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REVIEW 

Thermodormancy is a phenomenon that affects lettuce seed and 

increase the productions cost due to specific treatments needed to 

overcome germination. Because of this, is important to understand the 

main factors involved in the establishment and maintaining of 

thermodormancy in this crop. To achieve this goal a wide research of 

the transcriptome using the microarray analysis is needed to find 

candidate genes related with thermodormancy. Data from this 

experiment was analyzed using several approaches to filter the genes 

looking for biological significance related with thermotolerance. Through 

the analysis of two varieties of lettuce (Lactuca sativa var Salinas and 

Lactuca serriola) were able to find 63 candidate genes that can play an 

important role. These genes are related with metabolism, regulation or 

response of the plant hormones ABA, GA and ethylene and should be 

taken in further investigations to determine their specific function in 

germination. 
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RESUMEN 

Termodormancia es un proceso que afecta el cultivo de lechuga e 

incrementa los costos de producción debido a tratamientos necesarios 

para lograr la germinación de la semilla. A causa de esto, es necesario 

entender los factores involucrados en la termodormancia de este 

cultivo. Estudios del transcriptoma a través del análisis de microarreglos 

es un método para lograr entender y encontrar genes involucrados con 

este fenómeno. Datos generados de microarreglos fueron analizados 

utilizando diferentes técnicas para filtrar genes en busca de significancia 

biológica relacionado con termotolerancia. Analizando dos variedades 

de lechuga (Lactuca sativa var Salinas y Lactuca serriola) 63 genes 

candidatos fueron encontrados que pueden ser fundamentales en la 

regulación de la termodormancia. Estos genes están relacionados con 

el metabolismo, señalización y respuesta a ABA, GA y etileno, estos 

genes deberán ser estudiados posteriormente para determinar su 

relación y función en la termodormancia. 
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INTRODUCTION 

Understanding of the regulation of complex metabolic processes, 

such as seed germination, requires the application of new technologies 

including microarray analysis.  Seed germination is a control point in 

plant development that involves both internal and external conditions to 

start seedling growth. It is necessary to identify the different factors that 

regulate germination because of its importance in the annual cropping 

cycle.  

Seed dormancy has been used as a selection trait to avoid pre-

harvest sprout and also to obtain a homogeneous germination 

population. Nevertheless some species present problems, for example, 

lettuce (Lactuca sativa) fails to germinate at temperatures above 25 to 

30ºC, this kind of dormancy is known as thermodormancy or 

thermoinhibition. A QTL, High Temperature Germination 6.1 (HTG6.1) 

has been identified related to the thermodormancy, and a candidate 

gene was identified to collocate with this locus, the LsNECD4; and can 

be the responsible for his effect over the thermodormancy. The failure in 

germination of lettuce brings problems to the producers that need to 

applied expensive measures to avoid thermodormancy. 

In order to study the thermoinhibition processes in lettuce, 

microarray analysis allows the characterization of the expression profile 

of thousands of genes in only one assay. The Lettuce genechip 

developed by A. Van Deynze, R.W. Michelmore and colleagues at UC 

Davis (Caldwell, 2008, van Leeuwen, 2008) permits the identification of 

differential expression between two lettuce genotypes, and this allows 

the recognition of genes related to thermoinhibition. 
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The differences among expression patterns, of seeds of two 

lettuce varieties, L. sativa cv. Salinas and L. serriola, in different 

temperatures and times of imbibition were analyzed to determine which 

genes and modules of genes could be related with the thermodormancy. 

Also with the utilization of the network analysis, we identified the 

relationships between each other. To develop this analysis several 

bioinformatics tools were applied that allow processing of the data 

generated for the microarray experiments, in order to obtain the 

information necessary to determine the expression patterns and the 

network interconnections. This investigation was developed between 

February 2009 to January 2010. 

This investigation is part of the project developed for the Dr. 

Peetambar Dahal, Dr. Kent J. Bradford and collaborators of the UC 

Davis, “Combined Genetic and Transcriptomic Analysis of Lettuce Seed 

Dormancy” founded by the United States Department of Agriculture 

Initiative for Future Agriculture and Food Systems, and the National 

Science Foundation.  
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BACKGROUND 

Seed dormancy is the inability of viable seed to germinate under 

environmental conditions normally favorable for germination.  These 

conditions consist of a complex combination of factors such as water, 

light, temperature, gasses, mechanical restrictions, seed coats and 

hormones (Baskin, 2004). In nature, dormancy is a mechanism that 

allows seeds to survive in a an unfavorable environment until the 

optimal conditions for germination and establishment have been fulfilled 

(Allen, 2007, Benech-Arnold, et al., 2000). There are different ways to 

stimulate dormancy of seed. High temperature is a known factor that 

can induce seed to enter to a state of dormancy; this phenomenon is 

called thermodormancy or thermoinhibition. For example, lettuce seeds 

do not germinate when they are imbibed at temperatures above 25 to 30 

ºC (Lefebvre, 2006).  

Arabidopsis thaliana has been used as a model species, in order 

to study seed dormancy.  Arabidopsis mutant plants affecting the 

dormancy processes have allowed for the identification of some of the 

regulators of this phenomenon, such as the plant hormones abscisic 

acid (ABA), gibberellic acid (GA), ethylene and auxin (Feurtado, 2007, 

Kucera, 2005), along with external factors such as light and temperature 

(Heggie, 2005).  When Arabidopsis seeds were exposed to high 

temperatures, the expression of genes involved in the ABA synthesis 

was elevated whereas the expression of genes in the GA synthesis 

pathway was inhibited, both changes in gene expression promote the 

establishment and maintenance of the thermodormancy (Tarquis, 1992). 

Recently, with the advent of new technologies, dozens of genes 

involved in seed dormancy have been identified in Arabidopsis. 

Examples of these genes are AtNECD6 and AtNCED9, of the 9-cis-
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epoxycarotenoid dioxygenase (NCED) family that are genes related with 

the synthesis of ABA (Lefebvre, 2006, Tamura, 2006). These studies 

have lead the path to discovering key factors involved in 

thermodormancy, and give very informative data for directing future 

studies. 

Lettuce to study thermoinhibition 

Before the emergence of Arabidopsis as a model plant system, 

lettuce seed was widely used for germination and dormancy studies, 

allowing the description of phenotypes across varieties and species that 

show differences in germination under various conditions (Kozarewa, 

2006). The advantage of using lettuce to study a dormancy process like 

thermoinhibition instead of Arabidopsis, is that lettuce is a commercially 

important crop, thus the results obtained in this type of research can be 

readily applied to the seed industry. 

Argyris et al (2005) studied a phenotype obtained by crossing 

Lactuca sativa cv. Salinas, a commercial variety of lettuce that is 

sensitive to temperature and L. serriola, the wild progenitor of lettuce 

that is thermo-tolerant, to identify significant Quantitative Trait Loci 

(QTL) for thermodormancy. This study led to the discovery of the High 

Temperature Germination 6.1 (HTG6.1) locus, which has a major 

influence over this trait. In order to correlate genes with the HTG6.1 

locus, 24 genes were mapped and found to have effects in seed 

dormancy. A relevant gene described was the LsNCED4 gene which is 

co-localized with the HTG6.1 locus and is implicated in the ABA 

synthesis; it also has a homology with the Arabidopsis gene AtNCED6. 

