The use of a dynamic RAM as a memory lookup module in the “path-only” version of the Analysis Module
implementation is shown in figure 19.

[

, ~
g-i AO R‘A_si—_.ga
T — * cAS ’Eg
%4 A2 € o w 3
Da — A3 [—»%@
e L B d;
Sk =
w 0 ©
Z+——| A6 [=N
3 -

I A ((gﬂ

N Q=2

= oD =
E"’ﬁw | o TI
&« —— A0 D zPQ
O «— Al oS
[~ =

Fig. 19. Memory lookup module used in the design of the “path-only” version of the Analysis Module

The design of the memory lookup module for the “path and volume” version of the analysis module requires a
significant amount of additional circuitry in order to ensure that transiting cells will experience a delay of less
than one cell time. The “path and volume” version requires that we maintain two pieces of information
regarding each possible network conncction through the security device. First, as in the “path-only”
implementation, it is necessary to determine whether or not a transiting cell belongs to a connection which is
valid for the Analysis Module. Second, it is necessary to be able to store a short term history about every valid

36

connection passing through a given Analysis Module. This short term history is the number of cells which
have passed through the Analysis Module along a particular valid connection within a known window of
time. Therefore, this requirement stipulates that no more than a certain known number of cells will be
allowed to pass through the Analysis Module along a particular connection within that known window of

time.

In order to impl this second a small storage nnit must be used which will track the number

of cells that are allowed to pass through the Anatysis Module along a particular connection. Every single time
that a cell belonging to that path passes (hrough the module, the binary value stored within this storage unit
will be decremented to reflect the event.

However, a mechanism must also exist by which this number of allowable cells can be replenished.

Otherwise, the volume of traffic along a particular ion could only be i for an infinitely long
window of time. Therefore, in addition to the ability to decrement the value in this storage unit, it is also
necessary to be able to periodically increment this value. This implies a storage device with two control lines.
If one control line is asserted, then, on the next clock cycle, the device must increment the value which it
stores and, if the other control line in asserted, then, on the next clock cycle, the device must decrement the

value which it stores.

This device can most easily be implemented as a simple counter with two sets of counting logic. If the
decrement control line is asserted, then the count down logic is enabled on the mext clock cycle. If the
increment control line is asserted, then the count up logic is cnabled on the next clock cycle. If both or neither
the increment and decrement control lines are asserted, then the device will retain its current value on the
next clock cycle.

According fo the logic of its operation, this device will be able to alert the Analysis Module if a valid
transiting cell has exceeded its traffic volume restrictions when the value stored internally reaches zero.
However, as currently described, the device could conceivably also come to store an internal value of zero if,
on some particular clock cycle, the internal value is the maximum value that the device can store (all bits set
to one) and the increment control line is asserted. Likewise, a valid alarm due to a zero interal value may be
stopped if another cell transits throngh the Analysis Module while the alarm is triggered because the internal
state of the device would shift from all zero bits to all one bits, if the count down logic is operating properly.
In order to prevent these two events from occurring, we must restrict the count up and count down logic from
wrapping around to all zeroes or all ones when the extremes of the counting range have been reached.

37

This device will be called a “counter with control” for the purposes of this design and its block diagram is
shown in figure 20. The operational states of the device are shown in table II.

TABLE 1T
Operational states of the “counter with control” to be implemented in the “path and volume” version of the
memory lookup module

if (current state # all ones)

asserted unasserted the replenishment time period has clapsed current state + 1
else
current state
if (current state = all zero)
unasserted asserted a valid cell is transiting through the device current state - 1
else
current state
asserted asserted a valid cell is transiting through the devicc and | current state

the replenishment time period has elapsed

unasserted | unasserted no event occurred current state

The entire design of the Analysis Module centers aronnd being able to perform the individual steps of capture
and analysis of newly arriving cells within one cell time and synchronized to a clock whose period is equal to
the time that is required to receive two bytes from the external network. Because of this requirement, this
“counter with control” must be able to update its internal state within a bounded period of time. The reason
this bounded period of time is important is that we cannot stipulatc that the internal state of this counter
consist of any certain fixed number of bits. Therefore, the implementation of this device as a ripple counter or
any series of partial adders is ruled out due to the fact that the time required for complete state update from
one clock cycle to the next in these devices is linearly dependent on the number of bits which make up the
internal state of the device.

Additi itis to ine if a valid cell has violated the volume restrictions for its connections
without delaying that cell more than one cell transmission time. It has already been shown that the “path-
only” version of the Analysis Module requires aimost one complete cell time 10 perform its function leaving
only seven byte times short of a complete ceil, which translates to only 3%% clock cycles. Since the “counter
with control” will be performing a function that is in addition to that of the “path-only” version, it must be

able to provide this result within less than this period of time. In order to keep within this time restriction for
state updates when the internal state of the counter is made up of an indeterminate numbet of bits, it is
necessary to employ logic to fully decode the current state of the device on cvery state transition.

o
Increment Control (up to "n" latches)

[J
Decrement Control [)
[J
» TRIGGERED —
LATCH
COUNT-UP
DECODE >
LOGIC b
S o
- EDGE
—» TRIGGERED |}
N LATCH
1 oATA
SELECTOR
EDGE
TRIGGERED |
LATCH
COUNT- -
DOWN =
: DECODE é
LOGIC — -
—Y EDGE
TRIGGERED
LATCH

Fig. 20. “Counter with control” for the memory lookup module used in the design of the “path and volume”
version of the Analysis Module

The logic necessary to implement the count-up and count-down logic blocks of the “counter with control”
depends only on the number of latches that determine the internal state of the counter and whether or not the

39

bit for which the decode is being performed is the highest order bit. This highest order bit will be labeled 5,
and will be referred to as the terminal bit, with all of the other bits being labeled b, through b,, and being
referred to as non-terminal bits. The Boolean expressions necessary to i the decoding of both the

terminal and non-tcrminal bits is shown in tables ITI, IV, V and VI for the five lowest order bits (the Boolean

expressions for additional higher order bits may be from these i The ellipsis at the

end of each cxpression indicates that the remaining higher order bit literals are ANDed or ORed with all the
remaining bits available in the counter.

TABLE 1T

©) + bbb .
by BB + (B)by) + BIOIOXb bbb
b, GEC:) + 6)0:) + (b)) +)OO OE -

bs (o)(by)(d2)(bs) + (B)(b3) + (br)ba) + (b H(bs) + (BoXby)(B2)(b3)(Ba)(bs) b (Br). .
bs (B)(b1)(b2)(B3)(b) + () ba) + (b)ba) + (1)) + (b)(ba) + (b (br) (B2} (b2 (ba)(bs)be)(br). .

TABLE IV
Boolean expressions necessary to implement the decode logic for the five lowest-order terminal bits of a fully
decoded count-up counter with no roll-over

bo 1

by bo+ by

b (bo}(by) +b,

by (bo)br)(by) + by

by o) (ba)(by) T by
TABLE V

Boolean expressions necessary to implement the decode logic for the five lowest-order non-terminal bits of 2
fully decoded count-down counter with no roll-over

(by)(o + by +by + by + by +bs + b +bs +...)
(o + b))y b+ by +byt by +batbs 4 bty t..)
0+ by +b)by +b)(by’ ~ b)(Do by + by + by + by + bs + b + by +...)
(B + b1 +bs +)0y + ba)(by' + ba)by’ +bs)(bo * by b+ by + by + bs + b+ by +..)
(oo + by + by +bs + /)by’ +)by + b)(br’ + ba)(b' +be)bo+by +by + by + by + bs +bg + by)

gttty

40

TABLE VI
Boolean expressions necessary to implement the decode logic for the five lowest-order terminal bits of a fully
decoded count-down counter with no roll-over

by 0

by (bo)(by)

by bo + (01)(bs)

bs (by + by +by)(bs)
ba by +by +b, +ba)(bs)

The design of the multiplexer will not be presented here as this area has already been covered by other
sections of the Analysis Module design.

To build on the functionality provided by the “counter with control”, it is necessary to provide a method by
which this counter may be incremented in order to continually replenish the bandwidth available to any valid
connection. However, it is necessary 1o do this in such a fashion that every connection be allowed to maintain
their own rate of replenishment and, in addition, to be able to update the replenishment rate for any new
connection that is created. Therefore, the output of a simple fixed clock divisor will not be sufficient to drive
the “Increment Control” on the “counnter with control”. For a connection that is valid, it is necessary to allow
for this i Tate to be p

This can be accomplished with a multiple-bit latch (called a register from this point on) and a simple counter
with reset control which counts up on every clock cycle. When the internal statc of the counter with resct
control exactly matches the internal state of the register, an equality tester can be used to trigger an cvent,
This event will reset the simple counter to an null internal state (all bits zero) and will also act as the
“Increment Control” for the “counter with control”. Once this collection of register, simple counter with reset,
equality tester and “counter with control” has been implemented, the entire system should work in tandem (o
provide a unit that replenishes its allowable data at a rate which is programmable and sets of an alarm signal
whenever the traffic rate (signaled by the “Decrement Control”) has exceeded the rate allowed within the
programmable window (i.e. the “counter with control” has reached an internal state consisting of all zero
bits). This module will be referred to as a “window control module”.

The simple counter with reset used in the window control module must also be a fully decoded counter since
it too must change states in a fashion that is independent of the number of bits that make up its internal state.
However, since there is no requirement that this device not roll over from a state of all one bits to all zero bits,
the decode logic necessary for each bit is greatly simplified over that of the “counter with control”, Moreover,

41

there is no longer any difference in the logic required for terminal and non-terminal bits in the expressions
describing the next state decode logic.

lnpu(1 bit-0

==

‘input-1 bit-0
mpul 0 bit-0

|npul 1 bit-1
input-0 bit-1 ﬂj

nput-0 bit-1 N

Fig. 21, Circuitry for an example three-bit equality tester for the memory lookup module used in the design of
the “path and volume” version of the Analysis Module

The Boolean i necessary to i the decoding of all bits in the simple counter with reset

control is shown in table VI for the five lowest order bits (the Boolean expressions for additional higher

order bits may be lized from these

42

TABLE VII
Boolcan ions necessary to impl the decode logic for the five lowest-order bits of a simple
p-counter with reset control

[b, by

by (bo)(br") + (by')bn)

by ©o)(b1)(ba) + (B1)(ba) + (bo') (b2)

by (bo)(b1)(b2)(bs") + (02)(B) + (by')(03) + (bo')(b3)

by ©)(b1)(b2)(b)(bs") + (b }ba) + (02)(ba) + (b')(ba) + (b')(ba)

The zero tester unit of the window control module must simply assert its result if and only if afl bits of its
input are zeroes. This can very easily be accomplished with a multiple input NOR gate. Therefore, for an “n-
bit” zero tester, all that is required is an n-input NOR gate.

The equality tester unit of the window control module must compare all of the bits of one input against all of
the bits of the other input and assert its result output if and only if all of these bits match. The comparison of
the individual bits would best be performed by an XNOR gate. However, due to the low level nature of this
design, the XNOR function will be implemented with component NAND gates. Once each of the
corresponding bits from the two inputs have been tested with the XNOR function, the resulting equality may
be tested by applying the results of all the XNOR functions to a multiple input NAND gate. The circuitry for
this device is shown in figure 21.

The interconnection of all of these sub-units in the make up of one window control module for the “path and
volume™ version of the Analysis Module is shown in figure 22. Once the window control module’s
functionality has been described, it becomes feasible to implement the “path and volume” version of the
Analysis Module so that valid path and ion volume both occur with the cell
in transit experiencing a delay of less than one cell time. The design will rely on the same dynamic RAMs on

which the “path-only” version relied. However, more than one memory will now be used to provide more
detailed information about the path along which an arriving cell is traveling.

Instead of simply using the DRAM to provide information about whether the connection to which the
transiting cell belongs exists, this memory will now be used to provide a mapping from a VPI/VCI pair to one
specific window control medule within the Analysis Module that controls the volume information regarding
that cell. As before, the first steps will be to present the VPI/VCI pair of the transiting cell as an address to
the DRAM. However, the data provided by the memory will now be richer in content. If the data returned is
null, then the VPI/VCI pair for the transiting cell will be assumed to belong to an invalid connection, an alert
‘will be raised for this reason and the cell will be dropped. However, if the data presented by the memory for a

43

particular VPI/VCI pair is not null, then the transiting cell is passing along a connection that is valid for the
Analysis Module. This result data from the memory will be forwarded through a data gate to a demultiplexer

‘which will, in turn, assert the “valid cell arrived” control line on one unique window control module.

new volume data

inp oad dataj T
K-BIT REGISTER “ K-BIT COUNTER

output output reset

k-bit by k-bit
equality tester

result
decrement increment \a
K-BIT COUNTER WITH CONTROL
output :\
—) input

K-BIT ZERO TESTER resul

Fig, 22. Window control module for the memory lookup module used in the design of the “path and volame™
version of the Analysis Module with “k” bits of control granularity

44

This use of DRAMs in the memory lookup module implies that more than one DRAM unit will be required.
The total number of these memories that are required is a function of the total number of window control
modules available within the Analysis Module. As an example, if the Analysis Module is equipped with
sixteen window control modules, then four bits will be required to uniquely select one of these modules
which, in turn, implies that four Texas Instruments SMJ416100 devices would be required in order to provide
the necessary four bits of data. These four bits of data would then be passed to a four-to-sixteen demultiplexer
which will, in turn, assert the “valid cell arrived” signal on one unique control module. The block diagram for
a four-window control module “path and volume” Analysis Module is shown in figure 23.

As a general result, for every “W” window control modules available in an Analysis Module, a total of
(log, W) DRAME will be required, each with a density of 16 Mbits, along with a “(log, W) to W™
demultipiexer.

Fig. 23. Block diagram for the “path and volume™ version of the Analysis Module

45

v.C5 Sequence / Detect Module Design

The
through the various functions it has to perform when receiving new cells from the Receiver. The sequence /
detect module asserts and deasserts the conirol lines on the major logic blocks described in the top-level

/ detect module all of the ions within the Analysis Module that guide it

layout of the Analysis module and it does this only at the appropriate times. To be more specific, it sets the
control lines to the dynamic memory or memorics, the 4-bit multiplexers, the 4-bit data latches, the 12-bit by
4-line multiplexer, the memory lookup module, the traffic alert latch or latches and the New Cell High and
New Cell Low lines to the Transmitter and the data gate that controls cell output to the Transmitter.

The core of the sequence / detect module is a state machine that cycles through a total of 28 states in order to
perform all of the necessary operations on the controf lines leading to the various blocks of logic. The actuat
signals that must be controlled are shown in table VIII.

TABLE VIII
Signal names and descriptions of the control lines st by the state machine internal to the sequence / detect
odul

Controls which two possible inputs are reflected at the outputs of the
4BDS[2] multiplexers. Each of the six bits control one ipl and each multipl is ibered
4BDS[3] #1 10 #6 with #1 being the highest order and #6 being the lowest order multiplexer. (Found
4BDS[4] on both the “path-only” and the “path and volume” implementations of the Analysis
4BDS[5] Module.)

4BDS[6]
4BDL[1] Controls the latching on the 4-bit latches that store the VPI/VCI information regarding a
4BDL[2] transiting cell. These are positive edge-triggered latches, therefore, latching occurs when
4BDL[3] these signals transition from low to high. Each of the six biis control one 4-bit latch and
4BDL(4] each latch is numbered #1 to #6 with #1 being the highest order and #6 being the lowest
4BDLIS] order latch, (Found on both the “path-only” and the “path and volume” implementations of
4BDL[6] the Analysis Module.)

12BDS[B] Controls which of the four possible inputs are reflected at the outputs of the 12-bit by 4-line
12BDS{S] multiplexer. When the “B” signal is high, the high order twelve bits of the possible inputs
will be reflected at the output and when the “B” signal is low, the low order twelve bits of
the possible inputs will be reflect at the output. When the “S” signal is high, the VPI/'VCI
pair information will be reflected at the output and when the “S” signal is low, the new
path information will be reflected at the output. (Found on both the “path-only” and the

“path and volume” i ions of the Analysis Module.)
PVRL Controls the latching on the latch or latches ing on the i ion) which

store the result of the memory read on the memory lookup module. These are positive edge-
triggered latches, therefore, latching occurs when this signal transitions from low to high.
(Found on both the “path-only” and the “path and volume” implementations of the
Analysis Module.)

46

TABLE ViI
(continued)

3 i
Wh

it il i

en asscrted high, this signal will reset the SR-latch that indicates to the Control Module
whether the information about a new path that was last loaded has been stored in the
memory lookup module. (Found on both the “path-only” and the “path and volume™
implementations of the Analysis Module.)

LLODG26

‘When asserted high, this signal will load the counter that controls whether the data gate to
the transmitter will allow to pass the low order byte from the shift register. When asserted,
this signal will load that counter with a value of 26, indicating that the data gate will allow
the next sequence of 26 bytes on the low-order byte output from the shift register to pass
through it and on to the Transmitter. (Found on both the “path-only” and the “path and
volume” implementations of the Analysis Module.)

LLODG27

‘When asserted high, this signal will load the counter that controls whether the data gate to
the transmitter will allow to pass the low order byte from the shift register. When asserted,
this signal will load that counter with a value of 27, indicating that the data gate will allow
the next sequence of 27 bytes on the low-order byte output from the shift register to pass
through it and on to the Transmitter. (Found on both the “path-only” and the “path and
volume” implementations of the Analysis Module.)

LHODG27

When asserted high, this signal will load the counter that controls whether the data gate to
the transmitter will allow to pass the high order byte from the shift register. When asserted,
this signal will load that counter with a value of 27, indicating that the data gate will allow
the next sequence of 27 bytes on the high-order bytc output from the shift register to pass
through it and on to the Transmitter. (Found on both the “path-only” and the “path and
volume” implementations of the Analysis Module)

RAY

This is the row address select control line to the external dynamic RAM that is found in the
memory lookup module. This line is used to laich address information when read and write
cycles are being performed on the memory. This signal is asserted low when these two
operations are being performed according to the data sheets describing these two
procedures for the Texas Instruments SMJ416100 DRAM. (Found on both the “path-only”

and the “path and volume” implementations of the Analysis Module.)

CAS

This is the column address select control line to the external dynamic RAM that is found in
the memory lookup module. This line is used 1o latch address information when read and
write cycles are being performed on the memory. This signal is asserted low when these
two operations are being performed according to the data sheets describing these two

dures for the Texas $MJ416100 DRAM. (Found on both the “path-only”
and the “path and volume” impl, tations of the Analysis Module.)

This is the read / write control line to the external dynamic RAM that is found in the
memory lookup module. This line is used to indicate whether a write or a read operation is
being performed on the memory. This signal is asserted low when a write operation is in
progress and deasserted high when a read operation is in progress according to the data
sheets describing these two procedures for thc Texas Instruments SMJ416100 DRAM.
(Found on both the “path-only” and the “path and volume” implementations of the
Analysis Module.)

Controls the latching on the latches which store the result of the window control module
activity performed after the memory rcad in the memory lookup module. These are positive
edge-triggered latches, therefore, latching occurs when this signal transitions from low 1o
high. (Found on both the “path-only” and the “path and volume” implementation of the
Analysis Module.)

SDDG

‘When asserted high, this signal instrucis the data gate at the input to the demultiplexer in
the window control module to reflect the data on the data bus of the memories at its output.

‘When not asserted, the data gate will reflect null values at its outputs (all zero bits).

47

The state machine guiding the operation of the sequence / detect module requires some external information
about the events of new celt arrivals. New cells can arrive at the Analysis Module with cither the first bytc
being presented on the low-order eight bits of the Receiver’s output stage or with the first byte being
presented on the high-order eight bits of the Receiver’s output stage. In order to be able to determine when
these events arc occurring, the state machine uses, as external controls, the New Cell High and New Cell Low
signals which are gencrated by the Receiver. The method in which these signals behave is described in the
section devoted to the Receiver’s design. The designations for these signals are shown in table IX,

TABLE IX
Signal names and descriptions of the external signals the state machine internal to the sequence / detect
module ires

‘When asserted high, it indicates the arrival of a new cell from the Receiver with the first
byte of that cell being presented on the high-order eight bits of the Receiver’s output stage.

NCLIN When asserted high, it indicates the arrival of a new cell from the Receiver with the first
byte of that cell being presented on the high-order cight bits of the Recciver’s output stage.

The exact states of cach of the signals controlled by the state machine for each state in the state diagram are
shown in table X (don’t care conditions appear as blank ficlds in the table). Internal values which have not
been assigned to any specific state are naturally assumed to produce a don’t care condition for all signals. The
state diagram for the state machine guiding the actions of the sequence / detect module are shown in
figure 24.

48

e -,
State 1 State 14 State 15.
Waitfor celito | NCLINIOW. } | continue DRAM Cortinue DRAM
start on low byte &H’N low refresh oycle refresh cycle
NCLIN high, -
NCHIN low
State 2 State 13: State 18 [smeor
Latch VPIVCI Continue DRAM Continue DRAM i Lateh VPINGI
data esh cycie efresh oycle ! data
Siate 3 State 12: State 17, 5 ate 26:
Lateh VPIVCI Continue DRAM Continue DRAY = Lateh YPIVCI
aata refresh cycle refresh cycle z data
1 1 § INCUN low,
—_ 7 Iz NCHIN high
State 4. State 11: State 18: | H State 25 |
L+ start memary read Cortinue DRAM Firish DRAM L Laton vPiNeI
for VPING! data refresh cycle refresh oycle ‘ data !
[- j * i
. T [Statets: | 741—\‘
State 5: State 10, I new path data is :
Memory read for Start DRAM availabie, start & it for m;ﬁ“’
VPIVC data i cyel it
refresh oycle Mopertion [FSTatch byte.
T “JRS-atch Reset h
Set
State 57 State 23
State 6 Ifatohec result of fnew path data is if new path data is
Memory read for operation fs OK then available, available, finish mermory
VPLACI data start the Transmitter data contirive memory wite operation and clear
ate counters wiite operation fiew path dta
;lﬁ*sme T EE] § State 227
Lalch result of mermary read (Latoh trafic If new path dala s f new path data is
(Start trafio volume check if volume resul if available, available,
“path and volume" “path and volume" continue memory continue memory
implementation] write operafion. ‘wite operation.

Fig. 24. State diagram for the state machine internal to the sequence / detect module within the Analysis
Mo

dule

1

2

3 00011
4 00010
5 00110
6 00111
7 00101
8 00100
9 01100
10 | 01101
11 | 01111
12 | 61110
13 | 01010
14 | 01011
15 | 01001
16 | 01000
17 11000
18 11001
19 11011
20 [11010
21 11110
22 1
23 11101
24 11100
25 10100
26 10101
27 10111

s
WL
W

I
Mt
7
fs

W
T
Wttt
LW
WY
L
JRARAN
W
PR AR
L
AR
LW
L
L
L
W
WL
L
L
RARARs
WL
WL
L
WL
L
M
LT

TABLE X
Signal states for every valid state in the state machine diagram for the sequence / detect module of the

D ke R ek e o e e e

L R Sk a ak SR T

e e e e e e e e e D e e e e

e e e e e e e b D e

J D e e e

B e T S e e i T S e e e R e

B B T e Rt e R e

BB IE I I I I I I I II I I I I I I o

D ke a aat

49

D R e e At SR et ok ot =

Aside from this central state machine and decode logic blocks guiding the actions of the control signals, there

are also some additional logic units that provide for support operation which allows the statc machine to

continue on with other activities. One such unit is the logic that controls the data gate which feeds a cell’s

contents to the input stage of the Transmitter (and controls the state of the New Cell High and New Cell Low

lines to the Transmitter), The state machine only devotes onc state to setting in motion the chain of events

which will present an entire cell to the Transmitter. Once the state machine has passed through this state, a

count-down with no roll-over counter takes over and continues holding the data gate in pass mode until all of
the bytes of the transiting cell have been passed on to the Transmit{er,

50

[Clock I
[New Cell High
Bank of 5
d:cecﬁ:kl?eic latches with
[New Cell Low o current state
for state
machine of state
machine
4_»b|i 4
[4DS #1541 cortrol fine
decode logic Presettable Presettable
down- down-
counter with counter with
—_— no roll-over no roll-over
4>»blt
control line
decode logic
; ant 3 H
abit |, 2 §
o I
control line £ 2
[(abit D5.#5 > decode logic 3 5
sttt H 2
2 ®
o 8
_bif g =
4-bit & z
contral line
decgiie Iaglci

12-bit
multiplexer |

control line
decode logi

[1 1

RAS', CAS'

and W'

decode logic |

latching
decode logic

L.

