

Instituto Tecnológico de Costa Rica Escuela de Electromecánica

Informe Final de Práctica de Especialidad para optar por el grado de Licenciado en Ingeniería en Mantenimiento Industrial

Proyecto Administrativo:

Mantenimiento Preventivo aplicado a Aerogeneradores Neg Micon NM750.

Proyectos de Diseño:

Análisis de Vibraciones en Cajas Multiplicadoras y Generadores, aplicados a fallas en rodamientos y engranajes.

Programa de implementación de un Historiador de datos en los Aerogeneradores por medio de PLCs de comunicación.

Planta Eólica Aeroenergía S.A.
Realizado por Carlos Vargas González
Tejona, Tilarán. 2004

Profesor Asesor: Ing. Gustavo Jiménez

Asesor en la Empresa: Ing. José Ángel Prati

Nota a la versión impresa:

El informe completo con la totalidad de los anexos se muestra en el documento digital de Microsoft Word que lleva como nombre Informe Final de Práctica. Algunos anexos se omiten por motivo de espacio.

Dedicatoria En la base de esta práctica está el señor José Ángel Prati. El es quien merece la dedicatoria. También el profesor Gustavo Jiménez por su paciencia (a quien le deseo éxitos). Sin embargo, también deben figurar en ella aquellos que pasean conmigo por la vida: Miguel, mis familiares, mis compañeros de estudio, los héroes; aquellos que entran y salen, y aquellos que están por entrar. A la promesa de las energías limpias. A la promesa del FUTURO.

Tabla de Contenidos

	Página
Dedicatoria	
Glosario para términos provenientes del idioma Inglés	
1. Resumen	
2. Introducción	
2.1. Tendencias del Mantenimiento	
2.1.1 El Mantenimiento Correctivo	
2.1.2 El Mantenimiento Preventivo	
2.1.3 El Mantenimiento Predictivo	
2.1.4 El Mantenimiento de Precisión	
2.1.4 El Mantenimiento de Precisión	
2.1.5 El Mantenimiento Programado	
2.1.6. El TPM, el RCM y el RCM 2	
2.2 Los Controladores Lógicos Programables (PLC)	
2.2.1 Los PLCs	
2.2.2 Conceptos fundamentales de la comunicación electrónica	
2.2.3. Sensores Analógicos y Digitales	
2.2.4. PLC Mitsubishi FX _{1N} - 14MR	
2.2.5. Funciones lógicas y elementos básicos del lenguaje de Escalera del PLC Mit	
FX _{1N} - 14MR	
2.3. Explicación básica del funcionamiento de los Aerogeneradores Neg Micon NM750	
2.4. Explicación básica del funcionamiento del Programa iHistorian y el OPC	
2.5. Explicación básica del funcionamiento del programa Prism4 de SKF y el Colector de Col	de
datos CMVA-55 Microlog para análisis de Vibraciones	36
3. Reseña sobre la Planta Eólica de Aeroenergía S.A	
3.1 Historia de Aeroenergía S.A.	37
3.2 Organigrama de la empresa	37
3.3 Tecnología utilizada	
4. Mantenimiento Preventivo aplicado a Aerogeneradores Neg Micon M1800, 750kW	39
4.1 Definición del problema	39
4.2 Fuentes de información	41
4.3 Codificación del Parque	42
4.3.1 Codificación del Parque	42
4.3.2. Codificación de los bloques de mantenimiento	43
4.4 Diagramas de la máquina	44
4.5 Diseño de la documentación	44
4.5.1. Solicitud o Orden de trabajo	
4.5.2. Historial de las Máquinas	45
4.5.3. Documento de Datos Técnicos	
4.5.4. Reporte de fallas	46
4.5.5. Valores de Funcionamiento Global	46

4.5.6. Reportes de Mano de Obra Directa	47
4.5.7. Solicitud de compra de repuestos, materiales y herramientas	
4.6 Manuales de Mantenimiento	
4.7 Inspecciones	48
4.8 Programación de actividades de mantenimiento propuestas	49
4.9 Procedimientos frente a Alarmas	50
4.10 Aspectos de Seguridad o Precaución	51
4.11 Análisis costo beneficio del Proyecto Administrativo de la Práctica de Especialidad	. 52
4.12 Recomendaciones	. 53
5. Análisis de Vibraciones en Cajas Multiplicadoras y Generadores, aplicado a fallas en	
rodamientos y engranajes en Generadores Eólicos Neg Micon NM 750.	. 54
5.1 Definición del Problema	. 54
5.2 Aislamiento de Señales externas a los elementos por analizar	. 55
5.3 Análisis de Vibraciones en la Caja	. 55
5.3.1 El Problema de Analizar Vibraciones en cajas.	55
5.3.2 Información adquirida. Verificación, estudio y consecución de datos restantes	56
5.3.3. Selección de puntos en la caja	58
5.4 Análisis de Vibraciones en los Generadores	. 59
5.4.1 El Problema de Analizar Vibraciones en Generadores	59
5.4.2 Presentación de los datos de vibraciones para el Generador Elin	59
5.4.3. Selección de puntos	60
5.5. Selección de tipos de medición pertinentes	600
5.6. Configuración final de todos los puntos en el Software Prism 4	61
5.7 Sistema de Análisis de los datos.	
5.7.1. Paso 1 del Análisis de Datos	
5.7.2. Paso 2 del Análisis de Datos	62
5.7.3. Paso 3 del Análisis de Datos	
5.8 Análisis de los datos colectados en la Caja de la Turbina 1	
5.9 Conclusiones sobre la Turbina 1	
5.10 Sobre el estudio de vibraciones a 1210 rpm.	. 63
5.11 Análisis costo-beneficio del Análisis de Vibraciones	
5.12 Conclusiones y recomendaciones	
6. Programa de implementación de un Historiador de datos en los Aerogeneradores por med	lio
de PLCs de comunicación	. 66
6.1. Definición del problema	
6.2 Objetivos del Proyecto	
6.3 Etapas en el desarrollo del Proyecto	
6.3.1. Primera etapa de implementación	
6.3.2. Segunda etapa de implementación	
6.3.3. Tercera etapa de implementación	
6.3.4. Cuarta etapa de implementación	
6.4. Resultados de la primera etapa de desarrollo del proyecto.	
6.4.1 Información técnica de programación del PLC	
6.4.2. Información sobre el dispositivo TAC 84c	
6.4.3. Conexión de la tarjeta de comunicación FX _{1N} - 485 BD	74

6.4.4. Propuesta de diagrama escalera para comunicar el TAC 84c por RS-485	74
6.4.5. Diagrama escalera para comunicar el sensor de RPM	
6.4.6. Propuesta de sensor de nivel de aceite	
6.4.7. Propuesta de sensor de flujo de aceite	76
6.4.8. Cotización de PLC Mitsubishi FX _{1N} -485 DB, con dispositivos de entradas	
analógicas, Módulo Modbus y tarjeta de comunicación RS 485	77
6.4.9. Despliegue de datos en pantalla	
6.5. Análisis de Costos del Proyecto	
6.6. Conclusiones	
6.7 Recomendaciones	
7. Fuentes de información	
8. ANEXOS	
Anexo 1: Codificación del Parque	
Anexo 2: Codificación de las partes de la Turbina y equipos a mantener	
Anexo 3: Esquemas de la Máquina	
Anexo 4: Manuales de Mantenimiento	85
Anexo 5: Inspecciones	
Anexo 6: Gantt para el año 2004	
Anexo 7: Flujo gramas frente a Alarmas	
Anexo 8: Reporte mensual de Fallas	
Anexo 9: Reporte de Mano de obra directa	
Anexo 10: Formato de pagos y compras	139
Anexo 11: Imágenes de la máquina	
Anexo 12: Tendencia de Valores Globales de Vibración	141
Anexo 13: Hoja de Análisis de Valores Globales	142
Anexo 14: Hoja de Análisis de Espectros	
Anexo 15: Ejemplo de Análisis para la Turbina 9	144
Anexo 16: Ejemplo de Análisis de Espectros	145
Anexo 17: Ejemplo de Análisis para la Turbina 1	
Anexo 18: Ejemplo de Análisis de Espectros	147
para la Turbina 1	147
Anexo 19: Información sobre Vibraciones en la Caja Multiplicadora Flender PEAC 4300.4	
proporcionada por Flender	148
Anexo 20: Frecuencias de Falla en los rodamientos de la Caja Multiplicadora	149
Anexo 21: Frecuencias de Falla en los engranes de la caja multiplicadora	153
Anexo 22: Puntos de medición de vibraciones en la caja, señalamiento y codificación de	
rodamientos	
Anexo 23: Frecuencia de giro en los piñones de la caja por el Método Analítico de Tabulac	ión.
	155
Anexo 24: Muestra de Cálculo de las frecuencias de los Rodamientos Traseros y Delantero	S
del Generador	
Anexo 25: Frecuencias de falla del Rodamiento Trasero y Delantero del Generador	158
Anexo 26: Puntos de medición de vibraciones en el Generador	
Anexo 27: Configuración de las mediciones de Velocidad	160
Anexo 28: Configuración de las mediciones de Enveloping	161

Anexo 29: Configuración de las mediciones de Aceleración
Anexo 30: Cálculo de la vida nominal del rodamiento del generador
Anexo 31: Cotización de Electricidad Americana sobre el software del Proyecto del
Historiador de datos
Anexo 32: Manuales digitales para la conexión y programación del PLC Mitsubishi FX _{1N} y
sus dispositivos.
Anexo 33: Información sobre sensores y dispositivos por comunicar
Anexo 34: Diagrama de escalera del sensor de RPM
Anexo 35: Información técnica del aceite de la caja
Anexo 36: Diagrama de instalación del sensor de nivel buscado
Anexo 37: Información sobre el sensor de flujo Hydac
Anexo 38: Información Técnica y enlaces a catálogos y documentos electrónicos
Allexo 38. Información Tecinica y emaces a catalogos y documentos electronicos

Índice de Tablas y Figuras Página Tabla: 2.1.3.1. Tabla de severidad para valores de Enveloping 21 y diversas aplicaciones. Tabla 2.1.3.2. Tabla de severidad en los Valores Globales 26 para velocidad de la Norma ISO 2374. Tabla A.1.1. Codificación del Parque 83 Tabla A.2.1. Codificación de partes de la Turbina y equipos 84 Tabla A.4.1. Manual de Mantenimiento del Generador 86 Tabla A.4.2. Manual de Mantenimiento del Freno de Disco 88 Tabla A.4.3. Manual de Mantenimiento de la Caja 90 Tabla A.4.4. Manual de Mantenimiento del Freno Aerodinámico y Rotor 92 Tabla A.4.5. Manual de Mantenimiento de la Torre 96 Tabla A.4.6. Manual de Mantenimiento de la Transmisión 98 Tabla A.4.7. Manual de Mantenimiento del Sistema de Orientación 99 Tabla A.4.8. Manual de Mantenimiento del panel de control y sensores 101 Tabla A.4.9. Manual de la Subestación y la Malla de Tierra 104 Tabla A.4.10. Manual de Mantenimiento de los Transformadores 105 Tabla A.4.11. Manual de Mantenimiento de la Torre 107 Tabla A.5.1. Hojas de inspección Generador B, C, EX 108 Hoja de inspección Freno de Disco B, C, Ex Tabla A.5.2. 111 Tabla A.5.3. Hoja de inspección de la Caja Multiplicadora B, C, Ex 114

Tabla A.5.4.	Hoja de inspección Rotor, Estación, Tip,	117
	Aspa B, C, Ex	
Tabla A.5.5.	Hoja de inspección de la torre B, C, Ex	120
Tabla A.5.6.	Hoja de inspección Transmisión B, C	123
Tabla A.5.7.	Hoja de inspección de Guiñada B, C, Ex	125
Tabla A.5.8.	Hoja de inspección de paneles de control y sensores B, C, Ex.	128
Tabla A.5.8.	Hoja de inspección de paneles de control y sensores B, C, Ex.	129
Tabla A.5.9.	Hoja de inspección Subestación y malla de tierra Ex.	131
Tabla A.5.10.	Hoja de inspección de Transformadores Ex.	132
Tabla A.5.11.	Hoja de inspección de la Torre de Meteorología Ex.	133
Tabla A.5.12.	Hoja de inspección de inspecciones generales B.	134
Tabla A.13.1.	Hoja de análisis de Valores Globales.	142
Tabla A.14.1.	Hoja de análisis de Espectros	143
Tabla A.15.1.	Análisis para turbina 9.	144
Tabla A.16.1.	Análisis de espectros de Turbina 9	145
Tabla A.17.1.	Análisis de turbina 1	146
Tabla A.18.1.	Análisis de espectros para turbina 1	147
Tabla A.20.1.	Velocidad y frecuencia de rotación de salida	149
Tabla A.20.2.	Rodamientos en el eje del engrane helicoidal (NJ 2224 EC/C3) (D, G)	149
Tabla A.20.3.	Rodamientos del eje del Engrane Sol del Sistema Planetario (SL 182960-INA) (I)	149

Tabla A.20.4.	Rodamientos del Engrane Sol del Sistema Planetario (SL181860-INA) (H)	150	
Tabla A.20.5.	Rodamientos en los ejes de los Planetarios (24132CC/C3) (B)	150	
Tabla A.20.6.	Rodamiento en la salida de la caja del lado del generador (22226 EC3) (F)	151	
Tabla A.20.7.	Rodamiento de salida de la caja del lado del generador (NJ 2224 E3/C3) (E)	151	
Tabla A.20.8.	Rodamiento en la entrada de la caja (SL 181868-INA) (A)	152	
Tabla A.20.9.	Rodamiento en la entrada de la caja (SL 181892-INA) (C)	152	
Tabla A.21.1.	Engranes de la caja en las diferentes etapas	153	
 Tabla A.23.1.	Tabla de cálculos por el método de Tabulación	156	
Tabla A.23.2.	Tabla de velocidades y frecuencias de los ejes de la Caja Multiplicadora	156	
Tabla A.24.1.	Tabla de datos de los rodamientos del generador	157	
Tabla A.24.2.	Frecuencias de falla en el generador	157	
Tabla A.25.1.	Marca y designación de los rodamientos del generador	158	
Tabla A.25.2.	Velocidad y frecuencia del generador	158	
Tabla A.25.3.	Frecuencias de falla en la Caja Multiplicadora	158	
Tabla A.27.1.	Configuración de las mediciones de velocidad	160	
Tabla A.28.1.	Configuración de las mediciones de Enveloping	161	
Tabla A.29.1.	Configuración de las mediciones de Aceleración	162	
Tabla A.38.1.	Enlaces a documentos electrónicos	171	
Figura 2.1.3.1	Evolución de la falla: Vibración vs Tiempo	19	
Figura 2.1.3.2	Análisis de armónicos en bajas y altas frecuencias	23	

Figura 2.1.3.3	Etapas en la evolución de una falla	24
Figura 2.1.3.4	Cascada de espectros de vibraciones	25
Figura 3.2.1.	Organigrama de Aeroenergía S.A.	37
Figura 6.4.2.1.	Comunicación RS-485 del TAC 84c	73
Figura 6.4.3.1.	Conexión de la tarjeta de comunicación 485 en el PLC	74
Figura A.22.1	Puntos de medición en la Caja Multiplicadora	154
Figura A.23.1.	Distribución interna de la Caja Multiplicadora	155
Figura A.26.1	Puntos de medición en el Generador Elin	159
Figura A.34.1	Diagrama escalera para control del RPM	167

Glosario para términos provenientes del idioma Inglés

Enveloping: Traducido por SKF como Envolvente. Técnica matemática de análisis

SEE: Spectral Emitted Energy o Energía Espectral Emitida. Técnica de análisis.

HFD: High Frecuency Detection. Detección de Altas Frecuencias. Técnica de análisis.

FFT: Fast Fourier Transform. Transformada Rápida de Fourier. Función Matemática.

Trafo: Abreviatura de Transformador en inglés.

Tip: Punta móvil del aspa.

Slip Ring: Anillos deslizantes. Dispositivo de transmisión de señales eléctricas.

Nylon: Material de los conos en las aspas.

Coolant: Anticongelante. Líquido que mejora las propiedades del agua.

OPC: OLE for Process Control. Norma para dispositivos de control de procesos.

PLC: Programmable Logic Controller. Controlador Lógico Programable.

RCM: Reliability Centered Maintenance. Mantenimiento Centrado en la Confiabilidad.

TPM: Total Productive Maintenance. Mantenimiento Centrado en la Confiabilidad.

Buffer: Lugar de la memoria RAM.

Send: Función de enviar información.

Receive: Función de recibir información.

FMEA: Failure Mode and Effect Analysis. Análisis de Modos de Falla y Efectos.

Impeller: Impulsor.

Bearing: Rodamiento.

Service: Servicio de inspecciones de mantenimiento.

Sensar: Percibir un fenómeno y representarlo por medio de una señal.

1. Resumen

Este resumen presenta los tres innovadores proyectos realizados en la Planta Eólica Aeroenergía S.A. durante el primer semestre del año 2004.

El proyecto administrativo plantea el problema y una solución al complejo Mantenimiento Preventivo para este tipo particular de tecnología. Los rasgos principales del Mantenimiento Preventivo como la codificación, los manuales, las inspecciones y la planificación se conservan. No obstante, el documento se complementa con procedimientos o diagramas de flujo para control de alarmas, con diagramas de las máquinas y también con una gran recopilación de información digital básica para el mantenimiento ágil del parque, obtenida a lo largo de la investigación.

El proyecto de Análisis de Vibraciones en Cajas Multiplicadoras y Generadores, aplicados a fallas en rodamientos y engranajes representó un reto en la búsqueda de información y el análisis de los sistemas. El objetivo del Plan fue lograr un sistema de Análisis de Vibraciones completo y lo más simple posible para este tipo de máquina en particular. En él se realizan análisis y cálculos para estimar el comportamiento de las vibraciones en los sistemas de cajas planetarias y en los generadores de Aeroenergía S.A. A lo largo del estudio se hace uso de información producto de la persistencia y meses de indagación. El proyecto detalla desde la configuración de las mediciones y rutas para la toma de datos hasta las particularidades matemáticas. El resultado es una metodología única que contempla todas las etapas del Análisis de Vibraciones y plantea los próximos pasos a seguir en estas técnicas predictivas. Por otro lado, por su impacto directo en la operación, el mantenimiento y la gestión del equipo resulta fácil de justificar económicamente.

La gran ventaja del análisis de vibraciones en turbinas eólicas es que refleja el estado real de la máquina de manera bastante fidedigna y permite intervenciones en el momento mismo en que los datos se analizan sin esperar a que los activos se deterioren; tarea imposible de realizar por otros medios de diagnóstico.

Como tercer proyecto se presenta la primera de cuatro fases de desarrollo de un Historiador de datos de proceso en los Aerogeneradores por medio de PLCs de comunicación serial 485. En él se seleccionan sensores y dispositivos para ampliar el rango de acción de las alarmas existentes y lograr la comunicación y almacenamiento de sus datos de manera permanente.

De esta forma, los tres proyectos versan sobre aspectos esenciales de los sistemas eólicos y por ello implican un hito en el manejo del parque como totalidad. Con la conclusión de la práctica, se espera la continuidad de los proyectos por parte de la administración de Aeroenergía S.A. por el valor que encierran para la empresa.

2. Introducción

A continuación, se expone conceptos básicos para la compresión del presente documento.

2.1. Tendencias del Mantenimiento¹

Por "Mantenimiento de Máquinas" debe entenderse el conjunto de acciones destinadas a conservar o llevar de nuevo el equipo a su funcionamiento óptimo, bajo ciertos estándares de operación y seguridad.

2.1.1 El Mantenimiento Correctivo

El primero de los paradigmas de Mantenimiento consiste en dejar que la máquina falle para intervenirla. El Mantenimiento Correctivo es y ha sido funcional cuando la producción no es un aspecto apremiante, cuando los costos ocasionados por dar otro tipo de mantenimiento a la máquina son más elevados que dejarla fallar o cuando no tiene sentido darle otro tipo de mantenimiento. Por ello, el Mantenimiento Correctivo ofrece como ventajas una inversión mínima y relativamente pocos gastos administrativos. No obstante, este paradigma acarrea gastos elevados por destrucción y deterioro de partes de la máquina, pérdidas que no se pueden enmendar en la producción y una gran cantidad de repuestos en bodega. Incluso, por la premura de reanudar el funcionamiento de la máquina, la máquina recibe muchas veces una solución temporal e indeseable para resolver su problema.

¹ Todo este apartado se basa en la información detallada en: "Compilación de Material sobre Análisis de Vibraciones de SKF" y "Folleto del curso de Administración del Mantenimiento I".

2.1.2 El Mantenimiento Preventivo

El Mantenimiento Preventivo nació por la necesidad de mejorar los resultados del paradigma de Mantenimiento Correctivo.