AtNCED6 in Arabidopsis controls the first committed step in ABA 

biosynthesis, and is required to induce dormancy (Lefebvre, 2006, 

Tamura, 2006). This suggests that LsNCED4 may regulate ABA 
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biosynthesis and is the gene responsible for the effect of the HTG6.1 

locus in the induction and maintenance of the thermodormancy. 

In addition to the balance between ABA and GA content along with 

the capability to perceive these hormones, dormancy and germination in 

lettuce seeds are regulated by (Finch-Savage, 2007), ethylene 

production (Riefler, et al., 2006). Expression analysis of several genes 

involved in the biosynthesis, perception or metabolism of these 

hormones was done in the Salinas and L. serriola lines. These lead to 

generate expression profiles for a group of genes that can be related to 

this trait. Some are being up-regulated by high temperature in Salinas, 

such as NCED4, ABI5 and SNF4. On the other hand a set of genes 

were down-regulated in Salinas at high temperature including Ls3h1 and 

LsACS1, which are ones related to the GA and ethylene metabolism. 

(Argyris, 2005). 

Transcriptomic analysis of seed dormancy 

For the analysis of metabolic processes, such as dormancy and 

germination, the classical transcript profiling using candidate genes can 

be used as a preliminary analysis to elucidate the general regulatory 

pathways involved. However, in order to better understand how these 

changes influence seed metabolism it is necessary to perform a 

comprehensive study of expression profiles for a large number of genes. 

Transcriptomic methods, based on the analysis of a wider range of 

genes, such as with microarray , provide more opportunities to decipher 

regulatory networks (Holdsworth, Finch-Savage, et al., 2008). This 

approach has already been applied to identify candidate genes related 

to dormancy. For instance Cadman et al. (2006) identified 442 genes 

that had higher expression in dormant stages compared to the after-

ripen stage in Arabidopsis seeds. Bove et al. (2005) found 1020 
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differentially expressed genes between dormant and non-dormant seeds 

using cDNA from Nicotiana plumbaginifolia. In Arabidopsis after 

sequencing 400 genes related to dormancy, 83 were assigned to known 

functions, of which 30 were related to the ABA synthesis (Schwember, 

2005). 

 Further 

studies in 

Arabidopsis have 

identified additional 

genes related to 

the establishment 

and maintenance 

of dormancy. 

Genes associated 

with the perception 

and signaling of 

ABA were found to 

be important, such 

as the SNF 

(Sucrose non-fermenting) related protein kinase 2 (SnRK2) family. 

Using Arabidopsis mutants, it was determined that SnRK2’s proteins are 

involved in the first steps of ABA perception and can play an important 

role triggering the ABA chain reaction (Nakashima, et al., 2009). These 

proteins also seem to be regulated by Protein Phosphatases 2C 

(PP2C). In this study, it was determined that the PP2C are highly 

involved in the inhibition of the SnRK2’s by a protein-protein interaction 

that blocks the active site of the kinase (Vlad, et al., 2009). In the 

presence of ABA the PYR/PYL/RCAR receptor proteins bind to the 

Figure 1. Minimal Abscisic Acid Regulation Pathway 
(Sheard, et al., 2009) 
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PP2C and repress it’s activity, that enables the SnRK2’s to 

phosphorylate transcription factors and trigger the transcription of ABA-

responsive genes (Figure 1b). But without ABA, PP2C remains active 

and phosphorylates SnRK2, inactivating it and preventing downstream 

signaling (Figure 1a) (Park, et al., 2009, Sheard, et al., 2009) 

Thermodormancy regulation has been widely studied in other 

species, however this process is still not well understood in lettuce 

seeds. Since 2004, the Seed Biotechnology Center (SBC) of UC Davis, 

has developed a project to investigate the principles of thermodormancy 

in lettuce by standard transcript profiling and microarray analysis in 

order to gain  insight into these processes. 

An overview of the microarray technology 

Microarray technology, developed in the mid 90’s, is based on a 

multiplex assay. The fundamental principle of this technology is the 

capacity of the nucleic acids to recognize complementary sequences 

within complex mixtures of nucleic acids. It utilizes a microchip which 

consists in a series of thousands of oligonucleotides (called probes or 

features) arrayed over a surface to detect and quantify specific 

sequences of DNA or RNA. Usually the surface where the probes are 

attached is a small plaque of glass or silicon that can be mounted in a 

support to facilitate their manipulation. In most of the arrays several 

probes are designed to recognize multiple sequences within the same 

gene, and this group is called a probeset (Lipshutz, et al., 2009, 

Schulze, et al., 2001).  

Before hybridization of the microarray, an extraction of RNA 

(preferably mRNA) or DNA sample needs to be done, and then the 

nucleic acids are labeled with a fluorescent dye and applied to the 
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microarray. After several washes, only the target-probe complex 

remains bound. If hybridization occurs between the probe in the 

microchip and the nucleic acid in the sample (target) a strong 

fluorescent signal will emit and that is the basis of detection technology 

to quantify the hybridization intensity. The fluorescence is detected with 

phospho-imaging or fluorescence scanning and intensity of the signal is 

related to the hybridization of target sequence which translates to the 

amount of target sequence in the sample (Bunney, 2003). 

There are two basic microarray methods, the first one is the cDNA 

Spotted Array Method in which the arrayed material is cDNA sequences 

obtained through a Reverse Transcription PCR (Schulze, et al., 2001). 

These cDNA fragments are spotted by robots in dots of 100-300μm to 

control the positioning and produce an accurate high-density array 

(Figure 2. a)  (Bunney, 2003). The major problem of these arrays is the 

lack of reproducibility, because the spotting process is not highly 

accurate. For these, control and test sample need to be assayed 

together, applying different dyes that allow the reading of the samples 

by scanning with different wavelengths the same slide (Schulze, et al., 

2001). 

The second microarray system is the Oligonucleotide Probe Array 

Method, this is mainly used by Affymetrix for their GeneChip® arrays. 

The most important difference in the Affymetrix GeneChip®, is that the 

synthesis of probes is done directly over the glass slide, rather than 

created and later placed on the slide (Lockhart, 2000).The in situ 

synthesis of the probes allows the precise positioning of millions of 

probes per array. This method is more accurate than the spotted array 

and permits comparisons between assays performed on multiple chips 

(Bunney, 2003, Schulze, et al., 2001). Therefore, the sample is labeled 
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with only one dye, however the reading of the chip is similar to the 

spotted arrays (Figure 2. b). 