Fig. 25. Logic blocks which make up the sequence / detect module of the Analysis Module

51

Other blocks of logic necessary for the correct functioning of the analysis module are those that control the six
4-bit multiplexers which present the VPI/VCI information to the 4-bit latches. These additienal blocks arc
shown in the block diagram of the sequence / detect module in figure 25.

TABLE XI
Next state decode logic for cach bit of the state machine controtling the operation of the sequence / detect
module

(B3)(02)(br") + (5 X)) (b1) + (b)) b2} (br) + (bs') (b)by)bo) +

(3)(02) (b1)beY(New Cell Low) + (ba)(bs)(b') + (0a)(D1')(Bo) + (ba)(bs)(be') +
(04)(b5)by)b)(New Cell High)
©3)(b2)(bo) + (0:)(b3)(b2)(bu) + (a)(b3") o) + (ba)(b2')b ")o) + (ba)(b2')(by)(bo)(Latch Set) +
(01)(b)
(M)(bs’)(bz) + (b..’)(b;)(b‘)+ (b4')(bz)(bo) + (bs')(bx)(bo)+ (0a)(b1)(bp") + (ba)ba)(bo) +

o' Y(New Cell High) + 1)(bo)(Latch Reset) + (b2) (b1) (bo)

G4 (bs) + (b4)(bz)(bl’)ﬂiu') + (ba)(bv’)(bl)(bo)(La!Ch (Sbﬂ) + ©3)(b2)(b1) + (ba)(br)(bo') + (bs)(br "))

)

b,

by

(0a)(b3) + (b)(by')bo) + glz,,)gp;’)(bu')(l\lew Cell High) + (6)(b2)(by)(by')

TABLE XTI
Decode logic for the control lines which the sequence / detect module uses to operate sub-units of the Analysis

PVRL

(b)) (b2) (1) (bo)
RSRL (ba)(b)(b)(by)(bo)
LLODG26 04)(bs)(02)(b1")(bo)(New Cell Low)
LHODG27
LLODG27 (bs)(b3)(br)(by)by Y(New Cell High)
W b))+ (5) + () +) + (bo)
RAS' b)) (o) + (31) bo) + (6;)(bo) + (ba)(s') + (Ba)(br)(y')
CAS)b + (b3) b)) + BB) + BB)b + (ba)bs)(b;)
VVRL (b4)(bs")(b2)(b1)oY (Memory Lookup Result)
SDDG
4BDS {1...6] (b2)
4BDL [0} (b)) (b2 (®1)(bo) + (ba) (B3)b2)(b1)by
4BDL [2...3} (045")b:)01)(Bo) + (ba)(by)b2)(bs)by)
4BDL [4...5] ()3)b)b1)(bo) + (B)(bs)b2)(br "))
4BDL [6] (02052 b1 (bo) + (Ba)(bs) (b2)(b1)(bo)
12BDS [B] ()
12BDS [L] (by)

52

TABLE XHI
Next state decode logic for each bit of the presettable down-counters with no roll-over in the sequence / detect
module

bo by + Sety)(bs +bs +by + by +bo + Sety)(Setyg’ + Setyy)

by by’ + by + Setag + Sety)(by + by’ + Setys + Setay) (bs + by + by +by + by + Setyg + Setay)

by (b7’ + by +bo) (b2 + br')(bz + b')(bs + by + by + by +boKSetos')Setz’)

by (bs' + b+ by + g + Setys + Setyr) (by + by + Setae + Setzr)(by + by’ + Setas + Setzr)
(bs + by’ + Setyg + Sets)(by + bs + by + by + by + Setss + Setz)

ba (bs + by + by +bo + Setas + Setor)(ba + Sets + Setzr)

After minimization, table XI shows that the logic necessary to decode the next state of each of the bit inputs
to the down-counters, the state machine and the control lines to the other modules is considerable. Also, as is
shown in tables XII and XIII, the decode logic for the presettable down-counters and external control lines is
not trivial either.

IV.D Control Module Design

The Control Module must do its work asynchronously from the Analysis Modules. It’s job is to handle
communication with the supervisoty interface and with the bardware in the Analysis Modules to which it is
attached. To the supervisor interface, the Control Module must report traffic violations detected and read
from the Analysis Modules and get information about new valid data paths that have been created in the
network. When the Control Module receives data about a new valid path, it must be able to distinguish
through which Analysis Modulc the path passes and must update the valid path information within this
module. Implied in this ibility is the job of maintaining the of all the DRAMs in the
Analysis Modules, as well as getting the data from a given security module as quickly as possible once a
traffic violation has occurred.

A M la 68PM302 T d i 1 Processor would be an ideal candidate in this design because
of its current availability at reasonable cost and its capability to provide a broad range of built-in features that
closely match the needs of this application. It provides sufficient /O to be able to perform all the necessary
read and write operations to and from the Analysis Module hardware. Tt offers the interrupt circuitry
necessary for the Analysis Module to alert the Control Module of a traffic violation. Finally, it provides a
high-speed serial interface which could be used in conjunction with a DS1 i iver in order to
communicate with the Control Moduie’s supervisory interface. Those i which are

Tiecessary are:

53

o Informing the security device by the supervisor hardware that a new VPI/VCI pair is valid on
one of the ports of the ATM switch which the device is monitoring,

» Informing the supervisor hardwarc (hat a traffic violation has occurred, on which port it has
occurred and what the VPI/VCI pair of the offending ceil was.

The event which is considered crucial to the operation of the device will be assigned to the interrupt logic of
the MC68PM302. This is the presence of a traffic violation on one of the data streams passing through an
Analysis Module. Since the timing requirements of the design are so stringent, it would bc recommended that
no interrupt be shared within these tasks becausc the time required to perform the additional job of
determining exactly which module triggered a particular interrupt is likely to make the processor unable to
capture the necessary information in a timely fashion (a timely fashion is defined as one that is performed
sufficiently fast that data due to a traffic alarm in one of the Analysis Modules is lost) due to the entry of a
new cell into that Analysis Module. Therefore, since the MC68PM302 has 8 interrupt levels, this design
should be able to handle the security requirements of traffic originating from an ATM switch with up to 8
outputs (one interrupt per switch output).

While it is not the express purpose of this discussion to describe how the interconnection between the Control

Module and Analysis Module should be created, in order to show that it is feasible to have a Control Module

consisting of one MC68PM302 controlling up to cight Analysis Modules, one possible arrangement for the
of the mi Hler’s avai external I/0 controls follows:

® /O ports A and C are assigned 1o load VPI/VCI information into the latches that store data
about new connections within the Analysis Modules. This data will become the physical address
‘which will be updated in the dynamic RAM of the Analysis Modules in order to track the new
information about that data path.

e 1/O port B, upper nibble is assigned to loading the state of a new path into the latches that store
data about new connections within the Analysis Modules (this, together with the VPI/VCI
information forms the complete data regarding a new path that needs to be set up).

e /O port B, lower nibble is assigned to select the Analysis Modules whose data needs to be
updated. These signals are used to ensure that only one Analysis Module out of those to which
the Control Module is attached, will latch the data regarding a new connection which needs to
be created.

This interconnection is shown as a block diagram in figure 26. It should be noted that a good portion of the
reaction time and efficiency of this module relies on the manner in which the controlling software within the

54

microcontroller behaves. It is possible to code this sofiware in such a way that it reacts to traffic violations
extremely quickly while information coming in from the supervisory interface regarding new connections that
must be created is allowed to wait a lengthy period of time. Alternatively, the reverse could be true, where
new path information is applied to the Analysis Modules very quickly, whilc traffic violations not always be
picked up or may wait for a period of time before being reported to the supervisory interface.

It is beyond the scope of this to make ding how the software in this module should
be coded. The exact ics and i istics of the supervisory interface and the format in
which it transmits data arc only outlined in broad strokes.

[pst |
compliant
transmitter/
receiver
sufficient
to
ey Sore
2‘ us control
| 110 Port B, Bit 4 to address,| %%
@« DRAM data bt MCB8PMa02| B
|3 Analysis Modules Integrated
2 Multiprotocol
@ Processor
& Ship | 1o Port B. bits interrupt
s select = nterrupt Analysis Module
% logic & circuitry ecode Kriratiic violation alert
I . logic
B o | A
2oge
£ges
° 3= a
Fig. 26. A possible tion for using a la 68PM302 mi ller as a Control Module for

multiple Analysis Modules

55

For thc implementation of this Control Module with “path-only” Analysis Modules, the functions described
thus far do not require anything more involved than the i i to receive along an

ISDN compliant serial communications link, decode it and write the new path information to the registers on
the appropriate Analysis Module. Since the only information regarding any virtual path that is required is
whether the path is valid or not, there is no prolonged processing involved in order to decide what
information needs to be written to the Analysis Module. This means that the time required to begin allowing
cells to pass along a newly created valid connection is bounded by only those clock cycles in the 68PM302
necessary Lo decode the command from the serial link and write it to the Analysis Modulc.

However, in the case of the Control Module’s implementation with “path and volume” Analysis Modules, the
situation changes significantly. With the “path and volume” implementation, the data that the Control
Module must write to the Analysis Modules is no longer a simple statement describing the validity of a
particular path. In this case, this data describes a mapping from the VPUVCI pair of an arriving cell to one of
the “window control modules™ on the target Analysis Module. This implies that the Control Module must
know, a priori, which “window control modules” on which Analysis Modules have already been assigned to
existing paths. When information arrives along the serial link regarding a new connection, the Control
Module must be able 1o determine which “window control module” in the target Analysis Module to map to

the new connection.

1t becomes evident from this sifuation that, if the 68PM302°s software were to be allowed to handle the
mapping of a new path onto a particular “window control module” in the appropriate Analysis Module, then a
search algorithm must be implemented in order to ensure that the new path is not being mapped onto a
“window control module” alrcady assigned to another path, The table that wonld need to be searched would
contain the state of every “window control module” in a particular Analysis Module. Each element in this
table would indicate the assignment state of one particular “window control module”. Further, this search
space would be a linear function of the number of “window control modules™ in each Analysis Module. In
order to have this search execute in constant time, the software would be required to create a last-in, first-out
(LIFO) queue for every Analysis Module. It is assumed that the operations of pushing and pulling new values
onto and from these queues, respectively, would require constant computational time.

The length of each of these queues would be the number of “window control modules” on each Analysis
Module. Initially, the Control Module, would completely fill each queue with the indexes of all the “window
control modules” on every Analysis Module (indicating that no valid paths exist in any Analysis Module).
Then, as new paths are created through commands from the serial link, the 68PM302 would need to pull the
first index off the LIFO queue which pertains to the appropriate Analysis Module and write this value to the
Analysis Module, along with the VPI/VCI pair of the new connection. In this way, the connection setup time

56

will be constant, since the critical operation of pulling the first valuc off a LIFO queue is assumed to be

accomplished in constant time.

‘When commands arrive along the serial link which invalidatc cxisting paths, the actions necessary to
invalidate the path can no longer be accomplished in constant time according to this approach. In order to
invalidate an existing path, the Control Module must first determine to which “window control module”, in
the appropriate Analysis Module, the path had originally been mapped. Using the design described thus far,
this would need to be accomplished through a series of tables which would have been updated at connection
setup time. The action of determining which “window control module” has been freed by the path just

would be lished by hing this table. Since there are no constraints being placed on the
order in which new connections are created and invalidated, then the most optimal search of this table could

only be accomplished in computational time that is a linear function of the size of each table, i.e.. the number
of “window control modules” implemented in cach Analysis Module. Once the appropriate “window control
module” has been determined, then its index in the appropriate table would be updated and that index would
‘be pushed back onto the LIFO gueue which pertains to the Analysis Module on which that “window control
module” resides.

‘However, this linear search time does not imply that the time required to invalidatc an existing connection is,
itself, linear and not constant. When a command arrives along the serial link to invalidate a path, the
command will contain the exact VPI/VC] pair which needs to be invalidated. This means that all of the
necessary to inmvali that path in the appropriate Analysis Module is already available. The
68PM302, would write to that Analysis Module indicating that the VPL/VCI pair in question just maps to a
null value (this null value being zero, as described in the Analysis Module’s design). Once this is
then the previ i table search could be performed without the danger that a ccll

will transit through that Analysis Module along the newly invalidated connection.

Therefore, both new connection creation and i idation may both be ished in constant time within
the Control Module’s software for the “path and volume” implementation of the Analysis Module.

57

CHAPTER V

SIMULATION OF SECURITY DEVICE

As already stated, the determining factor in the design was the need to implement the device with circuits of a
proven stability and which are inexpensive, in terms of transistor count. Because of the high data rates
involved in the transmission of cells in ATM networks, it was necessary to use as much parallelization of
functions as possible in hardware in order to implement the design with these stable circuits and at realizable
clock speeds.

The objective of this design was to determine whether it is possible to assemble all of the necessary logic units
into one or a few monolithic ASICs which will comply with all of the specifications st forth in Chapter 3.
Therefore, the deciding factor in the technology chosen for this simulation was that technology which would
allow for an accurate determination of the necessary component count and also provide a rough estimate of its
operating characteristics for some known value of the signal delay intrinsic in each gate in the circuit. A

secondary issue involved was the simulation cost in terms of simulation devel time and

complexity of the simulation itself. Finally, due to the nature of the conclusions to be drawn, the simulation
had to be free of logic family specific manufacturing issues. One such example is the difference in the
importance of correct transistor sizing between different logic families. In bipolar logic families the sizing of
individual transistors is much more important than it would be in a design relying on FET technologies due
to the large difference in bipolar base currents drawn versus those of field-effect transistor gates. Another
examplc would be the differences in component counts which may be mounted on an emitter-coupled logic
die versus other logic families. Since the devices in emitter coupled logic circuits are not intended to ever be
driven into their saturation region during normal circuit operation, these circuits typically reach the die
package heat dissipation limits at much lower component counts than would similar circuits in other logic
families.

In order to cover these issues, the simulation was laid out as a behavioral description of the circuits involved,
with individual logic gates as the atomic element. The design of the entire security device was simulated
using the Verilog hardware description language in order to verify that the circuit indeed performs its
intended function. The actual circuit is expected to operate with a clock period of 25.88 nanoseconds. For the
purposes of this implementation, this clock period was approximated to 26 nanoseconds, in order to make

simulation of the device less ionally i ive. This approximation may be found in the Verilog
definition of the “ClockGen” module.

58

The Receivers, Transmitters, Control Module and dynamic RAM of the device use a purely behavioral

The dure used for the ivers, Ti i and Control Module is a direct extension of
the carlier discussion regarding their design. The procedure used for the dynamic RAM is drawn from the
manufacturer’s product data and implements the functions of “Read with Hidden Refresh” and “Write”
according to the timing specifications described therein.

The Analysis Module was modeled as a series of behaviorally described “NAND” and “NOR” gates whose
operation is assumed to be ideal except for a known, fixed signal propagation delay. As shown in the source
code included in Appendices A and B, this propagation delay is set to on¢ nanosecond, this is to say, 1/26 of
the clock cycle time.

Based on these gate iption, all of the ini| ib-modul: v to (he Analysis Module
were simulated, with latches and multiplexers appearing as the most basic building blocks and continuing all
the way up to complete state machines at the highest orders of complexity.

The results of this simulation indicate that the device will, indeed, perform its function satisfactorily for a
range of gate delays, with the highest acceptable delay being 2/26 of the clock period of the Analysis Module.
The device operation breaks down at some point between a gate delay of 2/26 and 3/26 of the clock period.

The entire simulation for both versions of the Analysis Module was implemented with a modular approach in
order to make debugging, testing and itation feasible. The resulting simulation consists of a large
number of functional module units which are i P among These modules and the
submodules upon which they depend are shown in table XIV for the “path-only” version of the Analysis
Module.

The logic which makes up each of the individual blocks of logic described in the design sections were
grouped as closely as possible within one complete circuit module with the same name. This was not precisely
possible in all cases due to the interdependence of similar reusable blocks that could be used as submodules
for different design components. However, every simulation module is a faithful representation of the exact
circuit logic and Boolean expressions described in the section concerning the design of the device.

Component count optimizations within each of the logic blocks were implemented as far as possible without
having the logic block deviate from the circuit described in the design section. While a careful analysis will
reveal certain optimizations still left uni d, these optimizations will have a igni impact

on the overall component count of the entire device. For example, the number of literals in the decode logic of

59

many of the counters could have been reduced somewhat by implementing the states of the counters as Gray-
code counters. However, this optimization would reduce overall component count by less than one percent.

lation’s ion, and the i that the device, if constructed
would operate properly, relies on the generation of test pattern cell arrivals and new path updates from the
modules entitled “ControlModule” and “Receiver”. Both of these modules are behaviorally defined with the
“Receiver” logic block ing an i of iqu lete cell arrivals and the

The correctness of the si

“ControtModule” generating a continuous stream of new path updates for loading into the device’s memory.

For the purposes of this simulation, it was not feasible to implement the entire sixteen megabit memary space
of all of the memories involved. Instead, in the “path-only” version of the Analysis Module, the dynamic
RAM’s procedural definition specifies that it will recognize a cell’s path as being valid if the last bit of the
address presented to it is asserted. In the “path and volume” version of the Analysis Module, an arriving
cell’s path will be mapped to an existing path if the lower three bits of the address correspond (o a sequence
that has already been generated by the “ControlModule”.

It is evident that some simplifications had to be made in order to encapsulate the entire design into the
simulation cnvironment chosen, however, the artificial data sequence created by the test modules simulated
show cases of the device operating under all possible combinations of circumstances. This is to say that the
data streams generated by the “ControlModule” and the “Receiver” force the Analysis Module to show its
‘behavior both when a valid cell arrives and when an invalid cell arrives, on cither starting byte of the
“Receiver” module’s output. In addition, it shows that the Analysis Module will correctly load new path data
within one cell time of the “ControlModule” block’s having presented it.

Inverter

TABLE XIV
Module names and the submodules of which they consist for the simulation of the “path-only” Analysis
Module

Procedurally defined.

60

TwolnputNANDGate
ThreclnputNAND Gate

Procedurally defined.

Procedurally defincd.

FourlnputNANDGate Procedurally defined.
FivelnputNANDGatc s durally defined.
SixInpuNANDGate P 1ly defined.

SevenInputNANDGate

Procedurally defined.

NineInputNANDGate

ThreelnputNORGate

Procedurally defined.

FourInputNORGate

TwolnputNORGate Procedurally defined.
Procedurally defined.
P defined.

FiveInputNORGate

Procedurally defined,

SixinputNORGate

Procedurally defined.

SevenlnputNORGate Procedurally defined.

SRLatch 2e(TwolnputNANDGate)

PosEdgeTrigLatch Se(TwolnputNANDGate) + 1¢(ThreelnputNANDGate
i i 4e(PosEdgeTriglatch)
itRegister 8e(PosEdgeTrigLatch)

16e(PosEdgeTrigLatch)

ShiftRegister

9e(SixteenBitRegister)

DataGate 1e(TwolnputNANDGate) + le(Inverter)

FourBitDataGate 4e(DataGate)

EightBitDataGate 2e(FourBitDataGate)

TwoLi. 3e(TwolnputNANDGate)

FourBitTwoLi 4e(TwoLineSelector) + 1e(Invericr)

FourLi i 4e(ThreclnputNANDGate) + 1e(FourInputNANDGate)

T i i 1 12e(FourLineSelector) + 2e(Inverter)

ClockGen Procedurally defined.

NewPathStore 3e(EightBitRegister) + 1»(PosEdgeTriglatch) + 1e(SRLatch)

DynamicRAM Procedutally defined.

NetworkReceiver Procedurally defined.

Network Transmitter Procedurally defined.

ControlModule Procedurally defined.

DownCounterWithPreset 5e(PosEdgeTrigLatch) + 2e(Inverter) + Se(TwolnputNORGate) +
3e(ThreelnputNORGate) + Se(FourlnputNORGate) +
2e(FiveInputNORGate) + 4e(SixInpuiNORGatc) +

2e(SevenlnputNORGate)

StateControl

61

TABLE XIV
(continued)
B
Se(Inverter) + 7o(T putNANDGate) + 4(T! ANDGate) +
3e(FourlnputNANDGate) + 11s(FivelnputNANDGate) +
2+(SevenInputNANDGate)

StateMachine

Se(PosEdgeTriglatch) + Se(ResetControl) + 3¢(TwolnputNANDGate) +
18+(TI ANDGate) + 9e(F ANDGate) +
6e(FiveInputNANDGate) + le(SevenInputNANDGate) +

2e(NineInputNANDGate)

SequenceDetect.

1e(StateMachine) + 1s(StateControl) + 2e(DownCounterWithPreset) +
2e(FivelnputNANDGate)

NetworkSecurity

18(ClockGen) + 1e(NetworkReceiver) + 1e(NetworkTransmitter) +
1e(ControlModule) + 1(ShiftRegister) + 2¢(EightBitDataGate) +
1e(Detect) + 1o(NewPathS! + 6e(FourBitTwoLi)+
i ister) + 1e(TwelveBitFourLineSelector) + Le(DynamicRAM)

The modules and the submodules upon which they depend are shown in table XV for the “path and volume™

version of the Analysis Module.

Tt must be noted that, to simulate the entire device as one complete unit requires a very considerable amount

of computation time, The device’s simulation code presented here had, itself, to be broken down into

component sections. Each of those sections were simulated with a known generator pattern of signals, their

results captured and then passed along to the standalone simulation of the next logic block in the sequence.

However, the Verilog code presented here allows a designer to look at the behavior of the signals of every

phase of the design in order to analyze where improvements could be made. Therefore, the simulation’s

purpose as a “proof of concept” has been realized.

62

TABLE XV

Module names and the submodules of which they consist for the simulation of the “path and volume”
Anal

Module

Inverter P defined.
TwolnputNANDGate Procedurally defincd.
Th ANDGate Procedurally defined.

FourlnputNANDGate

Procedurally defined.

FiveInputNANDGate

Procedurally defined.

SixInputNANDGate

Proceduralty defined

SevenInputNANDGate

defined.

NineInputNANDGatc

Procedurally defined.

TwolnputNORGate

Procedurally defined.

ThreeInputNORGate

Procedurally defined.