Con el Preventivo, las empresas decidieron no dejar que las máquinas fallaran y se propusieron minimizar los paros imprevistos y sus elevados costos. Dentro de las acciones por tomar en un Preventivo, están las de estudiar las máquinas, hacer inspecciones para verificar su condición, probar las máquinas, hacer ajustes y estudiar los momentos óptimos para el cambio de piezas que están prontas a fallar. Este paradigma mejoró considerablemente los resultados del anterior sistema pero también tenía implícitas ciertas desventajas. El Mantenimiento Preventivo se popularizó porque las máquinas fallaban menos, operaban en mejores condiciones y porque los operadores y técnicos utilizaban herramientas administrativas útiles para obtener experiencia y mejores resultados. Sin embargo, pronto se descubrió que en las rutinas de mantenimiento se cambiaba piezas que aún contaban con una vida útil considerable; que muchas catástrofes no eran evitables sólo con los criterios de Prevención; que los gastos por cambios innecesarios de piezas aumentaron y que las empresas estaban lejos de lograr que sus máquinas no fallaran. Estas necesidades no satisfechas darán cabida a los siguientes paradigmas de mantenimiento.

Cuando se habla de Mantenimiento Preventivo se habla de documentación. Entre los documentos usuales está la "Orden de Trabajo", el "Historial de la máquina", el "Reporte de fallas", el "Cálculo de los valores de funcionamiento global", los "Reportes de mano de obra directa", la "Solicitud de compra de repuestos, materiales y herramientas", el "Informe de movimiento de los repuestos en bodega" y la "Solicitud de salida de repuestos y materiales de la Bodega".

Por eso, cuando se diseña un Programa de Mantenimiento Preventivo intervienen varios aspectos para lograr una propuesta específica para el sitio. En un Programa Preventivo se seleccionan las máquinas que entrarán dentro del mantenimiento, se valora su deterioro, se busca información técnica sobre la máquina, se codifica, se define los parámetros de funcionamiento global, se define los objetivos del Programa de Mantenimiento Preventivo y se hace divisiones de las máquinas en Partes y SubPartes. Además, se elabora un Manual de Mantenimiento Preventivo, se determina los repuestos necesarios para las inspecciones diseñadas, se calcula la disponibilidad de mano de obra para el mantenimiento y se procede a programar las inspecciones con fechas bajo el esquema de Gantt.

Eso explica porqué dentro del esquema básico del manual de mantenimiento se observa información sobre la codificación, la descripción, la frecuencia de las inspecciones, el tiempo de duración, el tipo de acción propuesta y la cantidad de técnicos necesarios para una inspección determinada.

Pese a sus desventajas, el Mantenimiento Preventivo es aún hoy una tendencia muy utilizada dados su facilidad de aplicación y relativo bajo costo.

2.1.3 El Mantenimiento Predictivo

A raíz de necesidades más imperantes en las empresas, celosas de la producción y las soluciones rápidas para los problemas, han surgido nuevos paradigmas de Mantenimiento, como el Mantenimiento Predictivo, el TPM, el RCM, el RCM 2, el Mantenimiento de Precisión y otros que resultan aplicables en empresas con una gran cantidad de máquinas, muchas actividades de mantenimiento y producción, un manejo de personal considerable, y un alto volumen de decisiones y coordinación.

El Mantenimiento Predictivo o "a Condición" pretende usar nuevas tecnologías para determinar la situación actual del equipo, monitorear su condición a lo largo del tiempo y lograr la detección de fallas e intervenciones en el momento justo en que deben realizarse por medio de la corrección de la raíz del problema. Lo usual dentro del Mantenimiento Predictivo es el Análisis de Vibraciones, las Termografías, el Análisis de aceite, los Ultrasonidos, los Rayos X y los Líquidos penetrantes, entre otros. Por medio de estas herramientas ingenieriles se pretende entender el funcionamiento de las máquinas y responder a preguntas básicas: el cómo, cuándo y porqué fallarán. Las desventajas que presentan las técnicas predictivas en general son: el alto costo inicial del equipo, lo indispensable de la capacitación del personal y, finalmente, el tiempo y la experiencia necesarias para que los resultados se tornen tangibles.

El Análisis de Vibraciones para rodamientos y engranajes fue inventado por la empresa SKF con el objetivo de obtener una herramienta de detección de problemas en máquinas rotativas. Los problemas detectables por medio del Análisis de Vibraciones son los de Soltura mecánica, Desbalance, Desalineación, Eje Torcido, Soltura de cojinetes, Fallas en la pista interior, en la pista exterior, en la canasta o en los elementos rodantes de los rodamientos, Fallas en los sistemas de engrane y Problemas de Iubricación principalmente.

Para lograrlo, se vale de diversos tipos de instrumentos y métodos de análisis numéricos que toman las señales de vibración, las convierten en señales de Transformada Rápida de Fourier (FFT o Fast Fourier Transform) y usualmente despliegan resultados en forma de frecuencias y amplitudes de vibración de las que se vale el analizador de vibraciones para obtener un diagnóstico. La evolución de las fallas en las máquinas rotativas a partir del Análisis de Vibraciones inician de manera acústica e indetectable para el oído humano, luego continúa en forma de vibración y termina en forma de ruido hasta que la falla ocurre. Este comportamiento se muestra en la figura 2.1.3.1.

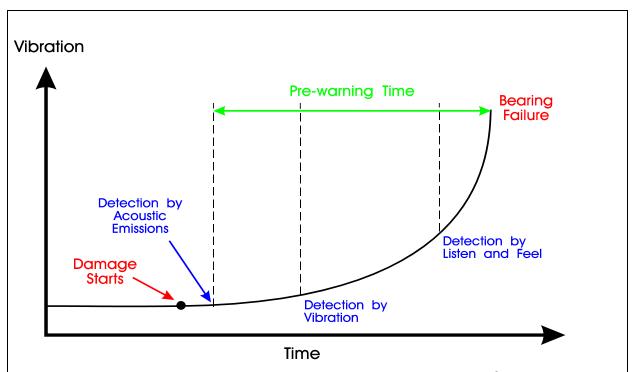


Figura 2.1.3.1. Evolución de la falla: Vibración vs Tiempo²

Para determinar la gravedad de las amplitudes para cada tipo de problema, el analizador debe recurrir a la Norma 2372 y a los estándares del fabricante. Si el personal de la planta no conoce los datos del fabricante debe al menos saber las velocidades de giro de los elementos. Debe conocer el tipo de rodamiento, el número de dientes de los engranajes y el número de aspas de las turbinas, para que por medio de ecuaciones y modelos matemáticos se pueda llegar a las frecuencias de falla.

Las ecuaciones simplificadas para encontrar las frecuencias de falla de los rodamientos por ejemplo, son los siguientes³:

- a. Fi = BPFI (problemas en la pista Interior) = 0.6 (fr) (n)
- b. Fe = BPFO (problemas en la pista exterior) = 0.4 (fr) (n)
- c. Fb = BSF (Problemas en los roles) = (dm/(2d)) (fr) $(1 (d/dm)^2 (\cos^2 \beta))$

19

² Tomado de "Compilación de Material sobre Análisis de Vibraciones de SKF".

³ Tomado de "Compilación de Material sobre Análisis de Vibraciones de SKF".

d. Ft = FTF (Problemas en la canasta) = $(fr/2) (1 - (d / dm) (\cos \beta))$,

fr es la frecuencia de giro del rodamiento, n es el número de esferas por rodamiento, dm es el diámetro del rodamiento de centro a centro de las esferas, d es el diámetro de la pista interna y β esárgulo de ataque del rodamiento.

Las frecuencias de falla de los engranes o de las turbinas en general (i.e. ventiladores) se obtienen de la multiplicación de la frecuencia de giro de los engranes por el número de dientes o aspas. En las cajas de transmisión es necesario saber la configuración de las ruedas, el número de dientes y la velocidad de cada rueda, así como el tipo de rodamiento que utilizan los ejes para poder determinar los datos básicos para el análisis.

Los parámetros más comunes por considerar son el Desplazamiento, Velocidad, Aceleración, la fase, el Enveloping, el SEE (Spectral Emitted Energy) y el HFD (High Frecuency Detection). Las señales de desplazamiento son utilizadas cuando las velocidades de rotación son bajas o cuando el movimiento de la máquina es indeseable. Para problemas en bajas frecuencias, como es el caso de la Soltura mecánica, el Desbalance, la Desalineación, el Eje Torcido y la Soltura de cojinetes, se utiliza la lectura de velocidad y la referencia de fase. Los problemas de alta frecuencia (como los problemas en engranajes, aspas y rodamientos), son detectados por medio de análisis de aceleración y para ello no es necesario tomar la referencia de fase.

La señal de Enveloping se obtiene de la manipulación de la señal de FFT. Una vez que la señal de la Transformada de Fourier se realiza, el colector de datos registra las señales de las armónicas de las frecuencias más significativas y las suma. Esto aumenta la amplitud original de la señal. De esta forma, la señal de Enveloping muestra picos que son producto de la señal principal original más las armónicas de esa misma señal. Esta técnica es utilizada por su efectividad en la detección de fallas en sus etapas más tempranas. Al ver el espectro, el analizador sabrá discernir fácilmente a cuáles frecuencias debe prestar atención y buscará a qué problema se refieren esas frecuencias.

A continuación se presenta una tabla de severidad para mediciones en Enveloping y diversas aplicaciones.

Tabla: 2.1.3.1. Tabla de severidad para valores de Enveloping y diversas aplicaciones⁴

SEVERIDAD		DIAMETRO DEL EJE (mm) / VELOCIDAD (rpm)			
	m ax 1000 H z	Ø 200 a 500 m m < 500 rp m	Ø 50 a 300 m m 500 a 1800 rpm	Ø 20 a 150 1800 a 3600 rpm	
0,075	0,1	BUENO	BUENO	BUENO	
0,35	0,5				
0,55	0,75	SATISFACTORIO			
0,75	1	ALERTA	SATISFACTORIO		
1,5	2		ALERTA	SATISFACTORIC	
3,5	4	NO ADMISIBLE		ALERTA	
7,5	10		NO ADMISIBLE	NO ADMISIBLE	

21

⁴ Tomado de "Compilación de Material sobre Análisis de Vibraciones de SKF".

El SEE es una técnica especial para detección de problemas de lubricación o de inicio de problemas en cojinetes. El SEE registra muy altas frecuencias y tiene como resultado un número que engloba la energía emitida en un rango del espectro de FFT. Con estos datos se puede identificar una lubricación insuficiente, la contaminación del fluido o el comienzo de un defecto en el rodamiento. El HFD es un número global producto del análisis de las vibraciones en un rango de altas frecuencias y bajas amplitudes. El uso del HFD es especial para corroborar la tendencia de un rodamiento a fallar pero no indica nada acerca de las causas de la falla.

Los sensores más usados son los de aceleración, pues por medio de ellos el analizador de vibraciones puede integrar la señal y obtener las lecturas de velocidad; también puede obtener la señal de Enveloping, principalmente. Los acelerómetros funcionan por el efecto piezoeléctrico, muchos de ellos son aptos para alta temperatura y requieren de dispositivos electrónicos para producir su señal.

El análisis de los espectros implica no solo la identificación de frecuencias puntuales, sino también la interpretación de las frecuencias de los armónicos múltiplos de las frecuencias de falla, en bajas y altas frecuencias. Como se muestra en la Figura 2.1.3.2, el determinar que una falla está presente implica la existencia de armónicos de la frecuencia de la falla.

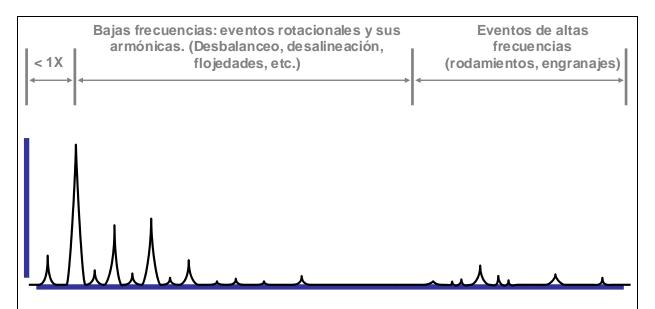


Figura 2.1.3.2 Análisis de armónicos en bajas y altas frecuencias⁵

Las fallas evolucionan por etapas. En la primera etapa no existen mayores amplitudes en la frecuencia de falla ni en sus armónicas. En la segunda etapa las armónicas de la frecuencia de falla aparecen. En una tercera etapa aparecen defectos en las frecuencias de falla. Y finalmente, aparecen bandas laterales en las armónicas y en las frecuencias de falla. Estas etapas pueden ser vistas en la figura Figura 2.1.3.3.

23

⁵ Tomado de "Compilación de Material sobre Análisis de Vibraciones de SKF".

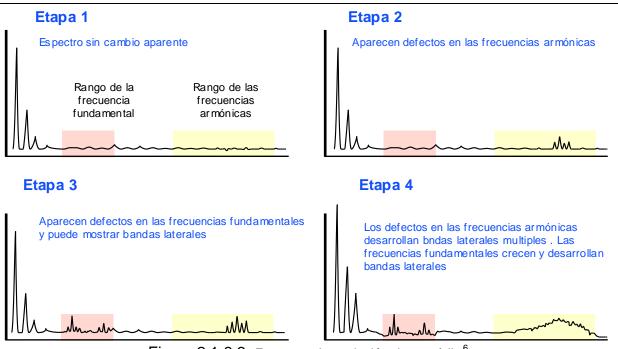


Figura 2.1.3.3 Etapas en la evolución de una falla⁶

Si se considera estos aspectos, además de contar con la experiencia y con las recomendaciones del fabricante, el personal de vibraciones puede iniciar su monitoreo.

Una de las formas más comunes de hacer monitoreo de vibraciones consiste en visualizar los registros de vibraciones de diferentes días desplegadas bajo una misma línea de coordenadas o en forma de cascada. De esta manera, el analizador de vibraciones percibe los cambios y el nacimiento de fallas en sus etapas tempranas tal y como se observa en la Figura 2.1.3.4.

24

⁶ Tomado de "Compilación de Material sobre Análisis de Vibraciones de SKF".

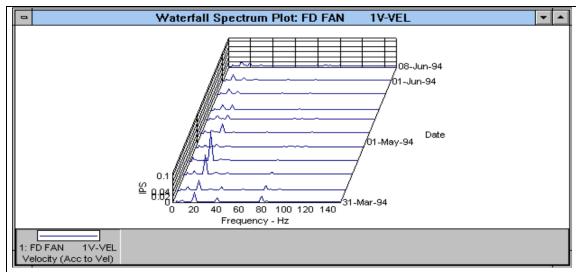


Figura 2.1.3.4 Cascada de espectros de vibraciones ⁷

Una forma de reconocer la gravedad de la condición de un punto cualquiera en la máquina, sin saber la causa y el porqué, es el monitoreo de los Valores de Tendencia Global en Velocidad cuya normativa es la ISO 2372 de la Figura 2.1.3.6. ⁸.

 ⁷ Tomado de "Compilación de Material sobre Análisis de Vibraciones de SKF".
 ⁸ Un Hp equivale a 746 W.

Tabla 2.1.3.2 Tabla de severidad en los Valores Globales para velocidad de la Norma ISO 2374 9

Vibration : Limits (Ve From ISO		Vibration Severity Ranges for Machines Belonging to:			
In/Sec (PK)	MM/Sec (RMS)	Class I < 20 HP	Class II 20-100 HP	Class III >100 HP	Class IV >100 HP
0.015	0.28		A A		
0.025	0.45	^			
0.039	0.71	В		A	A (Good)
0.062	1.12	В	В		(5555)
0.099	1.80	С	В	В	
0.154	2.80	C	С	В	В
0.248	4.50		C	С	(Allowable)
0.392	7.10			C	С
0.617	11.2	D			(Tolerable)
0.993	18.0				
1.540	28.0		D	D	D
2.480	45.0				(Not Permissable)
3.940	71.0				

A: Good

B: Allowable

C: Tolerable D: Not Permissible

Suggested Classifications:

Class I: Small (up to 15kW) machines and subassemblies of larger machines.

Class II: Medium size (15kW to 75kW) machines without special foundations, or machines up to 300kW rigidly mounted on special foundations.

Class III: Large rotating machines rigidly mounted on foundations which are stiff in the direction of vibration measurement.

Class IV: Large rotating machines mounted on foundations which are flexible in the direction of vibration measurement.

⁹ Tomado de "Compilación de Material sobre Análisis de Vibraciones de SKF".

2.1.4 El Mantenimiento de Precisión

Según la tendencia, se espera que el siguiente paradigma dentro de las filosofías del mantenimiento sea el Mantenimiento de Precisión. Basado en el Mantenimiento Correctivo, el Mantenimiento Preventivo y el Mantenimiento Predictivo, el Mantenimiento de Precisión trataría de que cuando se realice un trabajo de reparación, la máquina quede en las mejores condiciones posibles. Ello implica una ardua tarea de entrenamiento en herramientas y refacciones de calidad, calibración, balanceo y alineación de máquinas. Por los altos costos y la complejidad de este mantenimiento se espera que sea exitoso en áreas donde la expectativa de fallos sea mínima y donde el valor de la maquinaria sea elevado lo suficiente como para deteriorar el equipo con un mal mantenimiento.

2.1.5 El Mantenimiento Programado

El Mantenimiento Programado es un tipo de mantenimiento circunstancial que resuelve problemas de manera programada fuera del Mantenimiento Preventivo. Estas tareas surgen de la toma de conciencia sobre problemas, nace de incidentes recientes, de la realización rutinaria del mantenimiento preventivo, de la necesidad de modificar parámetros en las máquinas, de la avería y cambio de una máquina o de alguna actividad inconclusa en las rutinas de mantenimiento preventivo. Dentro de un Plan de Mantenimiento Preventivo debe dejarse el tiempo suficiente para poder realizar Mantenimiento Programado. Los Aerogeneradores implican una gran cantidad de Mantenimiento Programado. Así, en un mismo parque un problema que se encuentra en una máquina tiende a hacerse presente inmediatamente en el resto del parque y por ello deben programarse acciones correctivas de forma pronta.

2.1.6. EI TPM, el RCM y el RCM 2

El TPM, el RCM y RCM 2 son técnicas que implementan las filosofías fundamentales del Mantenimiento (Mantenimiento Correctivo, Preventivo, Predictivo y de Precisión) basadas principalmente en la toma de decisiones y en el personal.

El objetivo del TPM (Total Productive Maintenance) o Mantenimiento Productivo Total es centrarse en aquellas funciones que permitan preservar el funcionamiento de los equipos bajo estándares de operación deseables. Por ello se apuesta a equipos de trabajo altamente capacitado (Empowerment) que puedan tomar decisiones por sí mismos (Mantenimiento Autónomo) mediante un esquema de organización horizontal donde la solución de los problemas sea definida en una acción conjunta. El TPM busca, a su vez, la simplificación de las metas, el entendimiento de las máquinas, el trabajo conjunto con el área de producción, la implementación de procedimientos, el aprovechamiento de la sinergia y la motivación del personal, y el mejoramiento continuo. Por ello se dice que el TPM impacta principalmente en la cultura de la empresa. El éxito del TPM se ha mostrado en empresas donde la coordinación entre Producción y Mantenimiento es fuerte así como donde la producción y el manejo del personal puede resultar complejo.

El RCM y el RCM2 (Reliability Centered Maintenance) o Mantenimientos Centrados en la Confiabilidad Operacional son tendencias de gestión que pretenden la optimización de la confiabilidad operacional de las máquinas seleccionadas por parte del equipo de trabajo mediante la meditación y la programación de las medidas más adecuadas. Valora la criticidad y prioridad de cada activo en relación con cómo afecta la producción y cómo atenta contra la seguridad y el ambiente. Ambos utilizan los FMEAs (Failure Mode and Effect Analysis) o Análisis de Modos y Efectos de Falla para deducir las mejores acciones por tomar. El Mantenimiento Centrado en la Confiabilidad se ha mostrado efectivo en procesos complejos en los que la solución de las fallas no parece obvia.

2.2 Los Controladores Lógicos Programables (PLC)

2.2.1 Los PLCs

Los PLCs o Controladores Lógicos Programables nacieron con la idea de reemplazar los antiguos sistemas de control basados en contactores, "relays" y demás dispositivos de naturaleza mecánica y eléctrica. No obstante, los PLC han ido más allá de ser controladores de entradas y salidas. También realizan operaciones matemáticas y comunican información por medio de redes bajo diversos protocolos de comunicación, entre otras funciones.

Los PLCs son usualmente programados por medio de Lenguaje de Escalera o Ladder. Estos lenguajes permiten obtener información rápidamente de manera visual mediante la utilización de funciones lógicas estandarizadas.

Es importante resaltar que un proyecto de automatización o comunicación por medio de PLCs difícilmente puede iniciarse sin haber elegido un controlador, pues cada marca ofrece diferentes formas de programar y diferentes funciones.