 
Figure 2. Overview of array and target preparation for cDNA Microarray and High-

Density Oligonucleotide Microarray 
(Schulze, et al., 2001) 

Experiments performed with these high density microarrays, 

generate very large amounts of data. In expression assays, the 

hybridization of one chip, can produce quantitative results, for as many 

as 40000 genes (Lipshutz, et al., 2009).  
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Microarray Data Preprocessing and Quality 
Assessment 

For the large amount of information generated by the microarrays, 

the analysis of the data becomes a critical component for useful 

interpretation, because in this section it is here that errors on the chip or 

outliers in the data are identified. The analyses of the microarray data 

are performed in a sequence of steps that lead from the raw information 

used in the design of the array to the expression data. Major steps 

during the analysis of the data are to eliminate the sources of variation 

and identify possible defects in the chips or hybridizations, it is also 

necessary to perform several analyses to extract information useful to 

the goals of the investigation (Tang, et al., 2009). These processes can 

be separated in three basics steps: preprocessing of the data, quality 

assessment and analysis of expression values. During preprocessing 

minor tasks are performed, including background adjustment, which is 

indispensable to reduce the total error owed to unspecific binding 

inherent to probe and for noise of the optical system within a chip. In 

order to compare all the chips together, normalization across all chips in 

the set is done to eliminate variation produced by external factors such 

as differences in transcription efficiencies, labeling or physical problems 

with the arrays. With the probe data adjusted and normalized it is 

possible to obtain the expression value of the probeset through 

summarization. This is designed to convert probe intensities to probeset 

hybridization values, which is accomplished by taking the intensities of 

all the probes in the probeset and averaging them. However, depending 

on the summarization method used, this procedure varies. In general, 

the idea is to apply weight to each probe in the probeset and eliminate 

or give less weight to probes that are out of the acceptable range within 
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the group in the final calculation of the probeset expression value. 

(Gentleman, 2005). 

A corrupted chip can increase the number of differentially 

expressed genes resulting in more false positives. Therefore, quality 

assessment is done to detect irregularities in the arrays that can mean 

major problems or if the array is out of the acceptable random 

fluctuation range. A few low quality chips in a set can lead to wrong 

conclusions and render a complete experiment. Taking into account the 

high monetary, time and human costs of these kind of studies, quality 

control is a crucial step in data analysis (Heber, et al., 2006). 

Quality control is directed to find possible outlier arrays in a set 

where the acceptable range will be dependent on the experimental 

design, goals and context of the studies (Bolstad, et al., 2003). Quality 

control starts with an evaluation of the chip images and Affymetrix 

spikes controls. Diagnostic plots are useful to the analysis of general 

hybridization in the chip and identify chips that may have problems. 

Additional measures help to identify defective chip hybridization at each 

individual probe. In the case that to detect a corrupted or erroneous 

chip, all the quality control analyses should be repeated without it and 

the results compared. If the analysis shows the existence of an outlier, 

then the corrupted chip has to be repeated and ideally the source of 

error identified (Heber, et al., 2006). Once a good quality and clean set 

of chips is obtained, it is possible to continue with the next step of the 

analysis. 
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Microarray Expression Analysis 

For the analysis of the expression data generated by the previous 

steps there are several methodologies that can be applied to extract 

useful information. The main goal in each analysis is filter and select 

candidate genes that present an interesting expression profile or 

selected from any of the applied filters. 

Across the literature two tests can be found as a basis for any 

expression analysis, the background filtering, and the differential 

expression analysis. During a microarray expression analysis we would 

expect that not all the genes can be detected in the sample due to tissue 

and developmental stage specific expression. For a given tissue or 

developmental stage there will be a set of genes where its expression is 

not going to be detectable. To filter these genes we establish an 

expression threshold called the background level. This threshold can be 

static or dynamic. A static threshold is an arbitrary value determine by 

the investigator, above which the expression can be called significant. 

Dynamic thresholds are considered more accurate because they are 

based on the information take from the microarrays. These kinds of 

thresholds are determined with spike in controls in the chip that enable 

us to identify the detection limit of the assay for a specific 

microarray(Gentleman, 2005). 

After identification of the genes above background the next 

involves identification of the genes that have significant differences in 

expression between the treatments or samples. This is determined by 

statistical analysis such as the F or T tests. Statistical packages are 

available for microarray data analysis where they perform thousands of 
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hypothesis tests iteratively. Due to the high number of tests carried out 

the possibility of finding false positives is greatly increased. Several 

approaches have been studied to adjust the calculation of p-values in 

order to reduce the percentage of false positives to strengthen the 

biological significance of the analysis. Methods developed since the 80’s 

to control multiple testing problems (HOMMEL, 1988, SIMES, 1986) 

were focused only on the probability of finding errors among the 

accepted tests but this approach can be too severe. Alternative methods 

to the Family Wise Error Rate (FWER) procedures were needed 

(Benjamini, 1995). The False Discovery Rate (FDR) method was 

presented by Benjamini and Hochberg (1995). This approach takes into 

consideration the number of false positives and also the erroneous 

rejections to determine the probability that a specific test be a false 

positive among all the comparisons. FDR allows for the control of error 

from multiple tests with a decrease in false negatives in contrast to the 

FWER methodology (Benjamini, 2000). 

 The final part of the microarray analysis is the analysis of the 

expression itself. Several approaches can be used to extract information 

from the probeset data, such as cluster analysis, the differentially 

expressed analysis, the correlation analysis and the network connection 

analysis. 

 

Main Characteristics of the Lettuce Chip 

A custom GeneChip array of lettuce (Lactuca sativa) was designed 

at UC Davis and developed by Affymetrix. This chip was designed to 

detect Single Feature Polymorphisms (SFP) in over 35,000 lettuce 

genes, using an Affymetrix high density GeneChip® technology     
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(Figure 3) (van Leeuwen, 2009). The purpose of this project was to 

improve marker discovery and generate an ultra-high density genetic 

and map made available for characterization of important agronomic 

traits (Caldwell, 2008). 

The Lettuce Chip posesses 6,553,600 cells of 5μm and 6,482,479 

of them contain probes. These probes are divided in to six categories; 

the first category in which majority of the probes 

falls into consists of the lettuce tiling probes with 

6,410,923 probes derived from express sequence 

tags (ESTs).  These probes were  staggered  by 4 

base pairs across the length of a contig and were 

offset by 2 base pairs on both sense and antisense 

DNA strand in order to interrogate every 2 base 

pair position of a contig. The other five types of 

probes are controls and, the expression probes. 

The control probes are include the technical 

replicate probes, the Affymetrix control probes, the 

Affymetrix anti-genomic probes and the Affymetrix 

B2 Oligo grid probes, more information can be 

found in the Lettuce Chip WebSite 

(http://chiplett.ucdavis.edu/)  (van Leeuwen, 2009). 

 

  

Figure 3. Affymetrix 
Custum Lettuce GeneChip® 

(Seed Biotechnology 

Center, 2010) 

http://chiplett.ucdavis.edu/
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JUSTIFICATION AND SIGNIFICANCE 

Lettuce is one of the most abundant fresh vegetables 

commercialized in the United States, as well as in Central and South 

America, with a production of 5.4 million tons in 2007 (FAO, 2008). 