FourlnputNORGate

Procedurally defined

FivelnputNORGate Procedurally defined.
SixInpuNORGate P defined.
SevenInputNORGate P defined.
SRLatch 2e(TwolnputNANDGate)
PosEdgeTrigLatch Se(TwolnputNANDGate) + 1e(Tt [ANDGate)
i i 4e(PosEdgeTrigLatch)
EightBitRegister 8e(PosEdgeTriglatch)
i itRegi 16e(PosEdgeTriglatch)
hi 9e(Si: itRegister)
DataGate 1e(TwolnputNANDGate) + 1e(Inverter)
FourBitDataGate 4e(DataGate)
EightBitDataGate 2e(FourBitDataGate)
Twoli: 3e(TwolnputNANDGate)
FourBitTwoLi 4e(TwoLi 1) + le(Inverter)
FourLineSelector 4o(T] ANDGate) + 1¢(FourlnputNANDGate)
T i Li 12e(FourLineSelector) + 2e(Inverter)
ClockGen F durally defined.
NewPathStore 3e(EightBiRegister) + 7o(PosEdgeTrigLatch) + {e(SRLatch)
DynamicRAM F defined.
NetworkReceiver P defined.
NetworkTransmitter Procedurally defined.
ControlModule Procedurally defined.
‘DownCounterWithPreset Se(PosEdgeTriglatch) + 2e(Inverter) + Se(TwolnputNORGate) +

3e(ThreelnputNORGate) + Se(FourlnputNORGate) +
2e(FivelnputNORGate) + 4e(SixInputNORGate) +
2e(SevenInputNORGate)

63

CounterGate 2e(Inverter) + 4o(ThreelnputNANDGate) + 1¢(FourInputNANDGate)
BitEqualTest 3e(TwolnputNANDGate)
ThreeBitDataGate 3e(DataGate)
ThreeBySevenDemux 10e(Inverter) + 7e(ThreeInputNANDGate)
ResctControl Procedurally defined.
CounterWithZeroTest 4e(PosEdgeTrigLatch) + 4e(CounterGate) + 6e(TwolnputNANDGate) +
6e(TwolnputNORGate) + 3o(ThreelnputNANDGate) -+
3e(ThreelnputNORGate) + 2¢(FourlnputNANDGatc) +
3e(FourlnputNORGate)
CounterWithReset 4e(PosEdgeTrigLatch) + 4s(DataGatc) + 3e(Inverter) +

5e(TwolnputNANDGate) + 3¢(ThreeInputNANDGatc)

WindowCounter

4e(PosEdgeTrigLatch) + 1e(CounterWithReset) + 4e(BitEqualTest) +
le(Inverter) + 1o(FourlnputNANDGate)

‘WindowControl

1e(WindowCounter) + 1e(CounterWithZeroTest) + 1s(Inverter)

StateControl

Se(Inverter) -+ 7o(TwoInputNANDGate) + 4e(ThreeInputNANDGate) +
3e(FourlnputNANDGate) + 11e(FivelnputNANDGate) +

2e(SevenInputNANDGatc)

StateMachine

Se(PosEdgeTrigLatch) + Se(ResetControl) + 3¢(TwolnputNANDGate) +
18¢(ThreelnputNANDGate) + 9e(FourlnputNANDGate) +
6e(FiveInputNANDGate) + 1e(SevenInputNANDGate) +
2e(Nineln) ANDGate]

Detect

1o :Machine) + 1s(StateControl) + 2¢(DownCounter WithPreset) +

2e(FivelnputNANDGate)

NerworkSecurity

1e(ClockGen) + 1e(Networ iver) + 1e(NetworkTi itter) +
Ie(ControlModule) + 1e(ShifiRegister) + 2¢(EightBitDataGate) +
1e(SequenceDetect) + 1e(NewPathS + 6e(FourBitTwoLi)+
6e(FourBitRegister) + 1o(TwelveBitFourLineSelector) + 3s(DynamicRAM)
+ 3e(PosEdgcTrigLatch) + 1e(ThreeBitDataGate) +
2e(ThreeBySevenDemux) + 7e(WindowControl) + 2e(Inverter) +

Te(TwolnputNANDGate) + 1e(SeveninputNORGale) |

For the designer’s reference, the entry point into the simulation (the highest level block of integration) for
both versions of the Analysis Module is the “NetworkSecurity” Verilog module. Additionally, the “path and
volume” version of thc Analysis Module simulated implements seven window control modules with each
window control module having a granularity of four bits. This means that the “path and volume” Analysis
Module described in the Verilog simulation is capable of supporting up to seven valid connections and that

the leaky bucket traffic meter on each connection will support a traffic credit system with a maximum of

sixteen credits per connection and that the lowest credit generation rate possible will be one credit every

sixteen clock cycles,

64

If, at some future date, it is 'y to extend this si ion to support more simultancous connections, it
is only necessary to add more traffic control modules (and, the appropriate numbcr of dynamic RAMS) to the
“NetworkSecurity” module in the Verilog source code. However, the changes necessary to change the
granularity of the window control modules will be more extensive since this will involve changes, not only to
the counters that manage the credit system within these window control modules but also to the latches that
control how often to generate a credit. Not to be excluded from these changes, are the equality testers that
check when it is time to generate a new credit and when a connection traffic volume has overflowed. All of
the changes necessary to change the granularity of the credit system would be in the “WindowControl”
module of the Verilog source code.

65

CHAPTER VI

PERFORMANCE ISSUES

The digital circuits assembled indicate that this design can correctly handle traffic from all of the ATM forum
data rate specifications. These calculations were made using worst case network traffic assumptions with full
traffic violation rates. This means that the basic assumption regarding traffic arrival characteristics were that
1o link bandwidth was being left unutilized and that the arriving traffic could be cither completely invalid for
all arriving cells or completely valid for all arriving cells.

All of the components mentioned in this design can easily be i d in the TTL
logic), ECL (emitter-coupled logic) and HC (high-speed CMOS) logic families as evidenced by the range of
products available in any catalog from the major digital icati The

external microcontrollers and dynamic memories have been available for considerable periods of time and,
thus, are considered to be very stable from the point of view of reliabi of i)} istics

Therefore, this design should be feasible utilizing only standard, off the shelf components for the
implementation of three of the major components of the design which are not specifically laid out in this
document: Receivers, Transmitters and Control Module. The Analysis Module should be implementable

through current i and sub- coupled with current VLSI design tools.
Again, current product literaturc allows for the conclusion that two, three and four million transistor count
microchip designs are feasible on a scale that allows for mass manufacturing [31, 32].

In order to assess the feasibility of the implementation of the design of this device, it is necessary to establish
what the approximate transistor counts for the various versions of the device will be, as well as, the maximum
gate delays necessary to make the device feasible. In order to accomplish both of thesc measurements, the
circuits described in the design portion of this document will be used. Approximate transistor counts will be
reached by counting the gates necessary to implement these circuits and maximum gate delays necessary will
be calculated by finding the longest series chain of gates through which a signal must pass in any one clock
cycle and still allow the device to accomplish its function correctly.

The design of the Analysis Module was described to be as logic family independent as possible. While it is
not feasible to use the exact same circuit to perform the necessary functions in all of the logic families, the
circuit, as described, could be implemented in all of the logic families and be quite close to optimal in
component count. In the RTL (archaic), DTL (archaic), TTL and ECL logic families, the circuit description is
very close to optimal. In the CMOS and High Speed CMOS logic families, the circuit description could vary

66

somewhat due to the availability of very low part count latches within these logic families. However, these
low part count laiches, are of the level-triggered variety and would require additional logic in order to ensure
device stability. Therefore, an assumption involved in using the part count estimates described here for the
CMOS logic family impl ions is that the additi logic y to account for the level-triggered
nature of CMOS latches would balance out the transistors lost by using thesc lower component count latches.

In an attempt to calculate the necessary component count in a way that is independent of a particular logic
family implementation, this component count will be assessed based on gate counts with each gate being
assigned a component weight based on the number of inputs. Since all of the logic families share the common
characteristic that the transistor count necessary to implement an “n” input logic gate is directly and linearly
proportional to “n” (the number of inputs to the gate), we can il the count by
summing the weight of each gate used. This sum of input-normalized gate weights would then be multiplied
by a constant in order to predict the component count for the device’s construction within each logic family,
For RTL (the most primitive of the logic families; largely archaic) this multiplication constant would be

exactly one, since one transistor is required for every gate input. For the CMOS families, this multiplication
constant would be approximately two and the TTL/ECL families would fall somewhere in between [33].

The component count for the “path-only” version of the Analysis Module will remain fixed for all situations
since the design, as d, has i ilities to support invalid cell suppression for arrivals with

circuitry to i the “path and volume”

any path information. However, the
version of the Analysis Module is significant and has the ability to grow to an untenable component count. In
order to keep this version of the design within a count, the weights are
calculated based on two variables. The number of “window control modules” and size of the window control
module demultiplex selector in this version of the design is in direct relation to the number of valid paths for
which the Analysis Module may provide traffic volume verification. Thercfore, the first variable in the
component count for the design of the “path and volume” Analysis Module will be the number of valid
connection paths supported by the Analysis module which will be referred to as “W”.

The granularity with which the leaky bucket mechanism in the “path and volume” Analysis Module can
verify traffic along each valid connection path is directly related to the number of bits in the internal states of
the two counters, the size of the input words of the equality testers and the size of the storage register which
compose the window control modules. Therefore, the second variable in the component count for the design
of the “path and volume” Analysis Module wilt be the granularity supported by each leaky bucket mechanism
controlling each valid connection which will be referred to as “N™.

67

4-bit multiplexer for loading cell 72e(Two Input) + 6¢(One Input) 150
header data (six units)
4-bit latch for storing cell header 24e(Three Input) + 120¢(Two Input) 312
data (six units)
12-bit by 4-line multiplexer for 12e(Four Input) + 48¢(Three Input) + 194
ing data to memory 2¢(One Input)
12-bit latch for new path data 24e(Three Input) + 120¢(Two Input) 312
(two umits)
1-bit latch for new path data state 1e(Three Input) + Se(Two Input) 13
latch for memory lookup result 1e(Three Input) + Se(Two Input) 13
SR-latch for status of new path 2e(Two Input) 4
Tegisters
memory lookup module for path External Unit 0
verification
alert latch for result from le(Three Input) + 5e(Two Input) 13
memoty lookup
sequence / detect module for 9e(One Input) + 95¢(Two Input) + 646
overall control 43e(Three Input) + 22e(Four Input) +
23e(Five Input) + 8e(Six Input) +
Te(Seven Input) + 2¢(Nine Input)
12-bit shift register with 9 stages 720e(Two Input) + 144e(Three [nput) 1872
for celt data transit area
data gate for cell output control One Input) + 16e(Two Input) 48

As shown in table XVI and table XVII, the part count in the Analysis Module is sufficiently low to lend itself
to VLSI implementation only if the “path-only” version is implemented or if the “path with volume” version
is implemented with a limited number of window control modules. As the analysis shows, the “path-only”

version could be implemented with a component weight of only three to four thousand, which is trivial by
modern VLSI standards. However, it is evident that for the “path and volume” version, the component weight
depends heavily on the number of window control modules implemented and their associated granularity. In
fact, there is a square relationship between the weight and the granularity of each window control
module while there is a lincar times log relationship between the component weight and the number of

window control modules implemented.

68

TABLE XVII
C ition and weight of the sub-modul ing one “window control module” used in the
“path and volume™ version of the Analysis Module

“N"-bit register 5Ne(Two Input) + Ne(Three Input
“N-bit counter (with reset) Ne(Onc Input) + Y4(N>+13N+4)s(Two Input) + 2N°+ 16N
(N)e(Three Input) + 2(%; Input)
“N7-bit by “N"'-bit equality tester 3Ne(Two Input) + 1e("N” Input) IN

“N”-bit counter with control (N*+4N+6)e(Two Input) + SNe(Three Input) + 6N“+ 23N +4
Ne(Four Input) + 6¢(Z5...n Input) +
2Ne(“N” Input)

N

it zero lester

However, the component weights required to implement the “path and volume” version of the Analysis

Module are not so great as to make them unfeasible at current VLSI densities. The governing relationships

vy to calculate the weight of the “path and volume” implementation as a function of the
number of window control modules added and their associated granularity is are shown in table XVIII. With
a component weight of one million, it is feasible to implement 100 window control modules with cach medule
having a granularity of 32 bits. If the component weight is allowed to grow to two million, then it becomes
feasible to implement 200 window control modules with 32 bits of granularity apiece. Also, it should be noted
that if the window control module granularity is halved, the corresponding number of modules which can be
added to keep the component weight at the same level more than doubles. To extend the example, if the
window control module granularity is reduced to 16 bits, then 329 window control modules may be placed
within an Analysis Module at a component weight of one million with this figure growing to 658 window
control modules at a component weight of two million. Table XIX shows the order of magnitude correlation
between the number of window control modules constructed within a “path and volume” Analysis Module,
their associated granularities and the resulting component weight of that Analysis Module.

Since the component weights of one million and two million to an actual

count of up to two to four million i P ing on the logic family used for its

implementation) it is evident that these design goals are not unrealistic.

TABLE XVII
the

and volume” version of the Analysis Module

69

4-bit multiplexer for loading cell (One Input) + 72¢(Two Input) 150
header data (six units)
4-bit latch for storing cell header 120e(Two Input) + 24e(Three Input) 312
data (six units)
12-bit by 4-line multiplexer for 2e(One Input) + 48e(Three Input) + 194
ing data to memory 12e(Four Input)
12-bit latch for new path data 120e{Two Input) + 24e(Three Input) 312
(two units)
n-bit latch for new path data state | Slog,(W)e(Two Input) + loga(W)e(Three Input) 13(log> W)
(sufficient bits to load a word
describing a unique window
control module)
latch for memory lookup result | 5log:(W)e(Two Input) + log:(W)e(Three Input) 13(log: W)
(sufficient units to store a word
describing a unique window
control module)
SR-latch for status of new path 2e(Two Inputy 4
Tegisters
Memory lookup module for path External Unit 0
verification
Demultiplexer to select window 2We(log,(W) Input) 2W(log, W)
control module (sufficient outputs
to select one of all window
control modules — two units: load
new data and react to a memoty
lookup)
Alert latch for result from Slog,(W)e(Two Input) + log,(W)e(Three Input) 13(log; W)
memory lookup (sufficient bits to
load a word describing a unique
window contro) module)
‘Window control module with “N™ Ne(One Input) + BWN” + GOWN +
bits of granularity (W units) V4(3N? + 37N + 4)e(Two Input) + aw
Ne(Three Input) + Ne(Four Input) +
8e(35_y Input) + (2N + 2)e(“N" Input)
sequence / detect module for 9e(One Input) + 95¢(Two Input) + 646
overall control 43e(Three Input) + 22e(Four Input) +
23e(Five Input) + 8¢(Six Input) +
7e{Scven Input) + 2s(Nine Input)
12-bit shift register with 9 siages 720¢(Two Input) + 144e(Three Input) 1872
for cell data transit area

70

TABLE XIX
Order of magnitude correlation of the component weight of the “path and volume™ Analysis Module as the
mmber and granularity of “window control modules” implemented varies

of window control modules O(W log W)
O’

granularity of each window control module (expressed in number of bits) N

Granularity versus number of window control modules for a fixed
component weight

Granularity of each window control module

P
338

BRI ISTBBBBIL8BIRIBE8BEYR

Number of window control modules

Fig. 27. Granularity versus number of window control modules which may be implemented in one Analysis
Module for fixed component weights

Therefore, it has been shown that the component weight necessary to i the device is

impacted by the granularity of the “window control modules” placed on each Analysis Module. Figure 27
shows this in graphical form as the design component weights begin in increase exponentially if the window
control module granularity is increased linearly. Figure 28 presents this component weight information as a

7t

function of the number of window control modules implemented and allows the conclusion that the
component weight is a lincar function of the number of window control modules.

All “window control modules”, regardless of their granularity, exhibit an upper limit on the traffic volume
they will permit to pass of one cell credit per clock cycle, which translates to one credit per cell time (if the
Analysis Modules™ clock is divided by 26.5 for all window control modules). However, their granularity
affects the minimum atlowable traffic rate per connection, as well as, the greatest number of traffic credits
any onc connection is allowed to accumulate when that connection is utilizing less than its declared allowable
bandwidth. Thereforc, with “window control modules” of greater granularity, the Analysis Module is capable
of virtual ions with lower traffic limits and, also, of allowing uninterrupted
traffic flow for connections with “bursty” traffic patterns. All of this is possible while still verifying that they
do not exceed their allowable “mean” traffic limits. Both of these characteristics are favorable to supporting
the wide range of traffic types envisioned for the distributed nature of wide-area backbones [34, 35].

The remaining issue which pertains to the components necessary to implement this design are those of the
amount of dynamic RAM memory that will be required off-chip for the Analysis Module. In the case of the
“path-only” Analysis Module, it is only necessary to place one 16 megabit RAM in the circuit in order to
support complete screening of all possible connection paths. However, in the “path and volume”
implementation, the amount of memory which will be required will be a function of the number of valid paths
which must be supported by each Analysis Module. To be more precise, sufficient memory will be required in
order to generate a data word wide enough to support the selection of one ynique window control module for
any random addtess within a 24-bit address space. Therefore, in the case where “W” window control modutes
have been implemented within an Analysis Module, a data word with a width of log-(W) will be required in
order to select one of them. By extension, this means that log{W) memories of 16 megabits apiece will be
necessary to support an Analysis Module with “W” window control modules. Therefore 2elog:(W) megabytes
of memory would be required by this design (with one byte equaling o cight bits). If we were to place 16
megabytes of memory in one Analysis Modute, this would allow for the support of 256 window control
modules. Likewise, 8 and 4 megabytes in cach Analysis Module would support 128 and 64 window control
modules, respectively. These memory ranges arc not unreasonable, given the current market availability of

these components.

72

Component weights for fixed window control module granularities

‘Component weight {in millions)

©RB9BBRBBE32RBIBBREBE S

Number of window control modules

10
220
230

Fig. 28. Component weight versus number of window control modules which may be implemented in one

Analysis Module for fixed module granularities

Up to this point, it has been shown that the component count of this security device is significantly impacted

by the number of simultaneous network virtual connections the device will support. This impact it so great
that for security devices connected to nodes through which a large amount of traffic passes, the number of

simultaneous connections could very well exceed the number of components that may feasibly be mounted on
one or a few dies. Likewise, it does not make sense to make the investment to develop a high component chip

only to install it into a security device that monitors a gateway to the backbone where only a few connections
may simultaneously exist. Therefore, an approach should be discussed by which an extensible version of this

security device may be implemented. Extensibility of the chip in this design refers to an implementation that

73

uses this same core of design decision in such a fashion that multiple identical devices may be interconnected
to operate as one device which can handle a greater number of simultaneous virtual connections than any one

chip would normally be able to.

The issue at the heart of creating a series of devices which can behave as one is to divide the set of virtual
connections which may exist simultancously among different units. In this way, every individual unit can test
incoming traffic for validity or volume violations and only forward that portion of the traffic found to belong

to a valid connection, for which it is ible, to the network That traffic for which a particular
module is not responsible will be forwarded to the next security unit in the sequence. This extensible
approach is described graphically in figure 29.

Cell found i
ﬁﬁ and verified
IN i
neur | Security ‘f FIFO [ourrur
network | Module LQueue NETWORK

_ Cell found
Reject; Module and verified

Security |
Reject| Module §

BAD CELL
(rejected)

Fig. 29. High level view of the interconncctions of Security Modules in a simple extensible implementation

Using this approach, every security module is responsible only for those cells belonging to connections that

are found within its own window control modules. The

necessary to such an
approach consists only of a first-in first-out (FIFO) queue which would capture those cells that are found fo be

74

valid and within volume limits by any of the Security Modules and forward them to the network. Since, in the
worst case, cells will be fed into the first Security Module in the chain at the network’s peak Iransmission
rate, and the interconnections between the Security Modules will pass these cells to one another at this same
rate, at most one cel! may exist within one Security Module at any given time. Due to this, the greatest
number of cells that may be passed to the FIFO queue is the same as the number of Security Modules to which
it is connected. Therefore, the FIFO queue’s depth need be no greater than the number of Security Modules to
which it is connected.

The impact on the overall performance of the device in terms of cell delay time are significant. In the best
case, the cell will be found to be valid and to be within volume limits within the first Sccurity Module to
which it is transmitted. In this case the cell will experience one-half cell time delay within that module and
negligible delay within the FIFO queue (assuming it is empty). Thercfore, in the best case, cell dclay
experienced within this extensible configuration will be the same as that of the non-extensible device. In the
worst case, a cell will not be found to be valid until it reaches the last Security Module in the chain. Also,
when that cell is finally transmitted to the FIFO queue, it may experience additional delays due to cells that
may already be in that queue. Since every Security Module delays a cell by one-half of a cell time and every
cell already in the FIFQ quene will delay that cell by an additional cell time, the worst-case delay a valid cell

N
may expetience while travelling though this device will be (E +N- 1] cell times for N Sccurity Modules.

Therefore, if there were four Security Modules chained together outputting their valid data to a FIFO quene
with a depth of four cells, the worst-case cell delay would be five cell times.

The Control Module in this configuration would have to oversec the operation of a number of Security
Modules for every data path, instead of just one, as in the non-extensible configuration. In order to determine
whether or not a cell truly belongs to an invalid path, it would have to correlate the invalid cell alarms from
all of (he Security Modules along one data path together. However, as in the non-extensible configuration, a
connection volume violation alarm from any one of the Security Modules will suffice in order to detect a
traffic volume violation. Finaily, in order to create new valid connections along any one data path, the
Control Module will not only have to determine into which memory slot to place the connection, but it will
also have to select one of the Security Modules along that data path first. This decision will further be
complicated by the fact that the cells belonging to connections which are tracked in the first Security Module
in the chain will experience a smaller delay than those being tracked in the last Security Module in the chain.

Therefore, before adopting this extensible configuration, the fact that cell delay in these security devices will
‘be a linear function of the number of Security Modules used in each data path should be duly noted.

75

CHAPTER VII

CONCLUSION

The primary goals of this thesis work were to create a design by which basic covert traffic minimization

could be i in hard with the scope of providing a mechanism for uniform security
enforcement across a wide-area ATM/SONET technology network backbone.

A module level description of the device has been presented and shown to be implementable with currently
available off-the-shelf and custom ication specific i circuitry (ASIC) available at
current levels of i i The per of the device has been evaluated under worst-case
conditions for network traffic. Is has been shown that the delay experienced by network traffic in existing
virtual connections in the network is trivial when compared to its expected transit time within the network

and that the management functions of creating and destroying virtual connections arc not a function of the

creation / destruction rate of these il Through the iption of its ion, it is evident that,
while utilizing such a framework of traffic security enforcement, the full bandwidth of the network is
available to all users for authorized utilization and that through traffic delays network cells will experience
are constant even under sustained peak traffic conditions.

The possibility of implementing fixed-window leaky bucket traffic control mechanisms, whether for actval
security enforcement purposes or others, was actually shown to be feasible. While actual petformance
measnrements on the correlation between the “burstiness™ of connection traffic and size of the leaky bucket
mechanism window have not been taken, this i ion is amply in [36] and [37). Even
though no guidelines have been given with regard to the window size of the leaky bucket mechanism that
should be implemented, there is sufficient rescarch to allow for an educated decision with regard to the
tradeoff between the component count of the ASIC that would need to be implemented and the “burstiness” of
the connection traffic that should be allowed to be admitted through the network.

The device was tested by simulation for proper operation with the Verilog hardware description language and,
according to its specifications, and was found to meet its design goals for any design whose gate delays are
less than two nanoseconds. While integrated circuit gatc delays are highly logic family dependent, this
requirement should not be a signi i to the i ion of the ASIC since large

microcontroller designs have already been shown to have the capacity to operate at clocking speeds in excess
of thirty-eight MHz (the intended clocking speed for this device).

76

VILA Future Work

The details for the components of the security Tk d here have primarily on the
mechanisms by which actual enforcement should occur and how to limit the impact which it has on ovetall
network performance. Many portions of the larger issues of this method of security enforcement have been
glossed over. Foremost among these issues is the topology and physical architecture which should be used to
implement the network by which supervisory control data is transferred between the modules that actually
provide the enforcement and the workstations which keep the operators of the sccurity body appraised of the
state of the network. Toward this end, a significant amount of work lies ahead in order to assess which
and i ics would be optimal for this overlying network. An integral

component of this decision will be an assessment of exactly what criteria to use in order to derive the level of
enforcement that the modules designed in this document will be required to perform. Based on this,
assessments may be made with regard to what the overall bandwidth and worst-case delays of the overlying
network must be in order to provide an interface to the individual enforcement modules that is deemed to be
acceptable from the network management perspective.

Another issu¢ of paramount importance which needs to be addressed are the mechanisms that will be used to
protect the overlying “security traffic only” network which allow the modules to

with the operator workstations. While trying to avoid a “who guards the guardian” paradox, it will be
necessary to produce a methodology by which ient” i bility for this network may be assessed.

A final area for future work is an examination of how many ions are typically d in tandem on

any given port of a switch in a wide-area ATM network. Such an assessment will be necessary in order to
decide at which level to i the i ion of the security ASIC in order to provide the

level of required traffic support at a minimal cost. Without such surveys, it is possible to construct devices
that are prohibitively cxpensive yet provide support for many more connections than actually exist or,
alternatively, to comstruct devices whose connection support is so limited as to severcly handicap the
capability of the network to provide the level of service for which it was designed. As a possible alternate
approach to the solution of this problem, it may be possible to modify the design presented here in such a
fashion that it becomes scaleable with respect to the number of connections a security module tmay support.
This modification would allow for the addition of inexpensive, readily available option modules in those areas
‘where connection support is found to be insufficient.