2.2.2 Conceptos fundamentales de la comunicación electrónica

Algunos de los conceptos principales de la comunicación son los siguientes: 10

a) Bit: Mínima unidad de medida de información con dos estados posibles.

b) Byte: Secuencia de 8 bits

c) Word o Palabra: Línea de bits.

- d) Protocolo de comunicación: El protocolo de comunicación es el conjunto de reglas que definen el formato y la transmisión de datos entre dispositivos electrónicos.
- e) Protocolo de Texto ASCII: Es el protocolo más sencillo y lento. La comunicación es basada en texto. Requiere de 7 bits y está contenido en campos de 8 bits.
- f) Protocolo Modbus: Protocolo de Comunicación especial para comunicación de programas de computadoras y aplicaciones de automatización.

30

¹⁰ Todas estas definiciones, con la excepción de las de la comunicación Serial, fueron basadas en las definiciones de la página: hyperdictionary.com

- g) Puertos serial: RS-485, RS-232, RS-422: La comunicación RS-232 utiliza señales representadas por voltajes con referencia a una señal de tierra. Es utilizada para conexiones punto a punto (un dispositivo, una conexión). La comunicación RS-485 y RS-422 es parecida por su par trenzado de cables con voltajes alternados de 0 a 5 Volt. No obstante, el RS-422 usa dos pares de cables por lo que puede transmitir y recibir de punto a punto. El RS-485 funciona para comunicación multipunto, con muchos dispositivos conectados en un mismo cable bajo direccionamientos y sistemas de Esclavo y Maestro ¹¹.
- h) Baud Rate: unidad de medición de la capacidad de envío de información de un canal. Un baudio equivale a un estado por segundo.
- i) Bit de paridad: es un bit agregado a una transmisión de datos binaria con tal de identificar por medio de un 1 o un 0 si la transmisión de datos es un número "even" o "odd" (par o impar).
- j) Bit de término (Stop Bit): Una vez que todos los bit de una línea se han transmitido, se posiciona un 1 como bit de término seguido del bit de paridad. Este bit denota el fin de una unidad de información.
- k) Buffer: Lugar temporal en la memoria RAM donde los datos esperan para ser enviados a otras locaciones de memoria o a otros dispositivos.

¹¹ Tomado de la dirección: http://www.hw.cz/english/docs/rs485/rs485.html

2.2.3. Sensores Analógicos y Digitales

Los sensores digitales son utilizados en casos donde existen dos estados posibles, como encendido - apagado, o presente - no presente. Ese es el caso de los sensores de RPM, los sensores de proximidad, los interruptores y demás. Lo usual es encontrar que las salidas de estos sensores son de 24 Volt.

Los sensores analógicos son utilizados para sensar parámetros que crecen o decrecen progresivamente y poseen una densidad de datos significativa. Usualmente los sensores analógicos reflejan por medio de rangos de corriente de 4 a 20 mA, estados que van desde un nivel inferior hasta un nivel superior. Las típicas mediciones analógicas son de temperatura, viento, flujo, etc.

2.2.4. PLC Mitsubishi FX _{1N}- 14MR

La particularidad de la PLC Mitsubishi FX _{1N}-14MR reside en su tarjeta de RS-485. Esta tarjeta la habilita para comunicarse vía puerto serial con otros dispositivos que también estén diseñados para comunicarse por RS-485. Además contiene una serie de funciones para manipular los datos.

Para diseñar y monitorear los programas en el PLC Mitsubishi FX, se utiliza el programa Melsoft GX Developer. Este software permite acceder a las funciones, monitorear las variables, diseñar las decisiones lógicas y comunicar el PLC.

2.2.5. Funciones lógicas y elementos básicos del lenguaje de Escalera del PLC Mitsubishi FX _{1N}- 14MR

En el lenguaje visual de escalera el elemento principal es el contactor. El contactor se representa por dos líneas paralelas y verticales, con la letra X y un número que lo diferencia de otros contactores. Los contactores usan el mismo concepto que los interruptores: cuando son activados se cierran (eso es cierto cuando los contactores son normalmente abiertos) con lo que permiten el paso de energía entre las dos líneas de los lados del diagrama. Con las señales de entrada, los PLC toman decisiones, realizan operaciones o almacenan y transfieren información.

El otro elemento básico de los diagramas son las salidas, que son encerradas entre paréntesis y denotadas con una Y más un número que la identifica. Las salidas actúan como interruptores de elementos en el proceso real. Las salidas activan las máquinas o los dispositivos a partir de las señales y estímulos en las entradas, o a partir de decisiones en el programa del PLC.

Algunas de las funciones principales son: RST (Reset), C0 (Contador), T250 (Timer), Mov (Mover datos), Div (División de datos) y End (Fin de la programación). La función Reset sirve para volver la cuenta a cero en algunas funciones como los temporizadores, los contadores, y otros. La función del Contador es sumar la cantidad de veces que se pulsa un contactor en la entrada designada para ello. Cuando la cuenta llega a un valor determinado, se activa un contactor del contador.

Los temporizadores se parecen a los cronómetros en su función. Cuando son energizados en la entrada de disparo, los temporizadores inician la cuenta del tiempo hasta que algo la detiene.

El comando Move es utilizado para mover datos de un lugar de memoria a otro.

Los lugares de memoria se designan con la letra D más un número diferenciador. La función del comando División es la de efectuar una división de dos valores en memoria y almacenar el resultado en otro Buffer. Finalmente, la función End fuerza al PLC a reconocer la conclusión del programa. Al declarar End al final del diagrama de escalera el PLC funciona de forma más rápida que si no tuviera esa función.

2.3. Explicación básica del funcionamiento de los Aerogeneradores Neg Micon NM750.

Las turbinas eólicas Neg Micon NM750 utilizadas en Aeroenergía son sistemas con tres aspas en el rotor, sistema de freno en las puntas de las aspas (Tips), Caja multiplicadora de velocidad y un generador asincrónico. Además de esos componentes tiene sistemas de orientación con el viento para el mayor aprovechamiento de la energía, tiene un sistema de freno de disco en el rotor y cuenta con un complejo sistema de monitoreo y control de variables.

La función de la caja multiplicadora de velocidad está en el generador. El generador está conectado a la malla del ICE y por ello el campo en el estator gira a 1812 rpm aproximadamente para 4 polos. Ahora bien, las aspas por sí solas no pueden girar a 1812 rpm con la simple acción del viento. Por ello debe diseñarse el sistema para que gire a una velocidad mucho menor y que esta sea incrementada en la caja multiplicadora de velocidad.

La parte superior de la turbina es llamada góndola. La góndola se sitúa a 40 metros sobre la tierra. Dentro de los aspectos de seguridad debe tomarse en cuenta que trabajar a esas alturas, con un alto nivel de vibraciones, una gran cantidad de dispositivos en movimiento, suciedad y calor, puede resultar peligroso y por ello las tareas de mantenimiento se dificultan.

2.4. Explicación básica del funcionamiento del Programa iHistorian y el OPC¹².

El programa "iHistorian" es un software innovador de almacenamiento de datos especial para procesos industriales. El iHistorian está en capacidad de colectar datos cada 1/1000 segundos. Los datos pueden ser manipulados por sistemas comunes de bases de datos como SQL. Esto proporciona una mayor practicidad a la herramienta. Con el iHistorian los datos entran provenientes del proceso hacia el servidor OPC y de allí a módulos de visualización donde ayudan al personal a tomar decisiones administrativas. Es compatible con las principales marcas de sistemas de control del mercado porque opera bajo el concepto de OPC.

OPC significa *OLE for Process Control*. Las siglas OLE representan Object Linking and Embedding (Vínculo y fijación de objetos), que es un sistema distribuido de objetos creado por Microsoft. La OPC es entonces una especificación hecha para simplificar las tareas de comunicación en la industria, a partir de sistemas de direccionamiento y compatibilidad con productos Microsoft. Así, el usuario o cliente puede conectarse a un proceso moderado por un PLC y observar los datos que le envía el servidor. Ese servidor opera como un programa en la computadora que aplica la especificación de OPC.

Además, General Electric ha concebido el programa "info Agent" con tal de poder transferir la información a diferentes computadoras y proporcionar conectividad con redes.

¹² Basado en la información de la página web: www.softwaretoolbox.com

2.5. Explicación básica del funcionamiento del programa Prism4 de SKF y el Colector de datos CMVA-55 Microlog para análisis de Vibraciones

El programa Prism4 es utilizado por diferentes tipos de tecnologías en análisis de vibraciones de la empresa SKF. Prism4 permite diseñar las rutas de análisis de vibraciones y determinar los parámetros de cada punto. Con la ruta de mediciones lista, el personal encargado puede proceder a descargar la ruta en la máquina colectora de datos CMVA-55 Microlog y con ello tomar las señales de las máquinas.

Con los datos de las máquinas en el Microlog, el personal puede cargar los datos en la computadora y visualizar las tendencias de vibración, los espectros y los valores globales, entre otros. En ese sentido, el programa Prism4 se convierte en una herramienta de base de datos.

3. Reseña sobre la Planta Eólica de Aeroenergía S.A.

3.1 Historia de Aeroenergía S.A.

La empresa Aeroenergía S.A. se construyó en 1994 con el propósito de co-generar energía eólica en conjunto con el ICE con el amparo de la Ley No. 7200. Esta ley ha regido la generación autónoma y paralela de energía en Costa Rica. El contrato de compra – venta con el Instituto Costarricense de Electricidad se firmó el 14 de abril de 1997.

3.2 Organigrama de la empresa

Aeroenergía es una empresa pequeña con una estructura simple como se muestra en el Organigrama.

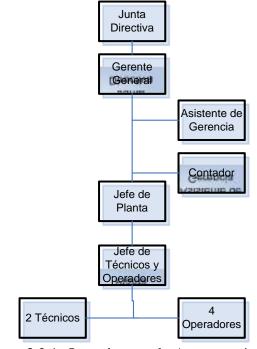


Figura 3.2.1. Organigrama de Aeroenergía S.A.

3.3 Tecnología utilizada

El diseño original de las turbinas corresponde a la M1800 NM750 de la empresa Neg Micon, con paso fijo, dos velocidades y generadores asíncronos de 1812 y 1210 rpm (de 750 y 250 kW). La máquina viene equipada con sistema de sensores y un controlador WP3000 que coordina las acciones de la turbina y dispara alarmas en caso de fallo.

Como se puede observar en los manuales de la máquina que se presentan en el Anexo 38, la máquina está equipada con un rotor, tres aspas, un eje, una caja multiplicadora, acoples y un generador. Además contempla motores y frenos de orientación lateral para hacer frente al viento en cualquier momento, y un complejo sistema de control.

4. Mantenimiento Preventivo aplicado a Aerogeneradores Neg Micon M1800, 750kW

4.1 Definición del problema

Conocedores de la diferencia entre el estilo del Mantenimiento Industrial común y el Mantenimiento de Aerogeneradores, Aeroenergía S.A. aceptó el proyecto de Mantenimiento Preventivo como forma de probar con nuevas herramientas para hacer frente a las tareas diarias en la planta.

El campo de la energía eólica está aún en su etapa de desarrollo. Por eso, cada día se encuentra mejores diseños de aerogeneradores y formas de dar mantenimiento al equipo. El mantenimiento de los aerogeneradores difiere en gran medida del Mantenimiento Industrial por varios motivos. La mayoría de los componentes de la turbina se encuentra en sitios de difícil acceso, en condiciones incómodas y peligrosas. Es por ello que la estancia en el sitio debe ser la mínima y eso dificulta el acercamiento con la máquina para aprender de ella. Además limita poder asumir las tareas de mantenimiento debido a la falta del equipo adecuado para efectuar múltiples tareas.

Bajo regímenes de viento fuertes, como es el caso usual de ciertos periodos en la zona de Tilarán, Guanacaste, el acceso a la máquina no es posible e incluso las máquinas deben detenerse ante una operación insegura con vientos por encima de los 25 m/s. En esas condiciones, la máquina no volverá a iniciar su funcionamiento sino hasta que el viento se mantenga a menos de 18 m/s durante un mínimo de diez minutos.

Dadas algunas cuestiones de seguridad, lo impredecible del viento, los elevados costos de tener la máquina detenida con vientos adecuados para la producción eléctrica y lo pequeño del parque, el mantenimiento necesita de una comunicación rápida que se despliegue a todos los niveles de la empresa para la toma de una decisión determinada. La flexibilidad y eficiencia necesarias en esta aplicación hace del sistema de Órdenes de trabajo un sistema inaplicable. En cambio, la comunicación, análisis y autorización de las intervenciones se realiza por vía telefónica, vía radio-transmisor o por Internet y estos medios resultan más adecuados a un parque de 9 turbinas donde las intervenciones son poco usuales y deben ser decididas con rapidez.

Frente a dichas particularidades de los parques eólicos, el fabricante Neg Micon A/S desarrolló un tipo de mantenimiento basado en Alarmas y por inspecciones que se realizan cada 6 meses y cada 2 años, llamados Service B y C respectivamente.

El Service A corresponde a una rigurosa inspección al inicio de las operaciones del parque. Este sistema de Service tiene una naturaleza altamente preventiva y programada con aplicaciones eventuales de técnicas predictivas como el análisis de aceite y el análisis de vibraciones. Usualmente, estas inspecciones se realizan entre septiembre y octubre, o en abril, cuando los vientos son escasos y la pérdida de energía derivadas de detener las turbinas es menor.

Algunos de los documentos del Mantenimiento Preventivo que Aeroenergía mantiene al día son: el Historial de la máquina (bitácora ubicada en el Panel de Control de cada turbina), el Reporte de fallas, los Valores de funcionamiento global (Curva de potencia versus velocidad de viento), los Reportes de mano de obra directa (Informe semanal de labores), y la Solicitud de compra de repuestos, materiales y herramientas.

De los documentos usuales, el Informe de movimiento de los repuestos en bodega, o la Solicitud de salida de repuestos y materiales de la Bodega no son utilizados porque la bodega es relativamente pequeña. La experiencia de Aeroenergía muestra que no es conveniente tener muchos repuestos en bodega por lo caro de las partes, porque algunos de ellos pueden ser obtenidos en la Planta eólica Movasa y por el deterioro normal. En caso de visualizarse la necesidad de repuestos se hace una requisición a Neg Micon Dinamarca y en cuestión de días los repuestos llegan a la Planta.

Gran parte de la información de la máquina es considerada por Neg Micon A/S como confidencial. Eso obstruye la posibilidad de dar un mantenimiento certero por parte de los dueños de las máquinas.

En ese sentido, la tarea fundamental de esta práctica de especialidad es estudiar la máquina, los múltiples cambios que ha sufrido, colectar información de sus partes, recopilar parte de la experiencia de los encargados del mantenimiento de Aeroenergía y traducirla en el diseño y programación un Plan de Mantenimiento con su respectivo Manual de Mantenimiento, sus diagramas detallados, imágenes y sus inspecciones.

4.2 Fuentes de información

El presente trabajo de Mantenimiento Preventivo se ha basado en la experiencia que ha dejado el quehacer de las inspecciones o Service en manos de terceros a lo largo de los años. De esta forma, ha sido difícil determinar la efectividad de las acciones que se recomiendan en las presentes inspecciones, principalmente en aquellos casos nuevos que nunca han sido probados en estas máquinas.

4.3 Codificación del Parque

4.3.1 Codificación del Parque

Toda codificación en la Planta Aeroenergía comienza con las letras AE. Este inicio de código es necesario para evitar problemas en una eventual ampliación del uso de este documento y su posible utilización conjunta con la Planta de Energía Eólica Movasa.

Las componentes ingenieriles principales del parque se dividen en este documento en Turbinas, Subestación, Transformadores de las turbinas, Transformador del edificio y Torres de Meteorología. Por ello, cada uno de estos componentes tiene su propio código. Las Turbinas se denotan con la letra T más el consecutivo del número con el cual están ordenados en el Parque. Ejemplo: Turbina 1: AE-T01.

La Subestación está codificada con las letras SE. Ejemplo: Subestación: AE-SE.

Los transformadores de las turbinas se denotan con el código de la turbina a la que pertenecen más la letra T. Ejemplo: Transformador de T1: AE-T01-T.

El Transformador del Edificio se denota con TE. Ejemplo: Transformador del Edificio: AE-TE.

Las Torres Meteorológicas se denotan con TM más un consecutivo. Ejemplo: Torre Meteorológica 1: TM-1. La lista completa de la codificación se muestra en el <u>Anexo 1</u>.

4.3.2. Codificación de los bloques de mantenimiento

La codificación de las partes de la turbina se ha unido con la codificación de otros elementos que no están en la turbina (como por ejemplo, la subestación). Esto tiene el fin de usar esta codificación en los Manuales de Mantenimiento y en las inspecciones.

Las diferentes partes se han designado con números y no con letras porque muchas veces es difícil encerrar en abreviaturas los conceptos que engloba un bloque de mantenimiento.

En el presente trabajo se han conformado bloques de máquinas que desde el punto de vista del mantenimiento están muy relacionadas. Ese caso se presenta con el bloque de la Estación Hidráulica, el Aspa y el Tip, en la cual la interrelación es muy significativa, pese a que los sistemas son diferentes.

La codificación puede observarse en el Anexo 2.

4.4 Diagramas de la máquina

Al inicio de la práctica, Aeroenergía poseía esquemas básicos facilitados por Neg Micon sobre máquinas similares a la M1800 (NM 750). Sin embargo, a lo largo de los años a las máquinas originales les han cambiado el generador, la caja, los sistemas de enfriamiento y algunos otros sistemas. De esta forma, los diagramas originales no correspondían más a las máquinas actuales. Por este motivo los diagramas fueron re-dibujados en Autocad con la idea de poder rotular sus componentes y facilitar el entendimiento del Programa de Mantenimiento.

Los esquemas se muestran en el Anexo 3

4.5 Diseño de la documentación

Como se mencionó en la introducción, en Aeroenergía se llevan una serie de documentos que cumplen las funciones de la documentación básica del Mantenimiento. La explicación de los documentos es la siguiente:

4.5.1. Solicitud o Orden de trabajo

Como se indicó en la sección Definición del Problema, en Aeroenergía no se utiliza la Orden de trabajo principalmente porque los problemas de las máquinas deben ser comunicados rápidamente. En cuestión de minutos, todos en la empresa deben conocer el problema para poder encargarse de él o proponer una solución.

4.5.2. Historial de las Máquinas

Neg Micon utiliza una bitácora en el Panel de Control al pie de la Turbina. En esa bitácora se explican las labores de los Service y de otras intervenciones. Esa bitácora no se pasa a una versión electrónica, sino que se deja en el papel. Sin embargo, la única información que se lleva en la bitácora de la turbina es el detalle del trabajo, la producción acumulada, la fecha, la hora y el responsable de las labores.

Además de que el técnico apunte los acontecimientos en la bitácora de la Turbina, el operador del Parque anota en la bitácora de operaciones las labores de mantenimiento que ocurren en las máquinas. En el futuro, las hojas de Inspecciones darán información sobre las intervenciones.

4.5.3. Documento de Datos Técnicos

Parte de los datos técnicos de la Máquina se han obtenido del Manual de Operación de Micon y de un archivo llamado: datos_tech_750.pdf. Antes de esta práctica ningún manual o documento contenía la información unificada ni completa, de ahí parte de la misión del presente documento.

Otros datos han sido tomados directamente de las máquinas y su información buscada en Internet o solicitada al Fabricante. Pese a que la información es limitada, actualmente se cuenta con una buena cantidad de datos. Esa información se encuentra vinculada en la tabla del Anexo 38.

4.5.4. Reporte de fallas

El documento de Control de Alarmas es el que sustituye al tradicional Reporte de Fallas. Además de reportar fallas, el Control de Alarmas también indica los paros manuales de la máquina que ocurren cuando se realizan los Service. El reporte completo despliega información del tipo de Alarma por la que ha sido detenida, el número de turbina, la fecha en la que ocurrió la alarma, el número de error al que corresponde, la descripción del error, las condiciones de viento, producción, tiempo total de operación desde que inició la máquina, la persona informada de la alarma, el operador que se hizo cargo de la alarma, el detalle del problema, la hora en la que entró a funcionar de nuevo la turbina, el régimen de viento en el cual entró y el tiempo total durante el que estuvo detenida por la falla.

Este documento se lleva en versión electrónica e incluye la disponibilidad de las máquinas durante determinado periodo de tiempo (mes).

El documento se puede observar en el Anexo 8

4.5.5. Valores de Funcionamiento Global

En los Generadores Eólicos el patrón más significativo es la Curva de potencia versus velocidad de viento. Este dato es registrado por el Medidor de Calidad de Energía Mutilin de la General Electric. Los datos se guardan con un formato electrónico propio del programa. Así, los operadores deben guardar la curva de potencia tres veces al día.