Lettuce seeds present thermodormancy and this is a problem in the 

agricultural industry because expensive measurements or seed 

treatments need to be done in order to make seeds to germinate. Some 

of these measures are pre-hydration and drying of the seeds (Toh, 

2004); and these practices bring shorter life span of seeds and more 

sensitivity to the storage conditions (Tan, 2003). This situation gains 

importance during fall, because in order to supply the winter markets, 

lettuce seeds need to be planted in desert regions where the 

temperatures are high enough to cause thermoinhibition. It is necessary 

to apply different treatments to achieve seed germination, that increase 

the production costs (Toh, 2004). 

The understanding of thermodormancy in lettuce as a model crop 

and the regulation pathways is relevant to develop new methods or 

varieties that improve the life time of seeds and decrease the production 

costs. This should improve the efficiency, increase the reliability and 

reduce the expenses (Tan, 2003). The use of the microarrays to study 

expression patterns brings the advantage to screen complete pathways 

and be able to identify other genes that are not only the ones that are 

directly related to germination. Also during the progress of this 

investigation developed new bioinformatics tools, protocols to determine 

expression patterns and extraction of microarray data. 
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OBJECTIVES 

General Objective 

Assess the global transcriptome analysis and interconnections 

among networks controlling thermodormancy using microarray data in 

lettuce (Lactuca sativa var Salinas and Lactuca serriola) 

 

Specific Objectives 

-Identify genes that present differences in expression across the 

treatments using an ANOVA analysis 

-Establish clusters or modules of genes that have similar 

expression with Weighted Gene Correlation Network Analysis (WGCNA) 

-Determine thermodormancy related genes using annotation 
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MATERIALS AND METHODS 

Plant materials and treatments 

Microarray 

expression assays 

were carried out by an 

Affymetrix high density 

Gene Chip® 

(Affymetrix, Santa 

Clara, CA, USA) in 

Lactuca sativa cv. 

Salinas (Salinas) and 

Lactuca serriola 

(Serriola) seeds, in two 

different imbibition temperature treatments (20ºC and 35ºC) and two 

time points (0 and 24 hours). In addition a Serriola sample treated with 

3μm of ABA in order to test effect of a inhibit concentration for dormancy 

of ABA in this variety (Table 1). 

Table 1. Description of samples used in microarray analysis 

Gen
otype 

Treatme
nt ID 

R
eps 

Time 
After 

Imbibition 

T
emp 

A
BA 

Germin
ation 

Sali
nas 

DrySee
d Sal 

2 0h N
/A 

N
/A 

N/A 

Serri
ola 

DrySee
d Ser 

2 0h N
/A 

N
/A 

N/A 

Sali
nas 

Sal 20 3 24h 2
0°C 

- Yes 

Serri
ola 

Ser 20 3 24h 2
0°C 

- Yes 

Sali Sal 35 3 24h 3 - No 

0
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Ser 20
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Ser 35

Ser ABA

Figure 4. Germination curves for treatments 
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nas 5°C 

Serri
ola 

Ser 35 3 24h 3
5°C 

- Yes 

Serri
ola 

Ser 
ABA 

3 24h 3
5°C 

+ No 

Preprocessing of the Microarray Data 

Preprocessing of the microarray data was done by Bioconductor 

software (Gentleman, et al., 2004) with the Robust Multi-Array Average 

expression measure (RMA) algorithm (Irizarry, Bolstad, et al., 2003, 

Irizarry, Hobbs, et al., 2003) found in the R-Package affy 2.6.2 (Irizarry 

R.A, 2010) under the function “rma”. This method combines a 

convolution background correction, quantile normalization and a 

summarization by median polish algorithm that returns the probeset 

hybridization value from the raw probe intensity value. The 

preprocessing was performed in four separate batches due to 

differences among the samples, Dry Seed (no imbibition), 24h 

imbibitions at 20°C and 35°C without ABA and the 24h imbibitions at 

35°C with ABA. The four different sets were then joined for further 

analyses. 

Quality Assessment 

In order to asses the quality of chip hybridization by having access 

to probe level data instead of using “rma” function that outputs 

summarized data for the entire probe sets,  two separate functions were 

used to obtain probe level data. A step by step normalization, using 

convolution background correction as well as quantile normalization with 

the R-Package affy 2.6.2 under the functions “bg.correct” and 

“normalize” respectively. As an the R-Package affyPLM 2.6.2 (Bolstad, 

2010) was used to obtain another set of probe level data. The function 
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“rmaPLM” applies a regular RMA normalization but returns the probe 

intensity value instead of the probeset hybridization value and fit the 

data to a Probe Level Model (PLM). It also calculates the Standard 

Error, Estimate Errors, Covariances, Residuals and Weights for each 

probe. 

Affymetrix spike-in controls were checked to assess general quality 

of the chip. The average value for each replicate of the bioB, bioC, bioD 

and Cre was calculated to set up the expression scale and compare with 

affymetrix information (Affymetrix, 2004). When the lettuce GeneChip® 

was designed, in addition to spike-in probes another set of probes were 

synthesized on the chip. These probes correspond to ten conserved 

genes in the lettuce which are replicated indentified as Technical 

Replicate genes (TR) (van Leeuwen, 2009), for TR average, standard 

deviation and coefficient of variation to assess the homogeneity within 

each chip and across the replicates were calculated.  

With data from the PLM fitting plots of Relative Log Expression 

(RLE) and Normalized Unscaled Standard Error (NUSE) were 

generated using R package graphics with the functions “mbox” and 

“boxplot”. A final way to assess quality in a set of chips is by the 

correlation between them. Among replicates is expected to have a 

correlation coefficient over 95%, below this can mean problems with the 

samples. To assess this, a Pearson correlation coefficient was 

calculated in pairwise comparisons between all the chips (Gentleman, 

2005). 
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Diagnostic Plots and Images 

To generate box plots and histograms “boxplot” and “hist” functions 

of R package Graphics 2.9.0, was applied to raw data, normalized probe 

data and normalized probeset data sets. 

Very useful tools during a microarray quality assessment are the 

chip images. They were generated directly from the reading of the chip 

data and to obtain an overall picture of the hybridization.  Using data 

generated for the PLM fitting, it is possible to plot an image of signs of 

the residuals, which allowed the visualization of artifacts in the chip that 

could not be detected in the raw image (Gentleman, 2005). 

Principal Component Analysis and Sample 
Clustering 

For analysis the relationships between the samples a Principal 

Component Analysis was carried out with the algorithm “prcomp” of the 

based package “Stats” for R. 2D plots of the first, second and third 

component were done to visualize the possible sources of the variation 

in the dataset. 

Sample clustering was done using Pearson correlation; distances 

were analyzed with hierarchical clustering using the average method 

provided in based package stats “hclust” for R. 

Expression Analysis 

After RMA background correction, the next filter that was applied to 

the data was eliminating the genes with expression values that were 

below background. Background level was determined based on the 

AntiGenomic Probesets (van Leeuwen, 2009), calculating the 90th 

percentile of these values for each chip and using the maximum like 
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expression threshold. Filtering was done with R-Package Genefilter 

2.9.0 (Gentleman R, 2010) applying the “pOverA” algorithm.  

The list of above background genes was analyzed with the 

TAGGIT macro to determine changes in the percentage of genes per 

category, for this the average, standard deviation and coefficient of 

variance (CV) per each category across treatments were calculated. 