77

REFERENCES

{1] Uyless Black, ATM: lation for Broadband ks, Prentice Hall PTR, Englewood Cliffs,
New Jersey. 1995

[2] V. L. Voydock and S. T. Kent, “Security Mechanisms in High-Level Network Protocols,” ACM
Computing Surveys, vol. 15, no. 2, June 1983, pp. 135-171

3] R H Deng, L. Gong and A, A. Lazar Secunng Data Transfer in Asynchmnous Transfer Mode
ks Proceedings of Global Te jons Conference '95, Singap 1317,
1995, vol 2, pp. 1198-1202

4] J. McHugh and L. Young, “A Taxonomy of Covert Channels in ATM Networks, with Examples,”
Computer Science Dept., Portland State University, Portland, Oregon, Technical Report 94-3, July 1994

[5] G.E. Liepins, H. S. Vaccaro, “Detection of Anomalous Computer Session Activity,” in Proceedings of
IEFE Computer Society Symposium on Security and Privacy '89, Oakland, California, May 1-3, 1989,
Pp. 280-289

[6] W.J. Page, J. R. Winkler, “Intrusion and Anomaly Detection in Trusted Systems,” Proceedings of Fifth
Annual Computer Security Applications Conference, Tucson, Atizona, December 4-8, 1989, pp. 39-45

[7] M. Becker, H. Debar, D. Siboni, “A Neural Network Component for an Intrusion Detection System,” in
Proceedings of IEEE Computer Society Symposium on Research in Security and Privacy '92, Oakland,
California, May 4-6, 1992, pp. 240-250

[8] L. Heberlein, K. Levitt, B. Mukherjee, “Network Intrusion Detection,” JEEE Network, Vol. 8, Issue 3,
May 1994, pp. 26-41

{9] W. Page, J. Winkler, “Intrusion and Anomaly Detection in Trusted Systems,” in Proceedings of Fifth
Annual Computer Security Applications Conference, Tucson, Arizona, December, 1989, pp. 39-45

110] 3. Brentano, G. V. Dias, T. L. Goan, T. Grance, L. T. Heberlein, C. L. Ho, K. N. Levitt, D. L. Mansur, B.
Mukherjee, K. L. Pon, S. E. Smaha, S, R. Snapp, “A System for Distributed Intrusion Detection,” in
Proceedings of IEEE COMPCON Spring *91, San Francisco, California, February, 1991, pp. 170-176

[11]S. E. Smaha, “Haystack: An Intrusion Detection System,” in Proceedings of IEEE Fourth Aerospace
Computer Security Applications Conference, Orlando, Florida, December, 1988, pp. 37-44

[12]R. Jagannathan, R. Lee, S. Listgarten, T. F. Lunt, A. Whitehurst, “Knowledge-Based Intrusion
Detection,” in Proceedings of the Annual Al Systems in Government Conference ‘89, Washington, DC,
March 27-31, 1989, pp. 102-107

[13]T F. L\ml, ‘Rsal Time Intruswn Detection,” in Proceedings of Thirty-Fourth IEEE Computer Society
e Leverage, San Francisco, California, February 27 — March 3,

1989, pp, 348-353.

[14]H. S. Javitz, A. Valdes, “The SRI IDES Statistical Anomaly Detector,” in Proceedings of IEEE
Computer Society Symposium on Research in Security and Privacy, Oakland, California, 20-22 May,
1991, pp. 316-326

78

[15]K. Tan, “The Application of Neural Networks to UNIX Computer Security,” in Proceedings of
International Conference on Neural Networks '95, Perth, Wales, Australia, 1995, pp. 476-481

[16]M. H. Rahman, J. H. Welgell “Securing Asynchronous Transfer Mode Based Networks Through the Use
of Encryption,” in Py dings of Global Tel Conf °95, 1, Quebec,
pp. 1198-1202

[17]G. C. Girling, “Covert Channels in LANs,” JEEE Transactions on Software Engineering, vol. SE-13, no.
2, February, 1987, pp. 292296

[18]J. K. Millen, “Covert Channel Capacity,” in Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy '87, Oakland, California, April 27-29, 1987, pp. 60-66

[191R. Bmwne,‘ “Mode Security: An Infrastructure for Covert Channel Suppression,” in Proceedings of the
IEEE Computer Society Symposium on Research in Security and Privacy '94, Oakland, California,
May 16-18, 1994, pp. 39-55

[20]T. Aoki, “Future Switching System Requi » IEEE C ications Magazine, January 1993,
pp. 34-38

[21]R. Barker “Broadband Networking in a National Secumy and Emergency Preparedness (NS/EP)
* in Pr dings of Global Tele Conference ’93, Boston, Massachusetts,
Ocl 11-14, 1993, pp. 140-144

[22]1. R. Cleveland, N. K. Cranfill, “Emerging Techno]ogms for the Control of the Defense Red Switch
Network,” in Proceedings of Military Ce Conference '94, Fort NJ, pp.
664-668

[23]T. J. Robe, K. A. Walsh, “A SONET STS-3c User Network Interface IC,” in Proceedings of IEEE
Custom Integrated Circuitry Conference *91, San Diego, California, May 1991

{24]H. J. Chao, C. A. Johnston, “The ATM Layer Chip: An ASIC for B-ISDN Applications,” /EEE Journal
on Selected Areas in Communications, Vol. 9, Issue 5, June 1991, pp. 741-750

[25] ATM Forum, “ATM User-Network Interface Specification (v3.1),” ATM Forum, September, 1994
Available through the World Wide Web at:
fip:/ip.atmforum /pub, -specs/af-uni-0010.002. pdf tar.Z

[26} ATM Forum, “DS1 Physical Layer Specification,” ATM Forum, September, 1994
Available through the World Wide Web at:
fip://fip.

pecs/af-phy-0016.000.ps

[271 ATM Forum, “Physical Interface Specification for 25.6 Mb/s Over Twisted Pair Cable,” ATM Forum,
November, 1995

Available through the World Wide Web at:

H it pecs/af-phy-0040.000.ps

28] ATM Forum, “DS3 Physical Layer Specification,” ATM Forum, Januaty, 1996
Available through the World Wldk‘. Web at:
fip:/ftp.atmfor d s/af-phy-0054.000.ps

79

J29] ATM Forum, “ATM Physical Medium Dependent Interface Specification for 155 Mb/s Over Twisted
Pair Cable,” ATM Forum, September, 1994

Available through the World Wide Web at:

¥ b /af-phy-0047.000.ps

[30] ATM Forum, “622.08 Mbps Physical Layer Specification,” ATM Forum, January, 1996
Available through the World Wide Web at:
ftp://fip. d-specs/af-phy-0046.000.ps

[31]Motorola Microprocessor and Memory Technologies Group, “MC68302 Integrated Multiprotocol
Processor User’s Manual,” Motorola Corp., 1995
Available through the World Wide Web at:
http://www.mot. / 683X X/302/302UM.pdf
[32] Motorola Microprocessor and Memory Technologies Group, “MC68PM302 Integrated Multiprotocol
Processor with PCMCIA Reference Manual,” Motorola Corp., 1995
Available through the World Wide Web at:
‘http:/fwww.mot. 683XX/302/PM302UM. pdf

[33]Morris Mano, Digital Design, 2nd edition, Prentice-Hall Publishers, Englewood Cliffs, NJ 1991

[34]H. Ahmadi, R. Guérin, K. Sohraby, “Analysis of Lezky Bucket Access Control Mechanism with Batch
Arrival Process,” Pr dings of Global T Conf. °90, San Diego, California,
Dec. 2-5, 1990, pp. 344-349

[35]1 Chao “Design of Leaky Bucket Access Control Schemes in ATM Networks,” in Proceedings of

! Conf on Ce ’91, Denver, Colorado, June 23-26, 1991, pp. 180-187
[36]Dx of Defense, “D of Defense Trusted Computer Systems Evaluation Criteria, Report
DOD 5200.28-STD,” D of Defense, hi D.C.,D iber 1985

[37] National Computer Security Center, “A Guide to Understanding Security Modeling in Trusted Systems,
Report NCSC-TG-010 Version-1,” National Computer Security Center, Ft. George G. Meade, Maryland,
October 1992

[38] National Computer Security Center, “Trusted Network Interpretation. Report NCSC-TG-005 Version-1.”
National Computer Security Center, Ft. George G. Meade, Maryland, July 1987

[39]L. S. Rutledge and L. J. Hoffman, “A Survey of Issucs in Computer Network Security,” Computers and
Security, vol. 5, 1986, pp. 296-308

[40]Randy H. Katz, Contemporary Logic Design, The Benjamin/Cummings Publishing Company,
Redwood City, CA, 1993

80

APPENDIX A

“PATH-ONLY”ANALYSIS MODULE SIMULATION CODE

This appendix contains the Vetilog hardware description language code necessary to implement a gate-level
simulation of the “path-only” version of the Analysis Module. The T T i and i
involved in the design of the network security device were simulated at the procedural level and the Analysis

Module was simulated at the gate level.

All sub-module inputs and outputs are fully commented.

AA Verilog Simulation

module Inverter (In, Out);

input In;
output Out;
Teg Out,
always
#1 Out = ~In;
endmodule

module TwolnputNANDGate (InOne, InTwo, Out);

input InOne, InTwo;
output Out;

reg Out;

always

#1 Out = ~(InOne & InTwo);

endmodule

module ThreeInputNANDGate (InOne, InTwo, InThree, Out);

input InOne, InTwo, InThree;

output Out,
reg Out;
always

#1 Out = ~(InOne & InTwo & InThree);

endmodule

module FourlnputNANDGate (InCne, InTwo, InThree, InFour, Out);

input InOne, InTwo, InThree, InFour;

output Out;
reg Qut;
always

#1 Out = ~(InOne & InTwo & InThree & InFour);

endmodule

module FiveInputNANDGate (InOne, InTwo, InThree, InFour, InFive, Out);

input InOne, InTwo, InThree, InFour, InFive;
output Out;

81

reg Out;

always
#1 Out = ~(InOne & InTwo & InThree & InFour & InFive);

endmodule

module SixInpuINANDGate (InOne, InTwo, InThree, InFour, InFive, InSix, Out);

input InOne, InTwo, InThree, InFour, InFive, InSix;

output QOut;
reg Out;
always

#1 Out = ~(InOne & InTwo & InThree & InFour & InFive & InSix);

endmodule

module SevenInputNANDGate (InOne, InTwo, InThree, InFour, InFive, InSix,
InSeven, Out)3

input InOne, InTwo, InThree, InFour, InFive, InSix, InSeven;
output Out;

reg QOut;

always
#1 Out = ~(InOne & InTwo & InThree & InFour & InFive & InSix & InSeven);

endmodule

82

module NineInputNANDGate (InOne, InTwo, InThree, InFour, InFive, InSix,
InSeven, InEight, InNine, Out)

input InOne, InTwo, InThree, InFour, [nFive, InSix, InSeven,
InEight, InNine;

output. Out;
reg Out;
always
#1 Out = ~(InOne & InTwo & InThree & InFour & InFive & InSix &
InSeven & InFight & InNine %
endmodule

module TwolnputNORGate (InOne, InTwo, Out);

input InOne, InTwao;

output Out;
eg Out;
always

#1 Out = ~(InOne | InTwo);

endmodule

module ThreeInputNORGate (InOne, InTwo, InThree, Out);

input InOne, InTwo, InThree;
output QOut;

reg Out;

always
#1 Out = ~{InOnc | InTwo | InThree);

cndmodule

module FourlnputNORGate (InOne, InTwo, InThree, InFour, OQut);

input InOne, InTwo, InThree, InFour;

output Out,
reg Out;
always

#1 Out = ~(InOne | InTwo | InThree | InFour);

endmodule

module FiveInputNORGate (InOne, InTwo, InThree, InFour, InFive, Out);

input InOne, InTwo, InThree, InFour, InFivc;

output Out;
reg Out;
always

#1 Out = ~(InOne | InTwo | InThree | InFour | InFive);

endmodule

module SixInputNORGate (InOne, InTwo, InThree, InFour, InFive, InSix, Out);

84

85

input InOre, InTwo, InThree, InFour, InFive, InSix;

output Out;
reg Out;
always

#1 Out = ~(InOne | InTwo | InThree | InFour | InFive | InSix);

endmodule

module SeveninputNORGate (InOne, InTwo, InThree, InFour,
InFive, InSix, InSeven, Out);

input InOne, InTwo, InThree, InFour, InFive, InSix, InSeven;

output Out;
reg Out;
always

#1 Out = ~(InOne | InTwo | InThrec | InFour | InFive | InSix | InSeven);

endmodiule

modulc SRLatch (Set, Reset, Out, InvertOut);

input Set, Reset;
output Out, InvertOut;

TwolnputNANDGate GateOne (Sct, InvertOut, Out);
TwolnputNANDGate GateTwo (Reset, Out, InvertOut);

endmodule

module PosEdgeTrigLatch (Clock, Data, Out, InvertOut);

input Clock, Data;
output Out, InvertOut;

wire wl, w2, w3, wi;

TwolnputNANDGate GateOnc (w4, w2, wl);
TwolnputNANDGate GateTwo (w1, Clock, w2);
ThreelnputNANDGate GateThree (w2, Clock, w4, w3);
TwolnputNANDGate GateFour (w3, Data, wd);
TwolnputNANDGate GateFive (w2, InvertOut, Out);
TwolnputNANDGate GateSix (Out, w3, InvertOut);

endmodule

// Name: FourBi(Register

"

// Inputs: Data [3:0] - The data to be latched by the rcgister on the
" next rising clock edge.

" Clock - The clocking signal which controls data latching.
i

// Outputs: Out [3:0] - The data latched on the last rising clock edge

module FourBitRegister (Clock, Data, Out);
input [3:0] Data;
input Clock;
output [3:0] Out;
wire [3:0] Outlnv;
PosEdgeTrigLatch BitZero (Clock, Data[0], Out{0], OutInv]0]);

PosEdgeTrigLatch BitOne (Clock, Data[1], Out[1], QutInv([1]);
PosEdgeTriglatch BitTwo (Clock, Dataf2], Outf2], OutInv(2]),

PosEdgeTriglatch BitThree (Clock, Data[3], Out[3], OutInv(3]);

cndmodule

// Name: EighiBilRegister

"
// Inputs: Data |7:0] - The data to be latched by the register on the

7 next rising clock edge.
4 Clock - The clocking signal which controls data latching.
"

// Outputs: Out [7:0] - The data latched on the last rising clock edge.
module EightBitRegister (Clock, Data, Out);

input [7:0] Data;

input Clock;

output [7:0] Out;

FourBitRegister LowNibble (Clock, Data[3:0], Out{3:0]),
FourBitRegister HighNibble (Clock, Data[7:4], Out[7:4]);

endmodule

/f Name: SixteenBitRegister

"
/f Inputs: Data [15:0] - The data to be latched by the register on the

" next rising clock edge.
" Clock - The clocking signal which controls data latching.
"

// Outputs: Out [15:0] - The data latched on the last rising clock edge.

‘module SixteenBitRegister (Clock, Data, Out);

input [15:0] Data;

87

38

input Clock,
output |15:0] Out;

EightBitRegister LowByte (Clock, Data[7:0], Out|7:0]);
EightBitRegister HighByte (Clock, Data[15:8], Out[15:8});

endmodule

/I Name: ShiftRegister

"
/f Inputs: Data [15:0] - The data to be latched by the shift register on

Vi the next rising clock edge.

" Clock - The clocking signal which controls data latching,

"

// Outputs: Out [15:0] - The data latched on the rising clock edge twenty
V seven clock cycles ago

Vi Outlnv [15:0] - The ncgation of the data latched on the rising

7 clock edge nine clock cycles ago.

module ShiftRegister (Clock, Data, Out);

input {15:0] Data;
input Clock;
output [15:0] Out;

wire [15:0] L1,1L2,13,14, L5, L6, L7, L8;

SixteenBitRegister Stage0 (Clock, Data, L1);
SixteenBitRegister Stagel (Clock, L1, L2);
SixteenBitRegister Stage2 (Clock, L2, L3);
SixteenBitRegister Stage3 (Clock, L3, L4);
SixteenBitRegister Stage4 (Clock, L4, L35);
SixteenBitRegister Stage5 (Clock, L5, L6);
SixteenBitRegister Stage6 (Clock, L6, L7);
SixteenBitRegister Stage7 (Clock, L7, L8);

89

SixteenBitRegister Stage8 (Clock, L8, Out);

endmodule

// Name: DataGate

"

// Inputs: In - Data input.

" Select - If asserted low, the bit value at "In" will be

" reflected at "Out”. Otherwisc, "Out" will

" reflect zero.

"

// Outputs; Out - Reflect "In" if Select is low, otherwise low
" regardless of the state of "In"

module DataGate (In, Select, Out);

input In, Select;
output Qut;

wire Outlnvert;

TwolnputNANDGate ~ Gate (In, Select, Outlnvert);
Inverter Invert (Outlnvert, Out);

endmodule

/f Name: FourBitDataGate

"

// Inputs: In [3:0] - Data input.

4 Seleet - If asserted high, the bit values at "In" will be
Vi reflected at "Out". Otherwise, "Out” will

" reflect all zeroes.

"

#/ Outputs: Out 13:0] - Reflect "In" if Select is high, otherwise just

90

Vi set all bits to Tow.
module FourBitDataGate (In, Select, Out);

input {3:0] In;

input Select,

output [3:0] Out;

DataGate Bit0 (In[0], Select, Out[0]);

DataGate Bitl (In|1], Select, Outf1]);

DataGate Bit2 (In[2], Select, Out[2]);

DataGate Bit3 (In[3], Select, Out{3]);

endmodule

// Name: EightBitDataGate

4

// Inputs: Inf7:0] - Data input.

1 Select - If asserted high, the bit valucs at "In" will be
Vi reflected at "Out". Otherwise, "Out" will

] reflect all zeroes.

"

/1 Outputs: Out[7:0] - Reflect "In" if Select is high, otherwise just
Vi go low on all bits.

module EightBitDataGate (In, Select, Out);
input [7:0] In;
input Select;

output [7:0] Out;

FourBitDataGatc LowNibble (In[3:0], Select, Out[3:0]);
FourBitDataGate HighNibble (In[7:4], Select, Out[7:4]);

endmodule

/fName; TwoLineSelector

n

// Inputs: In|1:0] - Two bits of data input

" Select - Input that must be asserted in order to control
" which of the two bits of input will be reflected
" at the output.

" Selectinv - Input which is the inverse of "Select"

"

/1 Outputs: Out -~ Reflect the value at "In[1}" if "Select" is
I high and "Selectinv” is low. Reflect the valuc
” at "Inf0]" if "Select" is low and "SelectInv” is
7 high. Behavior is unpredictable otherwise.
module TwoLi (In, Select, , Out);

input |1:0} In;
input Select, SelectIny;
output Out;

wire [1:0] Con;

TwolnputNANDGate GateZero (In[0], SelectInv, Con[0]);
TwolnputNANDGate GateOne (In[l1], Select, Con[1]);
TwolnputNANDGate GateTwo (Con[0], Con[1], Out);

endmodule

// Name: FourBitTwoLineSelector

"

// Inputs: InZero [3:0] - The first input line

/A nOne [3:0] - The second input line

" Select - Input that must be asserted in order to control
1" ‘which of the two nibbles of input wiil be

91

/" reflecied at the output nibble.

"
/f Outputs: Out [3:0] - Reflect the nibble at “InOne" if "Sclect” is
" high. Otherwise, reflect the nibble at "InTwo".

module FourBitTwoLineSelcctor (InZero, InOne, Select, Out),

input [3:0] InZero, InOne;
input Select;
output [3:0] Out;

wire Selectiny;

wire |7:0] Input;

assign Input{0] = InZero[0}, Imput[1] = InOne[0],
Input[2] =InZero[1], Input[3] = InOnecf1],
Input]4] = InZero[2], Input{5] = InOne[2],
TInput[6] = InZero[3], Input[7] = InOnel3];

Inverter Invert (Select, Selectlnv);

TwoLineSelector Sclect (Input[1:0], Select, Selectlny, Out[0]);
TwoLineSelector Selectl (Input[3:2], Select, SelectInv, Out[1]);
TwoLineSelector Select2 (Input[5:4], Select, SelectInv, Out[2]);
TwoLineSelector Select3 (Input[7:6], Select, Selectlnv, Out[3]);

endmodule

// Name: FourLineSelector

14

// Inputs: In[3:0] - Four bils of data input

" Sciect{1:0] - Imputs that must be asserted in order to control
" which of the four bits of input will be

/" reflected at the outpul.

/" SelectInv[1:0] - Input which is the inverse of "Select[1:0]" on
" all bits.

I

// Outputs: Out - Depending on the state of the “Select" inputs,
V4 this signal will reflect the stalc of one of the

" bits at the "In" input, according to the table

Vi below. Behavior is unpredictable for conditions

" not covered in the table.

Vi

Vi Scl[0] Sellnv[0] Sel[1] Sellnv[1} | Out
/e et mmm

" Low High Low High |In[0]

7 Low High High Low [Infl]

" High Low Low High [In[2]

/" High Low High Low |In[3]

module FourLineSelector (In, Select, SelectInv, Out);

input [3:0] Im;
input [1:0] Select, Selectlnv,
output Out;

wire [3:0] Con;

ThreelnputNANDGate GateZero (In[0], SelectInv[0], SelectInv[1], Con[0});
ThreeInputNANDGate GateOne (In[1], Selectlnv|0}, Select[1] , Con[1]);
ThreelnputNANDGate GateTwo (In[2], Select{0), SelectInv{1], Con[2]);
ThreelnputNANDGate GateThree (In[3], Select]0], Select[1], Con[31);
FourlnputNANDGate GateFour (Con[0], Con|1}, Con{2]), Con[3]. Out);

endmodule

// Name: TwelveBitFourLineSelector

"
// Inputs: InZero [11:0] - The first input line

93

Vi IOnc [11:0] - The second input line
" InTwo [11:0] - The third input line
" InThree [11:0} - The fourth input line

" Select |1:0] - Controls whose state govern which of the four
" inputs will be reflected at the output.
i reflected at the output.

// Qutputs: Out ~ {11:0] - Depending on the state of the "Select” inputs,

" this signat will reflect the state of the twelve

" bits at onc of the four inputs. Behavior is

" unpredictable for conditions not covered in the
" table.

" Select0d Selectl | Out

"

" Low Low | InZero

I Low High | InOne

" High Low | InTwo

" High High | InThree

module TwelveBitFourLineSelector (InZero, InOne, InTwo, InThree, Select, Gut).

input [11:0] InZero, InOne, InTwo, InThree;
input [1:0] Select;
output {11:0] Out;

wire [1:0] Selectlnv;
wire [47:0] Input;

assign Input[0) =InZero[0], Imput[l] = InOne[0],
Input[2] = InTwo[0], Input[3] = InThree[0],
Input[4] = InZero[1], Input[5] = InOnc[1],
Input[6] =InTwo[l], Input[7] = InThree{1],
Input[8] = InZerof2], Input[9] = InOnel2),
Input[10] = InTwo[2], Input[11} = InThree[2],
Input[12} = InZero[3}, Input{13]= InOne[3],
Input[14] = InTwo[3], Input|15] = InThree(3],

Input[16] = InZero[4), Input[17] = InOne[4],
Input|18] = InTwo{4], Input[19} = InThrec[4],
Input[20] = InZero[5], Input[21] = InOne[5],
Input|22] = InTwo[5], Input[23] = InThree[5},
Input{24] = InZero[6], Input[25} = InOne[6},
Input|26] = InTwo[6], Input[27] = InThree[6],
Input[28] = InZero[7], Input[29] = InOne{7],
Input[30] = InTwo[7], Input[31] = InThree[7],
Input[32] = InZero[8), Input[33] = InOnef8],
Input[34] = InTwol8], Input[35} = InThree[8],
Input[36] = InZero[9], Input[37] = InOne[9],
Input[38] = InTwol9], Input[39] = InThree[9],
Input[40] = InZero[10], Tnput[41] = InOne[10],
Input[42] = InTwo[10], InputJ43] = InThree[10],
Input[44] = InZero[11], Taput[45] = InOne[11],
Input[46] = InTwo[11], Input[47] = InThree[11];

Inverter Invert0 (Select[0], SelectInv{0]);

Inverter Invertl (Select[1], Selectlnv]1]);

FourLincSelector Select0 (Input{3:0], Select, SelectInv, Out[0]);
FourLineSelector Select] (Input[7:4], Select, SelectInv, Out[1]);
FourLineSclector Select2 (Inputf11:8], Select, Selectlnv, Out(2]);
FourLineSelector Select3 (Input[15:12], Select, SclectIny, Out[3]);
FourLineSelector Selectd (Input[19:16], Select, Selectinvy, Out[4]);
FourLineSelector SelectS (Input[23:20], Select, SelectIny, Out[5]);
FourLineSelector Select6 (Input[27:24], Select, Selectinv, Out[6]);
FourLineSelector Select? (Input[31:28], Select, Selectlnv, Oul[7]);
FourLineSelector Select8 (Input[35:32], Select, SelectInv, Out[8]);
FourLineSelector Select9 (Input]39:36), Select, Selectlny, Out[9]);
FourLineSelector Select10 (Input[43:40], Select, Selectiny, Out[10]);
FourLineSelector Select11 (Input]47:44], Select, Selectlnv, Out[11]);

endmodule

95

9

/f Name: ClockGen

"

// Inputs: None.