4.5.6. Reportes de Mano de Obra Directa

Los encargados del mantenimiento llevan Informes semanales de labores. Estos informes se llevan a mano y puede observarse en el Anexo 9

4.5.7. Solicitud de compra de repuestos, materiales y herramientas.

La solicitud de salida de repuestos y materiales de la bodega no es utilizada porque la bodega es relativamente pequeña y las labores no son tan frecuentes como en aplicaciones industriales o de mayor escala. Las solicitudes de compras son planteadas oralmente al Jefe de Planta y al personal. Para ello, no se llena ninguna documentación. Cuando existe una compra o pago de alguna labor, se llena un formato en una hoja de Excel con el detalle de lo ocurrido.

Esa hoja de Excel se observa en el Anexo 10.

4.6 Manuales de Mantenimiento

Los Manuales de Mantenimiento contienen información sobre las subdivisiones de cada parte de la máquina, aclara la función de la parte, la codifica, estima una acción de mantenimiento adecuada para el programa, le asigna una periodicidad, un número determinado de técnicos, y estima un tiempo de realización de la tarea. Este manual es una guía básica para la reflexión sobre el diseño de las inspecciones. Los manuales se muestran en el Anexo 4. Los datos técnicos y los enlaces a manuales se observan en el Anexo 38. Los detalles acerca de la ubicación de cada parte se pueden observar en las fotos del Anexo 11 o en los esquemas del Anexo 3.

En los manuales, no se utiliza codificación para aludir al tipo de inspecciones, pues puede provocar confusiones.

4.7 Inspecciones

Las inspecciones están basadas en gran medida en el sistema de Neg Micon de Service tipo B y C; y del Mantenimiento Programado. Las inspecciones del presente documento fueron confeccionadas con la experiencia del personal de Aeroenergía, las recomendaciones del fabricante y la meditación sobre las tareas más acertadas de mantenimiento. Para aquellas tareas que no habían sido contempladas en los Service, se diseñó un tipo de inspección llamado Ex (Extras).

Las inspecciones indican la parte a la que le dan mantenimiento, el número de inspección e información sobre el resultado de la inspección con un espacio para hacer anotaciones. Además existe una casilla para llenar el tiempo real de finalización de la labor de manera que se pueda estimar mejor el tiempo de las labores futuras. En el momento de realizar las inspecciones se debe cambiar el código de la inspección, e imprimir. Antes de realizar la inspección debe llenarse la fecha en la que se realiza la inspección.

Las inspecciones pueden verse en el Anexo 5

4.8 Programación de actividades de mantenimiento propuestas

Como se mencionó en la Introducción, las actividades de mantenimiento se realizan en época de poco viento. Usualmente eso ocurre entre setiembre y octubre y de manera menos evidente en otros meses, para el caso de Tilarán. No obstante, si en determinado año el viento es bueno para la generación, la administración no permitirá que turbina se detenga y el mantenimiento no podrá realizarse. Por ello se dice que la Programación es una propuesta cuyo cumplimiento no depende del personal de la planta sino de las condiciones de operación en el momento.

El Gantt que se observa en el Anexo 6

4.9 Procedimientos frente a Alarmas

Las turbinas de Neg Micon M1800 (NM750) cuentan son un sofisticado sistema de alarmas que muestra el momento en que alguna anomalía se presenta. Parte de este trabajo de Mantenimiento Preventivo contempla el diseño de diagramas de flujo con instrucciones sobre cómo hacer frente a una alarma. Por ello, se han confeccionado diagramas de Flujo en el programa Microsoft Visio. Por cuestiones de tiempo y practicidad, las alarmas con diagramas de flujo son un porcentaje pequeño del total de alarmas del sistema. Sin embargo, fueron escogidas aquellas más frecuentes e importantes.

Los diagramas pueden observarse en el Anexo 7.

4.10 Aspectos de Seguridad o Precaución

Las tablas de inspecciones llevan notas de seguridad o precaución junto al número de la inspección. Los aspectos de precaución son descritos a continuación:

P1: Máquina en Service. Generador desconectado. Freno asegurado. Mínimo dos personas en la inspección. Cortar la comunicación del Panel con el Parque.

P2: Si para revisar los dispositivos es necesario intervenir el Panel, entonces se debe apagar la turbina. Poner la máquina en Service. Desconectar la alimentación. Desconectar la comunicación. Mínimo dos personas en la inspección. Freno asegurado.

P3: Cuidado con los elementos rotativos. Cuidado con el sensor esférico de vibración.

P4: Igual que P1. Además, desconectar la alimentación del dispositivo intervenido.

P5: Igual que P1. Además, anclar el freno para que las aspas queden en Y. Linga de seguridad atada al Rodamiento Principal. Casco.

P6: Igual que P5. Además, apoyar apropiadamente las plataformas de Sky Damper a la torre para trabajar en las aspas.

P7: Arnés y casco puesto. Alertar al personal. Cuidado en el manejo de herramientas y accesorios.

P8: Desconectar las turbinas. Aterrizar la subestación. Interrumpir los alimentadores.

P9: Cuidado con aislar los polos de la batería.

P10: Cuidado. Posibilidad de descargas eléctricas.

4.11 Análisis costo beneficio del Proyecto Administrativo de la Práctica de Especialidad

Con base en el contrato logrado entre el ICE y Aeroenergía S.A. se puede deducir un monto promedio de producción por turbina por hora de \$45. El tiempo de la práctica fue de 5 meses. El costo administrativo que representa el practicante es de \$541 (con un salario de \$325 al mes). Un análisis rápido que no tome en cuenta el valor del dinero en el tiempo, indica que Aeroenergía vería paga su inversión según el siguiente cálculo

$$0 = \$45 \times h - \frac{5}{3} \times \$325$$
; $h = \frac{5 \times \$325}{3 \times \$45} = 12 \text{ horas}$

cuando se logre 12 horas menos de paro en una turbina bajo el nuevo esquema. Eso corresponde a disminuir los tiempos de paro en un 7,6%, si se toma en cuenta que en el mes de marzo del 2004, las turbinas permanecieron detenidas 157,5 horas. Eso es fácilmente asequible pues con la información y herramientas del Programa de Mantenimiento Preventivo las decisiones se tomarán más rápido y las máquinas pasarán menos tiempo detenidas.

Otros beneficios no cuantificados del programa son: los Sistemas de inspecciones, los Procedimientos frente a alarmas y la Programación de las actividades de Mantenimiento. Por ello, el proyecto en realidad se paga en menos de las 12 horas indicadas.

4.12 Recomendaciones

Para lograr un nivel óptimo en el funcionamiento del mantenimiento y en vista del nivel de operaciones que la empresa Aeroenergía tendría que asumir en caso de una expansión, la empresa debería realizar actividades para fortalecer la visión de la toma de decisiones en conjunto y del trabajo en equipo.

Además, por la planificación y la complejidad de las labores de mantenimiento en estas condiciones, el personal debería capacitarse en técnicas de montaje, alineación y cambio de piezas para poder asumir cada vez más funciones en las máquinas. El personal debería adoptar la filosofía del Kaisen o del Mejoramiento Continuo de los Planes de Mantenimiento Preventivo que se ha expuesto en esta práctica y poder mejorar las inspecciones y la información contenida en este documento.

5. Análisis de Vibraciones en Cajas Multiplicadoras y Generadores, aplicado a fallas en rodamientos y engranajes en Generadores Eólicos Neg Micon NM 750.

5.1 Definición del Problema

Al inicio de la práctica, la empresa Neg Micon ya había realizado análisis de vibraciones en las cajas y los generadores. No obstante, esa información nunca llegó a manos de la empresa.

Por ese motivo y por la dificultad de detectar problemas en condiciones tan difíciles, además de las particularidades vibratorias de este tipo de tecnología, la empresa Aeroenergía decidió iniciar un programa de Análisis de Vibraciones aplicado a los rodamientos de los generadores, a los engranes y rodamientos de las cajas multiplicadoras y los rodamientos del rodamiento principal.

La idea original era utilizar el equipo de la Escuela de Mantenimiento del Instituto Tecnológico de Costa Rica (CMVA 55 Microlog). Sin embargo, el equipo no estaba en buenas condiciones. Por ello, la reparación, la espera y el pago de una póliza por parte de Aeroenergía fueron necesarios.

Además, no existía en la Escuela alguien anuente a explicar el uso correcto del software ni de la toma de mediciones, por lo cual se tuvo que aprender todas las partes del proceso del Análisis de Vibraciones. No obstante, se debe resaltar la participación de los profesores Eligio Astorga, Juan Carlos Miranda y Manuel Mata, todos de la Escuela de Mantenimiento, en la revisión del proyecto.

5.2 Aislamiento de Señales externas a los elementos por analizar

Las turbinas Neg Micon NM750 (como las presentes en Aeroenergía) poseen una serie de amortiguadores laterales en la parte trasera de la góndola, amortiguadores en los apoyos del Generador, amortiguadores en los apoyos de la Caja Multiplicadora y amortiguadores en los acoples flexibles que unen los ejes de la máquina.

Al realizar el análisis de vibraciones se supone que este conjunto de amortiguadores logrará impedir que las vibraciones del vaivén de la torre, las aerodinámicas propias del aspa, las producidas por otras máquinas en el entorno y las producidas por fluctuaciones eléctricas instantáneas interfirieran en gran medida con las propias de las fallas de los mecanismos. No obstante, se sabe que esto no es posible. Para remediarlo no queda más que la experiencia que permita discernir las señales que son causadas por fallas posibles de aquellas que son producidas por agentes externos.

5.3 Análisis de Vibraciones en la Caja

5.3.1 El Problema de Analizar Vibraciones en cajas.

Las Cajas Multiplicadoras de Flender PEAC 4300.4 son máquinas muy compactas y con gran cantidad de elementos rodantes. Esto le suma complejidad al análisis de vibraciones por la gran cantidad de ruido en las señales vibratorias de los múltiples elementos y por tener relativamente poca masa en la cual disipar las vibraciones.

En los programas de Análisis de Vibraciones quien dicta los patrones admisibles de vibración en Aceleración y Enveloping es la empresa fabricante a través del estudio de su propio producto. No obstante, al solicitar información las empresas Flender y Neg Micon han presentado datos insuficientes o de dudosa aplicación.

De ahí que parte del problema de no poder determinar posibles fallas con certeza en los primeros meses del Análisis de Vibración, se debiera a que el personal debe aprender por su cuenta cómo funciona la máquina y cómo se comportan sus vibraciones. El funcionamiento promedio de los mecanismos en diversos puntos se ha estimado por medio de una tabla de Excel y un sistema de promedios simples. Esta hoja se observa en el Anexo 12.

5.3.2 Información adquirida. Verificación, estudio y consecución de datos restantes.

La información facilitada por la empresa Flender se encuentra en el Anexo 19.

La empresa Flender no envió ningún tipo de confirmación de que esos datos fueran aplicables a las Cajas Multiplicadoras de Aeroenergía. El problema principal es que en Europa, con un sistema eléctrico de 50 Hz, las cajas giran a 1510 rpm en la etapa de salida. En Costa Rica, las cajas giran a 1812 rpm. Ese aspecto cambia considerablemente las frecuencias.

5.3.2.1. Rodamientos

En el caso de los rodamientos de la caja, las frecuencias fueron calculadas para 1812 rpm y sus armónicas fueron estimadas. Las tablas con la información reacondicionada se muestra en el Anexo 20. No obstante, debe agregarse que estos datos son dudosos. Hace algún tiempo, las cajas empezaron a fallar a nivel mundial y con ellas, las cajas de Aeroenergía sufrieron un cambio en algunos rodamientos. En las siguientes etapas, Aeroenergía debe procurar verificar los datos de vibraciones con la empresa Flender.

Además, los rodamientos en la caja fueron demarcados con letras. Estas letras se observan en el diagrama de la caja que se observa en el Anexo 22.

5.3.2.2. Engranajes

Las frecuencias de los engranajes brindados por la empresa Flender fueron reacondicionados. Estos datos se muestran en el Anexo 21.

Para este tipo de caja se hace un análisis adicional en el Anexo 23. Este análisis determina la frecuencia de giro en los piñones de la caja por el Método Analítico de Tabulación.

5.3.3. Selección de puntos en la caja.

Los puntos en la caja que se muestran en el <u>Anexo 22</u> fueron escogidos para los siguientes fines. El punto 1 monitorea los piñones planetarios, la rueda sol, la rueda de la carcaza y los rodamientos B C e I. El punto 2 monitorea los mismos aspectos que el punto 1.

El punto 3 sensa el rodamiento A. El punto 4 monitorea los rodamientos G y D y los engranajes en la etapa intermedia. El punto 5 sensa los rodamientos G y F. El punto 6 determina las vibraciones en D y E y en la etapa final de velocidad.

El punto 7 determina el desalineamiento o los problemas de vibración axial.

El punto 20 sensa las vibraciones del rodamiento H y los engranes de la etapa intermedia. El punto 21 determina las vibraciones en los rodamientos E y F y las fallas en la etapa de salida del reductor.

5.4 Análisis de Vibraciones en los Generadores

5.4.1 El Problema de Analizar Vibraciones en Generadores

El principal problema en los generadores Elin ha sido la falta de respuesta de la empresa sobre datos de Análisis de Vibraciones. A raíz de la falta de información, los cálculos de las frecuencias de falla de los rodamientos del generador fueron realizados en el Anexo 24.

Además, se procedió a realizar un cálculo del promedio de los valores globales en todos los puntos del generador para determinar un nivel estándar y normal de vibración en esos lugares. Esos valores pueden ser apreciados en la hoja de Excel que aparece en el Anexo 12.

5.4.2 Presentación de los datos de vibraciones para el Generador Elin

Finalmente, después de acondicionar los datos, las frecuencias de falla para el generador se presentan en el Anexo 25.

5.4.3. Selección de puntos

El sensor fue puesto en el generador de manera radial lateral en el punto10 para el rodamiento delantero y en el punto 11 para el rodamiento trasero. Además existe otro punto denominado 12 que toma los datos axiales del generador con tal de saber si tiene problemas en el eje.

Estos puntos pueden ser apreciados en el Anexo 26.

5.5. Selección de tipos de medición pertinentes

Según corresponda, en los puntos donde los elementos sensados giren a bajas velocidades, la medición será de Velocidad.

Cuando los puntos por medir reflejen datos de elementos con velocidades de giro considerables, o se esté en presencia de engranajes y rodamientos, se tomarán mediciones en Velocidad, Enveloping y Aceleración.

Cuando los datos del punto deban reflejar desalineaciones y problemas en el eje se tomarán mediciones por Velocidad.

5.6. Configuración final de todos los puntos en el Software Prism 4

Los puntos en Velocidad se configuraron de la manera presentada en el Anexo 27.

Los puntos en Enveloping han sido configurados como se muestra en el Anexo 28.

La configuración de los puntos en Aceleración se observan en el Anexo 29.

5.7 Sistema de Análisis de los datos.

En vista de que no existe información de severidad de aceleración o patrones normales de vibración proporcionada por los fabricantes de esta aplicación, se optó por el siguiente sistema: a lo largo de las mediciones en los diferentes puntos de la máquina se ha conformado una hoja de Excel donde se incluye los datos de los valores globales obtenidos de las últimas mediciones del Reporte del Software. El propósito de la hoja de Excel es tabular los datos para comparar todas las máquinas del parque y calcular un promedio simple de cada punto con la idea de tener un estándar.

Esa hoja de Excel se observa en el Anexo 12

5.7.1. Paso 1 del Análisis de Datos

Esa hoja debe ser actualizada con cada medición para mejorar el valor tomado como estándar de cada punto. Debe tenerse el cuidado de verificar que la expresión matemática es correcta.

5.7.2. Paso 2 del Análisis de Datos

En el paso 2 se debe llenar el formato del <u>Anexo 13</u>. Con ese formato se establecen los valores globales, se determina la severidad de esa medición, se compara con los valores promedio de la hoja de Excel. Finalmente, se determina si es necesario mirar los espectros de determinados puntos en busca de fallas. Se incluye un ejemplo desarrollado de este formato en el <u>Anexo 15</u>.

5.7.3. Paso 3 del Análisis de Datos

En el formato presente en el <u>Anexo 14</u> se analizan los espectros. En la hoja se denota las frecuencias más relevantes, se vincula esas frecuencias a posibles fallas, se analiza el estado de las vibraciones en bajas y altas frecuencias de manera que se pueda determinar en qué etapa se encuentra la falla y se decida si es conveniente intervenir la máquina. El ejemplo está disponible en el <u>Anexo 16</u>.

5.8 Análisis de los datos colectados en la Caja de la Turbina 1

Los pasos 1, 2 y 3 del análisis de los datos para la turbina 1 se puede observar en los Anexos 17 y 18. Después del Paso 2 se decide observar los espectros de los puntos 4, 6, 10, 11 y 12. En el Paso 3 se analizan los espectros y se tabula las cualidades de los espectros para concluir si se debe intervenir la máquina o no.

5.9 Conclusiones sobre la Turbina 1

Las conclusiones sobre el Análisis de Vibraciones se escriben sobre el formato del Análisis de Espectros del Anexo 18. En el caso de la turbina 1, se concluyó que el problema con el eje debe ser intervenido. Probablemente, las vibraciones reflejen problemas de desalineación y para saberlo con certeza debe utilizarse equipo especial para desalineación. Después de un diagnóstico sobre el problema, debe procederse a solucionarlo. Las demás vibraciones deben seguir siendo monitoreadas para obtener conclusiones.

5.10 Sobre el estudio de vibraciones a 1210 rpm.

Las turbinas de Aeroenergía rara vez se conectan a 1210 rpm. El periodo en el que se realizó el estudio de práctica no coincidió con las temporadas de vientos bajos. De esta forma, todos los datos y las mediciones necesarias para hacer análisis de vibraciones con 1210 rpm no estuvieron disponibles.

5.11 Análisis costo-beneficio del Análisis de Vibraciones

En la práctica con Aeroenergía, el costo de obtener el equipo fue el pago de c60.000 (menos de \$140) del monto de la póliza del seguro por daño. Además de ello, el tiempo de la práctica fue de 5 meses. El salario estimado del practicante es menor de \$325 (c130.000) por mes. El costo por proyecto es una tercera parte de lo pagado al practicante más la póliza. Con ello se puede obtener el costo del Proyecto.

Costo del Análisis de Vibraciones por cada rodamiento = (\$140 + 5/3* \$325) = \$37.59 x 2

Para analizar el costo-beneficio del análisis de vibraciones se verá su efecto sobre la vida de un solo rodamiento en un generador. Según los cálculos de SKF, el 90% de los rodamientos como el usado en el generador duraría 6 años y 7 meses bajo las mismas condiciones, tal como se muestra en el Anexo 30. No obstante, los rodamientos de Aeroenergía no tienen una vida tan larga. El costo de cada rodamiento del generador es de \$2500.

De esta forma, el programa de Análisis de Vibraciones se justifica al extender la vida de cada rodamiento de generador en 1 mes y 5 días. La razón es que un rodamiento tiene un costo por hora de \$2500/57850 h (\$0.0432/h). Con ello se obtiene el tiempo de retorno.

T de retorno por rodamiento = \$37.5 / (\$0.0432 / h) = 868 h = 1 mes, 5 días.

Esto se puede lograr fácilmente al determinar problemas en los ejes o rodamientos y proceder a lubricar o balancear. No obstante, este cálculo no estima los beneficios del análisis en la Caja Multiplicadora.

5.12 Conclusiones y recomendaciones

El Análisis de Vibraciones puede ser una herramienta muy útil para este tipo de tecnología en especial. Por esa razón es importante que se le de continuidad al proyecto aplicado a Rodamientos y Engranajes. No obstante, es recomendable extender el análisis de vibraciones con tomas de referencias de fase para determinar problemas en ejes; toma del HFD en los puntos más importantes de la Ruta y la toma del SEE para reconocer problemas de lubricación en los rodamientos del generador y los rodamientos de entrada y salida de la Caja Flender.

Por otro la	do, se dek	oe iniciar	una evalu	ación má	s técnica	de la	desaline	eación	en k	SC
generadore	es con el d	objetivo d	de corregir	los probl	emas lo	antes	posible.			

6. Programa de implementación de un Historiador de datos en los Aerogeneradores por medio de PLCs de comunicación

6.1. Definición del problema

El problema por resolver desde un inicio era la necesidad de tomar datos constantemente del proceso para que el Historiador se volviera una herramienta de decisiones administrativas. En el contrato con el ICE Aeroenergía se compromete a cumplir con cierta cantidad de energía cada mes. De no cumplirse ese monto, el ICE aplica sanciones. Por ello, un sistema de monitoreo de variables, permitiría a lo largo de los años hacer posible un estudio de las condiciones, predecir el comportamiento de ciertos rubros y disminuir la posibilidad de ser multados por incumplimiento de cantidad de energía.

La idea original del proyecto era conectar la red de controladores WP3000 de las turbinas con una computadora y que en ella el programa iHistorian de la casa fabricante General Electric grabara los datos más importantes. No obstante, esto no fue posible porque según los fabricantes de los controladores WP3000 (Mita Teknik) los sistemas no son compatibles con los OPC de General Electric.