The categories with an average percentage of genes higher that 1% and 

a CV higher that 15% are considered to have real variations. 

For genes with above background signal statistical test were 

carried out to determine significant differences in expression in 

comparisons between treatments. An F-test of hypothesis was 

performed using the R-Maanova package 2.9.0 (WU, 2010), pair wise 

comparison between all the treatments to obtain any possible 

combination. F-test was performed with 5000 permutations, with 

“adaptative” (Benjamini, 2000) method for adjustment of the P-values 

with a thresholds of 0.0005 of adjusted P-value for determine 

significance. 

CLUSTERING METHODS 

VENN Diagrams 

After differentially expressed genes were determined VENN 

diagrams were constructed to calculate the number of overlapping 

genes among comparisons, three per each diagram. Eight diagrams 

were done using the most significant sets (Table 2). 

Table 2. Comparisons used for generate VENN diagrams with differentially 
expressed genes 

VE
NN ID 

Comparison 
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Ven
n1 

DrySeed_Sal-
Sal20C 

DrySeed_Sal-
Sal35C 

Sal20C-Sal35C 

Ven
n2 

DrySeed_Ser-
Ser20C 

DrySeed_Ser-
Ser35C 

Ser20C-Ser35C 

Ven
n3 

DrySeed_Sal-
DrySeed_Ser 

Sal20C-Ser20C Sal35C-Ser35C 

Ven
n4 

Sal20C-Sal35C Sal35C-Ser35C Ser20C-Ser35C 

Ven
n5 

Sal20C-Sal35C Sal35C-Ser35C DrySeed_Sal-
Sal35C 

Ven
n6 

Ser20C-Ser35C Sal35C-Ser35C DrySeed_Ser-
Ser35C 

Ven
n7 

Ser20C-SerABA Sal35C-SerABA Ser35C-SerABA 

Ven
n8 

Ser35C-SerABA Sal20C-Sal35C Ser35C-Sal35C 

Results from the diagrams were analyzed to select interesting 

groups of genes to take them into further analysis. Selection was based 

on finding groups of genes related with the Sal35 or SerABA treatment 

where there could be some association with temperature, germination 

and genotype. 

Weighted Gene Co-Expression Network Analysis 

Another method to cluster the gene in groups is the Network 

Analysis. In this analysis genes (called nodes) are assigned to modules 

based on in their expression profile using a correlation coefficient to 

measure the distance between them. R-Package WGCNA 2.9.0 

(Weighted Correlation Network Analysis) (Langfelder, 2008) was used to 

construct a network using all genes that their expression were above 

background (15309 genes) using the methodology described in the 

website (Langfelder, 2009).  
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Briefly, the steps to generate the WGCNA are as follows: (1) 

Calculate adjacency between the nodes, this matrix is generated with 

correlation analysis to determine concordance between nodes, (2) for 

the dissimilarity matrix the adjacency is taken to a power of 15 to 

calculate similarity and then it  is transformed into dissimilarity (3) 

identify modules of nodes based in height from an hierarchical 

clustering, (4) determine eigengene values for each module determine 

likelihood the first principal component of the data (5) calculate Module 

Membership (MM) among the nodes and distance between the 

modules, (6) calculate the relation of the modules against the external 

factors involved in the analysis (Figure 5) (Langfelder, 2008, Zhang, 

2005). 

GENEByGENE ANALYSIS 

Determination of possible related genes with thermodormancy was 

done base in annotational information and the expression profile of the 

genes tag by the previous methods. For annotation purposes the closest 

Arabidopsis homolog was used. Annotations of genes in Arabidopsis 

were used because the lettuce GeneChip is not annotated yet.  

Relate Networks to External Information

Define intranetwork relations

Calculate Module Eigengene Values

Identify Network Modules

Generate Node Dissimilarity Matrix

Define Gene Co-Expression Adjacency

Figure 5. Workflow for generate the WGCNA 
Based in (Zhang, 2005) 
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A set of genes was extracted directly to determine their their 

relationship with the ABA regulation and metabolism (Table 3). Using 

the information from the ultra saturated lettuce map 

(http://chiplett.ucdavis.edu/index.php) (Michelmore et al., unpublished) 

these genes were located on the lettuce linkage groups and mapped 

contigs in their vicinity were identified, correlation between expression 

profile of the genes and the contigs were calculated, and contigs with a 

correlation value higher than %90 selected as candidate genes. 

Table 3. Genes involved in the ABA regulation or metabolism pathway represented 
in the microarray 

Gene Contig Gene Contig 
LsNCED4 GB_84579411 HAB1 CLS_S3_Contig5

27 
SnrK2.2 CLS_S3_Contig3

188 
ABF2 QGI11J05.yg.ab1 

SnrK2.6 CLS_S3_Contig8
687 

ABF2 CLS_S3_Contig7
421 

PYL2 CLSY2969.b1_A2
4.ab1 

ABF2 CLS_S3_Contig7
163 

PYL2 CLS_S3_Contig6
183 

ABF2 QGI6O04.yg.ab1 

AHG1/PP
2C/HAB1/ABI1 

CLS_S3_Contig9
663 

PIL5 CLSL1469.b1_J0
8.ab1 

AHG1/PP
2C/HAB1/ABI1 

CLS_S3_Contig9
696 

PIL5 CLS_S3_Contig6
666 

AHG1/HA
B1 

QGB8B20.yg.ab1 RGL2_DE
LLA 

CLSX3670.b1_K0
6.ab1 

PP2C CLS_S3_Contig8
135 

RGL2_DE
LLA 

CLSM11108.b1_H
18.ab1 

HAB1 CLS_S3_Contig4
603 

RGL2_DE
LLA 

QGD6I10.yg.ab1 

 Using Microsoft Excel TAGGIT macro the genes under different 

set of labels related with dormancy and germination were categorized. 

Genes in the categories of Dormancy, Germination Related, Heat 

Shock, Stress, ABA, Auxin, Gibberellins and Ethylene were extracted 

and their expression profile was analyzed to determine their plausible 

function in thermodormancy. 
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ABA related genes were used to determine relevant modules in the 

network that they were assigned. Also modules which eigengene profile 

were considered important and were tagged as relevant modules. With 

the java application VisANT (Hu, et al., 2004), relevant modules from 

network analysis were plotted to find highly connected nodes (hub 

genes) that are central parts of each module (Hu, et al., 2008). These 

genes show high correlation with experimental information and a next 

filter was apply to select the ones that their expression pattern indicates 

a possible relation with thermodormancy. 

To determine the final set of genes with more relation with 

thermodormancy, the genes selected for the Venn diagrams, from 

network analysis, TAGGIT macro and VisAnt were analyzed together in 

the MapMan application (Thimm, et al., 2004).  
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RESULTS 

Chips Quality Assessment 

Using the spike in controls, minimum background hybridization 

value was determined to be 7.478 and left 15309 genes with detectable 

expression. First insight in the quality of the chips was with the 

Affymetrix spike-in controls. The concentration scale of the hybridization 

controls is fine for all the treatments, with a lower value for BioB and 

increasing until Cre (Figure 6). 