7

// Outputs: Clock ~ Squarc wave that cycles up and down every
Vi 13 nanoseconds thereby producing a signal with a
" period of 26 nanoscconds.

module ClockGen (Clock);

output Clock;

reg Clock;

initial

Clock = 1;

always
begin
#13 Clock = 0;
#13 Clock = 1;
end

endmodule

/{ Name: NewPathStore - Simulates the storage elements that accept and

1" hold data about a ncw path to be loaded into

" the memory lookup module by the sequence /
" detect modulc at the appropriate time

i

// Inputs: Load - The Set input on (he SR latch indicating
i whether the unit still contains new data

" UnLoad - The Reset input on the SR latch indicating

" whether the unit still contains new data

" Dataln - Input indicating whether the new path is to be

" validated or invalidated

" AddressIn [23:0]- The input for the new path which is to be
i validated or invalidated

"

// Outputs: Full - The Q output on the SR latch which, if high,
" indicates the unit contains new data,

Vi Empty - The Q' output on the SR latch which, if high,
" indicates the unit does not contain new data.

" DataQOut - Output indicating whether the ncw path

" curtently stored is to be validated or

7 invalidated

" AddressOut|23:0]- The output of the new path which is to be
" validated or invalidated

‘module NewPathStore (Load, UnLoad, AddressIn, Dataln,
Full, Empty, AddressOut, DataOut);

input Load, UnLoad, Dataln;
input {23:0] AddressIn;

output Full, Empty, DataOut;
output [23:0] AddressOut;

wire DataOutInv;

EightBilRegister Low (Load, AddressIn|7:0], AddressOut[7:0]);
EightBitRegister Middle (Load, AddressIn[15:8], AddressOut[15:8]);
EightBitRegister High (Load, AddressIn[23:16], AddressOut[23:16]);
PosEdgeTriglatch Data (Load, Dataln, DataOut, DataOutlnv),

SRLatch Status (Load, UnLoad, Full, Empty);

endmodule

// Name: Dr icRAM - Si a Texas SMJ416100-70

dyrramic random access memory

98

4

// Inputs: Address [11:0] - DRAM address lines

" RAS - Row address select

" CAS - Column address select

" w - Read/Write select

" D - Data input on memory writes

7

// Qutputs: Q - Data output on memory reads

module DynamicRAM (Address, RAS, CAS, W, D, Q);

input {11:0] Address;
input RAS, CAS, W, D;
output Q

rcg [11:0] Row, Column;
€8 Q, Dataln;

initial
Q=1bz

always
begin
wait ({RAS)
Row = Addrcss;
wait (ICAS)
Column = Address;
if (W==10)
begin
1/ we are performing a write cycle
Dataln = D;
wait (CAS)
Q=1bz;
end
else

begin

99

/1 we are performing a read cycle
// for this simulation just present the low bit of the address
#18 Q = Address[0];
wait (CAS)
Q=1bz
end
end

cendmodule

//Name: NetworkReceiver

17

// Inputs: Clock - Clock on whose negative edge to present data
it

// Outputs: Out [15:0] - Present data produced by the receiver.

" NewCcllEven - Asserted when the starting byte of the ccll
" currently being transmitted was presented on

" the high-order byte of the output.

" NewCellOdd - Asserted when the starting byte of the cell
Vi currently being transmitted was presenied on

" the ow-order byte of the output.

module NetworkReceiver (Clock, NewCellLow, NewCellHigh, Out);

input Clock;
output [15:0] Out;
output NewCellLow, NewCellHigh;

reg [15:0] Out, Temp;
reg NewCellLow, NewCellHigh;

initial
begin
@ (negedge Clock) Out[15:8] = 8'bH00000000;
Out[7:0] =8H00000001;

100

NewCellLow =0;
NewCellHigh = 0;
end

always
begin
@ (negedge Clock) Temp[15:8] = Out{15:8] + 2;
Temp|7:0] = Out[7:0] +2;

if (Temp| 15:8} > 52)
begin
Terop[15:8] = Temp[15:8] - 53;
if (Temp[15:8] == 0) NewCellLow = 1;
end
else
NewCellLow = 0;

if (Temp{7:0} > 52)
begin
Tempf7.0] = Temp(7:0] -53;
if (Temp[7:0] == 0) NewCellHigh = 1,
end
else
NewCellHigh = 0,

Out[15:0] = Temp{15:01;

end

endmodule

// Name: NetworkTransmitter

Vi
// Inputs: Data [15:0] - The data to be transmitted out onto the
" network.

" NewCellEven - Asserted when the starting byte of the cell

101

7" currently being transmitted was presented on

" the high-order byte of the input,

" NewCellOdd - Asserted when the starting byte of the cell
14 currently being transmitted was presented on

" the low-order byte of the input.

module NetworkTransmitter (Clock, NewCellEven, NewCellOdd, Data);

input Clock, NewCellEven, NewCellOdd;
input [15:0] Data;

cndmodute

module ResetControl (Clock, Input, Output);
input Clock, Input;
output Output;

reg Output;

initial
begin
Output = 0;
#26 Output = Input;
/f @(negedge Clock) Output = Input;
end

always
Qutput = Input;

endmodule

/[Name: ControlModulc

"
// Inputs: LatchSet - If high, indicates that the new path storage

102

i module still contains new data.

" LatchResct - If high, indicates that the new path storage
Vi ‘module has been cleared of new data.

"

// Output: SetLatch - If high, indicates that new data has been
i presented and should be latched.

7 Data - If high, indicates that the new path

Vi being modified is 1o be a valid path

" Otherwise, the new path is to be an invalid

" one.

/" Address - Indicates the VPI/VCI pair of the path whose
" status is to be modified.

module ControlModule (Address, Data, SetLatch, LatchSet, LatchReset);

input LatchSet, LatchReset;
output SetLatch, Data;
output [23:0] Address;

168 SetLatch, Data;
reg [23:0] Address;

initial
begin
SetLatch = 0; Data = 0, Address =0;
end

always
begin
#1 if (LatchSet == 0)
begin
Address = Address + 1;
if (Data==0) Data=1;
if (Data == 1) Data = 0;
#1 SetLatch = 1;
#1 Setl.atch = 0;

end

endmodule

/f Name: DownCounterWithPreset

Vi

1/ Inputs: Clock - Signal on whose positive edge, the counter
i must change state

" Set26 - If high on a rising edge of "Clock", then

" it forces the next state of the counter to

" be 26 transitions away from zero.

" Set27 - If high on a rising edge of "Clock", then

" it forces the nex state of the counter to

i be 27 transitions away from zero.

"

// Output: Bit0.,.4 - Individual lines of the output of the five
" latches that storc the current state of the

" counter. Bit0 refers to the lowest order

" bit and Bit4 to the highest order bit.

module DownCounterWithPreset (Clock, Set26, Set27,
Bit0, Bitl, Bit2, Bit3, Bitd);

input Clock, Set26, Set27;
output Bit0, Bitl, Bit2, Bit3, Bitd;

wire BitOInput, Bit1Input, Bit2Input, Bit3Input, Bit4Input;
wire Set261nv, Set27Inv;
wire [22:0] Ling;

// Memory elements to store the current statc

PosEdgeTriglatch BitZero (Clock, BitOInput, Bit0, Bit0Inv);
PosEdgeTriglatch BitOne (Clock, BitlInput, Bitl, Bitllav),
PosEdgeTriglatch BitTwo (Clock, Bit2Input, Bit2, Bi2Inv),

103

PosEdgeTriglaich BitThree (Clock, Bit3Input, Bit3, Bit3Inv);
PosEdgeTriglaich BitFour (Clock, BitdInput, Bit4, BitdInv);

// Prepare inputs
Inverter Gate0 (Set26, Set26Inv);
Inverter Gatel (Set27, Set27Inv);

1/ Decode logic for bit 0

TwolnputNORGate Gate2 (BitOInv, Sc127, Line{2]);

TwolnputNORGate Gate3 (Set26Inv, Set27, Line[3]);

SixInputNORGate ~ Gate4 (Bit0, Bitl, Bit2. Bit3, Bitd, Set27,
Line[4])

ThreclnputNORGate Gate5 (Line[2], Line[3], Line[4], BitOInput);

/1 Decode logic for bit 1

FourlnputNORGate Gate6 (Bit0, Bit1Inv, Set26, Set27, Line[6]);

FourlnputNORGate Gate7 (Bit0Inv, Bitl, Set26, Set27, Line[7});

SevenInputNORGate Gate8 (Bit0, Bitl, Bit2, Bit3, Bitd, Set26,
Set27, Line[8])

ThreelnputNORGate Gate9 (Line[6], Line[7], Line[8], BitlInput);

1/ Decode logic for bit 2

TwolnputNORGate ~ Gatel0 (BitiInv, Bit2, Line[10]);

TwolnputNORGate ~ Gatell (Bit0Inv, Bit2, Line[11]);

ThreelnputNORGate Gatel2 (Bit0, Bitl, Bit2Iny, Linc|12]);

FivelnputNORGate Gatel3 (Bit0, Bit1, Bit2, Bit3, Bitd, Linc|13]);

SixInputNORGate Gatel4 (Line[10), Line[11}, Line[12], Line[13],
Set26, Set27, Bit2Input),

/I Decode logic for bit 3

FourlnputNORGate Gatel5 (Bit2Inv, Bit3, Set26, Set27, Linc[15]);

FourlnputNORGate Gatels (Bitllnv, Bit3, Set26, Set27, Line|16]);

FourInputNORGate Gatel7 (Bit0Inv, Bit3, Set26, Set27, Line[17]);

SixInputNORGate ~ Gatel8 (Bit0, Bitl, Bit2, Bit3Iav, Set26, Set27,
Line[18])

SevenlnputNORGate Gatel9 (Bit0, Bitl, Bit2, Bit3, Bit4, Set26, Set27,

104

105

Linef19] %
FivelnputNORGate Gate20 (Line[15], Line[16], Line[17], Line[18},
Linc[19], Bit3Input %
/1 Decode logic for bit 4

ThreelnputNORGate Gate21 (Bit4, Set26, Set27, Line[211);
SixInputNORGate Galc22 (Bit0, Bit1, Bit2, Bit3, Set26, Se127,
Line[22| %

TwolnputNORGate ~ Gate23 (Line[21], Line[22], Bit4Input);

endmodule

// Name: StateControl

i

J/ Inputs: NewCellLow - When high, indicates a new cell is coming
Vi in with the first byte starting on the low

" order bits of the input.

i NewCellHigh - When high, indicates a new cell is coming
1 in with the first byte starting on the high

" order bits of the input.

" LookupRes - Path validity result of the memory lookup
" for the transitting ccll

i Bit [4:0] - The state of the five bits which definc the

" current state of the state machine for which

" the control lines must be decoded.

" Bitlnv [4:0} - The negated state of the five bits specificd
" by the "Bit" input.

"

/f Output; PVRL - Latch the results of the read from the

n memory lockup module,

4 RSRL - Clear the new path information in the new
" path registers (by setting the SR-Latch

Vi indicating the validity of the data as

I being falsc)

" LLODG26 - Start the low-byte counter a1 26

i LLODG27 - Start the Jow-byte counter at 27

" LHODG27 - Start the high-byte counter at 27

" VVRL - Not applicable to "path-onty" Analysis Mod.
" RAS - Row address select line on the memory

" lookup module

Vi CAS - Column address sclect line on the memory

I lookup module

I w - Read/Write control line on the memory

/" Iookup module

Vi FourBDS [5:0] - Control lines to the four bit multiplexer

" that shunt different portions of the

" incoming data words from the Receiver

" FourBDL {5:0] - Latch control lincs on the latches that store
i the path information of the currently

" transiting cell

/s TwelveBDS [1:0] - Control lines to the twelve bit by four line
/" multiplexer that presents data from

7 various latch groups to the memory lookup

i module

module StateControl (Bit, BitInv, NewCellLow, NewCellHigh, LookupRes,
FourBDS, FourBDL, TwelveBDS, PVRL, RSRL,
LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W),

input NewCellLow, NewCellHigh, LookupRes;

input [4:0] Bit, Bitln;

output PVRL, RSRL, LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W;
output [5:0] FourBDS, FourBDL,

output [1:0] TwelveBDS;

wire LowStart, HighStart;
wire [4:0] Stage;
wire [28.0] Line;

assign FowBDL[0] = Stage[l], FourBDL[1] = Stagel2],
FourBDL[2] = Stagef2], FourBDL[3] = Stage3],

106

FowBDL[4] = Stage[3], FourBDLIS] = Stage[4],
TwelveBDS[0] = Bitlnv{2], TwelveBDS[1] = Bit[4],
LLODG26 = LowStart, LHODG27 = LowStart,
LLODG27 = HighStart;

1/ Logic for PVRL

FivelnpuINANDGate Gate0 (Bitlnv{4], Bitlnv([3], Bit[2], BitInv[1],
Bit[0], Line[0})

Inverter Gatel (Line{0], PVRL);

/1 Logic for RSRL

FiveInpulNANDGate Gate2 (Bit[4], Bit[3], Bit|2], Bitlnv[1], Bit[0],
Line[2])

Inverter Gate3 (Line|2], RSRL);

1/ Logic for LxODG2x

SevenInputNANDGate Gated (Bitinv[4], Bit[3], Bit[2], Bitlnv[1],
Bitlnv[0], NewCcllLow, LookupRes, Line[4]);

SevenInputNANDGate GateS (Bitlnv]4], Bit[3], Bit[2], Bitinv[1],
Bitlnv([0], NewCellHigh, LookupRes, Linc[S]);

Inverter Gate6 (Line[4], LowStart);

Inverter Gate7 (Line[5], HighStart),

1/ Logic for VVRL

FivelnputNANDGate Gate8 (BitInv[4], BitInv|3], Bit[2], Bitlnv([1],
Bitlnv[0], Line{8])

Inverter Gate9 (Line[8], VVRL);

// Logic for RAS

TwolnputNANDGate Gatel0 (Bit[4], Bitlnv|3], Line[10]);
TwolnpuNANDGate Gatell (BitInv[2], Bit[0], Line[11]);
ThreelnputNANDGate Gatel2 (Bit[4], Bit[2], Bitlnv[1], Linef121]);
ThreelnputNANDGate Gatel3 (Bit[3], Biflov[1], Bit[0], Line[13]);

ThreelnputNANDGate Gatel4 (Bitlnv[4], Bitlnv| 1], Bitlnv{0], Line[14}),

FivelnputNANDGate Gatel5 (Line[10}, Line[11], Line[12], Line[3],
Line[14], RAS %

107

108

1 Logic for CAS
TwolnputNANDGate Gatel6 (Bitlnv[3], Bitlnv{2], Line[16]);
ThreelnpyNANDGate Gatel7 (BitInv{3], Bit[1], Bitlnv[0], Line[17]);
FourlnputNANDGate Gatel8 (Bit[4], Bit[3], Bit[1], BitInv[0], Line[18]);
FourlnputNANDGate Gatel9 (Bit[4], Bit{3], BitInv{1], Bitf0], Linef19]);
FourlnpuiNANDGate Gate20 (Bit|4], Bit[3], BitInv[2], Bit[1], Line[20]);
FivelnputNANDGate Gate2l (Linc[16], Line[17], Line[18], Line[19],
Line[20], CAS %

1 Logic for W
FivelnputNANDGate Gate22 (Bit}4], Bit[3], Bit[2], Bit[1], Bit[0], W);

1/ Logic for 4BDL

FivelnputNANDGate Gate23 (BitInv[4], Bitlnv[3], Bitlnv[2],
Bitlnv(1], Bit[0], Line[23]);

FivelnputNANDGate Gate24 (Bit[4], Bitinv[3], Bit[2], Bitinv]1],

Bitlnv(0], Line[24])
FivelnputNANDGate Gate25 (Bit[4], BitInv{3], Bit[2], Bitlav[1],
Bit|0], Line[25])
FiveInputNANDGate Gate26 (Bitlnv[4], Bitlnv[3], Bitlnv{2], Bit[1],
Bit[0], Line[26]),
FivelnputNANDGate Gate27 (Bit[4], BitInv[3], Bit[2], Bit[1], Bit[0],
Line[27])

TwolnputNANDGate Gate28 (Line[23], Linef24], Stage[1]);
TwolnputNANDGate Gate29 (Line[23], Line|25], Stage[2]);
TwolnputNANDGate Gate30 (Line[26], Line[25], Stage[3]);
TwolnputNANDGate Gate31 (Line{26], Line[27], Stage[4]);

1 No logic block necessary for 12BDS([B,S]

endmodule

// Name: StateMachine

"
// Inputs: Clock - Signal on whose rising edge the state

109

14 machine must make 2 state change

Vi NewCellLow - When high, indicates a new cell is coming
Vi in with the first byte starting on the low

" order bits of the input.

i NewCellHigh - When high, indicates a new cell is coming
" in with the first byte starting on the high

" order bits of the input.

" LatchSet - Output of the SR-Latch which, if high,

" indicates there is new path data to be loaded

" into the memory lookup module.

" LatchResct - The negated state of the LatchSet input.

14

// Qutput: Bit [4:0] - The state of the five bits which define the
" current state of the state machine.

" BitInv [4:0} - The negated state of the five bits specified

Y by the "Bit" input.

module StateMachine (Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,
Bit, Bitlny)

input Clock, NewCellLow, NewCellHigh, LatchSet, LatchResct;
output {4:0] Bit, Bitlnv;

wire [4:0] BitDecode, Bitlnput;
wirc [39:0] Line;

/{ Mcmory elements to siore the current state

PosEdgeTrigLatch BitZero (Clock, Bitlnput[0], Bit[0], BitInv([0]);
PosEdgeTriglatch BitOne (Clock, BitInput[1], Bit[1], Bitluv[1]);
PosEdgeTriglaich BitTwo (Clock, BitInput(2], Bit{2], Bitlav[2]);
PosEdgeTriglatch BitThree (Clock, Bitlnput[3], Bit[3], BitInv[3]);
PosEdgeTriglaich BitFour (Clock, Bitlnput[4], Bit{4], Bitlnv([4]);

1 Decode logic for bit 0
ThreelnpuNANDGate Gate0 (Bit[3], Bit[2], Bitlnv[1], Linel0]);

110

ThreeInputNANDGate Gatel (Bit[4], Bit[3], Bit{2], Line[1]);
ThreeInpufNANDGate Gate2 (Bit[4], Bitinv[1], Bit[0], Line[2]);
ThreelnputNANDGate Gate3 (Bit[4], Bit[3], Bitlnv[0], Linc[3]);
FourlnputNANDGate Gated (Bitnv[4], Bit[3], Bitlnv]2}, Bit|1},
Line[4] %
FourlnputNANDGatc Gate5 (Bitlnv[4], Bitlnv{3], Bit[2], Bit[1],
Linc[5])%
FourlnputNANDGate Gate6 (BitInv[3], Bitinv[2], BitInv[1], Bit|0],
Linc[6])
FiveInputNANDGate Gate? (Bitlnv[3], Bitlnv|2], BitInv{1].
BitInv[0), NewCellLow, Linc|7]);
FivelnpuNANDGate Gate8 (Bit[4]. BitInv[3], BitInv{1], Bitlnv{0],
NewCellHigh, Line[8]),
NinelnputNANDGate Gate9 (Line{0}, Linef1], Line[2], Line{3],
Line[4), Line[9}, Line[6], Line|7],
Line(8], BitDecode[0])3
ResetControl Resct0 (Clock, BitDecode[0), Bitlnput{0]);

/1 Decode logic for bit 1

‘TwolnputNANDGate Gatel0 (Bit[1], BitInv{0], Linc[10]);
ThreelnputNANDGate Gatell (BitInv[3], Bitlnv{2], Bit[0], Line[11]);
ThreeInputNANDGate Gatel2 (Bit[4], Bitlnv[3], Bit[0], Line[12]);
FourlnputNANDGate Gatel3 (Bitlnv[4], Bit[31, Bit[2], Bit[0], Line[13});
FourlnputNANDGate Gatel4 (Bit[4], Bitlnv[2], Bitlnv[1}, Bit{0],

Linef14] %
FivelnputNANDGate Gatel (Bit[4], Bitlavi2], Bit[1], Bit[0],
LatchSet, Line[15])

SixInputNANDGate Gatel6 (Line|10}, Line[11], Line[12], Line[13],
Line[14], Line[15], BitDecode[1])
ResctControl Resctl (Clock, BitDecodef 1}, BitInput[1]);

/1 Decode logic for bit 2

ThreelnputNANDGate Gatel7 (BitInv[4], Bitlnv[3], Bit[2], Line|17]);
ThreelnputNANDGate Gatel8 (Bitlnv[4], Bit[2], Bitlnv(1], Line[18]);
ThreelnputNANDGate Gatel9 (Bitlnv[4], Bit]2}, Bit[0], Line[19]);
ThreelnputNANDGate Gatc20 (Bitlnv[3], Bit[1], Bitlnv]0}, Line[20]);

ThreelnputNANDGate Gate21 (Bit[4], Bit[1], Bitlnv[0], Line[21});
ThreelnputNANDGate Gate22 (Bit[4], Bit[3], Bit[2], Line[22]);
ThreelnputNANDGate Gate23 (Bit[2], BitInv[1], Bit[0], Line[23]),
FivelnputNANDGate Gate24 (Bit|4], Bitlnv[3], Bitlnv[1], BitInv[0],

NewCellHigh, Line[24])
FivelnpuiNANDGate Gate25 (Bit}4], Bitlnv(2], Bit[1], Bit[0],
LatchReset, Line[25])

NincInputNANDGate Gate26 (Linc[17], Line[18], Line[19], Linc[20],
Line[21], Line[22], Line[23], Line[24],
Line[25], BitDecode[2] %

ResetControl Reset2 (Clock, BitDecode[2], BitInput[2]);

/1 Decode logic for bit 3

TwolnputNANDGate Gate27 (Bitlnv[4], Bit]3}, Line[27]);
ThreelnpuiNANDGate Gate28 (Bit[3], Bit[2], Bit(1], Line[28]);
ThreelnputNANDGatc Gate29 (Bit(3], Bit[1], Bitlnv[0], Line[29]);
ThreelnputNANDGate Gate30 (Bit{3], Bitlnv[1], Bit[0], Line[30]);
ThreelnputNANDGate Gate31 (Bit[3], BitInv[2], Bitlnv[1], Line[31]);
FourlnputNANDGate Gate32 (Bitlnv[4], Bit{2], Bitlnv[1], BitInv{0],

Line[32])
FiveInputNANDGate Gate33 (Bit[4], Bitlnv|2], Bit[1], Bit[0], LatchSet,
Ling[33] %

SevenInputNANDGate Gate34 (Line[27], Line[28], Line[29], Line[30].
Line|31], Line[32], Line[33], BitDecode[3]);
ResctControl Reset3 (Clock, BitDecode{3], Bitlnput{3]);

1/ Decode logic for bit 4

TwolnputNANDGate Gate35 (Bit[4], Bit[3], Line[35]);

ThreelnputNANDGate Gate36 (Bit[4], Bitlnv{L], Bit{o], Linc36]);

FourlnputNANDGate Gate37 (Bit|3], Bitinv(2], Bitlmv[1], Bitlnv(0],
Line[37])

FourlnputNANDGate Gate38 (Bit|4], Bitlnv[3], Bitlnv[0], NewCellHigh,
Line[38])%

FourlnpntNANDGate Gate39 (Line[35], Line}36], Line[37], Line[38],
BitDecodef4]),

ResetControl Resetd (Clock, BitDecode[4], BitInput[4]);

1t

endmodule

// Name:

"

// Inputs: Clock

NewCellLow

SequenceDetect

- Signal on whose rising edge the state
machine must make a state change.
~ When high, indicates a new ccll is coming
in with the first byte starting on the low
order bits of the input.

NewCellHigh - When high, indicates a new cell is coming

LatchSet

LatchReset

RSRL

LLODG26
LLODG27
LHODG27
VVRL
RAS

CAS

w

LowChoke

in with the first byte starting on the high
order bits of the input.

- Output of the SR-Latch which, if high,
indicates there is new path data to be loaded
into the memory lookup module.

- The negated state of the LatchSet input.

- Latch the results of the read from the
memory lookup module.