Luego de la respuesta dada por Mita Teknik, se pidió una cotización a la empresa Electricidad Americana para que asumiera el diseño del proyecto. La idea entonces ya no era tomar los datos del controlador WP3000, sino conectar sensores (anemómetros, sensores de rpm y sensores de temperatura) extra y dispositivos (el dispositivo de Vibración Tac 84 y el relé de protección SEG) que no habían sido comunicados en el proceso y enlazarlos todos con un PLC para transferir datos a la Computadora y luego al programa iHistorian.

La empresa Electricidad Americana envió la solicitud a la representante SisFlex S.A. en México. Las empresas SisFlex y Electricidad Americana contestaron a la solicitud con una lista de software por un monto de \$28,046.00 más impuestos (que no incluye el Hardware) (Anexo 31).

Los administradores de Aeroenergía consideraron que el proyecto no parecía justificable dados esos costos. Por ello, se buscó incrementar los beneficios del proyecto por medio de la inclusión en el proyecto de sensores de flujo y de nivel de aceite en las cajas. Estos sensores arrojarían alarmas en caso de que una fuga o obstrucción en el circuito de aceite ocurriera. Las fallas en el circuito hidráulico no son monitoreables en este momento por medio del sistema de Mita Teknik.

Cuando se pidió a SisFlex que asumiera la selección de los sensores de flujo y de nivel, la comunicación con ellos se perdió. De esa forma, todo el proyecto quedó en nuestras manos. Se consultó con la empresa de los Aerogeneradores Neg Micon sobre los sensores. Neg Micon contestó que en anteriores ocasiones ellos habían intentado sensar flujo y nivel de aceite en las cajas multiplicadoras sin buenos resultados.

Ante esta nueva negativa, se procedió a hacer requisiciones de sensores de flujo y nivel de aceite para dicha aplicación. Las empresas consultadas fueron Elvatron S.A., SPC y JRControles. De todas esas empresas, la única que dio respuesta fue Elvatron, sin embargo hasta la fecha no han encontrado una forma adecuada de medir dichos parámetros.

En ese momento, ya faltaba un mes para la conclusión del tiempo de práctica. Entonces fue cuando se procedió a consultar a la profesora Ana Lucía Morera, de la Escuela de Electromecánica, para solicitarle un PLC. Este, debía tener un módulo Modbus para los dispositivos de la turbina, una serie de entradas digitales y un módulo de entradas analógicas. El único PLC disponible tenía una tarjeta de comunicación RS-485 y entradas digitales. La conexión por Modbus y por vía analógica no era posible por medio de ese PLC y por ello, la implementación de gran parte del proyecto debía ser postergada.

Se procedió entonces a pedir el PLC a la Escuela de Electromecánica, a replantear los objetivos y a programar las siguientes etapas de desarrollo del Proyecto. El tiempo faltante para la conclusión de la práctica en el momento de la adquisición del PLC era de dos semanas.

6.2 Objetivos del Proyecto

Por medio de una PLC Mitsubishi FX_{1N} – 485 BD, se conectará:

- a) El dispositivo de Vibración Tac 84C. Protocolo de Texto, ASCII. RS 485.
- b) El relé de protección SEG. Modbus.
- c) Anemómetro. Entrada Analógica.
- d) PT100. Sensor de temperatura. Entrada Analógica.
- e) Sensor de RPM. Entrada digital.
- f) Sensor de flujo de aceite. Entrada analógica.
- g) Sensor de nivel de aceite. Entrada analógica.

Al lograr manejar los diferentes dispositivos y sensores, el PLC debe conectarse por OPC Server al iHistorian. Por último, debe configurarse el programa iHistorian para almacenar los datos leídos.

6.3 Etapas en el desarrollo del Proyecto

6.3.1. Primera etapa de implementación

La primera etapa consta de:

a)) Adquisición de información del PLC	para	programar	el controlad	dor.

- b) Adquisición de información sobre la comunicación del dispositivo TAC 84c.
- c) Conexión de la tarjeta de la comunicación RS 485 del PLC.
- d) Propuesta de diagrama escalera para transferir datos del TAC 84c por RS-485.
- e) Diagrama escalera para manipular la información del sensor de RPM.
- f) Propuesta de sensor de nivel de aceite.
- g) Propuesta de sensor de flujo de aceite
- f) Cotización de PLC Mitsubishi FX_{1N}-485 DB, con dispositivos de entradas analógicas, Módulo Modbus y tarjeta de comunicación RS 485.
- g) Desplegar los datos comunicados en un cuadro.

6.3.2. Segunda etapa de implementación
La segunda etapa consta de:
a) Adquirir el equipo de PLC con los módulos requeridos.
b) Adquirir un sensor de nivel de aceite en la caja multiplicadora.
c) Adquirir un sensor de flujo de aceite en la entrada de la caja multiplicadora.
d) Adquirir el módulo de comunicación Modbus del relé de protección SEG.
e) Comunicar vía Modbus el relé SEG con el PLC.
-,
0.0
f) Comunicar los PT100 y anemómetros al PLC, en las entradas analógicas.
g) Desplegar los datos comunicados en pantalla.

6.3.3. Tercera etapa de implementación

La tercera etapa consta de:

- a) Comunicar el sensor de nivel de aceite con el PLC.
- b) Comunicar el sensor de flujo de aceite con el PLC.
- c) Estudiar la configuración de los datos en el demo del programa iHistorian.

6.3.4. Cuarta etapa de implementación

La cuarta etapa consta de comunicar todos los datos del PLC al Historiador y configurar el programa para colectar datos.

6.4. Resultados de la primera etapa de desarrollo del proyecto.

6.4.1 Información técnica de programación del PLC

Se ha obtenido el manual de programación II en papel. Este manual se aplica a las versiones de Mitsubishi FX 1S, FX 1N, FX2N y FX2NC y por lo tanto sirve para la programación del PLC en las siguientes etapas.

Además de este manual se adquirió una serie de archivos digitales que se observan en el Anexo 32. Sin embargo, al leer los manuales se llega a la conclusión de que falta la continuación del manual S-080006-B (Manual del Módulo de comunicación Q), que tiene la solución definitiva de la comunicación del TAC 84c en el Capítulo 13: Comunicación con código ASCII. Ese manual es el SH-080007-B.

6.4.2. Información sobre el dispositivo TAC 84c

En el <u>Anexo 33</u> se observa el único documento técnico que los diseñadores del Dispositivo TAC 84 han facilitado.

En ese archivo se muestra que la comunicación del TAC 84c está cableada para comunicación de un par en 485. El pin de 485 A, enlaza internamente el envío y la recepción de datos A; el pin 485 B es el nodo del envío y la recepción de datos de B.

Figura 6.4.2.1. Comunicación RS-485 del TAC 84c 13

Además de ello, se sabe que transfiere datos a 9600 baudios, que se comunica por protocolo de texto ASCII, que su Identificador de Nodo es 1 y que al encender despliega en pantalla un ID de Programa 10011101.

¹³ To mado del archivo TAC 84c del Anexo 33.

6.4.3. Conexión de la tarjeta de comunicación FX_{1N} - 485 BD

Como el TAC 84c está internamente cableado a un par, la tarjeta que recibe la señal también debe estar conectada para comunicación como un par agrupado de terminales de send y receive. En la figura siguiente se observan las conexiones y la resistencia necesaria para realizar dicha configuración.

3.4.3 FX2N(1N)-485-BD and FX2N(1N)-485-BD 1) One-pair Wiring FX2N-485-BD, FX2N-485-BD, FX1N-485-BD FX1N-485-BD SDA SDB SDB RDA RDA Terminating Terminating resistor resistor RDB RDB 110Ω SG SG Class D grounding

Figura 6.4.3.1. Conexión de la tarjeta de comunicación 485 en el PLC¹⁴

6.4.4. Propuesta de diagrama escalera para comunicar el TAC 84c por RS-485.

Debido al limitado tiempo que quedaba entre la adquisición del PLC, la información y el fin de la práctica la comunicación serial no pudo ser desarrollada plenamente en esta etapa del proyecto. No obstante, sí queda una idea clara de cómo desarrollar la comunicación.

¹⁴ Tomado del archivo JY992D69901-E.pdf que aparece en el Anexo 32.

En el Manual Digital Completo de Programación (que se ofrece en el Anexo 32) y en el Manual en papel se puede observar la Función RS desarrollada por Mitsubishi para la comunicación de Dispositivos Externos vía Serial. Esta información se encuentra en el apartado FNC 80 – 89: External FX Serial Devices en 5-94; o bien en la hoja 236 del documento en formato PDF.

6.4.5. Diagrama escalera para comunicar el sensor de RPM

La información del sensor de RPM no se presenta en el Anexo 31. Pero se sabe que envía pulsos de 24 Volt tres veces por cada vuelta del rotor (tiene tres aldabas reflectoras distribuidas a 120°).

Con ello, se construyó el diagrama de escalera presente en el Anexo 34.

6.4.6. Propuesta de sensor de nivel de aceite.

Sobre este aspecto, la empresa Neg Micon fue consultada. Ellos informaron haberlo intentado sin resultados en el pasado. Pese a ello, Aeroenergía está interesada en realizar el trabajo. Para esto hay que escoger un sensor que se adapte a las condiciones de temperatura, presión y viscosidad del aceite de la caja (la hoja de datos del aceite de la caja se ve en el Anexo 35).

La temperatura del aceite es de 70°C y la presión es siempre menor a 16 bar. La idea es utilizar el espacio donde actualmente existe una mirilla. El esquema se observa en el Anexo 36.

En la imagen se observa que la actual mirilla tiene una raya que indica el nivel deseable de aceite. El nivel mínimo (Alarma por bajo nivel) es a 1 cm por debajo de esa raya. El máximo nivel (Alarma por exceso de aceite) debe estar a 1cm por encima de la raya roja. Además, en el Anexo se observa un archivo con una propuesta de tecnología a utilizar. Son sensores analógicos de nivel. Este sensor estaría en un contenedor sujeto a las tomas de la mirilla actualmente instalada en la caja. El sensor debe estar diseñado para soportar las condiciones de operación. Una ventaja de estos sensores de nivel es su reducido costo.

6.4.7. Propuesta de sensor de flujo de aceite

De la misma forma en que luego de que se preguntó sobre el sensor de nivel en la caja, la empresa Neg Micon aseguró haber intentado poner un sensor de flujo en circunstancias parecidas sin resultados.

Al buscar una solución, se encontró que la empresa Hydac que fabrica las bombas que suplen aceite a la caja fabrica sensores de flujo para la bomba utilizada en las turbinas. En una ocasión la empresa Hydac fue consultada sin contestación. El catálogo general del sensor se muestra en el Anexo 37.

6.4.8. Cotización de PLC Mitsubishi FX_{1N}-485 DB, con dispositivos

de entradas analógicas, Módulo Modbus y tarjeta de comunicación

RS 485.

La cotización pedida al lng. Alexander Agüero de la empresa Hi-TEC incluye

a) PLC FX1N-14MR con 8 entradas de 24 Vdc, 6 salidas relé, alimentación de 120

V: 300,00\$

b) Tarjeta de comunicación RS-485 FX1N-485-BD: 56,00\$

c) Cable de programación SC09: 222,00\$

d) Software de programación original: 617,00\$

TOTAL: \$1.195,00

I.V: \$155,35

TOTAL I.V.I: \$1.350,00

La inclusión de un módulo analógico de 2 canales, en el rango de 4 a 20 mA le

añadiría \$216 más impuesto a la cotización inicial (\$244). El monto final del equipo

es de \$1594. La entrega es inmediata. Este conjunto de elementos contiene todo lo

necesario para desarrollar todas las etapas del proyecto. Un costo adicional se

debería a los sensores de nivel y de flujo, y el módulo Modbus del Relé SEG. Los

elementos adicionales (sensores principalmente) podrían costarle al proyecto unos

\$800 más, para un posible total de \$2394.

77

6.4.9. Despliegue de datos en pantalla

Los PLC Mitsubishi pueden desplegar los datos con el comando Entry Data Monitor o Monitoreo de entrada de datos. Allí se puede vigilar cualquier Buffer o dispositivo del PLC.

6.5. Análisis de Costos del Proyecto

En este documento se ha explicado que la producción promedio por turbina por hora es de \$45. Se puntualizó que el costo de los materiales del proyecto podría estar valorado en \$2394. A este dato se suma el costo de la práctica de especialidad (estimado en \$541) y el costo del software iHistorian (con valor de \$4163).

De esa forma se obtiene que el proyecto se pagaría con un total de 6 días, 13 horas, en total de turbinas detenidas, como se muestra a continuación.

Ese tiempo distribuido entre las 9 turbinas corresponde a 17 horas, 30 minutos. Esas 17 horas, 30 minutos corresponden al 11% de tiempo de paro del parque en marzo del 2004 (mes en el cual el tiempo de paro fue de 157,5 horas). De esa forma, se pagaría la inversión si se logra evitar un 11% de las horas de paro, por nueve meses.

No obstante, este proyecto está en capacidad de evitar gastos por reparaciones de bombas, por deterioro de la góndola, por deterioro en la caja y por sanciones ante el incumplimiento de la cuota de energía prometida al ICE al mes. Esos son aportes extra que no están cuantificados en la justificación y que disminuyen el tiempo de retorno de la inversión.

6.6. Conclusiones

La principal conclusión es que el proyecto implica una inversión de tiempo importante y su realización es posible. Además se trata de un proyecto costoso y con un alto nivel de complejidad técnica. Se ha demostrado que muchos de los elementos necesarios para desarrollar el proyecto deben ser comprados y seleccionados cuidadosamente, así como que la programación del PLC es un aspecto que amerita de tiempo.

6.7 Recomendaciones

Antes de proceder con las siguientes etapas de desarrollo debe encontrarse la solución a los sensores de flujo y de nivel de aceite y debe poderse configurar experimentalmente la comunicación a la computadora con un sistema de PLC que incluya entradas Modbus, analógicas, digitales y vía puerto serial para asegurar desde el inicio las ventajas de la inversión.

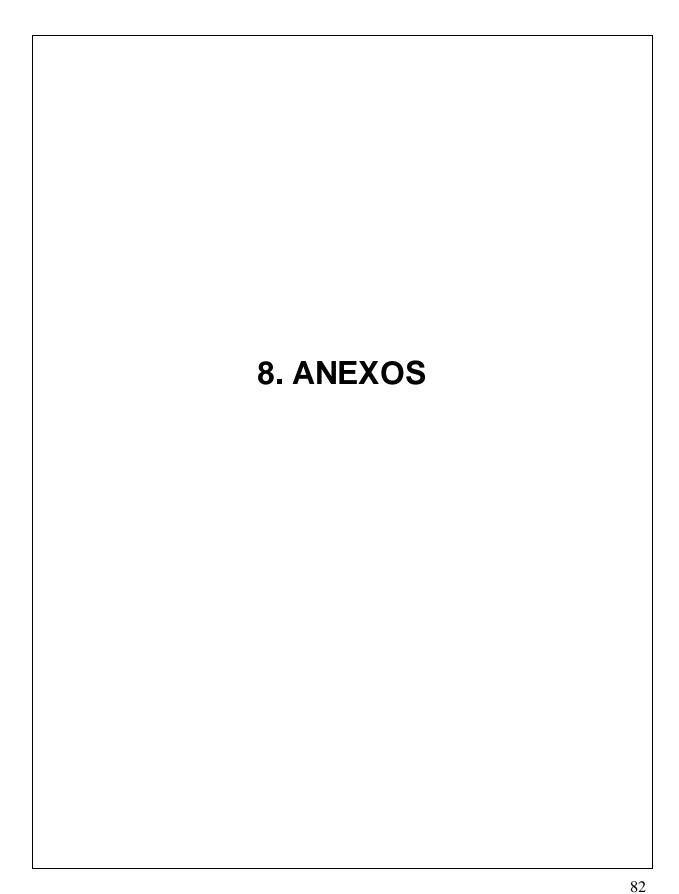
Se recomienda la continuidad del proyecto y la evaluación meticulosa de cada etapa en el desarrollo de la idea.

7. Fuentes de información

Libros

- Hamilton H. Mabie y Charles F. Reinholz. <u>Mecanismos y Dinámica de Máquina</u>. Segunda Edición. Editorial Limusa S.A. Mexico, 1999.

Folletos, recopilaciones y manuales


- Miranda, Juan Carlos. <u>Compilación de Material sobre Análisis de Vibraciones de SKF</u>. Instituto Tecnológico de Costa Rica, 2004.
- Valverde, Jorge. <u>Folleto del curso de Administración del Mantenimiento I</u>. Instituto Tecnológico de Costa Rica, 2002.
- Manual de operaciones de Neg Micon, M1500 M1800. Micon A/S. Versión en Inglés. Artículo número 18.275.00 GB.

Archivos digitales

- Información sobre el PLC FX _{1N} 485BD:
 JY992D69901-E.pdf
- Archivo digital sobre el Dispositivo de Vibración TAC 84c
 TAC 84c.pdf
- -Presentación de Power Point sobre el programa de Re-acondicionamiento en las Cajas Flender:

presentation_master_UK_180200.ppt

Información de internet
- Información sobre sensor de flujo de Aceite Hydac:
http://212.88.134.40/index_start.php
-Diccionario Hyperdictionary de términos técnicos en Internet:
http://www.hyperdictionary.com/dictionary
- Página Web sobre comunicación serial:
http://www.hw.cz/english/docs/rs485/rs485.html
- Información sobre OPC (OLE for Process Control):
http://www.softwaretoolbox.com/Tech_Support/TechExpertiseCenter/OPC/OPCWhati
slt/opcwhatisit.html

Anexo 1: Codificación del Parque

Tabla A.1.1. Codificación del Parque

Descripción	Nombre	Código
Lugar	Parque Aeroenergía	AE
Turbina	Turbina 1	T01
Turbina	Turbina 2	T02
Turbina	Turbina 3	T03
Turbina	Turbina 4	T04
Turbina	Turbina 5	T05
Turbina	Turbina 6	T06
Turbina	Turbina 7	T07
Turbina	Turbina 8	T08
Turbina	Turbina 9	T09
Subestación	Subestación	SE
Transformador	Transformador Turbina 1	T01-T
Transformador	Transformador Turbina 2	T02-T
Transformador	Transformador Turbina 3	T03-T
Transformador	Transformador Turbina 4	T04-T
Transformador	Transformador Turbina 5	T05-T
Transformador	Transformador Turbina 6	T06-T
Transformador	Transformador Turbina 7	T07-T
Transformador	Transformador Turbina 8	T08-T
Transformador	Transformador Turbina 9	T09-T
Transformador	Transformador Edificio	TE
Torre meteorológica	Torre meteorológica 1	TM-1

Anexo 2: Codificación de las partes de la Turbina y equipos a mantener

Tabla A.2.1. Codificación de partes de la Turbina y equipos

Parte	Función	Código	Estudio de la Parte ¹	FMEA ¹⁵
Generador	Generar energía trifásica	01	AET-1	AET-1
Freno hidráulico del eje	Bloquear el rotor de la turbina	02	AET-2	AET-2
Caja Multiplicadora de Velocidad	Convertir la velocidad de giro de 26 a 1812 rpm.	03	AET-3	AET-3
Sistema de Rotor, Estación, Aspa y Tip	Producir el giro o frenar las aspas	04	AET-4	AET-4
Torre	Permitir el ascenso del personal a la góndola	05	AET-5	AET-5
Transmisión: Eje y rodamiento principal	Transmitir el movimiento del rotor hasta la caja	06	<u>AET-7</u>	AET-7
Sistema de orientación	Mover la turbina lateralmente	07	AET-8	AET-8
Paneles de control y sensores	Controlar la máquina y su óptimo funcionamiento	08	<u>AET-10</u>	<u>AET-10</u>
Subestación y Malla de Tierra	Transmitir la energía proveniente de las torres hacia la red del ICE	SE	<u>AET-11</u>	<u>AET-11</u>
Transformadores	Elevar el voltaje de la electricidad proveniente de las torres hacia la subestación	Т	<u>AET-13</u>	<u>AET-13</u>
Torre de Meteorología	Monitorear nuevos posibles sitios	ТМ	<u>AET-13</u>	<u>AET-13</u>

Volver

-

¹⁵ Los Estudios de la parte y los FMEA son sólo como una opción. A medida que se necesiten se irán realizando.