 

Figure 6. Average Expression per Treatment for Affymetrix hybridization controls 

Hybridization intensities of TR’s, 5 TR (TR 2, TR 6, TR 7, TR 8, TR 

9) were above background. These 5 genes had low CV (< 4%), 

indicating consistency of the data as well as integrity of the chips. On 

the other hand, the remaining 5 genes which expression was below 

background had higher CV due to bigger variation at low intensity 

values, product of the noise in the chip (Table 1). 
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Table 4. Data of Technical Replicates genes in the chip 

Gen
e 

Averag
e 

Expression 

Standard 
Deviation 

Coefficient 
of Variance 

TR_1 3.80339 0.502599 15.15% 
TR_2 9.61837

1 

0.133886 1.42% 

TR_3 2.57102
4 

0.486395 22.30% 

TR_4 4.74219
3 

0.411715 9.57% 

TR_5 3.88726
9 

0.465064 13.33% 

TR_6 11.0890
8 

0.092765 0.84% 

TR_7 11.3522 0.080172 0.72% 
TR_8 9.68264

1 

0.111291 1.22% 

TR_9 7.94821
8 

0.221691 3.22% 

TR_1
0 

2.35057
3 

0.456102 20.99% 

 
Due to the high complexity and amount of data generated for the 

microarray, exploratory visualization is needed to identify quality 

problems. Looking the data of all the arrays at the same time can help to 

detect irregular chips. In this the boxplot and the histogram are an 

appropriate tool to accomplish it (Gentleman, 2005). Raw data obtained 

from the microarray is very variable due to internal and external factors 

that affect the intensity value. For this reason a preprocessing of the 

sample data is needed before further analyzing the data. Boxplots of 

raw and normalized probe intensities values show the effect of the 

normalization process over the data (Figure 7). 

The chips of the same treatment were normalized together to avoid 

leveling off the hybridization intensities of differentially expressed genes 

between the treatments. We can see at probe level the fitting of the 

curves by subset of normalizations (Figure 8. A), at the top the 20°C 
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samples, follow by dry seed samples and at the bottom 35°C samples, 

regardless that this last group was done in two different normalizations. 

An oscillation is visible in 35°C samples in the lower part of the curve. 

This seen to be a result of lower hybridization in a sample but is not a 

problem if the curve stabilized before the background level. In a 

probeset level, curves fit by treatment remaining close by normalization. 

There is not oscillation at this level because it is a result of summarize 

information of all the probe by probeset, also 35°C treatment has the 

lowest expression value (Figure 8. B). 

Regarding the plots from the Probe Level Model fitting, the RLE 

show that the data is in good conditions, the deviation of the relative 

expression is in the range of -0.04 to 0.04 and the replication is good 

(Figure 9. A). In case of the NUSE most of the samples are between 

0.95 and 1.05, as expected according to the literature but the Sal 35 is 

off of this range (Figure 9. B). This problem probably is due to the lower 

expression that generates a higher variation in the data. Nevertheless, 

with this issue in the Sal35 the other analysis show that after processing 

the data is in proper condition and the variations are reduced to the 

expected levels. For this quality assessment concludes that the set of 

chips do not present any problem and the data generated is in good 

conditions for the expression analysis. 
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A.  

B.  

Figure 7. Boxplot of Hybridization Intensities for Probes across chips. 
By array 1-2 Dry Seed Sal, 3-4 Dry Seed Ser, Sal 20 5-7, Ser 20 8-10, Sal 35 11-13, Ser 

35 14-16, Ser ABA 17-19 
A.  Raw probe hybridization intensities, B. Normalized probe hybridization 

intensities 
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A.  

B.  

Figure 8. Histogram of Hybridization Intensities across chips. The perpendicular 
red line is the background level. 

A.  Raw probe hybridization intensities, B. Normalized probeset hybridization 
intensities 
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A.   

B.  

Figure 9. Results from the Probe Level Model fitting 
By array 1-2 DrySeed Sal, 3-4 Dry Seed Ser, Sal 20 5-7, Ser 20 8-10, Sal 35 11-13, Ser 

35 14-16, Ser ABA 17-19 
A. Relative Log Expression plot (RLE) 
B. Normalized Unscaled Standard Error plot (NUSE)  
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Differential expression analysis show basic 
relations between treatments  

Categorizing the genes with signal detected above background for 

all the treatments with the TAGGIT macro made it possible to find 

differences between the percentage of genes in the categories of ABA, 

auxin, DNA repair, cell cycle related, heat shock, cell wall modification 

and cytoskeleton (Figure 10). 

Analyzing the number of genes detected as differentially 

expressed between the treatments indicated that the Ser 35 and Ser 

ABA treatments account for the minimum amount of differences. Also 

Dry Seed Sal with Dry Seed Ser and Sal 20 with Ser 20 had a low 

number of differences, that are the base differences between genotype.  

It is important to note that Dry seed Sal and Sal 35 have only 379 

different genes showing an important repression of genes by the 

dormancy, compare to Dry Seed Sal with Sal 20 that had 2116 different 

genes. In the case of Ser 35 it seems to be more similar to the Dry Seed 

Ser than that of Ser 20, although Ser 35 was able to germinate. The 

major differences are between the germinating and non germinating 

treatments that in average each had ~1800 differentially expressed 

genes (Table 5). 

Table 5. Differentially expressed genes above background 

Comparison 

Number of differentially 
expressed genes 

With Fold 
Change >1.25 

With Fold 
Change >1.5 

Dry seed Sal-Dry seed 
Ser 

711 357 

Dry seed Sal-Sal 20 4404 2116 

Dry seed Sal-Sal 35 2616 379 

Dry seed Ser-Ser 20 3619 1536 

Dry seed Ser-Ser 35 1917 334 
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Dry seed Ser-Ser ABA 2221 417 

Sal 20-Ser 20 652 340 

Sal 20-Sal 35 4855 2331 

Ser 20-Ser 35 3174 1394 

Ser 20-Ser ABA 2733 1194 

Sal 35-Ser 35 1178 473 

Sal 35-Ser ABA 1727 650 

Ser 35-Ser ABA 374 54 

 

Main sources of differences between treatments 
determined by Cluster of Samples and PCA 

The cluster analysis indicated that samples that were treated at 

20º C were out grouped compare to the rest of treatments. (Figure 11). 

The principal component partially support this result determining like the 

first component temperature separating the 20°C treatments with 60% of 

the total variance. Unless, in the second component was found 

genotype accounting for the 16% of the variation instead of treatment 

how it looks by the dendrogram (Figure 12. A). And in the third 

component imbibition with a good separation between dry seed and 

imbibed within genotype with a 15% of the variation (Figure 12. B). 

Both methods indicate that seeds at 20°C are different than the 

other treatment due to activation of genes associated with germination. 

Nonetheless Ser 35, that is germinating, seems to have more weight the 

temperature factor than germination due to it cluster with Ser ABA. The 

rest of the variation can be accounted to an interaction between 

genotype and imbibition that requires a deeper analysis to be able to 

split it. 
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Figure 10. TAGGIT categories across treatments for above background genes 
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Figure 11. Dendrogram of Samples based in Pearson Correlation 
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A.