- Clear the new path information in the new
path registers (by setting the SR-Latch
indicating the validity of the data as
being false)

- Start the low-byle counter at 26
- Start the low-byte counter at 27
- Start the high-byte counter at 27
- Not applicable to "path-only" Analysis Mod.

- Row address select line on the memory
lookup module

- Column address select line on the memory
lookup module
- Read/Write control line on the memory
lookup module

- Control line to the data gate that informs

12

113

" it whether to transmit the low byte of the

" data wotds exiting from the shifl register

" HighChoke ~ Control line to the data gate that informs

" it whether to transmit the high byte of the

4 data words exiting from the shift register

" FourBDS [5:0} - Control lines to the four bit multiplexer

" that shunt different portions of the

" incoming data words from the Receiver

i FourBDL [5:0] - Latch control lines on the latches that store
" the path information of the currently

" transiting cell

7 TwelveBDS [1:0] - Control lincs to the twelve bit by four line
" multiplexer that presents data from

Vi various latch groups to the memory lookup

" module

module SequenceDetect (Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,
LookupRes, FourBDS, FourBDL, TwelveBDS, PVRL, RSRL,
VVRL, RAS, CAS, W, LowChoke, HighChoke %

input Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,
LookupRes;

output PVRL, RSRL, VVRL, RAS, CAS, W;

output LowChoke, HighChoke;

output [1:0] TwelveBDS;

output [5:0] FourBDS, FourBDL,;

wire LLODG26, LLODG27, LHODG27, Ground;
wire [4:0] Bit, Bitlnv, LowByte, HighByte;

assign Ground = 0;

StateMachine Core (Clock, NewCellLow, NewCellHigh, LatchSet,
LatchReset, Bit, Bitlnv)

StateControl Signat (Bit, Bitlnv, NewCellLow, NewCellHigh, LookupRes,
FourBDS, FourBDL, TwelveBDS, PVRL, RSRL,

LLODG26, 1LLODG27, LHODG27, VVRL, RAS, CAS, W);

DownCounterWithPreset LowByteCounter

(Clock, LLODG26, LLODG27, LowByte[0], LowByte[1].
LowByte[2], LowByte[3], LowByte[4] %

DownCounterWithPreset HighByteCounter

(Clock, Ground, LHODG27, HighByte[0], HighByte[1],
HighByte(2], HighByte[3], HighByte[4])

FivelnputNANDGate LowByteChoke

(LowByltc[0], LowByte[1], LowByte[2], LowByte[3],
LowByte[4], LowChoke %

FivelnputNANDGate ~ HighByteChoke

(HighByte(0], HighByte[11, HighByte[2], HighBytel3],
HighByte[4], HighChoke %

endmodule

/i Let's bring the whole thing together

module NetworkSecurity;

wire

wire
wire
wire
wire

wire

initial

Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,

PVRL, RSRL, VVRL, RAS, CAS, W, LowChoke, HighChoke,
NewPathDataln, NewPathDataOut, LoadNewData, UnLoadNewData,
PathSiate;

[1:0] TwelveBDS,

[4:0] StateBit, StateBitIny;

{5:0] FourBDS, FourBDL;

[11:0] RAMAddress;

[15:0] DataIn, ShiftOut, GateOut;

[23:0] NewPathAddressIn, NewPathAddressOut, Latchln, LatchOut;

begin

// generate our report

114

1/ $shm_open;
// $shm_probe("AC");
/1 #5000 $shm_close;

#5000 $finish;
// $monitor ($time,,
" "S0=%b S1=%b #1=%d #2=%d #3=%d #4=%d O=%d",
" Sel0, Sell, One, Two, Three, Four, Out);
end
ClockGen Timer (Clock);

NetworkReceiver Receive (Clock, NewCellLow, NewCellHigh, Dataln);

NetworkTransmitter Transmit (Clock, NewCellLow, NewCellHigh, GatcOut);

ControlModule ~ PathGen (NewPathAddressIn, NewPathDataln, LoadNewData,
LatchSet, LatchReset)

ShifiRegister Shifter (Clock, Dataln, ShiftOut);

EightBitDataGate LowGate (ShiftOut[7:0], LowChoke, GateOut[7:0]);

EightBitDataGate HighGate (ShiftOut[15:8], HighChoke, GateOut[15:8]);

SequenceDetect Control (Clock, NewCellLow, NewCellHigh, LatchSet,
LatchReset, PathState, FourBDS, FourBDL,
TwelveBDS, PVRL, RSRL, VVRL, RAS, CAS. W,
LowChoke, HighChoke b3

NewPathStore ~ NewPath (LoadNewData, UnLoadNewData, NewPathAddressin,
‘NewPathDataln, LatchSet, LatchReset,
NewPathAddressOut, NewPathDataOut)3

FourBitTwoLincSelector S1 (Dataln|11:8], Datan[3:0], FourBDS{0},
LatchIn[23:20]),
FourBitTwoLineSelector S2 (Dataln{7:4|, Dataln[15:12], FourBDS[1],
LatchIn[19:16]),
FourBitTwoLineSelector S3 (Dataln{3:0], Dataln[11:8], FourBDS|[2],
LatchIn{15:12])3
FourBitTwoLineSelector $4 (Dataln[15:12], Dataln[7:4], FourBDS[3],
LatchIn|11:8])

115

116

FourBitTwoLineSelector S5 (Dataln[11:8], Dataln|3:0], FourBDS[4],

LatchIn[7:4] %
FourBitTwoLineSelector S6 (Dataln[7:4], Dataln|15:12], FourBDS[5],
LatchIn[3:0] 3,

FourBitRegister L1 (FourBDL[0], LatchIn[23:20], LatchOut[23:20]);
FourBi{Register L2 (FourBDL|1], LatchIn[19:16], LatchQut[19:16]);
FourBitRegister L3 (FourBDL[2], LatchIn[15:12], LatchOut[15:12]);
FourBitRegister 14 (FourBDL{3], LatchIn[11:8], LatchOut[11:8]),
FourBitRegister L5 (FourBDL[4], Latchin[7:4], LatchOut[7:4]);
FourBitRegisler L6 (FourBDL[5], LatchIn{3:0], LatchOut[3:0]),

TwelveBitFourLincSelector SM(LatchOut[23:12],
LatchOut[11:00],
NewPathAddressOut|23:12],
NewPathAddressOut[11:0],
TwelveBDS, RAMAddress),

DynamicRAM Lookup (RAMAddress, RAS, CAS, W, NewPathDataOut,
PathState %

endmodule

117

APPENDIX B

“PATH AND VOLUME” ANALYSIS MODULE STIMULATION CODE

This appendix contains the Verilog hardware description language code necessary to implement a gate-level
simulation of the “path and volume” version of the Analysis Module. The Receivers, Transmilters and
memories involved in the design of the network security device were simulated at the procedural level and the

Analysis Module was simulated at the gatc level.

All sub-module inputs and outputs are fully commented.

B.A Verilog simulation

module Inverter (In, Out);

input In;
output Out;
reg Out;
always
#1 Out = ~In;
endmodule

module TwolnputNANDGate (InOne, InTwo, Out),

input nOne, InTwo,
output Out;
reg Out,

always

#1 Out = ~(InOnc & InTwo);

endmodule

module ThreeInputNANDGatc (InOne, InTwo, InThree, Out);

input InOne, InTwo, InThree;

outpul Out;
reg Out;
always

#1 Out = ~(InOne & InTwo & InThree);

endmodule

modute FourlnputNANDGate (InOne, InTwo, InThree, InFour, Out);

input InOne, InTwo, InThree, InFour;

output Out;
reg Out;
always

#1 Out = ~(InOne & InTwo & InThree & InFour);

cendmodule

module FivelnputNANDGate (InOne, InTwo, InThree, InFour, InFive, Out);

input InOne, InTwo, InThree, InFour, InFive,
output QOut;

118

Teg Out;

always
#1 Out = ~(InOne & InTwo & InThree & InFour & InFive),

endmodulc

modute SixInputNANDGate (InOne, InTwo, InThree, InFour, InFive, InSix, Out);

input InOne, InTwo, InThree, Infour, InFive, InSix;

output Out,
reg Out;
always

#1 Out = ~(InOnc & InTwo & InThree & InFour & InFive & InSix);

endmodule

module SevenInputNANDGate (InOne, InTwo, InThree, InFour, InFive, 1nSix,

InSeven, Out %

input 1nOne, InTwo, InThree, InFour, InFive, InSix, InSeven;
output Out,

reg Out,

always
#1 Out = ~(InOne & InTwo & InThree & InFour & InFive & InSix & InSeven),

endmodule

119

120

modulc NincInputNANDGate (InOne, InTwo, InThree, InFour, InFive, InSix,
InSeven, InFight, InNine, Out)

input InOne, InTwo, InThree, InFour, InFive, InSix, InSeven,

InEight, InNine;
output Qut;
reg Out;
always
#1 Out = ~(InOne & InTwo & InThree & InFour & InFive & InSix & InSeven &
InEight & InNine Y
endmodule

module TwolnputNORGate (InOne, InTwo, Out);

input InOne, InTwo;
output Out;

eg Out;

always

#1 Out = ~(InOne | InTwo);

endmodule

module ThrecInputNORGate (InOne, InTwo, InThree, Out);

input InOne, InTwo, InThrec;
output Cut;

Teg Out;

always
#1 Out = ~(InOne | InTwo | InThree);

endmodule

module FourlnputNORGate (InOne, InTwo, InThree, InFour, Out),

input InOne, InTwo, InThree, InFour;

output QOut;
reg Out;
always

#1 Ont = ~(InOne | InTwo | InThree | InFour);

endmodule

module FivelnputNORGate (InOne, InTwo, InThree, InFour, InFive, Out);

input InOne, InTwo, InThree, InFour, InFive;

output Out;
reg Out;
always

#1 Out = ~(InOne | InTwo | InThree | InFour | InFive);

endmodule

module SixInputNORGate (InOne, InTwo, InThree, InFour, InFive, InSix, Out);

121

input InOne, InTwo, InThree, InFour, InFive, InSix;

output Out;
Teg Out;
always

#1 Out = ~(InOne | InTwo | InThree | InFour | InFive | In8ix);

endmodule

module SevenInputNORGate (InOne, InTwo, InThree, InFour,
InFive, InSix, InSeven, Out);

input InOne, InTwo, InThree, InFour, InFive, InSix, InSeven;

output Out;
Teg Out;
always

#1 Out = ~(InOne | InTwo | InThree | InFour | InFive | InSix | InSeven);

endmodule

module SRLatch (Set, Reset, Out, InvertOut);

input Set, Reset;
output Out, InvertOut;

TwolnputNANDGate GateOne (Set, InvertOut, Out);
TwolnputNANDGate GateTwo (Reset, Out, InvertOut);

endmodule

122

module PosEdgeTrigLatch (Clock, Data, Out, InvertOut);

input Clock, Data;
outpul Out, TnvertOut;

wire wl, w2, w3, wé;

TwolnputNANDGate GateOne (w4, w2, wl),
TwolnputNANDGate GateTwo (w1, Clock, w2);
ThreelnpntNANDGate GateThree (w2, Clock, w4, w3);
TwolnputNANDGate ~ GateFour (w3, Data, w4);
TwolnputNANDGate GateFive (w2, InvertOut, Out);
TwolnputNANDGate GateSix (Out, w3, InvertOut);

endmodule

// Name: FourBitRegister

14

// Inputs: Data [3:0] - The data to be latched by the register on the
" next rising clock edge.

" Clock - The clocking signal which controls data latching.
i

// Qutputs: Out [3:0] - The data latched on the last rising clock edge.

module FourBitRegister (Clock, Data, Out);

input {3:0] Data;
input Clock;
output [3:0] Out;

wire [3:0) Outlnv;
PosEdgeTriglatch BitZero (Clock, Data[0], Out[0], OutInv[0]);

PosEdgeTrigLatich BitOne (Clock, Data[1], Out[1], Outlnv[1]);
PosEdgeTrigLatch BitTwo (Clock, Dataf2], Out[2], OutInv{2]);

123

124

PosEdgeTriglatch BitThree (Clock, Data[3], Out[3], OutInv([3]);

endmodule

// Name: EightBitRegister

4
// nputs: Data [7:0] - The data to be latched by the register on the
" next rising clock edge.

" Clock - The clocking signal which controls data latching.
"
J// Outputs: Out [7:0] - The data latched on the Jast rising clock edge.
module EightBitRegister (Clock, Data, Out);

input [7:0] Data;

input Clock;

output [7:0] Out;

FourBitRegister LowNibble (Clock, Dataf3:0], Out]3:0});
FourBitRegister HighNibble (Clock, Data[7:4], Out|7:4]);

endmodule

// Name: ~SixteenBitRegister

i

//Inputs: Data [15:0] - The data to be latched by the register on the
i nexl rising clock edge.

" Clock ~ The clocking signal which controls data latching.
14

// Outputs: Out ~ [15:0] - The data latched on the last rising clock edge.

module SixteenBitRegister (Clock, Data, Out);

input |15:0] Data;

input Clock;
output [15:0] Cut;

EightBitRegister LowByte (Clock, Data[7:0}, Out[7:0});
EightBitRegister HighByte (Clock, Data{15:8], Out[15:8]);

cndmodule

// Name: ShiftRegister

#"
// Inputs: Data [15:0] - The data to be latched by the shift register on

Vi the next rising clock edge.

V4 Clock - The clocking signal which controls data latching.

"

// Outputs: Out ~ [15:01 - The data latched on the rising clock edge twenty
" seven clock cycles ago

" Outlnv [15:0] - The negation of the data latched on the rising
" clock edge nine clock cycles ago.

module ShiftRegister (Clock, Data, Out);

input [15:0] Data;
input Clock;
output [15:0] Out;

wire [15:0] L1,L2,13,14,15,16,L7, L8,

SixteenBitRegister Staged (Clock, Data, L1);
SixteenBitRegister Stagel (Clock, L1, L2);
SixteenBitRegister Stage2 (Clock, L2, L3);
SixteenBitRegister Stage3 (Clock, L3, L4);
SixteenBitRegister Stage4 (Clock, L4, L5);
SixieenBitRegister Stage5 (Clock, LS, 1.6);
SixteenBitRegister Stage6 (Clock, L6, L7);
SixicenBitRegister Stage7 (Clock, L7, L8);

125

126

SixtcenBitRegister Stage8 (Clock, L8, Ou),

endmodule

//Name; DataGate

4

// Inputs: In - Data input,

" Select - If high, the bit value at "In" will be reflected
" at "Out". Otherwise, "Out" will reflect zcro.

"

1/ Outputs: Out - Reflect "In" if Select is low, otherwise low
Vi regardless of the state of "In".

modute DataGate (In, Select, Out);

input In, Sclect;
output QOut;

wire Outlnvert;

TwolnputNANDGate ~ Gate (In, Select, Qutlnvert);
Inverter Invert (Outlnvert, Out);

endmodule

/[Name: CounterGate

i

#/ Inputs: InUp - Data input to count up

" InDown - Data input to count down

" InSame - Data input to remain in same state

i Incr - If high, we must count up on next transition

" Decr - If high, we must count down on next transition
#"

// Outputs: Out - Reflect the value to be loaded for the next

" transition

module CounterGate (InUp, InDown, InSame, Incr, Decr, Qut);

input InUp, InDown, InSame, Incr, Decr;
output Out;

wire Incrlny, Decrinv;

wire [3:0] Line;

1/ Provide the inverted logic controls

Inverter Gate0 (Incr, Incrlnvy;
Inverter Gatel (Decr, Decrlnv);
// Tmplcment the data gatc

ThreeInputNANDGate Gate2 (Incrinv, Dectlnv, InSame, Line[0]);
ThreclnputNANDGate Gate3 (Incr, Decr, InSame, Line[1]);
ThreelnputNANDGate Gate4 (Incrlnv, Decr, InDown, Line[2]);
ThrecInputNANDGate GateS (Incr, Decrlny, InUp, Line[3]);
FourlnputNANDGate Gate6 (Linef0], Line[1], Line[2], Line[3], Out);

endmodule

/{ Name: BitEqualTest

"

/f Inputs: InZero - First data input

" InZerolnv - Negation of first data input

i InOne - Second data input

" InOnelnv - Negation of second data input
"

/1 Outputs: Result - Result of equality test

module BitEqualTest (InZero, InZerolny, InOne, InOnelnv, Result);

input InZero, InZerolnv, InOne, InOnelnv;

127

endmodule

//Name: ThreeBitDataGate

7

// Inputs: In [2:0] - Data input.

" Select - If asserted high, the bil valucs at "In" will be

" reflected at "Out", Otherwise, "Out” will

" reflect all zerocs.

"

/ Qutputs: Out [2:0] - Reflect "In" if Select is high, otherwise just

4

output Result;
wire [{1:0] Line;
TwolnputNANDGate GateO (InZerolnv, InOnelnv, Line|0]);

TwolnputNANDGate Gatel (InZero, InOne, Line[1]);
TwolnputNANDGate Gate2 (Line[0], Line[1], Result);

set all bits to low.

module ThreeBitDataGate (In, Select, Out);

input {2:0] In;
input Select;
output [2:0] Out;

DataGate Bit0 (In[0], Select, Out[0]);
DataGate Bitl (In[1], Select, Out[1]),
DataGate Bit2 (In[2], Select, Out[2]);

endmodule

"
"

Name: FourBitDataGate

128

// Inputs: In [3:0] - Data input.

" Select - If asserted high, the bit values at "In" will be

Vi reflected at "Out”. Otherwise, "Out" will

" reflect all zeroes.

4

J// Outputs: Out [3:0] - Reflect "In" if Select is high, otherwise just
I set all bits to low.

module FourBitDataGate (In, Select, Out);

input [3:0] In;

input Select;

output [3:0] Out;

DataGate Bit0 (In[0], Sclect, Out[0]);
DataGate Bitl (In[1], Select, Qut[1]);
DataGate Bit2 (In[2], Select, Out[2]);

DataGate Bit3 (In[3], Select, Out[3]);

endmodule

//Name: EightBitDataGate

"

// Tnputs: [n[7:0] - Data input.

i Selcct - If asserted high, the bit values at "In" will be
" reflected at "Out". Otherwise, "Out" will

7 reflect all zeroes,

"

// Outputs: Out|7:0] - Reflect "In" if Select is high, otherwise just
i go low on all bits,

module EightBitDataGate (In, Select, Out);

input [7:01 In;
input Select;

129

130

output [7:0] Out;

FourBitDataGate LowNibble (In|3:0], Select, Out{3:0]);
FourBitDataGate HighNibble (In[7:4], Select, Out[7:4]);

endmodule

// Name: TwoLineSelector

"

// 1nputs: In[1:0] - Two bits of data input

Vi Select - Input that must be asserted in order to control
a which of the two bits of input will be reflected
" at the output.

" Selectinv - Input which is the inversc of "Sclect"

"

// Outputs: Out - Reflect the value at "In[1]" if "Select” is
i high and "SelectInv" is low. Reflect the value
Vi at "In[0]" if "Select" is low and "SclectInv" is
" high. Behavior is unpredictable otherwisc.
module TwoLi (In, Select, Out);

input [1:0] In;
input Select, SelectInv;
output Out;

wire [1:0] Con;
TwolnputNANDGate GateZero (In[0], Selectlnv, Con[0]);
TwolnputNANDGate GateOne (In[1]. Select, Con[1]);

TwolnputNANDGate GateTwo (Con[0], Con[1], Out);

endmodute

// Name: FourBitTwoLineSclector

"

// Inputs: InZero [3:0] - The first input line
Vi nOne [3:0] - The second input line

" Select - Input that must be asserted in order to control
14 which of the two nibbles of input will be

" reflected at the output nibble.

n

/ Outputs; Out [3:0] - Reflect the nibble at *InOne" if "Select” is
" high. Otherwise, reflect the nibble at "InTwo".

‘module FourBitTwoLineSelector (InZero, InOne, Select, Out);

input [3:0] InZero, InOne;
input Select;
output [3:0] Out;

wire Selectlny;
wire [7:0] Input;

assign Input{0] = InZero[0], Input[1] = InOne[0],
Input[2] = InZero[1], Input[3] = InOnel1},
Input[4] = InZero[2], Input[5] = InOme|2|,
Input[6] = InZcro[3], Input[7] = InOne[3];

Inverter Invert (Select, Selectlnv);

TwoLineSelector Select® (Input]1:0], Select, SelectInv, Out{0]);
TwoLineSelector Select! (Input[3:2], Select, Selectlnv, Out[1]).
TwolLineSelector Select2 (Input[5:4], Select, SelectInv, Out(2]);
‘TwoLineSclector Select3 (Input|7:6], Select, Selectlnv, Out|3]);

endmodule

132

// Name: FourLineSelector

14

J/ Inputs: In[3:0] - Four bits of data input

14 Select[1:0] - Inputs that must be asserted in order to control
" which of the four bits of input will be

Vi reflected at the output.

7 SelectInv[1:0] - Input which is the inverse of "Select[1:0]" on
i all bits.

4

#/ Outputs: Out - Depending on the state of the "Select” inputs,
" this signal will reflect the state of one of the

" bits at the "In" input, according to the table

I below. Behavior is unpredictable for conditions

" not covered in the table.

/"

" Sel{0} Sellnv[0] Sel[1] Selinv[l] | Out

" B

" Low High Low High [In[0)

" Low High High Low |In[1]

Vi High Low Low High |Inf2]

" High low High Low [In[3]

module FourLi (In, Sclect, , Out);

input [3:0] In;
input [1:0] Select, SelectInv,
output Qut;

wire {3:0] Con;

ThreeInputNANDGate GateZero (In[0], Selectlnv[0], Selectinv[1], Con{0]);
ThreelnputNANDGate GateOne (In[1], SelectInv[0], Select{1] , Con[1]);
ThreelnputNANDGate GateTwo (Inf2], Selcct0), Selectlnv[1], Con[2]);
ThreelnputNANDGate GateThree (In[3], Select[0], Select{1], Con[3]);
FourlnputNANDGate GateFour (Con|0], Con{1], Con[2], Con3], Out);,

endmodule

// Name: TwelveBitFourLineSelector

"

// Inputs: InZero [11:0] - The first input line
I InOne [11:0] - The second input line
" InTwo |11:0] - The third input line
" InThree [11:0] - The fourth input line

Vi Select [1:0] - Controls whose statc govern which of the four
" inputs will be reflected at the output.

reficcted at the output.

"

// Outputs: Out [11:0] - Depending on the state of the "Select” inputs,
Vi this signal will reflect the statc of the twelve

" bits at one of the four inputs. Behavior is

" unpredictable for conditions not covered in the

14 table.