Anexo 3: Esquemas de la Máquina

<u>Generador</u>
Freno de Disco
<u>Caja Multiplicadora</u>
Estación Hidráulica, Tip, Rotor y Aspa
<u>Torre</u>
Transmisión: Eje y rodamiento principal
Sistema de Orientación o Guiñada
<u>Volver</u>

Anexo 4: Manuales de Mantenimiento

Parte: Generador

Código: AET-01

Tabla A.4.1. Manual de Mantenimiento del Generador

Sub-Parte	Función	Código	Acción	Periodo	Tiempo Estimado (Min)	Técnicos
Superficie del generador	Proteger los dispositivos internos	1.1	Limpieza Visual	B C B C	10 5	2
Colectores de grasa	Evitar derrames	1.2	Visual	ВС	5	2
Rodamiento trasero y delantero	Giro libre del rotor	1.3	Lubricar Temperatura	Ex Ex	15 10	2
Caja de conexiones	Fija la conexión del estator	1.4	Visual	ВС	5	2
Sellos del Generador	Sella el interior del generador	1.5	Visual	ВС	5	2
Radiador	Enfría el agua	1.6	Visual Limpieza	B C B C	5 10	2
Coolant del Radiador	Mejora las propiedades del agua	1.7	Control	ВС	10	2

Bomba de agua	Hacer circular el agua	1.8	Visual Socado	Ex Ex	10 10	2
Protecciones térmicas, sobrecargas y contactores	Proteger el generador	1.9	Revisión Visual	B B	20	2
Cableado eléctrico de potencia	Portar la energía	1.10	Visual	В	20	2
Acople	Transmitir el movimiento desde la caja	1.11	Socado Calibrar	ВСС	20 60	2
Tornillos de la Base del Generador	Fijar el cuerpo a la góndola	1.12	Socado	С	10	2
Mangueras, uniones y purga de agua	Circular el agua, y purga aire.	1.13	Visual	ВС	10	2
Eje	Transporta el giro mecánico	1.14	Limpieza Corrosión	Ex	10	2

Parte: Frenos de Disco

2TWA-36 Sime-Stromag

Código: AET-02

Tabla A.4.2. Manual de Mantenimiento del Freno de Disco

Sub-Parte	Función	Código	Acción	Periodo	Tiempo Estimado (Min)	Técnicos
Disco de freno	Sirve de superficie de frenado	2.1	Visual Ajuste	ВС	5 30	2
Pastilla de freno	Aplica el torque contrario al giro	2.2	Alarma Cambio		40	2
Mangueras y uniones	Llevan el aceite de la bomba a las mordazas	2.3	Visual	ВС	5	2
Acumulador cercano a la bomba	Mantiene aceite a presión para evitar arranques de la bomba	2.4	Visual	ВС	5	2
Acumulador cercano al disco	Mantiene el aceite a presión, y se usa en modo soft.	2.5	Visual	ВС	5	2
Acople	Conecta mecánica mente el freno, el generador y la caja	2.6	Visual Resocado	B B	5 10	2
Bomba	Posibilita la circulación de aceite	2.7	Visual Auditivo	B C B C	10 5	2

Aceite	Fluido a presión que permite aplicación de fuerza	2.9	Muestra Cambio	Ex Ex	30 40	2
Conexiones eléctricas	Energizan el motor y envían señales	2.10	Visual	Ex	30	2
Cobertor	Proteger al personal	2.11	Limpieza	Ex	10	2
Seguro de posición en Y	Permitir el anclaje de las aspas	2.12	Visual	Ex	5	2
Pistón	Transmitir la fuerza a las zapatas	2.13	Visual	Ex	10	2
Nivel de aceite	Indicar cuánto aceite contiene la bomba	2.14	Visual	вс	5	2
Zapata de freno	Servir de superficie de contacto	2.15	Visual Ajuste	B C B C	5 5	2
Prensas de freno	Transmitir la fuerza a la zapata	2.16	Visual Ajuste	B C B C	5 40	2
Tornillo de alivio	Permitir retraer el pistón y soltar el freno	2.17	Visual	Ex	5	2
Electro válvulas y válvula de alivio	Abren o cierran el paso del aceite con señales eléctricas	2.18	Visual Prueba	Ex	20	2

Parte: Caja multiplicadora de Velocidad Flender PEAC 4300.4

Código: AET-03

Tabla A.4.3. Manual de Mantenimiento de la Caja

Sub-Parte	Función	Código	Acción	Periodo	Tiempo estimado (Min)	Técnicos
Engranes internos	Aumentar la velocidad de giro	3.1	Visual Vibración Muestra	B C M B C Ex	30	2
Rodamientos de la caja	Soportar los ejes en movimiento	3.2	Vibración Muestra	M B C Ex	30 20	2 2
Acople	Acople la caja con el eje principal	3.3	Socado	ВС	10	2
Sellos de la caja	Sella el interior de la caja del entorno.	3.4	Visual	ВС	5	2
Amortiguador	Fijar la máquina a la góndola	3.5	Socado	В	10	2
Tapa de Registro	Sujetar el registro. Permitir monitoreo	3.6	Visual Socado	B B	5	2
Eje del amortiguador	Disipar las vibración entre la góndola y la caja	3.7	Socado	ВС	10	2
Uniones y mangueras	Conducir el aceite	3.8	Visual	ВС	5	2

Filtro	Limpiar el aceite de impurezas	3.9	Cambio	Ex	30	2
Bomba	Hacer circular el aceite	3.10	Visual Auditivo Socado	B C B C B C	20	2
Aceite	Evacuar el calor de la caja	3.11	Visual Muestra Cambio	B B Ex	5 10 30	2
Ventilador y radiador	Evacuar el calor del aceite de la caja	3.12	Visual	ВС	5	2
Electro válvula cerca del filtro	Cierran o abren el paso al aceite	3.13	Prueba	Ex	10	2
Válvula Térmica Wahlen	Bloquea el paso directo a la caja al subir la temperatura	3.14	Prueba	Ex	20	2
Válvula manual cerca del filtro	Permite la purga y cambio de aceite.	3.15	Prueba	Ex	20	2
Tapas y registros traseros	Para agregar partes o monitoreo	3.16				
Nivel de aceite	Indica la cantidad de aceite en cárter	3.17	Visual	ВС	5	2
Válvula manual inferior en lado de alta velocidad	Permite purgar el aceite del cárter	3.18	Prueba	Ex	20	2

Parte: Estación hidráulica, Tips, Rotor y Aspas

Código: AET-04

Tabla A.4.4. Manual de Mantenimiento del Freno Aerodinámico y Rotor

Sub-Parte	Función	Código	Acción	Periodo	Tiempo estimado (Min)	Técnicos
Motor de Estación Hidráulica	Producir el movimiento de la bomba	4.1	Prueba	ВС	25	2
Bomba de Estación Hidráulica	Generar presión y la circulación de aceite para el Tip	4.2	Prueba	ВC	25	2
Electro válvulas de la Estación	Permite o impide el paso del aceite hacia el pistón	4.3	Prueba Visual	B C B C	25 5	2
Caja de conexión de Estación	Contiene las señales y la potencia de la Estación	4.4	Visual	В	10	2
Uniones y mangueras de Estación	Permiten el trasiego del aceite	4.5	Visual Socado	B C B C	20 30	2
Tornillos de fijación Estación	Fijan la Estación a la torre	4.6	Visual Socado	B C B C	5 10	2
Tapa y agujero inserción de aceite.	Permiten el cambio, el muestreo y la renovación del aceite	4.7	Visual	ВС	5	2

Acumulador de la Estación	Contiene el aceite a presión	4.8	Visual Socado	B C B C	5 5	2
Sensor de presión. Estación	Sensar la presión	4.9	Visual	ВС	5	2
Aceite	Permite la retracción del pistón	4.10	Cambio	Ex	30	2
Slip Rings	Transmite señales de control de la estación	4.11	Visual	ВС	20	2
Cables de transmisión de datos de Slip Ring	Transmite señales de control de la estación	4.12	Visual	ВС	10	2
Cables de tensión del Tip	Transmitir el movimiento	4.13	Visual	Ex	120	3
Eje del aspa	Transmitir el movimiento	4.14	Visual	Ex	20	3
Pieza mecanizada del aspa	Orientar el giro del aspa	4.15	Visual Aceitado	Ex	20	3
Conos de Nylon	Fijan el Tip en posición retraída	4.16	Cambio	Ex	20	3
Muescas de montaje del Tip	Fijar el aspa	4.17	Visual	Ex	10	3
Marcos de aspas, cubos y extensiones.	Sujetar pie <i>z</i> as y plataforma	4.18	Socado	С	100	3
Pistón	Recibir señales, ejercer fuerza	4.19	Visual Socado Cambio	B C C Ex	10 15 20	2

Cables de potencia	Llevan la energía necesaria para el motor	4.20	Visual	ВС	15	2
Ejes empotrados en aspas	Soporte estructural	4.21	Visual	ВС	15	2
Resortes	Producir estiramiento	4.22	Visual	Ex	10	2
Caja de registro en aspas	Permitir las inspecciones	4.23	Visual Socado	Ex Ex	10 10	2
Unión del pistón con cables	Transfiere el movimiento al Tip	4.24	Visual	ВС	10	2
Perfiles metálicos del pistón	Fijan el pistón	4.25	Visual Socado	ВСС	10 15	2
Acoples entre cable del tip y elementos	Transfiere el movimiento al Tip	4.26	Visual	Ex	20	2
Cable de tierra	Conduce sobrecargas hacia malla de tierra	4.27	Visual	ВС	5	2
Eje de movimiento del Tip	Permite la extensión del tip	4.28	Visual	Ex	10	2
Ángulo de Aspas	Determina el equilibrio dinámico de las aspas	4.29	Ajuste	Ex	15	2
Superficie del rotor, las aspas y extensiones	Convertir el viento en torque para el rotor	4.30	Limpieza Pintura	CC	180 180	3

Registros del Rotor	Permitir el acceso al rotor	4.31	Visual Socado	B C B C	20 20	2	

Parte: Torre

Código: AET-05

Tabla A.4.5. Manual de Mantenimiento de la Torre

Sub-Parte	Función	Código	Acción	Periodo	Tiempo Estimado (Min)	Técnico
Cables de arnés	Sostiene al técnico en caso de caer	5.1	Visual	ВС	20	2
Pernos en la base de la torre	Sujetan la torre al cimiento	5.2	Visual Socado Cambio	B C C Ex	20 40 120	2
Mecanismo de la Puerta Principal	Permiten la apertura y el cierre de la puerta	5.3	Visual Aceite	B C B C	5 5	2
Plataformas de ascenso	Permiten el descanso al subir	5.4	Visual	ВС	15	2
Escalera	Medio de ascenso a la góndola	5.5	Visual Socado	B C C	15 40	2
Luces	Permitir la visibilidad en todas condiciones	5.6	Visual	ВС	20	2
Extintores	Extinguir fuego dentro de la torre	5.7	Cambio	Ex	30	2
Luz de navegación aérea	Alertar a aeronaves la posición de las torres	5.8	Visual	ВС	5	2

Grúa	Elevar herramientas y otros, a la góndola	5.9	Visual Prueba	В С В С	10	2
Contrapeso detrás del Generador	Amortiguar el nivel de vibración	5.10	Visual Prueba	ВС	10	2
Compuertas del techo de la góndola	Descubrir la góndola	5.11	Visual	ВС	5	2
Costuras laterales soldadas	Unir las placas que conforman la torre	5.12	Visual Prueba	B C Ex	15 180	3
Cimientos de acero y cemento	Afirmar la torre a la tierra	5.13	Prueba	Ex	120	3
Placas o caras de la torre	Formar la estructura de la torre	5.14	Prueba	Ex	180	3
Cables de potencia y separador	Conducir los cables y la electricidad	5.15	Visual	ВС	15	2
Collarines de la torre	Unir las etapas de la torre	5.16	Visual	С	25	3
Superficie de la torre	Soportar el peso de la turbina	5.17	Visual Pintura	CC	120 240	3

Parte: Transmisión

Rodamiento principal y Eje

Código: AET-06

Tabla A.4.6. Manual de Mantenimiento de la Transmisión

Sub-Parte	Función	Código	Acción	Periodo	Tiempo estimado (Min)	Técnicos
Acople del eje principal con la Caja	Transmitir el movimiento	6.1	Socado	С	15	2
Acople del eje principal con el rotor	Transmitir el movimiento	6.2	Socado	С	15	2
Cepillo contra sobrecargas	Desviar sobrecargas a tierra	6.3	Visual	ВС	5	2
Rodamiento Principal	Transmitir movimiento del rotor	6.4	Socado	С	20	2
Eje principal	Transmitir movimiento del rotor	6.5	Visual Limpieza	B C B C	5 20	2
Sellos	Aislar los diferentes mecanismos del ambiente	6.6	Visual Engrase	ВС	5 20	2
Marco del cubo	Unen el rotor con el rodamiento principal	6.7	Socado	С	20	2

Parte: Sistema de orientación

Código: AET-07

Tabla A.4.7. Manual de Mantenimiento del Sistema de Orientación

			Acción	Periodo	Tiempo	Técnicos
Sub-Parte	Función	Código	Acam	Pe71040	estimado (Min)	1 ecnwos
Pastillas del freno de fricción	Aplicar torque de freno	7.1	Visual Calibrar	ВС	30	2
Pernos de sujeción del freno	Fijar el freno a la torre	7.2	Socado	С	20	2
Cubierta del freno y sus pernos	Impedir entrada de suciedad al freno	7.3	Visual	ВС	5	2
Motores de guiñada	Orientar nacelle	7.4	Visual Socado Lubricado Corrosión	B C C C B C	5 20 20 5	2
Acople interno del motor de guiñada	Transmitir giro del reductor al piñón	7.5				
Protección y contactor del motor	Proteger y energizar motor	7.6	Visual	В	10	2
Caja de conexión eléctrica	Conectan la potencia al motor	7.7	Visual	В	10	2

Piñón de guiñada	Transmite el torque a la corona	7.8	Visual Lubricar	B C B C	5 15	2
Tapa Inferior del piñón	Sostienen el piñón a la altura de la rueda	7.9	Cambio	Ex	40	2
Corona dentada	Mueve la góndola con el torque del piñón	7.10	Visual Lubricar	B C C	5 20	2
Pernos de sujeción del motor	Fijan el motor a la torre	7.12	Visual Resocar	в C C	5 20	2
Disco de freno y sensor	Indicar el giro	7.13	Visual	В	5	2
Cableado de potencia de los motores	Transmite la potencia eléctrica a los motores	7.14	Visual	В	10	2
Pernos o sistema de sujeción de corona	Mantener la corona en posición	7.15	Visual Lubricar Resocar	B C B C C	5 20 25	2

Parte: Paneles de control y sensores

Código: AET-08

 Tabla A.4.8.
 Manual de Mantenimiento del panel de control y sensores

Sub-Parte	Función	Código	Acción	Periodo	Tiempo estimado (Min)	Técnicos
Barras de los breakers	Transmitir la potencia desde el breaker al trafo	8.1	Monitoreo	Ex	10	2
Aterrizado	Protege el sistema contra descargas	8.2	Visual	Ex	5	2
Contactory contactor auxiliar	Conectan y desconectan la potencia con señales de control	8.3	Visual Alarma	ВС	10	2
Fusibles	Proteger los dispositivos contra sobrecarga eléctrica	8.4	Visual Alarma	ВС	10	2
Banco capacitivo	Proporciona energía reactiva al generador	8.5	Visual Alarma	ВС	10	2
Breakers	Interrumpir la corriente frente a sobrecargas	8.6	Visual Alarma	ВС	5	2
Sensores de corriente y voltaje	Sensar los parámetros para disparar alarmas en caso de anomalía	8.7	Visual Alarma	ВС	5	2

WP2060	Sincronizar las entradas y salidas de los generadores	8.8	Visual Alarma	ВС	5	2
WP3000	Controla el funcionamiento de la turbina	8.9	Visual Cambio	B C Ex	5 120	2
Tiristores	Regula la onda de la señal	8.10	Visual Alarma	ВС	5	2
Transformador	Convierte la energía de un voltaje a otro	8.11	Visual Alarma	ВС	5	2
Sensores de velocidad	Sensar la velocidad de giro de las máquinas rotativas	8.12	Visual Alarma	ВС	5	2
Veletas	Sensar la dirección del viento	8.13	Visual Alarma	ВС	5	2
Anemómetros	Sensar la velocidad del viento fuera de la góndola	8.14	Visual Alarma	ВС	5	2
Sensor de bola de vibración	Alarmar por nivel excesivo de vibraciones	8.15	Visual Alarma	ВС	5	2
Tac 84	Sensar el nivel de vibraciones en la góndola	8.16	Visual Alarma	ВС	5	2
Relé SEG	Sacar la turbina de alimentación por frecuencia o voltaje	8.17	Visual Alarma	ВС	5	2
PT-100	Sensar la temperatura	8.18	Visual Alarma	ВС	5	2

Sensor de compuerta de las escaleras	Impedir el paso de personal no capacitado a la góndola con la turbina energizada	8.19	Visual Alarma	ВС	5	2
Sensores de presión hidráulica y en Tips	Sensar la presión	8.20	Visual Alarma	ВС	5	2
Sensor de velocidad de guiñada	Sensar la velocidad y la dirección de la guiñada	8.21	Visual Alarma	ВС	5	2
Sensor de freno liberado	Alerta cuando el freno mecánico sobre el eje no está aplicado	8.22	Visual Alarma	ВС	5	2
Sensor de torsión de cables	Alerta por cables arrollados	8.23	Visual Alarma	ВС	5	2
Filtros del panel	Impedir la entrada de polvo	8.24	Cambio	Ex	20	2
Caja de control en la góndola	Energiza diferentes dispositivos	8.25	Visual	Ex	10	2

Parte: Subestación y Malla de Tierra

Código: AET-09

Tabla A.4.9. Manual de la Subestación y la Malla de Tierra

Sub-Parte	Función	Código	Acción	Periodo	Tiempo estimado (Min)	Técnicos
Interruptor de la Subestación	Interrumpe el alimentador	9.1	Visual	Ex	60	3
Banco y cargador de baterías	Protegen el equipo de control de la subestación	9.2	Visual Medición	Ex Ex	10 30	2
Equipo de Multilin	Monitorea la condición de la subestación	9.3	Visual	Ex	20	2
Aire Acondicionado	Mantiene las condiciones del ambiente	9.4	Visual Cambio	Ex Ex	20 10	2
Maya de tierras	Protege la subestación y fija el neutro	9.5	Prueba	Ex	120	3

Parte: Transformadores

Código: AET-10

Tabla A.4.10. Manual de Mantenimiento de los Transformadores

Sub-Parte	Función	Código	Acción	Periodo	Tiempo estimado (Min)	Técnicos
Superficie y pintura exterior del Trafo	Proteger los componentes internos del ambiente	10.1	Tratado	Ex 5 años	120	2
Devanados y Armadura del Trafo	Convertir voltajes	10.2	Alarma			
Bujes (bushings)	Sostienen las terminales aislándolos de la caja	10.3	Visual	Ex	20	2
Tanque de de circulación de aceite	Almacena el aceite	10.4	Tratado	Ex 5 años	120	2
Aceite	Medio por el cual se evacua el calor a cierta presión	10.5	Visual Prueba	Ex Ex	10 10	2
Aletas de enfriamiento	Maximizar el área de evacuación de calor del aceite	10.6	Visual	Ex	15	2
Cableado de mediana tensión subterráneo	Transmitir la potencia de los generadores a diferente voltaje hacia la subestación	10.7	Visual	Ex	15	2
Puesta a tierra	Protege las instalaciones contra des cargas	10.8	Visual	Ex	10	2

Pernos de sujeción del Trafo al cimiento	Mantener el transformador en posición, inmóvil	10.9	Visual Socado	Ex Ex	10 15	2
Fusibles de las fases	Proteger el transformador contra sobre corriente	10.10	Alarma	Ex	20	2

Parte: Torres de Meteorología

Código: AET-11

Tabla A.4.11. Manual de Mantenimiento de la Torre

Sub-Parte	Función	Código	Acción	Periodo	Tiempo estimado (Min)	Técnicos
Estructura	Sostener los dispositivos	11.1	Visual Socado	Ex Ex 6 M	15 20	3
Controlador WP1000	Registrar los datos	11.2	Prueba	Ex 6 M	15	2
Cajas	Proteger los dispositivos	11.3	Visual	Ex 6 M	10	2
Cables de señales	Transportar los datos	11.4	Visual	Ex 6 M	10	2
Anemómetro	Sensar la velocidad del viento	11.5	Visual	Ex 6 M	10	2
Veleta	Sensar la dirección del viento	11.6	Visual	Ex 6 M	10	2
Sensores	Tomar diversas variables	11.7	Visual	Ex 6 M	10	2