 
B.

 
Figure 12. 2D plot of principal components 
A. Plot of Principal Component 1 against Principal Component 2 
A. Plot of Principal Component 2 against Principal Component 3 
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Combined methods to identify putative genes 
related with thermodormancy 

The first approach to find possible genes related with 

thermodormancy was through the Venn diagrams, 16 Venn diagrams 

were developed 2 per each comparison. This resulted in 11 sets 

accounting for 441 interesting genes. After filtering based on it TAGGIT 

macro, positions in the map and expression profile the list were trim 

down to 90 genes, which were taken for further analysis. 

 
Figure 13.  Hierarchical clustering of 15309 genes with module assignment 

Starting with ~15000 genes WGCNA was able to make 30 

modules, arbitrary color names were assigned to each of them for 

identification (Figure 13). The number of genes per module increased 

from 34 in Salmon4 to 3252 in Blue, module membership as an average 

go from 0.18 (Darkred) to 0.90 (Salmon4). To select relevant modules 

were used the ABA related genes and they were assigned to 7 different 

modules (Blue, Blue4, Chartreuse4, Darkorange, Darkorange4, Darkred 
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and Gold). Three more modules were selected (Orange4, Olivedrab4 

and Khaki4) based in its eigengene profile that show relation with Sal 35 

and/or Ser ABA treatments. 

To determine biological significance the correlation between 

module eigengenes and four experimental conditions (Germination, 

Variety, Imbibition and Temperature) was calculated. Correlation 

analysis showed that the Blue4, Darkorange4, Gold and Orange4 are 

highly correlated with high temperature. Meanwhile the modules Blue, 

Darkorange, Chartreuse4 are highly correlated with low temperature and 

germination. Also the modules Darkred and Khaki4 were correlated with 

low temperature, germination and also have relation with the Serriola 

variety. The Olivedrab4 have relation with non-germination and a lower 

correlation with high temperature (Figure 15). For each of this modules a 

gene network with the VisAnt application was plotted which allowed the 

detection of highly connected genes. A total of 72 hub genes between 

the 10 modules, which 35 of them show an important expression pattern 

and where tag for further analysis. 

The 10 modules contain 10079 genes, which for practical reasons 

it is necessary to filter them. Using the TAGGIT and the map 

information, the list was annotated and the interesting genes were 

extracted. After the first filter 1001 genes remain that can have some 

relation with thermodormancy, this set was later filtered based on the 

expression profile of each gene to generate the last set with 237 

interesting genes. 

 A list with all of the genes tagged by the previous methods was 

prepared and this data was introduced into the MapMan application. 

Genes assigned to categories related with hormone metabolism or 
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relevant categories. This list contains 63 genes, 23 of them are up-

regulated and the other 40 down-regulated in Sal 35. 
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Figure 14. Example of gene network from Module Gold with an interaction cut off of 
0.413 

This is an example of the genes networks generated through VisAnt to visualize the 
interactions within the modules. Genes with name tag are the hubs in the module. 
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Figure 15. Heatmap of correlation between module eigengenes with experimental 

conditions 
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Table 6. Genes result of filtering microarray dataset for relation with 
thermodormancy 

Upregulated 
Genes for Sal 35 

Downregulated Genes for Sal 35 

CLS_S3_Contig716

3  
QGI11J05.yg.ab1  CLS_S3_Contig527  

CLS_S3_Contig742

1  

CLLY7887.b1_M

04.ab1  

CLS_S3_Contig666

6  

GB_84579411  
CLR_S1_Contig3

370  
CLS_S3_Contig698  

CLS_S3_Contig113

34  

CLS_S3_Contig1

0259  

CLS_S3_Contig742

0  

QGI9I18.yg.ab1  
CLS_S3_Contig1

0555  

CLS_S3_Contig813

5  

QGC28G06.yg.ab1  
CLS_S3_Contig1

1386  

CLS_S3_Contig868

7  

CLS_S3_Contig201  
CLS_S3_Contig1

227  

CLSL1469.b1_J08.

ab1  

QGB10H19.yg.ab1  
CLS_S3_Contig2

010  

CLSM11108.b1_H1

8.ab1  

CLSM19675.b1_E2

3.ab1  

CLS_S3_Contig2

093  

CLSM3592.b1_P09.

ab1  

CLSM17919.b1_M

16.ab1  

CLS_S3_Contig2

559  

CLSS11062.b1_L06

.ab1  

CLSM8279.b1_M0

6.ab1  

CLS_S3_Contig3

188  

CLSX1577.b1_A11.

ab1  

CLS_S3_Contig207

5  

CLS_S3_Contig3

650  

CLSX3670.b1_K06.

ab1  

CLVX12234.b1_D1

2.ab1  

CLS_S3_Contig3

661  

CLSX8127.b1_M15.

ab1  

CLSS3671.b1_M06

.ab1  

CLS_S3_Contig3

839  

CLSY1248.b1_O23.

ab1  

CLS_S3_Contig667  
CLS_S3_Contig4

192  

CLSY2969.b1_A24.

ab1  

QGB23D13.yg.ab1  
CLS_S3_Contig4

592  
QGB22B23.yg.ab1  

CLS_S3_Contig730 CLS_S3_Contig4 QGC25M21.yg.ab1  
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5  603  

CLSY9332.b1_H05

.ab1  

CLS_S3_Contig4

683  
QGC25N02.yg.ab1  

QGF17O19.yg.ab1  
CLS_S3_Contig5

062  
QGD6I10.yg.ab1  

CLS_S3_Contig618

3  

CLS_S3_Contig5

134  
QGI10G13.yg.ab1  

CLS_S3_Contig966

3  
  

CLS_S3_Contig969

6  
  

QGB8B20.yg.ab1    
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DISCUSSION 

Delay of Germination due to High Temperature 

Serriola seed has been known to be thermotolerant, but still its 

germination is affected by temperature producing a delay in its speed. At 

20°C serriola germinate at 30 HAI (hours after imbibition), while at 35°C 

it takes up to 50 HAI to be fully germinated (Argyris, 2008a). The 

transcriptomic data support this information where are visible smaller 

differences between Ser 35 with Dry Seed Ser than Ser 35 and Ser 20 

(Table 5). Statistical tests are not able to identify significant differences 

between Dry Seed Ser and Ser 35 but other approaches such as PCA 

or hierarchical clustering demonstrate that these two treatments have a 

different behavior. In a more comprehensive analysis between these 

samples, it was shown that Ser 35 is partially germinated where the 

transcriptional changes already starts but are not in the same state as 

Ser 20 or Sal 20 (Argyris, 2008b).  

In lettuce a major regulator of dormancy is involved in ABA 

metabolism, was expected to reproduce the Salinas phenotype adding 

ABA to the Serriola seed. In Arabidopsis applying germination inhibiting 

concentrations of ABA an caused an important set of genes that are 

relate with the ABA response being detected as differentially expressed 

between the germinating and the inhibited seed. A part of the 

Arabidopsis genes detected in that experiment was expected to be 

found between Ser 35 and Ser ABA due to the similar conditions. 