7 Select0 Selectl | Out

oo e e -

" Low Low | InZero

" Low High | InOne

Vi High Low | InTwo

" High High | InThree

module TwelveBitFourLineSelector (InZero, InOne, InTwo, InThree, Select, Out);

input [11:0] InZero, InOne, InTwo, InThree;
input [1:0] Sclect;
output [11:0] Out;

wire [1:0] Sclectlny;
wire [47:0] Input;

assign Input|0] =InZero[0], Input|1] =InOne[0],
Input[2] =InTwo[0], Input[3] =InThree[0],

Input[4] = InZero[1], Input[5] = Onell],
Input[6] = InTwo[1], Input[7] = InThree[l],
Input[8] = InZerof2], Input[9] =InOne[2],
Input{10] = InTwo[2], Input[11] = InThree]2],
Input[12] = InZero[3], Input[13] = InOne[3],
[nput[14] = InTwo[3], Input[15] = InThree[3],
Input[16] = InZero[4), Input{17] = InOne[4],
Input[18] = InTwo|4], Input{19] = InThree[4],
Input[20] = InZero[5], Input[21} = InOnel5],
Input[22] = InTwo[5], Input[23]} = InThree[5],
Input[24] = InZerof6], Input[25] = InOnel6],
Input26] = InTwo{6], Input[27] = InThree[6],
Input[28] = InZero[7], Input[29] = InOne[7],
Input[30] = InTwo[7]. Inputf31] = InThree[7],
Input{32] = InZero[8], Input[33]=InOne[8],
Input{34] = InTwo(8], Input[35] = InThree[8},
Input|36] = InZero[9], Input[37] = InOne[9],
TInput[38] = InTwo[9], Input[39] = InThree[9],
Input|40] = InZero[10], Input[41] = InOne[10},
Input[42] = InTwo[10], Inputf43] = InThree{10],
Input[44] = InZero[11], Input[45] = InOne[11],
Input[46] = InTwo[11], Input[47] = InThree[11];

Inverter Invert0 (Select[0], SelectInv{0]);

Inverter Invertl (Select[1], SelectInv(1]);

FourLineSelector Select0 (Imput[3:0], Select, SelectIny, Out[0]);

FourLineSelector Selectl (Input[7:4], Select, Selectiny, Out[1]);

FourLincSelector Select2 (lnput]11:8], Select, SelectInv, Out[2]);
FourLincSelector Select3 (Input]15:12], Select, Selectlny, Out{3]);
FourLineSelector Select4 (Input[19:16], Select, SelectInv, Out]4]);
FourLineSclector Select5 (Input[23:20], Select, Selectlnv, Out|5]);
FourLineSciector Select6 (Input{27:24], Select, Selectlnv, Out[6]);
FourLineSelector Setect? (Inputf31:28], Select, SelectInv, Out[7]);
FourLineSelector Select8 (lnput{35:32], Selcct, SelectInv, Out[8]);

134

FourLineSelector Select9 (Input[39:36], Select, SelectInv, Out|9]);
FourLineSelector Select10 (Input[43:40], Select, SelectInv, Out[10]);
FourLincSclector Selectl1 (Input|47:44], Select, SelectInv, Out[11]);

endmodule

//Name: ThrecBySevenDemux

/"
//Inputs: In [2:0] - Input lines to be demultiplexed (all zero bits

" state is not decoded)

"

// Outputs: Out [6:0] - Output lines to be asserted based on the state
I of the input lines

module ThreeBySevenDemux (In, Out);

input [2:0] In;
output [6:0] Out;

wire [2:0] Ininv;
wire [6:0] Outfny;

Inverter Gate0 (Inf0], Inlnv[0]);
Inverter Gatel (In[1], Inlnv|1]);
Taverter Gate2 (In[2], Infav]2]);

ThreeInputNANDGate Gate3 (Inlnv]0], Inny[1], In[2], Outinv[0]);
ThreelnputNANDGate Gate4 (InInv[0], In[1], InInv[2], Outlnv{1]);
ThreelnputNANDGate Gate5 (Inlnv[0], In[1], In[2], Outlnv[2]);
ThreelnputNANDGate Gate6 (In[0], InInv[1}, Inlnv[2], Outlnv{3]);
ThreeInputNANDGate Gate7 (In[0], Ininv|1], In2], OutInv[4]),
ThreelnputNANDGate Gate8 (In[0], In[1], InInv[2}, Outlnv{5]);
ThreelnpuiNANDGate Gate9 (In[0], In{t}, Inj2], Outlnv{6]);
Inverter Gate10 (OutInv[0], Outfo]);

Inverter Gatel1 (OutInv[1], Out[1]);

Tnverter Gatel2 (Qutinv{2}, Out[2]);

135

Inverter Gatel3 (OutInv{3], Out{3]);

Inverter Gatel4 (Outlnv|4], Out{4]);

Inverter Gatel5 (Outlov[5], Out[5]);

Inverter Gatel6 (OutInv[6}, Out[6]);
endmodule

/f Name: ClockGen

"

/f Inputs: None

"

1/ Outputs: Clock - Square wave that cycles up and down every 13 nsec
" thereby producing 2 signal with a period of

W 26 mscc.

modulc ClockGen (Clock),

output Clock;

reg Clock;

initial
Clock = 1;

always
begin
#13 Clock =0;
#13 Clock = 1;
end

endmodule

// Name: NewPathStore - Simulates the storage clements that accept and
" Told data about a new path to be loaded into

136

the memory lookup module by the sequence /
detect module at the appropriate time
// Inputs: Load - The Set input on the SR latch indicating

whether the unit still contains new data

137

4 UnLoad - The Reset input on the SR latch indicating
" whether the unit still contains new data

” Dataln - Input indicating how thc new path is to be

" validated or invalidated

" Addressln [23:0]- The input for the new path which is to be
n validated or invalidated

i

/1 Outputs: Full - The Q output on the SR latch which, if high,
" indicates the unit contains new data.

i Empty - The Q' output on the SR latch which, if high,
i indicates the unit does not contain new data.

" DataOut - Output indicating whether the new path

" currently stored is to be validated or

" invalidated

" AddressOut[23:01- The output of the new path which is to be
n validated or invalidated

module NewPathStore (Load, UnLoad, AddressIn, Dataln,
Full, Empty, AddressOut, DataOut);

input Load, UnLoad;
input [6:0] Dataln;
input [23:0] Addressin;
output Full, Empty;
output [6:0] DataOut,
output [23:0] AddressOut;

wirc [6:0] DataOutlnv,

EightBitRegister Low (Load, AddressIn|7:0], AddressOut(7:0]

EighiBitRegister Middle (Load, AddressIn[15:8], AddressOut{15:8

%
1)

EightBitRegister High (Load, AddressIn[23:16], AddressOut]23:16]);
PosEdgeTrigLatch Dat0 (Load, Datala|0], DataOut|0], DataOutInv|0]);
PosEdgeTrigLatch Datl (Load, Dataln[1], DataOut[1], DataOutInv(1]);
PosEdgeTriglatch Dat2 (Load, DataIn{2], DataOut[2], DataOutInv[2]);
PosEdgeTrigLatch Dat3 (Load, Dataln[3], DataOut[3], DataOutlnv(3|);
PosEdgeTriglatch Dat4 (Load, Dataln[4], DataOut[4], DataOutInv{4]);
PosEdgeTrigLatch Dat5 (Load, DataIn[5}, DataOut[5], DataOutlnv|5});
PosEdgeTriglatch Dat6 (Load, Dataln[6], DataOut[6], DataOutInv[6]);
SRLatch Status (Load, UnLoad, Full, Empty);

endmodule
// Name: D icRAM - Si a Texas SMJ416100-70
" dynamic random access memory

Yy
// Inputs: Address [11:0] - DRAM address lines

" RAS - Row address select

" CAS - Column address sclect

" w - Read/Write select

" D - Data input on memory writes

"

/f Outputs: Q - Data output on memory reads

module DynamicRAM (Address, RAS, CAS, W, D, Q);

input [11:0] Address;
input ~ RAS, CAS, W, D;
output Q;

reg [11:0] Row, Column;
reg Q. Dataln;

initial
Q=1bz

139

always
begin
wait (IRAS)
Row = Address,
wait (ICAS)
Column = Address;
if (W==0)
begin
1/ we are performing a write cycle
Dataln = D;
wait (CAS)
Q= 1%z
end
else
begin
1/ we are performing a read cycle
/1 for this simulation just present the low bit of the address
#18 Q = Addressf0];
wait (CAS)
Q=1bz
end
end

endmodule

// Name: NerworkReceiver
"

/ Inputs: Clock - Clock on whose negative edge to present

" data.

"

1/ Qutputs: Out (15:0} - Present data produced by the receiver.

" NewCeliEven - Asserted when the starting byte of the ceil
" currently being transmitted was presented on

I the high-order byte of the output.

Vi NewCellOdd - Asserted when the starling byte of the cell

140

" currently being transmitted was presented on
" the low-order byte of the output.

module NetworkReceiver (Clock, NewCellLow, NewCellHigh, Out);

input Clock;
output [15:0} Out;
output NewCellLow, NewCellHigh;

reg [15:0] Out, Temp;
reg NewCelll.ow, NewCellHigh;

initial
begin
@ (negedge Clock) Out[15:8] = 8'b00000000;
Out[7:0] = 8'b0000000L;
NewCellLow =0;
NewCellHigh = 0;

end

always
begin
@ (negedge Clock) Temp|[15:8} = Out[15:8] + 2;
Temp([7:0] = Out[7:0] +2;

if (Temp[15:8] > 52)
begin
Temp[15:8] = Temp|15:8] - 53;
if (Ternp[15:8] == 0) NewCellLow = 1;
end
else
NewCellLow = 0;

if (Temp|7:0] > 52)
begin
Temp|7:0] = Temp[7:0] - 53;

if (Temp[7:0] == 0) NewCellHigh = 1;
end
clse
NewCellHigh = 0;

Out|15:0] = Temp[15:0];
end

endmodule

// Name: NetworkTransmitter

"

// Inputs: Data [15:0} - The data to be transmitted out ontc the

y network.

" NewCellEven - Asserted when the starting byte of the cell

" currently being transmitted was presented on

1 the high-order byte of the input.

i NewCellOdd - Asserted when the starting byte of the cell
" currently being transmitted was presented on

" the low-order byte of the input.

module NetworkTransmitter (Clock, NewCellEven, NewCellOdd, Data);

input Clock, NewCellEven, NewCellOdd;
input [15:0] Data;

endmodule

module ResetControl (Clock, Input, Output);
input Clock, Input;
output Output;

reg Qutput;

141

142

initial
begin
Output = 0;
#26 Output = Input;
/I @(negedge Clock) Output = Input;

end

always

Oulput = Input;

endmodule

/' Name: ControlModule
"

/! Inputs: LatchSet - If high, indicates that the new path storage
" module still contains new data.

" LatchReset - If high, indicates that the new path storage
" module has been cleared of new data.

1

// Output: SetLatch - If high, indicates that new data has been
" presented and should be laiched.

" Data - If high, indicates that the new path

" ‘being modified is to be a valid path.

" Otherwise, the new path is to be an invalid

" one.

" Address - Indicates the VPI/VCI pair of the path whose
/" slatus is to be modified.

module ControlModule (Address, Data, SetLatch, LatchSet, LatchReset);

input LatchSet, LatchReset;
output SetLatch;

output [6:0] Data,

output [23:0] Address;

reg SetLatch;
reg [6:0] Data;
reg [23:0] Address;

initial
begin
SetLatch = 0; Data = 0; Address = 0;

end

always
begin
#1 if (LatchSet == 0)
begin
Address = Address + 1;
// For the purposes of this simulation, assign the lower

// three bits of the address to point to the window
// control module and let the next four higher order bits
// be the value the gets loaded into the window control
// module's trigger register
Data[0] = Address[0];
Dataf1] = Address[1];
Data[2] = Address[2];
Datal3] = Address[3];
Data[4] = Address[4];
Dataf5] = Address{5];
Data[6] = Address[6];
#1 SetLatch=1;
#1 SetLatch = 0;

end

end

endmodule

// Name: DownCounterWithPresel (this counter does not roll over)
"

143

4/ Inputs: Clock - Signal on whose positive edge, the counter
" must change state

" Set26 - If high on a rising edge of "Clock”, then

" it forces the next state of the counter to

4 be 26 transitions away from zcro.

" Set27 - If high on a rising edge of "Clock", then

" it forces the next state of the counter to

" be 27 transitions away from zcro.

/"

// Output: Bit0...4 - Individual lines of the output of the five
" latches that store the current state of the

" counter. Bit0 refers to the lowest order

7 bit and Bit4 to the highest order bit.

module DownCounterWithPresct (Clock, Set26, Set27,
Bit0, Bitl, Bit2, Bit3, Bit4);

input Clock, Set26, Set27,
output Bit0, Bitl, Bit2, Bit3, Bitd;

‘wire Bit0Input, Bit!Input, Bit2Input, Bit3Input, BitdInput;
wire Se126Inv, Ser27Inv;
wire [22:0] Line;

// Memory elements 1o store the current state

PosEdgeTrigLatch BitZero (Clock, BitOInput, Bit0, Bit0Inv):
PosEdgeTriglatch BitOne (Clock, Bitlinput, Bitl, BitlInv);
PosEdgeTriglatch BitTwo (Clock, Bil2Input, Bit2, Bit2Inv)
PosEdgeTrigLatch BitThree (Clock, Bit3Input, Bit3, Bit3Inv);
PosEdgeTrigLatck BitFour (Clock, Bit4Input, Bit4, Bit4Inv);

// Prepare inputs
Inverter Gate0 (Set26, Set26Inv);
Inverter Gatel (Sct27, Se27Inv);

// Decode logic for bit 0

144

145

TwolnputNORGate Gate2 (Bit0Inv, Set27, Line|2]);

TwolnputNORGate ~ Gate3 (Set26Inv, Set27, Line[3]);

SixInputNORGate ~ Gate4 (Bit0, Bitl, Bit2, Bit3, Bitd, Set27,
Line{4])

ThreelnputNORGate Gate5 (Line[2], Line[3], Line[4], BitOInput);

1/ Decode logic for bit 1

FourlnputNORGate Gate6 (Bil0, BitlInv, Set26, Set27, Line|6]);

FourlnputNORGate Gate7 (BitOlnv, Bitl, Set26, Set27, Line[7]);

SevenInputNORGate Gate8 (Bit0, Bitl, Bit2, Bit3, Bit4, Se126, Set27,
Line[8])

ThreelnputNORGate Gate9 (Line[6], Line[7], Line[8], BitlInput),

/1 Decode logic for bit 2

TwolnputNORGate ~ Gatel0 (BitlInv, Bit2, Linef10]);

TwolnpuiNORGate ~ Gatell (BitOlnv, Bit2, Line{11]);

ThreelnputNORGate Gatel2 (Bit0, Bitl, Bit2Inv, Linef12]);

FivelnputNORGate Gatel3 (Bit0, Bitl, Bit2, Bit3, Bit4, Line[13]);

SixInputNORGate ~ Gatel4 (Line[10], Line[11], Line[12], Line[13],
Set26, Set27, Bit2Input)

11 Decode logic for bit 3

FourlnputNORGate Gatel5 (Bit2Inv, Bit3, Set26, Sct27, Line[15]);
FourlnputNORGate Gatel6 (BitlInv, Bit3, Set26, Set27, Line[16]);
FourInputNORGate Gate17 (BitOlnv, Bit3, Set26, Set27, Line[17]);
SixInputNORGate ~ Gatel8 (Bit0, Bitl, Bit2, Bit3Inv, Set26, Set27.

Line[18}),
ScvenlnputNORGate Gatel9 (Bit0, Bitl, Bit2, Bit3, Bitd, Set26, Set27,
Line[19])
FivelnputNORGate Gate20 (Linc{15], Line[16], Linef17], Line{18],
Line[19], Bit3Input):
1 Decode logic for bit 4

ThreelnputNORGate Gate2] (Bit4, Set26, Set27, Line[21]);
SixInputNORGate ~ Gate22 (Bit0, Bitl, Bit2, Bit3, Set26, Set27,
Line[22])

146

TwolnputNORGate ~ Gate23 (Line[21], Line[22], Bit4Input),

endmodule

// Name: StateControl
n"

/1 Inputs: NewCellLow - When high, indicatcs a new cell is coming
" in with the first byte starting on the low

Vi order bits of the input.

/" NewCellHigh - When high, indicates a new ccll is coming
" in with the first byte starting on the high

" order bits of the input.

1 LookupRes - Result of the path lookup.

1 Bit [4:0] - The state of the five bits which definc the

" current state of the state machine for which

" the control lines must be decoded.

" Bitlnv [4:0] - The negated state of the five bits specified

7 by the "Bit" input.

"

// Output: PVRL - Latch the results of the read from the

" memory lookup module.

Vi RSRL - Clear the new path information in the new

" path registers (by setting the SR-Latch

Vi indicating the validity of the data as

it being false)

" LLODG26 - Start the low-bytc counter at 26

" LLODG27 ~ Start the low=bytc counter at 27

" LHODG27 - Start the high-byte counter at 27

" VVRL - Not applicable to "path-only" Analysis Mod.
" RAS - Row address select line on the memory

i lookup moedule

1 CAS - Column address select line on the memory

" Jookup module

n" w - Read/Write control line on the memory

" lookup module

FourBDS [5:0] - Control lines to the four bit multiplexer
that shunt different portions of the
incoming data words from the Receiver

FourBDL [5:0] - Latch control lines on the latches that store
the path information of the currently
transiting cell

TwelveBDS [1:0] - Control lines to the twelve bit by four line

multiplexer that presents data from
" various latch groups to the memory lookup
" module

module StateControl (Bit, Bitlnv, NewCellLow, NewCellHigh, LookupRes,
FourBDS, FourBDL, TwelveBDS, PVRL, RSRL,
LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W):

input NewCellLow, NewCellHigh, LookupRes;

input [4:0] Bit, Bitinv;

output PVRL, RSRL, LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W,
output [5:0] FourBDS, FourBDL,

output [1:0] TwelveBDS;

wire LowsStart, HighStart;
wire [4:0] Stage;
wire [28:0] Linc;

assign FourBDL[0] = Stage[l], FourBDL[1} = Stage|2],
FourBDL[2] = Stage[2], FourBDL[3] = Stage[3].
FourBDL[4] = Stage[3], FourBDL[5] = Stage(4},
TwelveBDS[0] = Bitlnv[2], TwelveBDS[1] = Bit[4],
LLODG26 =LowStart, LHODG27 = LowStart,
LLODG27 = HighStart;

1 Logic for PVRL

FivelnputNANDGate Gate0 (Bitinv{4], Bitlnv{3}, Bit|2], Bitlnv{1],

Bit[0], Line[0] %
Inverter Gatel (Line[0], PVRL);

147

148

1/ Logic for RSRL

FivelnputNANDGate Gate? (Bit[4], Bit[3], Bit[2], Bitlav1], Bit/0},
Line[2])

Inverter Gate3 (Line[2], RSRL);

// Logic for LxODG2x

SevenInputNANDGate Gate4 (BitInv[4], Bit[3], Bit[2], BitInv[1],
Bitlnv{0], LookupRes, NewCellLow, Line[4]);

SevenInputNANDGate Gate5 (BitInv[4], Bitf3], Bit[2], Bidnv[1],
Bitlnv{0}, LookupRes, NewCellHigh, Line[5]);

Inverter Gate6 (Line[4], LowStart);

Inverter Gate? (Line[5], HighStart);

1/ Logic for VVRL

FiveInputNANDGate Gate8 (BitInv[4], BitInv(3], Bit[2], Bitlnv|1],
BitInv[0], Linc{8] %

Inverter Gate9 (Line|8], VVRL);

1/ Logic for RAS
TwolnputNANDGate Gatel0 (Bit[4], BitInv[3], Line[10]);
TwolnputNANDGate Gatell (Bitlnv[2], Bit[0], Line[11]);
ThreelnputNANDGate Gatel2 (Bit[4], Bit[2], Bitlnv[1], Line[12]);
ThreelnputNANDGate Gatel3 (Bit|3], Bitlnv[1], Bit{0], Line[131);
ThrecInputNANDGate Gatel4 (Bitlnv[4], BitInv]1], Bitlnv[0], Line[14]);
FivelnputNANDGate Gatel5 (Line[10], Linc[11], Line[12], Line[13},
Line[14], RAS)%

1/ Logic for CAS
TwolnputNANDGate Gatel6 (Bitinv3], BitInv{2], Line[16]);
ThreelnputNANDGate Gatel7 (Bitlnv{3], Bit[1], Bitlav[0], Line[17]);
FourlnputNANDGate Gatel8 (Bit[4], Bit[3], Bit[1], Bitinv[0], Line[18]);
FourlnputNANDGate Gatel9 (Bit[4], Bit[3], Bitlnv[1], Bit[0], Line[19]);
FourlnputNANDGate Gate20 (Bit[4], Bit[3], BitInv[2], Bit[1], Line[20]);
FivelnputNANDGate Gate2l (Line[16], Line[17], Line[18], Line[19],
Line|20], CAS)

// Logic for W
FiveInputNANDGatc Gate22 (Bit[4], Bit|3], Bit[2], Bit[1], Bit{0], W);

/I Logic for 4BDL
FivelnputNANDGate Gate23 (BitInv[4], Bitlnv|3], BitInv[2], BitTnv]1],
Bit{0], Line[23])
FivelnputNANDGate Gate24 (Bit[4], Bitlnv[3], Bit[2], BitInv[1],
Bitlnv|0], Line[24} %
FivelnputNANDGate Gate25 (Bitf4], Bitlnv[3], Bit[2], Bitlnv[1],
Bit[0], Line|25])
FivelnpstNANDGate Gate26 (BitInv[4], Bitlnv[3], Bitnv[2], Bit[1],
Bitf0], Line|26]).
FivelnputNANDGate Gate27 (Bit[4], BitInv[3], Bit|2], Bit[1], Bit[0],
Line{27])
TwolnputNANDGate Gate28 (Linc[23], Line[24], Stagef1]);
TwolnputNANDGate Gate29 (Linc[23), Line[25], Stagel2]);
TwolnputNANDGate Gate30 (Linc[26], Line[25], Stage(3]);
TwolnputNANDGate Gate31 (Linc[26], Line[27]. Stage[41),

1/ No logic block necessary for 12BDS|B,S]

endmodule

// Name: StateMachine
"

// Inputs: Clock - Signal on whose rising edge the state

Vs ‘machine must make a state change

" NewCellLow - When high, indicates a new cell is coming
" in with the first byte starting on the low

" order bits of the input.

" NewCellHigh - When high, indicates a new cell is coming
/" in with the first byte starting on the high

i order bits of the input.

i LatchSet - Output of the SR-Latch which, if high,

7 indicates there is new path data to be loaded

149

" into the memory lookup module.

" LatchReset - The ncgated state of the LatchSet input.

I

// Output: Bit [4:01 - The state of the five bits which dcfine the
" current state of the state machine.