Anexo 5: Inspecciones

Tabla A.5.1. Hojas de inspección del Generador B, C, EX

Empresa Mantenir	В								
Máquina AEROGENERADOR Parte Generador Código AE-T01-01						01			
Número	Inspección Hora de inici	io: Hora de salida:		T (min)	Ok	X			
	Subparte Generador								
01 P1	Revisión de los colectores de grasa y los sellos del Generador. Anotación:								
02 P1	Revisión de las conexiones de la caja del generador. Anotación:								
03 P2	Chequeo de protecciones, los contactores y los dispositivos eléctricos Anotación:								
04	Búsqueda de muestras de corrosión o deterioro. Limpieza Anotación:								
	Subparte Cables								
05	Revisión del deterioro del d Anotación:	cableado a lo largo de la turbina.							
	Subparte Radiador								
06	Búsqueda de deterioro en tapa de radiador y las uniones de mangueras Anotación:								
07	Control de la cantidad de coolant: Anotación:								
08	Revisión y limpieza de las rejillas y serpentines del radiador: Anotación:								
	Subparte Mangueras y	uniones							
09	Revisión general de fugas, Anotación:	corrosión y problemas en las uniones.							
	Subparte Acople del lad	o del generador							
10	Problemas de desbalanceo	y estado general de los acoples Anotac	ción:						

_	AEROENERGIA HOJA DE INSPECCION niento Preventivo		С		
Máquina	AEROGENERADOR Parte Generador	Códi	igo AE	-T01-(01
Número	Inspección Hora de inicio: Hora de salida:		T (min)	Ok	X
	Subparte Generador				
01 P1	Revisión de los colectores de grasa y los sellos del Generador. Anotación:				
02 P1	Revisión de las conexiones de la caja del generador. Anotación:				
03 P2	Chequeo de las protecciones térmicas, los contactores y otros Anotación:				
04	Búsqueda de muestras de corrosión o deterioro. Limpieza Anotación:				
05	Revisión, ajuste de amortiguador de soporte. M24 – 8.8 y 390 Nm Anotación:				
	Subparte Cables				
06	Revisión del deterioro del cableado a lo largo de la turbina. Anotación:				
	Subparte Radiador				
07	Búsqueda de deterioro en tapa de radiador y las uniones de mangue Anotación:	eras			
08	Control de la cantidad de coolant: Anotación:				
09	Revisión y limpieza de las rejillas y serpentines del radiador: Anotación:				
	Subparte Mangueras y uniones				
10	Revisión general de fugas, corrosión y problemas en las uniones. Anotación:				
	Subparte Acople del lado del generador				
11	Problemas de desbalanceo y estado general de los acoples. Ajuste los pernos en los acoples Anotación:	de			

Empresa AEROENERGIA Mantenimiento Preventivo HOJA DE INSPECCION EX								
Máquin AEROG	a ENERADOR	Parte Generador	C	Sódigo A	AE-T()1-01		
Número	Inspección Hora de inicio: Hora de salida:			T (min)	Ok	X		
	Subparte Generador							
01 P3	Análisis de Vibraciones :	mensual						
02 P1	Lubricación de los rodan grasa. Mobiltemp SHC 1 Anotación:	nientos y chequeo de los colecto 00, 60 gr. Cada 3000 h.	res de					
03	puede complementar el n	Revisión de la temperatura de los rodamientos: con ello se puede complementar el monitoreo del estado de los rodamientos. Cada mes. Temperatura estándar es de 60 °C						
04	_	léctrico. Curva de potencia, moni de devanados. Cada 5 años.	itoreo					
	Subparte Eje							
05 P1	Limpieza y búsqueda de Anotación:	corrosión en el eje. Con el Servio	ce B.					
	Subparte Bomba de	agua						
06	Revisión de fugas. Con Anotación:	el Service B.						
07	Revisión y ajuste de las l Anotación:	pases y sus pernos. Con el Servic	e B.					
08	Revisión del grado de co Anotación:	rrosión. Con el Service B						
09 P4	Revisión del motor y sus Anotación:	conexiones. Con el Service B						
10 P2	Revisión de los elemento Con el Service B. Anota	os térmicos, contactores, auxiliare ción:	es.					

	Tabla A.5.2. Hoja de inspección Freno de Disco B, C, Ex									
	AEROENERGIA miento Preventivo	HOJA DE INSPECCION			В					
Máquin AEROG	a ENERADOR	Parte Freno de disco	Có	digo Al	E-T01	-02				
Número	Inspección Hora de inicio: Hora de salida:			T (min)	Ok	X				
	Subparte Disco y Pa	stillas								
01 P1	Revisión de la superfic Anotación:	ie del disco								
02 P1	Revisión y ajuste de la Anotación:	Revisión y ajuste de las pastillas del disco y el sensor Anotación:								
	Subparte Bomba									
03 P3		los rodamientos, estado del acop neación del eje, estado del impel								
04	Revisión de fugas. Anotación:									
05 P4	Revisión del nivel de a Anotación:	ceite con la bomba apagada.								
06	Revisar el estado de la de freno. Anotación:									
	Subparte Acople									
07 P1	Revisar y ajustar alinea Anotación:	nción. Socar tornillos								

Empresa AEROENERGIA HOJA DE INSPECCION Mantenimiento Preventivo							
Máquina AEROGENERADOR		Parte Freno de disco	Códig	Código AE-T01-			
Número	Inspección Hora de in	nicio: Hora de salida:	T (min)	Ok	X		
	Subparte Disco y p	pastillas					
01 P1	Revisión de la superficie Anotaciones:	del disco.					
02 P1	Revisión, ajuste de alin Anotación:	neación de la pastilla con disco.					
	Subparte Armadura						
03 P1	Ajustar los pernos, las mecanismo Anotación:						
04 P1	Resocar los pernos del Anotación:	disco de apriete					
	Subparte Bomba						
05 P1	acople, estado de los s	de los rodamientos, estado del sellos, alineación del eje, estado trabajando con el Generador					
06 P3	Revisión de fugas. Anotación:						
07 P4	Revisión del nivel de a Anotación:	ceite con la bomba apagada.					
	Subparte Todo el co	njunto del freno					
08	Probar el freno. Anotación:						
09	Revisar el estado d dispositivos de freno. Anotación:	e la corrosión en todos los					

-	AEROENERGIA miento Preventivo	HOJA DE INSPECCION		E	X			
Máquin AEROG	a ENERADOR	Parte Freno de disco	Código A	AE-T0	1-02			
Número	Inspección Hora de inicio: Hora de salida: T(min) Ok				X			
	Subparte Pistón	Subparte Pistón						
01	Revisión de sellos y obst Anotaciones:	rucciones. Cada tres años.						
02	Cambio de la pastilla cor	el disparo de una alarma						
	Subparte Bomba							
03 P4		Revisión y ajuste de las bases y sus pernos. Revisión del grado de corrosión general. Con service B.						
04 P4	Revisión del motor y sus Anotación:	conexiones. Con service B						
05 P4	Pruebas al aceite de fre Anotación:	no Hydro TL 15. Cada 2 años.						
06 P4	Cambio del líquido de Anotación:	freno Hydro TL 15. Cada 5 años.						
07 P2	Revisión de protección Con Service B. Anotació	térmica, contactores, auxiliares n:						
	Subparte Parte eléct	rica						
08 P1	Revisión de las electro Anotación:	válvulas. Con service B						
	Subparte Acumulado	ores						
09	Revisión de la super service B. Anotación:							
	Subparte Anclaje en	posición Y						
10	Revisión del estado del Anotación:	anclaje. Con service B.						

Tabla A.5.3. Hoja de inspección de la Caja Multiplicadora B, C, Ex

-	AEROENERGIA iento Preventivo	HOJA DE INSPECCION		E	3				
Máquina .	AEROGENERADOR	Parte Caja Multiplicadora	Código	AE-T0	1-03				
Número	Inspección Hora de in	nicio: Hora de salida:		T (min)	Ok	Y			
	Subparte Engrane	Subparte Engranes y los rodamientos de la Caja							
01 P1	Inspección visual de dier Anotaciones:	ntes: picaduras, marcas, virutas, lubr	ricación.						
02 P1	Toma de muestra de Ace Anotación:	eite para Análisis.							
	Subparte Caja								
03 P4		Revisión del nivel de aceite. Con la turbina y la bomba detenida. no puede estar a más o a menos de dos centímetros de la raya							
04 P1	Revisión y ajuste de los Anotación:	pernos y amortiguadores de la caja.							
05 P1		acople con el Eje Principal							
06 P1	Revisión del estado de la Anotación:	os sellos de la Caja.							
07	Revisar el estado de la c Anotación:	orrosión y la pintura de la caja.							
	Subparte Bomba H	lydac							
08 P1		os rodamientos, estado del acople, es , estado del impeller (Verla trabajar							
09	Revisión y ajuste de las Anotación:	bases y sus pernos.							
10	Revisión del grado de co Anotación:	orrosión.							
	Subparte Radiado								
11	Revisión de deterioro de Anotación:	los sellos, tapa, uniones de las man	gueras						

-	EROEN ERGIA ento Preventivo	НОЈА	DE INSPECCION		C	`	
Máquina .	AEROGENERADOR	Parte C	aja Multiplicadora	Código	AE-T0	1-03	
Número	Inspección Hora de	inicio:	Hora de salida:		T (min)	Ok	X
	Subparte Engrar	es y los r	odamientos de la	Caja			
01 P1	Inspección visual de d Anotaciones:	ientes: picac	duras, marcas, virutas, l	ubricación.			
02 P1	Toma de Aceite. Anál Anotación:	isis de aceite	e. Toma de una muestra	a de aceite.			
	Subparte Caja						
03 P4			e. Con la turbina y la b a menos de dos centíme				
04 P1	Ajuste. Revisión y aju Anotación:	ste de los pe	ernos y amortiguadores	de la caja.			
05	Visual. Revisión del e Anotación:	stado de los	sellos de la Caja.				
06	Visual. Revisar el esta Anotación:	do de la cor	rosión y la pintura de la	ı саjа.			
	Subparte Bomba	Hydac					
07 P1			ado de los rodamientos, ción del eje, estado del				
08	Revisión y ajuste de la Anotación:	s bases y su	is pernos.				
09	Revisión del grado de Anotación:	corrosión.					
	Subparte Radiad	or					
10	Revisión de deterioro Anotación:	de los sellos	, tapa, uniones de las n	nangueras			

Empresa AEROENERGIA Mantenimiento Preventivo HOJA DE INSPECCION E X									
Máquina .	AEROGENERADOR	Parte Caja Multiplicadora	Código	AE-T0	1-03				
Núme ro	Inspección Hora de i	nicio: Hora de salida:		T	Ok	X			
	Subparte Engranes y los rodamientos de la Caja								
01	Análisis de vibraciones Anotaciones:	nálisis de vibraciones. Mensual.							
02 P1		Revisión de viruta en el fondo del contenedor cada cambio de filtro.							
	Subparte Caja								
03 P4	Cambio de aceite. Anotación:								
	Subparte Bomba	Hydac							
04 P3	Revisión de fugas. Cad Anotación:	a Service B							
05 P4	Revisión del motor y su Anotación:	s conexiones. Cada service B.							
06 P2	Revisión de los element Cada service B. Anotac	os térmicos, contactores, contactores a ión:	auxiliares						
	Subparte Mangue	ras, juntas y válvula manual y	válvula	térmic	ca				
07	Revisión de corrosión, u Cada service B. Anotac	niformidad del material y fugas en ma	angueras.						
08	Revisión de válvulas y Anotación:	electroválvulas. abrir y cerrar. Cada Se	ervice B.						
09	Revisión del funcionam Anotación:	iento de válvula térmica de By-pass '	Wahlen.						
	Subparte Radiador								
10	Revisión y limpieza de Cada service B. Anotac	las rejillas, del motor y serpentines del ión:	radiador.						
11 P4		del motor de ventilador. protección y	contactor						

Tabla A.5.4. Hoja de inspección Rotor, Estación, Tip, Aspa B, C, Ex

Departar	AEROENERGIA mento de Mantenimie nimiento Prevent	nto	INSPECCION			E	В	
Máquin AEROG	a ENERADOR	Parte Rotor, Esta Aspa	ación, Tip,	Có	digo A	E-T01	1-04	
Número	Inspección Hora d	e inicio:	Hora de salida:		T (min)	Ok	X	
	Subparte Marcos	s de todo el con	junto					
01 P5	Revisar el deterioro la estación hidráuli marco del pistón, de Anotación:	ca, del marco del	l acumulador,	del				
	Subparte Estación	n Hidráulica						
02 P5	uniones. Revisar f	evisar el deterioro de mangueras y uniones. Resocar niones. Revisar fugas generales. Revisar estado de cumuladores, del pistón.						
03 P5	Revisar la conexión Anotación:	de la tierra del pis	tón.					
04	Revisar la presión. I Anotación:	a presión debe ro	ndar por 80 ba	r				
05 P5	Revisar la firmeza d aceite y la electrová Anotación:	_	on, las tapas de	;				
06 P5	Revisión de la caja de	conexiones						
	Subparte Slip Rin	gs						
07 P3	Revisión de los Slip estación hidráulica s Verificar el funciona Anotación:	e comunican con e		e la				
	Subparte Funcion	amiento General						
08 P5	Debe probarse desde sacando y retrayend		-					

-	a AEROENERGIA miento Preventivo	HOJA DE INSPECCION		С	` '			
Máquin AEROG	a BENERADOR	Parte Rotor, Estación, Tip, Aspa	Códig	go AE-T	01-04			
Número	Inspección Hora de ini	icio: Hora de salida:	T (min)	Ok	X			
	Subparte Tornillos	y Marcos						
01 P5	Cubo al eje, c) Cubo a	de a) la Estación al rotor, b) a las extensiones, d) Marco del tro en aspa, f) registro de rotor						
02 P5		narcos metálicos de a) estación or, c) marco de pistón, d) cubo						
	Subparte Estación F	Subparte Estación Hidráulica						
03 P5	Revisar deterioro en m Anotación:	nanguera, acumulador, pistón.						
04 P5	Revisar la conexión de Anotación:	e la tierra del pistón.						
05	Revisar la presión. Anotación:							
06 P5	Anotación:	sor de presión, válvulas, tapas.						
	Subparte Slip Ring							
07 P3	Anotación:	ing. Comunicación de datos.						
	Subparte Aspa y roto	or						
08 P6	Limpiar las aspas y el Anotación:	rotor y retocar la pintura.						
09 P6	Revisar con galga las a	aletas metálicas.						
	Subparte Funciona	miento general						
10 P6	Debe probarse desde e Anotación:	l rotor cada uno de los tips.						

_	AEROENERGIA HOJA DE INSPECCION				
Mantenii	niento Preventivo			E	X
Máquina AEROG	Parte Rotor, Estación, Tip, ENERADOR Aspa	Cóc	digo 2	AE-T(01-04
Número	Inspección Hora de inicio: Hora de salida:		T (min)	Ok	X
	Subparte Estación Hidráulica				
01 P5	Cambiar el pistón cada 5 años. Cambiar sellos revisar el bástago. Anotaciones:	У			
02 P5	Cambio de aceite. Se puede probar un cambio de aceite cada 5 años. Anotación:				
	Subparte Tip				
03 P6	Revisar el cable del Tip desde el registro del asp cada 4 años. No reventaduras. Firmeza en la unión d los hilos. Anotación:				
04 P6	Revisar manualmente que el mecanismo del Tip funcione desde la caja del tip, bajando y subiendo el tip Anotación:				
05 P6	Lubricar el piñón helicoidal que permite el giro del tipada 4 años desde el registro. Anotación:	р			
06 P6	Cambiar los conos de Nylon cada 3 años. Anotación:				_
07 P5	Revisión del eje del aspa. Cada vez que se inspeccione el aspa. Anotación:				
08 P5	Ajuste del ángulo del aspa desde el rotor. Anotación:				

	Та	bla A.5.5.	Hoja de	e inspección de la torre B,	C,	Ex				
_	a AEROENE miento Preve		НО	JA DE INSPECCION			Е	3		
Máquin AEROG	a ENERADOI	R	Parte '	Torre	C	ódigo AE	E-T01-	05		
Número	Inspección	Hora de ini	cio:	Hora de salida:		T (min)	Ok	X		
	Subparte Escaleras									
01 P7	Resocar, re Anotación:	visar la estru	ictura, s	sujeción, agarre de escaler	a.					
	Subparte	Subparte Accesorios								
02 P7	Revisar uni Anotación:	formidad y s	sujeciór	n en extremos de arnés.						
03 P1	Revisar fun Anotación:	cionamiento	de grú	a sin atascarse. Deterioro						
04 P7	Revisar inte Anotación	erruptores, lu	ız de na	vegación, luces, cables						
05 P1	Revisar que Anotación:	el movimie	nto late	eral del contrapeso sea leve	e					
06 P7	Revisar que Anotación:	cables esté	n unido	s al separador, sin fisuras						
	Subparte	Cerrojos de	puerta	a, compuertas del nacel	le,	plataforr	nas			
07	Revisar y ao Anotación:	ceitar el med	anismo	del cerrojo						
08 P1	Revisar pine Anotación:	es de cierre,	prensas	s, brazos de las compuerta	.S					
09 P1	Resocar y ro Anotación:	evisar plataf	ormas <u>y</u>	y tapas. Firmes y sin soltu	ra.					
	Subparte	Costuras s	oldadas	s y superficie de la torre)					
10 P1	Analizar las Anotación:	s costuras, re	visarla	s visualmente.						
11 P6	Revisar cor Anotación:	rosión y pin	tar las t	orres en puntos corroídos.						

-	AEROENERGIA miento Preventivo HOJA DE INSPECCION			С		
Máquina	a AEROGENERADOR Parte Torre	Cóc	digo A	E-T0	1-05	
Número	Inspección Hora de inicio: Hora de salida:	Т	(min)	Ok	X	
	Subparte Escaleras					
01 P7	Resocar tuercas, estructura, sujeción con torre. Agarr Anotación:	e				
	Subparte Accesorios					
02 P7	Revisar cable de arnés. Uniforme y sujeto en extremo Anotación:	os				
03 P1	Revisar que grúa no atasque. Deterioro. Anotación:					
04 P7	Revisar cobertor, contacto, fluorescente, cables. Revisar unión de cable con separador y su deterioro. Anotación					
05 P1	Revisar que movimiento lateral de contrapeso sea lev Anotación:	ve				
06 P1	Resocar todos los pernos. Revisar corrosión. Revisar la posición, sujeción, deterioro de collarines. Anotación:					
	Subparte Puerta, compuertas de nacelle, platafo	rma	ıs y ta	pas		
07	Revisar y aceitar el mecanismo del cerrojo Anotación:					
08 P1	Revisar pin de cierre, las prensas del techo del nacello Anotación:	e				
09 P1	Resocar, revisar plataforma y tapa. Firmes. Anotación:					
	Subparte Costuras soldadas y superficie de la to	orre				
10 P1	Analizar las costuras, revisarlas visualmente. Revisa corrosión y pintar las torres por corrosión. Anotación:	ar				

-	Empresa AEROENERGIA HOJA DE INSPECCION Mantenimiento Preventivo				E	X
Máquina AEROGE	ENERADOR	Parte To	orre	Código A	AE-T	01-05
Número	Inspección Hora d	e inicio:	Hora de salida:	T (min)	Ok	X
	Subparte Extinto	ores				
01	Rellenar los extingu rellenados cada año. Anotaciones:		os extintores deben ser			
	Subparte Costura	s y estru	ctura			
02	Analizar las costura por Técnicas No De Anotación:		nientos y la estructura . Cada 5 años.			
03	Pintura de la torre por	corrosión	Revisar cada 3 años.			
	Subparte Pernos	de la bas	e			
04	Cambio de los pernos años.	de la base	de la torre. Cada 4			

Tabla A.5.6. Hoja de inspección Transmisión B, C

1	Empresa AEROENERGIA HOJA DE INSPECCION Mantenimiento Preventivo					
Máquina AEROG	a ENERADOR	Parte Transmisión	Códiạ	go AE-	-T01-06	
Número	Inspección Hora de inicio: Hora de salida:			Ok	X	
	Subparte Rodam	iento y eje principal				
01 P1	Engrasar y ajustar lo Anotaciones:	s sellos.				
02 P1	Revisar el estado de la pintura e indicios de					
03 P1	Ajustar la escobilla c Anotación:	contra sobrecargas eléctricas.				