However none of the genes found in Arabidopsis were detected in the 

current study. Nonetheless, Ser 35 was closely related with Ser ABA. As 

it can be seen in Figure 11 and Figure 12. These result are associated 

with the delay in germination presented in Ser 35 because these 

treatments shared all the same genotypic background and the 
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germination genes are in the process to be activated in Ser 35 but are 

not significant differences have not been detected yet (Argyris, 2008a). 

This delay in germination of Serriola seeds at high temperature 

causes problems through the classical differential expression analysis 

because the differences presented between this sample and the 

inhibited seeds are large enough to be significantly detected. However 

other analyses such as WGCNA are able to separate these treatments 

due to the expression profile system applied in this method. This 

analysis is able to take into account the difference between the Serriola 

35 seed with the Serriola ABA for clustering. Modules that are related to 

germination have been found which have a high expression value in all 

the germinating samples, even the Ser 35. 

Conclusive results show that Serriola seeds at 35ºC are not in the 

same developmental state as Serriola seeds at 20ºC or Salinas seeds at 

20ºC. This prevents to use it as germination control at high temperature. 

However useful information has been generated from these samples, 

but it seems to be necessary another sample of Serriola at 35ºC at 48 

hours after imbibition that may present a better germination control. 

Gene clustering related with traits 

Gene clustering with WGCNA was able to unify genes with similar 

biological functions based on their expression profile. Using eigengenes 

it was possible to correlate each of the modules with seed 

characteristics and/or experimental conditions (Langfelder, 2008), as 

well as finding modules related with high temperature, germination, 

Salinas-specific and Serriola-specific. In other cases the modules 

present relation with several important conditions specially the ones 

related with high temperature and the Salinas variety were also 
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detected. This specific relation between the modules and the 

experimental conditions facilitated the selection of genes that potentially 

involved in thermodormancy. This behavior of the clustering has been 

detailed by the developers of the software because genes that have a 

very similar expression profile can be related to the same biological 

pathway (Zhang, 2005). According to previous microarray studies using 

WGCNA for analysis of data, showed that grouped genes trend to be 

coregulated or be related to the same metabolic or regulatory pathways 

(Ghazalpour, et al., 2006, MacLennan, et al., 2009). Using the 

annotational data of the genes, it was evident that some modules 

represent enrichment to a specific biological function. For instance, 

Darkred module represent a high percentage of Translation Associated 

genes related to the ribosome and tRNA, the darkorange module related 

to the genes involved in beta oxidation, photosynthesis, auxin and DNA 

repair. Both of these modules are associated with germination and have 

genes that are expected to be expressed during germination (Kucera, 

2005). These genes cannot be directly affect the thermodormancy 

because of the differences in expression can only be a response to 

stress and not a part of the regulator systems that trigger this 

phenomenon, but they should further be analyzed to understand the 

metabolic pathways involved (Holdsworth, Bentsink, et al., 2008). 

In high temperature related modules we have the gold module, 

which contains a higher number of ethylene, DNA repair, cell wall 

modification and cytoskeleton. Modules with an elevated percentage of 

ABA genes are Blue4 and Darkorange4, the first one it also have a 

bigger number of auxin, cell cycle and protein degradation genes. For 

the darkorange4 module is associated with dormancy, seed storage 

protein and cell wall modification genes. The expression of these genes 

is triggered by high temperature and for this is more possible to be 
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closely related with the establishment and maintain of thermodormancy 

(Argyris, 2008b, Toh, et al., 2008, Vlad, et al., 2009). 

Genes involved in maintain and release of 
dormancy 

Through the analysis of the microarray data, a set of genes were 

found to have a high possibility to be related with thermodormancy. 

These genes were selected using a filtering process that allowed to 

eliminate the noise in the data. The last group of 63 genes were is 

related to the three major hormones involved in germination and release 

of dormancy, ABA, GA and ethylene; and with specific transcription 

factors associated with this process. According to the annotational data 

the ABA genes involved in response (CLS_S3_Contig7163, 

QGI11J05.yg.ab1), signaling (CLS_S3_Contig7421) and synthesis 

(GB_84579411, CLS_S3_Contig4683, CLS_S3_Contig11334, 

QGI9I18.yg.ab1). Most of these genes are up-regulated in the Sal 35 

treatments, showing and increase in ABA activity during dormancy (Seo, 

2006, Sheard, et al., 2009, Toh, et al., 2008). In the case of the 

gibberellins associated genes they are down-regulated in the same 

treatment. This finding was in agreement with previous studies that 

demonstrate a cut in GA activity in dormant seeds (Piskurewicz, et al., 

2008, Seo, 2006, Toh, et al., 2008); the same genes are related to 

signaling (CLSM11108.b1_H18.ab1, CLSX3670.b1_K06.ab1, 

QGD6I10.yg.ab1, CLLY7887.b1_M04.ab1) and response 

(CLR_S1_Contig3370, CLS_S3_Contig3839) to GA. Similar to GA, 

ethylene activity is being suppressed for dormancy in Sal 35 (Saini, et 

al., 1986), with a general down-regulation of the genes found related 

with this hormone; we identified eight genes related to ethylene 

signaling and two with the biosynthetic pathway of this hormone.  
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In Sal 35 transcription factors could be divided in two groups based 

on their up- or down- regulation. Up-regulated transcription factors are 

Heat Shock transcription Factors (HSF), Ethylene Insensitive Like 

transcription factors (EIL) and HomeoBox transcription factors, all of 

them known to be associated with dormancy. Meanwhile down-

regulated transcription factors are basically the auxin related groups 

(IAA and ARF). This genes should be analyzed further because the role 

of auxins in dormancy has not be understood yet. Although they do not 

seem to be a key factor in this process. 

These results present the general overview of how the 

thermodormancy affect the seed metabolism. The hormone balance is 

influenced by the high temperature triggering a signaling chain reaction 

that lead to an increase in ABA and a decrease in GA and ethylene 

activities. Nonetheless, they were already known to be the major 

controllers in dormancy (Feurtado, 2007, Kucera, 2005). This study 

showed us the possible genes related to the thermodormancy in lettuce.  

Further analysis is needed in order to confirm the association of these 

genes with the high temperature germination trait found in the Lactuca 

serriola and a more important task remains as how to transfer these 

phenotypes to the cultivated lettuce. 
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RECOMMENDATIONS 

Through the analysis of the microarray data were able to 

determine that WGCNA is able to cluster the genes with similar 

biological function. Also with the combination of several annotational 

methods 63 genes were selected like candidate genes relate with 

thermodormancy and they should be analyzed in other investigation to 

discover their function in thermodormancy. 

In order to have a better experimental design another set of 

samples should be made it in a second time point (48h). This treatments 

will gave a full germinate Serriola seed at 35ºC that will be in the same 

developmental stage that Salinas seed at 20ºC. With this data the genes 

that change later in germination will be able to be detected giving a 

bigger picture of the thermodormancy in lettuce. 
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