I Bitlnv 4:0] - The negated state of the five bits specified
" by the "Bit" input.

module StateMachine (Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,
Bit, Bitlnv %

input Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset;
output {4:0] Bit, Bitfnv;

wire [4:0] BitDecode, Bitlnput;
wirc [39:0] Line;

// Memory elements to store the current statc

PosEdgeTrigLatch BitZero (Clock, BitInput[0], Bit|0), Bitlnv[0]);
PosEdgeTriglatch BitOne (Clock, BitInput[1], Bit]1}, BitInv[1]);
PosEdgeTriglatch BitTwo (Clock, BitInput|2], Bit]2], Bitlav[2]);
PosEdgeTriglatch BitThree (Clock, BitInput[3], Bit[3], BitInv[3]);
PosEdgeTrigLatch BitFour (Clock, Bitinput[4], Bit[4], Bitinv[4]);

1/ Decode logic for bit 0

ThreelnputNANDGate Gate0 (Bit|3], Bit[2], Bitiav]1], Linc[0]);
ThreelnputNANDGate Gatel (Bit[4], Bit[3}, Bit[2], Linc[1]);
ThreenputNANDGate Gate2 (Bit|4], Bitlav[1), Bit[0], Line[2]);
ThreelnputNANDGate Gate3 (Bit[4], Bit[3], Bitlnv[0], Line[3]);
FourlnputNANDGate Gated (Bitlnv[4], Bit[3], Bitlnv[2], Bit[1],

Line[4])
FourlnputNANDGate Gate5 (Bitlnv([4], BitInv[3], Bit{2], Bit[1],
Line[5]),

FourlnputNANDGate Gate6 (Bitlnv[3], Bitinv[2], Bitlnv[1], Bitf0],
Linc|6])3

150

FivelnputNANDGate Gate7 (Bitlnv3], Bitlnv[2}, Bitlnv[1], BitInv[0],

NewCellLow, Line[7])
FiveInputNANDGate Gate8 (Bit[4], Bitlnv[3], Bitlnv]|1], Bitinv[0],
NewCellHigh, Line[8})

NinelnputNANDGate Gatc9 (Line[0), Line[1], Line|2], Line[3],
Line([4], Line|9], Line[6], Line{7],
Line(8], BitDecode[0])

ResetControl Reset0 (Clock, BitDecode[0], BitInput[0]);

1/ Decode logic for bit 1

TwolnputNANDGate Gatel0 (Bit]1], BitInv[0], Line[10]);
ThreelnputNANDGate Gatell (Bitlnv[3], Bitinv]2], Bit{0}, Line[11]);
ThreelnputNANDGate Gatel2 (Bit[4], BitInv{3], Bit[0], Line[12]);
FourlnputNANDGate Gatel3 (Bitlnv|4), Bit[3], Bit[2], Bit[0], Line[13]);
FourlnputNANDGate Gatel4 (Bit[4], BitInv]2], Bitlnv{1], Bit[0],

Line[14])
FivelnputNANDGate Gatel5 (Bit[4], Bitlnv[2], Bit[1}, Bit{0],
LatchSet, Line[15} %

SixInputNANDGate Gatel6 (Line[10], Linc[11], Line[12], Line[13],
Line[14], Line|15], BitDecode[1]),
ResetControl Resetl (Clock, BitDecode[1], Bitlnput[1]);

// Decode logic for bit 2

ThreelnputNANDGatc Gatel7 (Bitlnv[4], Bitlnv{3], Bit[2], Line[17]);
ThreelnputNANDGate Gatel8 (Bitlnv[4], Bit[2], BitInv[1], Line[18]);
ThreeInputNANDGate Gatel9 (BitInv[4], Bit[2], Bit[0], Line[19]);
ThreelnputNANDGate Gate20 (Bitlnv[3]. Bit{1]. Bitinv{0}, Linef20]);
ThreelnputNANDGate Gate21 (Bit[4], Bit/1], Bitlnv]0], Line[21]);
ThreelnputNANDGate Gate22 (Bit[4]. Bit[3], Bit[2], Line{22]);
ThreeInputNANDGate Gate23 (Bit[2], BitInv[1}, Bit[0], Line[23]);
FivelnputNANDGate Gatc24 (Bit[4], BitInv{3], BitInv[1], Bitlnv{0],

NewCellHigh, Line[24])%
FiveInputNANDGate Gate25 (Bit[4], BitInv(2], Bit(1], Bit{0],
LatchReset, Line[25])%

NineInputNANDGate Gate26 (Linc|17], Line[18], Line{19], Line[20],
Line[21], Line[22], Line[23], Line[24},

151

152

Line[25], BitDecodel2]),
ResetControl Reset2 (Clock, BitDecodc]2], BitInput[2]);

1/ Decode logic for bit 3

TwolnputNANDGate Gate27 (BitInv[4], Bit|3], Line[27]);
ThreelnputNANDGate Gate28 (Bit[3], Bit[2], Bit|1], Linef28]);
ThreeInputNANDGate Gate29 (Bit[3], Bit|1], Bitlnv[0], Line[29]);
ThreelnpntNANDGate Gate30 (Bit[3], Bitlnv]1}, Bit[0], Line[30]);
ThreeInputNANDGate Gate31 (Bit[3}, BitInv[2], Bitlnv[1], Line[31]);
FourlnputNANDGate Gate32 (Bitlnv[4], Bit[2], Bitlnv(1], BitInv[0],

Line[32])
FivelnputNANDGate Gate33 (Bit[4], Bitinv(2], Bit[1], Bit]0]. LatchSet,
Line]33])

SevenInputNANDGate Gate34 (Line[27], Line[28], Line|29], Line[30],
Line[31], Line[32], Line[33], BitDecode[3[);
ResetControl Reset3 (Clock, BitDecode[3], Bitluput{3]);

Jf Decode logic for bit 4

TwolnpuNANDGate Gate35 (Bit[4], Bit[3], Line[351);

ThreelnpuNANDGate Gate36 (Bit[4], Bitlnv{1], Bit[0], Line[36]);

FourlnputNANDGate Gate37 (Bit[3], Bitlnv[2}, BitInv{1], BitInv{0],
Line[37])

FourlnputNANDGate Gate38 (Bit[4], Bitlnv(3], Bitlnv[0], NewCcllHigh,
Line[38])%

FourlnputNANDGate Gate39 (Line|35], Line[36], Line[37}, Line[38],
BitDecode[4])3

ResetControl Resetd (Clock, BitDecode[4], Bitinput[4]);

cndmodule

// Name: CounterWithZeroTest (this counter does not roll-over)

4
// Inputs: Clock - Signal on whose positive cdgc, the counter
" must change state

/" CountUp - If high on a rising edge of "Clock”, then

V4 it forces the counter to increment in the

" next state

" CountDown - If high on a rising edge of "Clock", then
" it forces the counter to decrement in the

" nex| state

I

// Output: ZeroTest - High only when the internal state of the
1 counter is zero (zero value on all bits)

module CounterWithZeroTest (Clock, CountUp, CountDown, ZeroTest);

input Clock, CountUp, CountDown;
output ZeroTest;

wire [3:0] BitlnUp, BitInDown, BitIn, Bit, BitInv;
wire [20:0] Line;

// Internal state storage elements

PosEdgeTrigLatch Bit0 (Clock, BitIn[0Y, Bit[0], Bitlnv{0]);
PosEdgeTrigLatch Bitl (Clock, BitIn[1], Bit[1], Bitlnv{1]);
PosEdgeTriglatch Bit2 (Clock, Bitin{2], Bit[2}, Bitlnv[2]);
PosEdgeTrigLatch Bit3 (Clock, BitIn{3], Bit[3], BitInv[3]);

// Decade input for bit 0 when counting up
FourlnputNANDGate Gate0 (Bit[0], Bit[1], Bit[2], Bit[3], Line[0]);
TwolnputNANDGate Gatel (Bit{0], Line[0], BitInUp[0]);

1/ Decode input for bit 0 when counting down
FourInputNORGate Gate2 (Bit[0], Bit|1], Bit[2], Bit[3], Line[2]);
TwolnputNORGate ~ Gate3 (Bit[0], Line[0], BitlnDown[0]);

/1 Decode input for bil 1 when counting up (reuse from bit 0)
TwolnputNANDGate Gate4 (BitInv[0], Bit|1], Line[4]),
TwolnputNANDGate GateS (Bit[0], BitTnv[11, Line[S3);

ThreelnputNANDGate Gate6 (Line[0], Line[4], Line[5], BitlnUp[11);

153

1/ Decode input for bit 1 when counting down (reuse from bit 0)
TwolnputNORGate Gate?7 (BitInv[0}, Bit[1], Line[7]);
TwolnputNORGate ~ Gate§ (Bit[0], BitInv[1], Line[81);
ThreelnputNORGate Gate9 (Line[2], Ling[7], Linc[8], BitlnDown[1]);

// Decode input for bit 2 when counting up (rcuse from bit 0)

TwolnputNANDGate Gatel0 (Bitinv[0], Bit[2], Line[10]);

TwolnputNANDGate ~ Gatell (Bitlnv(1], Bit[2], Line[11]);

ThreelnputNANDGate Gatel2 (Bit[0], Bit[1], Bitlnv[2], Line[12]);

FourlnputNANDGate Gatel3 (Line[0], Line[10], Linef11], Line[12],
BitInUp[2]),

1/ Decode input for bit 2 when counting down (reuse from bit 0}

TwolnputNORGate ~ Gatel4 (BitInv[0], Bit[2), Linc| 14]);

TwolnputNORGate ~ Gatc15 (BitInv[1], Bitf2], Line[15]);

ThreelnpuNORGate Gatel6 (Bit[0], Bit[1), Bitlny|2|, Line[16]);

FourlnputNORGate ~ Gatel7 (Line[2], Line[14], Linc[15], Line{16],
BitlnDown|2])

1/ Decode input for bit 3 when counting up (terminal bit)
ThreeInputNANDGate Gatel8 (Bit|0], Bit[1], Bit(2), Line[18]);
TwolnputNANDGate Gate19 (Bitlnv{3], Line[18], BitlnUp{3]);

/I Decode input for bit 3 when counting down (terminal bit)
ThreelnputNORGate Gate20 (Bit|0], Bit[1], Bit[2], Linc[20]);
TwolnputNORGate ~ Gate21 (Bitlnv[3], Line[20}, BitlnDown|31});

/f Select which direction to count on the next transition
CounterGate Cont0 (BitinUp[0], BitInDown{0], Bit[0], CountUp,

CountDown, BitIn[0])

CounterGate Contl (BitInUp[1], BitinDown[1], Bit[1], CountUp,
CountDown, BitInf1])

CounterGate Cont2 (BitlnUp{2], BitlnDown|[2], Bit[2], CountUp.
CountDown, Bitin[2] Y

CounterGate Cont3 (BitlnUp[3], BitInDown|3], Bit{3], CountUp,
CountDown, BitIn[3] %

154

// Test if we are currently in slate zero
Fourlnpu(NORGate ~ Gate28 (Bit[0}, Bit[1], Bit[2], Bit[3], ZeroTest);

endmodule

// Name: CounterWithReset (this counter rolls-over)

"

/ Inputs: Clock - Signal on whose positive edge, the counter
" must count up

" Reset - If high on a rising edge of "Clock”, then

" it forces the counter to a zero state

4

Output: Bit - Four bit output reflecting the internal

" statc of the counter

W Bitlnv - Four bit output reflecting the negation

" of the internal state of the counter

module CounterWithReset (Clock, Reset, Bit, Bitlnv);

input Clock, Reset;
output [3:0] Bit, Bitlnv;

wire Resetlnv;
wire [3:0] BitInUp, Bitln;
wire [8:0] Line;

// Internal state storage elemenis

PosEdgeTriglatch Bit0 (Clock, BitIn[0], Bit{0], Bitnv{0]);
PosEdgeTrigLatch Bitl (Clock, Bidnf1], Bit[1], BitInv]1]);
PosEdgeTriglatch Bit2 (Clock, BitIn[2], Bit[2], Bitlnv[2]);
PosEdgeTriglatch Bit3 (Clock, BitIn[3], Bit[3], Bitlnv|3]);

1 Decode input for bit 0
Inverter Gate0 (Bit[0], BitlnUp|[0]);

156

/1 Decode input for bit 1

TwolnputNANDGate Gatel (Bitlnv[0], Bit[1], Line[1]);
TwolnputNANDGate Gate2 (Bit|0], BitInv[1], Line[2]);
TwolnputNANDGate Gate3 (Line]1], Line[2], BitInUp[11);

// Decode input for bit 2

TwolnputNANDGate Gate4 (BitInv[0], Bit[2], Line[4]);
TwolnputNANDGate GateS (BitInv[1], Bit[2], Line[5]);
ThreelnputNANDGate Gate6 (Bit[01, Bitf1], Bitlnv2], Line[6]);
ThreelnputNANDGate Gate7 (Linef4], Line(5], Line[6], BitlnUp[2]);

// Decode input for bit 3 (terminal bit)
ThreelnputNANDGate Gate8 (Bit[0]. Bit{1], Bit|2], Line{8]);

Inverter Gate9 (Line[8], BitinUp|3]);

/1 Select if we will count up or reset the counter

Inverter Gatel0 (Reset, ResetInv);

DataGate Cont0 (BitInUp[0], Resetlnv, BitIn|0]);

DataGate Contl (BitinUp[1], ResetInv, BitIn[1]);

DataGate Con2 (BitlnUp|2], ResetInv, BitIn[2]);

DataGate Cont3 (BitlnUp[3], ResetInv, BitIn[3]);
endmodule

/f Name: WindowCounter

"

// Inputs: Clock - Signal on whose positive edge, the covnter
" must count up

" Datain [3:0) - Data to be loaded into the trigger register

" that controls at which counter value the

" counter will be resct

" Load - Signal on whose positive edge, new data from
Vi the "Dataln" input will be latched into the

Vi trigger register

"

/f Output: Increment - Asserted for one clock cycle when the
" counter has reached the value stored in the

" trigger register (the counter will be reset

" on the following cycle and begin counting

Vi again)

module WindowCounter {Clock, Dataln, Load, Increment);

input Clock, Load;
input [3.0] Dataln,

output Increment;

wire Equal;
wire [3:0] RegOut, RegOutlnv, CntOut, CntOutinv, Test;

// Four bit trigger register

PosEdgeTrigLatch Lat0 (Load, DataIn|0}, RegOut[0], RegOutlnv([0]);
PosEdgeTrigLatch Latl (Load, Datalnf1], RegOut[1], RegOutInv{1]);
PosEdgeTriglatch Lat2 (Load, Datalnf2], RegOut[2], RegOutInv[2]);
PosEdgeTriglatch Lat3 (Load, Dataln|3}, RegOut{3], RegOutnv|3]);

/1 Resettable counter
CounterWithReset Count (Clock. Equal, CntOut, CntOutlnv),

J/ Equality tester

BitEqualTest ~ Test0 (RegOut[0], RegOutlnv[0], CntOut[0],
CntOutlnv]0], Test[0])

BitEqualTest ~ Testl (RegOut[1], RegOutinv[1], CntOut[1],
CntOutInv{l|, Test(1} %

BitEqualTest Test2 (RegOut[2], RegOutlnv(2], CntOut[2],
CatOutlov|2), Test[2])

BitEqualTest Test3 (RegOut[3]. RegOutlny(3], CntOut|3],
CntOutlnv{3], Test[3])

FourlnputNANDGate Result (Test[0], Test[1], Testf2], Test[3], Equal):

157

Inverter Inv0 (Equal, Increment);

endmodule

// Name: WindowControl

"

// Tnputs: Clock - Signal on whose positive edge, arrivals must
i be marked

" Arrival - If high, indicates that a cell has arrived

" on the path assigned to this window control

A Dataln [3:01 -~ Data to be loaded into the trigger register

i that controls every how many clock cycles

" the window counter will be decremented

4 Load - Signal on whose negative edge, new data from
14 the "Dataln” input will be latched into the

" register that indicates how often to

" decrement the window counter.

Vi

// Output: Alarm - If high, indicates that the window counter
" has reached zcro and, therefore, to many

" cells have passed through the path assigned

" to this counter.

module WindowControl (Clock, Arrival, Dataln, Load, Alarm);

input Clock, Arrival, Load;
input [3:0] Dataln;

output Alarm;

wire Increment, LoadInv;

Inverier Gate0 (Load, Loadlnv);

WindowCounter ~ Control (Clock, Dataln, LoadInv, Increment);
CounterWithZeroTest Check (Clock, Increment, Arrival, Alarm);

endmodule

// Name:

"

// Inputs: Clock

#
"
"
"

NewCellLow

SequenceDetect

- Signal on whose rising edge the state
machine must make a state change.
- When high, indicates a new cell is coming
in with the first byte starting on the low
order bits of the input.

NewCellHigh - When high, indicates a ncw cell is coming

LookupRes

LatchSet

LatchReset

// Output: PVRL

RSRL

LLODG26
LLODG27
LHODG27
VVRL

RAS

CAS

in with the first byte starting on the high
order bits of the input.

- Result of the memory lookup to sce if new
cell is valid.

- Output of the SR-Latch which, if high,
indicates there is new path data to be loaded
into the memory lookup module.

- The negated state of the LatchSet input.

- Latch the results of the read from the
memory lookup module.

- Clear the new path information in the new
path registers (by setting the SR-Latch
indicating the validity of the data as
being false)

- Start the low-bylc counter at 26
- Start the low-byte counter at 27
- Start the high-byte counter at 27
- Turn on the data gate to make the demux
assert one of its outputs, to trigger onc of
the window control modules
- Row address sclect Iine on the memory
lookup module
- Column address select line on the memory

159

14 lookup module

Vi w - Read/Write control line on the memory

I lookup module

" LowChoke - Control line to the data gate that informs

" it whether to transmit the low byte of the

" data words exiting from the shift register

" HighChoke - Control line to the data gate that informs

" it whether to transmit the high byte of the

1 data words exiting from the shift register

Vi FowrBDS [5:0] - Control lines to the four bit multiplexer

" that shunt different portions of the

Vi incoming data words from the Receiver

Vi FowrBDL [5:0] - Latch control lines on the latches that store
" the path information of the currently

Vi transiting ccil

" TwelveBDS [1:0] - Control lines to the twelve bit by four line
7 multiplexer that presents data from

" various latch groups to the memory lookup

" module

module SequenceDetect (Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,
LookupRes, FourBDS, FourBDL, TwelveBDS, PVRL, RSRL,
VVRL, RAS, CAS, W, LowChoke, HighChoke)

input Clock, NewCellLow, NewCellHigh, LatchSet, LatchReset,
LookupRes;

output PVRL, RSRL, VVRL, RAS, CAS, W;

output LowChoke, HighChoke;

output [1:0] TwelveBDS;

output {5:01 FourBDS, FourBDL;

wite LLODG26, LLODG27, LHODG27, Ground;
wire [4:0] Bit, Bitlnv, LowByte, HighByte;

assign Ground = 0;

160

StateMachine Core (Clock, NewCellLow, NewCellHigh, LatchSet,
LatchReset, Bit, Bitlnv).
StateControl Signal (Bit, BitInv, NewCellLow, NewCcllHigh, LookupRes,

FourBDS, FourBDL, TwelveBDS, PVRL, RSRL,
LLODG26, LLODG27, LHODG27, VVRL, RAS, CAS, W);

DownCounterWithPreset LowByteCounter

(Clock, LLODG26, LLODG27, LowByte[0], LowByte[1],
LowByte[2], LowByte[3], LowByte[4])%

DownCounterWithPreset HighByteCounter

(Clock, Gronnd, LHODG27, HighByte[0], HighByte[1],
HighByte[2]. HighByte[3], HighByte[4])3

FivelnputNANDGate LowByteChoke

(LowByte]0], LowByte[1], LowByte[2], LowBytef3],
LowByte[4], LowChoke %

FivelnputNANDGate HighByteChoke

(HighByte] 0], HighByte[1], HighByte{2], HighByte[3],
HighByte|4], HighChoke)

endmodule

/1 Let's bring the whole thing together

module NetworkSecurity;

wire

wire
wire
wire

wire

wire

Clock, NewCeliLow, NewCellHigh, LatchSct, LatchReset,
SDDG, PVRL, RSRL, VVRL, RAS, CAS, W, LowChoke, HighChoke,
LoadNewData, UnLoadNewData, LookupRcs, LookupResInv;
[1:01 TwelveBDS;
[2:0] PathState, PathStlnv, MuxTrigln, MuxLoadln, MemRes, PathData;
[3:0] WindowData;
[4:0] StateBit, StateBitInv,
[5:0] FourBDS, FourBDL;
(6:0] WindowTrig, LoadWindow, Alarm, NewPathDataln, NewPathDataOut,
LoadTrig;

161

wire [11:0] RAMAddress;

wire [15:0] Dataln, ShiftQut, GateOut;

wire [23:0] NewPathAddressIn, NewPathAddressOut, LatchIn, LatchOut,
Address;

assign
PathData[0] = NewPathDataOut[0], PathData[1] = NewPathDataOut[1],
PathData[2] = NewPathDataOut{2],
WindowData|0] = NewPathDataOut[3), WindowData[1] = NewPathDataOut[4],
‘WindowData|2] = NewPathDataOut[5], WindowData[3] = NewPathDataOut[6];

initial
begin
// generate our report
1/ $shm_open;
/1 $shm_probe("AC");
17 #5000 $shm_close;

#5000 $finish;
1/ $monitor ($time,,
" "S0=%b S1=%b #1=%d #2=%d #3=%d #4=%d O=%d",
" Sel0, Scll, One, Two, Three, Four, Out);
end
ClockGen Timer (Clock);

NetworkReceiver Receive (Clock, NewCellLow, NewCellHigh, Dataln);

Network Transmitter Transmit (Clock, NewCellLow, NewCellHigh, GateOut),

ControtModule ~ PathGen (NewPathAddressIn, NewPathDataln, LoadNewData,
LatchSet, LatchReset %

ShiffRegister ~ Shifter (Clock, Dataln, ShifiOut);

FightBitDataGate LowGate (ShiftOut[7:0}, LowChoke, GateOut(7:01);

EightBitDataGate HighGate (ShiftOut[15:8], HighChoke, GateOut|15:8]);

SequenceDetect Control (Clock, NewCellLow, NewCellHigh, LatchSet,
LatchReset, LookupRes, FourBDS, FourBDL,
TwelveBDS, PVRL, RSRL, VVRL, RAS, CAS, W,

162

LowChoke, HighChoke);
NewPathStore NewPath (LoadNewData, UnLoadNewData, NewPathAddressin,
NewPathDataln, LaichSet, LatchReset,

NewPathAddressOut, NewPathDataOut %

FourBitTwoLineSelector S1 (Dataln[11:8], Dataln[3:0], FourBDS[0],

LatchIn[23:20] %
FourBitTwoLincSelector S2 (Dataln[7:4], Dataln[15:12], FourBDS[1],
LatchIn[19:16]),
FourBitTwoLincSelector 83 (Dataln[3:0], Dataln[11:8], FourBDS|[2],
Latchin[15:12] %
FourBitTwoLincSclector S4 (Dataln[15:12], Dataln[7:4], FourBDS{3},
LatchIn[11:8]),
FourBitTwoLineSclector S5 (Dataln|11:8], Dataln[3:0], FourBDS[4],
LatchIn[7:4])
FourBitTwoLineSelector S6 (Dataln[7:4], Dataln[15:12], FourBDSJS],
LatchIn[3:0]),

FourBitRegister L1 (FourBDL{0], LatchIn[23:20], LatchOut[23:20]);
FourBitRegister L2 (FourBDL[1}, Latchin[19:16], LatchOut|19:16});
FourBitRegister L3 (FourBDLI2}, Latchin[15:12], LatchOut[15:12]);,
FourBitRegister L4 (FourBDLj3], Latchin[11:8], LatchOut[11:8]);
FourBitRegister L5 (FourBDL[4], Latchin[7:4], LatchOut[7:4]);
FourBitRegister L6 (FourBDLI[S], LatchIn|3:0}, LatchOut{3:0}),

TwelveBitFourLineSelector SM(LatchOut[23:12],
LatchOut|11:00],
NewPathAddressOut[23:12},
NewPathAddressOut[11:0],
TwelveBDS, RAMAddress);

DynamicRAM LookupO(RAMAddress, RAS, CAS, W, PathData[0],

MemRes[0] %
DynamicRAM Lookupl(RAMAddress, RAS, CAS, W, PathData[1],
MemRes[1])3

DynamicRAM Lookup2(RAMAddress, RAS, CAS, W, PathData[2],

MemRes[2] Y

// Path and volume version specific hardware

PosEdgeTriglatch LatchO (VVRL, MemRes[0], F 0], P 100);
PosEdgeTrigLatch Latchl (VVRL, MemRes{1], PathState[1], PathStlnv{1]);
PosEdgeTrigLatch Latch2 (VVRL, MemRes|[2], PathState|2], PathStInv[2]);

ThreeBitDataGate Gate0 (PathState, VVRL, MuxTrigin);
ThreeBySevenDemux Mux0 (MuxTrigh, WindowTrig),
ThreeBySevenDemux Mux1 (PathData, LoadTrig);
Inverter Gatel (W, Winv);
TwolnputNANDGate ~ Gate2 (LoadTrig]0], Winv, LoadWindow([0]):
TwolnputNANDGate ~ Gate3 (LoadTrig[1], Winv, LoadWindow{1]);
TwolnputNANDGate ~ Gated (LoadTrig[2], Wlnv, LoadWindow{2]);
TwolnputNANDGate ~ GateS (LoadTrig[3], Winv, LoadWindow[3});
TwolnputNANDGate Gate6 (LoadTrig[4], Winv, LoadWindow([4]);
TwolnputNANDGate ~ Gate7 (LoadTrig|5], Winv, LoadWindow|5]);
TwolnputNANDGate ~ Gate8 (LoadTrig[6], Winv, LoadWindow[6});
WindowControl Cont0 (Clock, WindowTrig[0}, WindowData,
LoadWindow[0], Alarm[0])
‘WindowControl Contl (Clock, WindowTrig[1], WindowData,
LoadWindow(1], Alarm[1] %
‘WindowControl Cont2 (Clock, WindowTrig|2], WindowData,
LoadWindow([2], Alarm[2] %
‘WindowControl Cont3 (Clock, WindowTrig|3], WindowData,
LoadWindow]3], Alarm{3])
‘WindowControl Cont4 (Clock, WindowTrig{4], WindowData,
LoadWindow[4], Alarm[4])
‘WindowControl Cont5 (Clock, WindowTrig|5], WindowData,
LoadWindow[5], Alarm[5] Y
‘WindowControl Cont6 (Clock, WindowTrig[6], WindowData,
LoadWindow([6], Alarm[6] Y
SeveninputNORGate Gate® (Alarm]0], Alarm[1], Alarm{2], Alarm{3},
Alarm[4], Alarm([5], Alarm{6], LookupResInv);
Inverter Gatcl0 (LookupResInv, LookupRes);

Name:

Date of Birth:

Place of Birth:

Parents:

Education:

Professional Experience:

Permanent Address:

166

VITA

Dan Cristian Teodor

December 9, 1970

Bucharest, Romania

Liviu and Gabriela Teodor

Masler of Science, 1997
Texas A&M University
College Station, TX
Major: Computer Science

Bachelor of Science, 1993

State University of New York at Buffalo
Buffalo, NY

Major: Electrical Engincering

Systems Engincer,
Electrospace Systems Inc,
Dallas, TX

Design Engincer,
Eshed Robotec
Princeton, NJ

66-48 Thornton Place
Rego Park, NY 11374