Departai	AEROENERGIA mento de Mantenimiento nimiento Preventiv		С		
Máquin AEROG	a ENERADOR	Parte Transmisión	Códig	go AE-T(01-06
Número	Inspección Hora de in	icio: Hora de salida:	T (min)	Ok	X
	Subparte Rodamie	nto y eje principal			
01 P1	Engrasar y ajustar los sellos. Anotaciones:				
02 P1	Revisar el estado de la Anotación:	pintura e indicios de corrosión.			
03 P1	Ajustar la escobilla con Anotación:	ntra sobrecargas eléctricas.			
04 P1	Revisar y resocar los to Anotación:	rnillos de los extremos del eje.			
05 P1	Revisar y resocar los to cimientos del Bearing Anotación:	rnillos de los marcos y los			
06 P1	Limpieza del eje v del rodamiento				
07 P1	Resocado de acoples de eje con la caja	el rotor con el rodamiento y del			

	Toble A F 7	Llois de inancesión de Cuiña	40 D C	` F _V	
	Tabia A.s./	. Hoja de inspección de Guiñad	ла в, с	, EX	
	AEROENERGIA miento Preventivo	HOJA DE INSPECCION	1		В
Máquin AEROG	a ENERADOR	Parte Sistema de guiñada	Códi	go AE-	T01-07
Número	Inspección Hora de ini	cio: Hora de salida:	T (min)	Ok	X
	Subparte Frenos	de guiñada			
01 P4	Revisar y calibrar l sensor de velocidad. Anotación:	a alineación del freno y del			
02 P4	Revisar y calibrar el Anotación:	juego de los rodamientos			
03 P4	Revisar sellos del fre Anotación:	no, que no estén deteriorados.			
04 P1	Control de corrosión Anotación:	y lubricación de los dientes			
05 P4	Lubricación del freno Anotaciones:).			
	Subparte Corona				
06 P4	Revisar y controlar la Anotación:	os sellos de corona.			
07 P1	Revisar corrosión en Anotación:	dientes de corona. Lubricar			
08 P1	Engrasar la corona Anotación:				
	Subparte Motores	s de guiñada			
09 P1	Revisar corrosión en Anotación:	dientes. Lubricar los dientes.			
10 P1		la pintura y la corrosión.			
11 P4	Revisión de los sellos contactor, protección Anotación:	s, las conexiones, cable,			

-	AEROENERGIA miento Preventivo					С
Máquin AEROG	a ENERADOR	Parte	Sistema de guiñada	Código AE-T01-0		
Número	Inspección Hora de i	nicio:	Hora de salida:	T (min)	Ok	X
	Subparte Frenos	de gu	iñada			
01 P4	Revisar y calibrar ali Anotación:	neació	n del freno y del sensor			
02 P4	Revisar y calibrar el Anotación:	juego d	le los rodamientos			
03 P4	Revisar el deterioro de la corrosión y la l' Anotación:		ellos del freno. Control ión de dientes			
04 P1	Lubricación del freno Anotación:	Lubricación del freno.				
05 P1	Revisar y ajustar el j Anotación:	Revisar y ajustar el juego de los dientes del freno Anotación:				
06 P1	Revisar y resocar tor Anotación:	nillos d	e sujeción del freno			
	Subparte Corona	l				
07 P4	Revisar y resocar la s corrosión en dientes Revisar y controlar s Anotación:	de coro				
	Subparte Motore	s de G	uiñada			
08 P4	Revisar y resocar los Anotación:	tornill	os fijadores del motor.			
09 P4	Revisar el nivel de ad Anotación:	ceite de	l reductor del motor			
10 P4	Revisar, lubricar en d Anotación:	lientes.	Revisar sellos			
11 P4	Revisar el estado de Anotación:	la pintu	ıra y la corrosión			

-	AEROENERGIA miento Preventivo	HOJA DE INSPECCION	1		Ξ×	
Máquin AEROG	a ENERADOR	Parte Sistema de guiñada	Código AE-T01-07			
Número	Inspección Hora de i	nicio: Hora de salida:	T (min)	- 1 ()k 1 X		
	Subparte Motor of	le guiñada				
01 P4	Lubricar el motor cao Anotación:	da 3 años.				
02 P1	Cambio de tornillos o dientes de guiñada ca Anotación:	de la tapa inferior de los ada 3 años				

Tabla A.5.8. Hoja de inspección de paneles de control y sensores B, C, Ex

	AEROENERGIA miento Preventivo	HOJA DE INSPECCION	1		В		
Máquina AEROG	a ENERADOR	Parte Paneles de control y sensores	Códi	Código AE-T01-08			
Número	Inspección Hora de i	nicio: Hora de salida:	T (min)	Ok	X		
	Subparte Sensor	es					
01 P2 P4	sensores de a) se b)sensores de RPM d)desgaste en las p f)anemómetro, g)	o de funcionamiento de los nsor de torsión en cables, M, c) sensor de vibración, astillas de freno, e) veletas, sensores de temperatura, i) botón de switch general.					
02 P2 P4	Revisión y chequeo e Anotación:	en el resto de los sensores					
	Subparte Contro	ladores y paneles					
03 P4	Revisión de las te contactores y disposi Anotación:	rminales de las conexiones, tivos del panel.					
04 P2	Revisión de las fuent del tablero. Anotación:	es y los dispositivos de poder					
	Subparte Estruct	ura					
05 P7	Revisión de los se potencia. Anotación:	paradores de los cables de					

Empresa AEROENERGIA HOJA DE INSPECCION Departamento de Mantenimiento **Mantenimiento Preventivo** Máquina **Parte** Paneles de control y Código AE-T01-08 AEROGENERADOR sensores Número Inspección Hora de inicio: Hora de salida: Ok X (min) **Subparte Sensores** Revisión y chequeo de funcionamiento de los sensores de a) sensor de torsión en cables, b)sensores de RPM, c) sensor de vibración, 01 P2 d)des gaste en las pastillas de freno, e) veletas, P4 f)anemómetro, g) sensores de temperatura, h)sensor de guiñada, i) botón de switch general. Anotación: Revisión y chequeo en el resto de los sensores 02 P2 P4 Anotación: Subparte Controladores y paneles Revisión de las terminales de las conexiones, 03 P4 contactores y dispositivos. Anotación: Revisión de las fuentes y los dispositivos de poder 04 P2 del tablero. Anotación: Subparte Estructura Revisión de los separadores de los cables de 05 P7 potencia Anotación:

-	AEROENERGIA miento Preventivo	HOJA DE INSPECCIO	N	E	Ξ×	
Máquin AEROG	a ENERADOR	Parte Paneles de control y sensores	Códi	go AE-	T01-08	
Número	Inspección Hora de i	nicio: Hora de salida:	T (min)	Ok	X	
	Subparte Controladores y paneles					
01 P4	Cambio de WP3000 Anotación:	cada 3 años.				
02 P4		xiones y los switches en las a góndola. Cada Service B				
03 P4	Revisión de la conex Anotación:	ión a tierra. Cada Service B				
	Subparte Estructura					
04 P4	Cambio de filtros de paneles de control. C Anotación:	los ventiladores en los ada Service B.				

Tabla A.5.9. Hoja de inspección Subestación y malla de tierra Ex

_	Empresa AEROENERGIA HOJA DE INSPECCION Mantenimiento Preventivo Porto Subastación y Malla da				
Máquina AEROG	MáquinaParte Subestación y Malla de TierraCódigo AE				
Número	Inspección Hora de inicio: Hora de salida:	T (min)	Ok	X	
	Subparte Interruptores				
01 P8	Revisión del desgaste de los contactos interruptivos Cada 2 años. Anotación:				
	Subparte Baterías				
02 P9	Lavar vent plugs batería con agua, secar. Cada 2 años Anotación:				
03	Medir a) niveles de electrolitos, b) el voltaje (El voltaje en terminales debe ser N x U, donde N es el número de baterías conectadas y U es el voltaje de flotación por celda), c) gravedad específica d) temperatura. Mensual. Anotación:				
	Subparte Multilin y los sensores en la Subestaci	ón			
04 P10	Revisar de las conexiones, el cableado. Cada dos años. Revisar consistencia de datos de multilin con Turbinas. Anotación:				
	Subparte Acondicionamiento del aire				
05	Limpiar filtros de aire acondicionado. Cada mes. Revisar Equipo Compacto de aire acondicionado. Anotación:				
06	Revisión de humedad. Mensual Anotación:				
	Subparte Maya				
07	Toma de mediciones y diagnóstico. Revisar deterioro. Anual. Anotación:				

Tabla A.5.10. Hoja de inspección de Transformadores Ex

Empresa	AEROENERGIA HOJA D	E INSPECCION	-	ſ				
Manteni	miento Preventivo				E	X		
Máquina AEROG	Parte Transfo	ormadores	Có	digo Al	E-T01	1-10		
Número	Inspección Hora de inicio: Hora	de salida:		T (min)	Ok	X		
	Subparte Fusibles							
01 P4	Cambiar fusibles de fase cuando se Anotación:	dispara una alarr	na.					
	Subparte Armazón del transfo	ormador						
02 P4	Retoque de la pintura cada 5 años Anotación:							
03	Inspeccionar visualmente en busca e Anotación:	nspeccionar visualmente en busca de fugas. Mensual.						
04	Reafirmado de anclajes de Transfor Mensual. Anotación:	mador al cimient	0					
	Subparte Parte eléctrica							
05 P10	Puntos calientes en terminales del tr Mensual. Anotación:	ransformador.						
06 P10	Revisión de cableado, dispositivos, Anotación:	maya a tierra. Aı	nual					
07 P10	Revisión del cableado de mediana to Anotación:	ensión. Anual						
	Subparte Aceite							
08 P10	Análisis de aceite. Anual. Anotación:							
09 P10	Verificar presión y temperatura de carga. La presión puede ser + 1 bar		lena					
	Mensual. Anotación:							

Tabla A.5.11. Hoja de inspección de la Torre de Meteorología Ex

•	mento de Mantenimier nimiento Preventi				E	X		
Máquin AEROG	a ENERADOR	Parte Torre de meteorología	Có	digo Al	E-11			
Número	Inspección Hora de inicio: Hora de salida: T(min)			Ok	X			
	Subparte Sensor	es, cajas y los cables						
01 P10	Revisión y lubricac rodamientos cada 6 i Anotación:	ción de los sensores móviles o meses	con					
02 P10	Revisar el estado de corrosión cada 6 mes Anotación:	los cables y las cajas, su desgasto ses.	еу					
	Subparte Controladores WP1000							
03		lador para corroborar que está orroborar que la comunicación es a 6 meses.	stá					
04 P10	Revisar que los cable Cada 6 meses Anotación:	es estén firmemente conectados.						
05 P10		el interior del controlador. No ivos corroídos o parcialmente eses						
	Subparte Estructu	ra						
06 P10	Revisión de la corros Anotación:	sión y la pintura cada 6 meses						
07		s de los cimientos, verificar y verificar el estado de los ancla meses						

Tabla A.5.12. Hoja de inspección de Inspecciones generales B Empresa AEROENERGIA HOJA DE INSPECCION Mantenimiento Preventivo Máquina Código AE-T01-12 Parte Inspecciones generales AEROGENERADOR Número Inspección Hora de inicio: Hora de salida: T(min) Ok X Corroborar que la góndola se posicione de cara a la 01 dirección del viento. Visualmente Anotación: Revizar el nivel y el tipo de ruido y vibración de las 02 máquinas trabajando. Auditivo. Anotación: Revizar el frenado de disco como único dispositivo de 03 frenado. Anotación: Revizar el frenado aerodinámico como único 04 dispositivo de frenado.

Anotación:

Anotación:

Anotación:

Anotación:

Imprimir los errores

05

06

07

Controlar e imprimir los setpoints.

Imprimir la curva de potencia

Anexo 6: Gantt para el año 2004
Gantt 2004: Inspecciones tipo B y Ex
<u>Volver</u>

Anexo 7: Flujogramas frente a Alarmas

Alarm 1

Alarm 13

Alarm 47

Alarm 48

Alarm 120 y 121

Alarm 130

Alarm 221

Alarm 223

Alarm 300 y 302

Alarm 322

Alarm 415

Alarm 422

Alarm 437

Alarm 438

Alarm 600

Alarm 601

Alarm 602

Alarm 620

Alarm 715

<u>Alarm 722</u>

Alarm 904

<u>Alarm 906</u>

Volver

Anexo 8: Reporte mensual de Fallas
Documento electrónico
Este es un ejemplo correspondiente al mes de febrero del año 2004
ALARMA0204.xls
<u>Volver</u>

Anexo 9: Reporte de Mano de obra directa							
Reporte Semanal de Labores de Encargados del Mantenimiento							
<u>Volver</u>							
<u>Volver</u>							

Anexo 10: Formato de pagos y compras
pages y compress
Ejemplo de formato de Pago
<u>Volver</u>

Anexo 11: Imágenes de la máquina									
Imágenes de las partes de la turbina									

Anexo 12: Tendencia de Valores Globales de Vibración
Tendencia de Valores Globales
<u>Volver</u>

Anexo 13: Hoja de Análisis de Valores Globales

Tabla A.13.1. Hoja de análisis de Valores Globales

Empresa AEROI	ENERGIA	Análisis de Valores Globales de Vibración en Velocidad						
Turbina:	Día:				Hora:			
Velocidad del vi	ento:	Potencia:			Producción acumulada:			
Punto Medición	Valor global	Seweridad				Ver Es pectros		
				Valor promed	lio	Si	No	
	•							
Semana No:	Anotaciones gene	rales:						
Tomó las medicione	s:		Analizó los	datos:				

<u>Volver</u>

Anexo 14: Hoja de Análisis de Espectros

Tabla A.14.1. Hoja de análisis de espectros

Empresa AEROENERGIA									
Turbina:		Día:					Hora:		
Velocidad del viento:		Potencia:				Producción acumulada:			
D () 15 11 (Frecuencias observadas (Hz)	Posibles fallas	Armó	Armónicos		de	Intervenir		
Punto Medición			Bf	Af	falla		Si	No	
Semana No: Anotaciones generales:									
Tomó las medicione	Analizó los datos:								
Conclusiones:									

Posibles fallas:

- A: Pista interior del Rodamiento
- B: Pista exterior del Rodamiento
- C: Elementos Rodantes
- D: Canasta
- E: Desalineación, Desbalance, eje torcido; o demás problemas con el eje.
- F: Problemas en los dientes de los engranajes.

Anexo 15: Ejemplo de Análisis para la Turbina 9

Tabla A.15.1. Análisis para turbina 9

Empresa AEROENERGIA Análisis de Valores Globales de Vibración en Velocidad y Enveloping								
Turbina: 9			Día: 13/05/2004	Hora: 10:50				
Velocidad del viento:		Potencia:	Producción acumulada:					
					Ver Es	pectros		
Punto	Me dici ón	Valor global	Severidad	Valor promedi	Si Si	No		
P1	Vel	2,4	B Permisible	1,87				
P1	Env	5,28	Alerta					
P2	Vel	3,22	B Permisible	2,27				
P2	Env	6,16	Alerta					
P3	Vel	1,61	A Bien	1,6				
P4	Vel	3,91	B Permisible	2,17				
P4	Env	4,43	Alerta					
P5	Vel	1,85	A Bien	2,32				
P5	Env	3,67	Satisfactorio	,				
P6	Vel	1,83	A Bien	1,6				
P7	Vel	1,53	A Bien	1,8				
P10	Vel	5,89	C Tolerable	5	X			
P10	Env	13,26	No admisible		X			
P11	Vel	5,12	C Tolerable 4,79		X			
P11	Env	4,6	Alerta		X			
P12	Front Vel	3,42	B Permisible 4,93		X			
Semar	na No:	Anotaciones gen	erales:					
Tomó l	las medicione	es:	Analizó lo	os datos:				

Anexo 16: Ejemplo de Análisis de Espectros

Turbina 9

Tabla A.16.1. Análisis de espectros de Turbina 9

	Producciónacumulada:			
apa de	Inte	rvenir		
falla	Si	No		
1		1		
1				
3				
falla en E	Bearing dela	antero.		
	1 1 3	1 1 1 falla en Bearing dela		

Posibles fallas:

- A: Pista interior del Rodamiento
- B: Pista exterior del Rodamiento
- C: Elementos Rodantes
- D: Canasta
- E: Desalineación, Desbalance, eje torcido; o demás problemas con el eje.
- F: Problemas en los dientes de los engranajes.

Anexo 17: Ejemplo de Análisis para la Turbina 1

Tabla A.17.1. Análisis de turbina 1

Turbi	na: 1		Día: 15/05/2004		Hora: 12:06 pm			
Veloci	idad del vi	ento:	Potencia:		Producciónacumulada:			
					V	er Es p	ectros	
Punto	Me dici ón	Valor global	Severi dad	Valor promed	io	Si	No	
P1	Vel	2,33	B Permisible	1,87				
P1	Env	2,86	Satisfatorio	3,11				
P2	Vel	3,7	B Permisible	2,27				
P2	Env	3,02	Alerta	2,71				
P3	Vel	2,45	B Permisible	1,6				
P4	Vel	3,93	B Permisible	2,17				
P4	Env	13,05 - 6,25	No admisible	5,6		X		
P5	Vel	2,85	B Permisible	2,32				
P5	Env	6,5	Alerta	3,61				
P6	Vel	2,7	B Permisible	1,6				
P6	Env	8,3	No admisible	4,25		X		
P7	Vel	1,88	A Bien	1,8				
P10	Vel	7,2	C Tolerable	5		X		
P10	Env	7,02 – 2,25	No admisible	3,14		X		
P11	Vel	5,85	C Tolerable	4,79		X		
P11	Env	3,54 - 2,22	Alerta	2,24				
P12	Front Vel	12,34	D No permisible	4,93		X		

<u>Volver</u>

Anexo 18: Ejemplo de Análisis de Espectros para la Turbina 1

Tabla A.18.1. Análisis de espectros para turbina 1

Empresa AEROENERGIA Turbina: 1 Día: 13/05/2004 Hora: 10:50 am Producción -----Velocidad del viento: -----Potencia: ----acumulada: **Intervenir** Armónicos Frecue ncias Posibles Etapa de Punto Medición observadas (Hz) fallas falla Bf Si No Af P4 Vel 5 Env 5, 55 Logarítmica Monitorear 1870 Side bands Acc $30, \overline{200, 1870}$ P6 Ve1 E, B, 2080 10, 200, 3740. Env E, B Forma de U Monitorear 3950 1870 Side bands Acc Α P10 Vel 30 E Monitorear Acc Env C 240 Monitorear P11 Vel 30, 90 E, B Monitorear Acc 30, 93 E, B 1 Env P12 Front Vel 5, 30 Е X Semana No: Anotaciones generales:. Tomó las mediciones: Carlos V. Analizó los datos: Carlos V. Conclusiones: El problema con el eje debe ser intervenido. Las demás vibraciones deben ser monitoreadas para obtener conclusiones.

A: Pista interior del Rodamiento

B: Pista exterior del Rodamiento

C: Elementos Rodantes

D: Canasta

E: Desalineación, Desbalance, eje torcido; o demás problemas con el eje.

F: Problemas en los dientes de los engranajes.

Anexo 19: Información sobre Vibraciones en la Caja Multiplicadora Flender PEAC 4300.4 proporcionada por Flender

Información de Flender sobre Monitoreo a Condición
Tabla de Frecuencias en los rodamientos de Flender
Tabla de frecuencias para Engranajes de Flender
<u>Volver</u>

Anexo 20: Frecuencias de Falla en los rodamientos de la Caja Multiplicadora

Tabla A.20.1. Velocidad y frecuencia de rotación de salida

Frecuencia de rotación											
1812	RPM	30.2	Hz								

Tabla A.20.2. Rodamientos en el eje del engrane helicoidal (NJ 2224 EC/C3) (D, G)

Tipo de	Detalle	Hz	Hz	2x	3x	4x	5x	6x	7x	8x	9x	10x
frecuencia		(1510	(1810									
		rpm)	rpm)									
Fi	BPFI (pista interior)	93,460	111,97	224	336	448	560	672	784	896	1008	1120
Fe	BPFO (pista exterior)	68,600	82,18	164	247	329	411	493	575	657	740	822
Fb	BSF (elemento s rodantes	60,69	72,71	145	218	291	364	436	509	582	654	727
Ft	FTF (proble m as en la canasta)	4,040	4,84	10	15	19	24	29	34	39	44	48

Tabla A.20.3. Rodamientos del eje del Engrane Sol del Sistema Planetario (SL 182960-INA) (I)

Tipo	Detalle	Hz	Hz	2x	3x	4x	5x	6x	7x	8x	9x	10x
	del	(1510	(1810									
	Tipo	rpm)	rpm)									
Fi	BPFI (Pista interior)	39,720	47,58	95	143	190	238	286	333	381	428	476
Fe	BPFO (Pista exterior)	33,200	39,77	80	119	159	199	239	278	318	358	398
Fb	BSF (ruedas)	23,09	27,66	55	83	111	138	166	194	221	249	277
Ft	FTF (canasta)	0,95	1,14	2	3	5	6	7	8	9	10	11

Tabla A.20.4. Rodamientos del Engrane Sol del Sistema Planetario (SL181860-INA) (H)

Tipo de	Detalle	Hz	Hz	2x	3x	4x	5x	6x	7x	8x	9x	10x
frecuencia	del	(1510	(1810									
	Tipo	rpm)	rpm)									
Fi	BPFI (Inner Race; pista interior)	61,600	73,80	148	221	295	369	443	517	590	664	738
Fe	BPFO (Outer Race; pista exterior)	55,070	65,97	132	198	264	330	396	462	528	594	660
Fb	BSF (Ball Spin Frecuency; elementos rodantes)	37,07	44,41	89	133	178	222	266	311	355	400	444
Ft	FTF (proble mas en la canasta)	0,98	1,17	2	4	5	6	7	8	9	11	12

Tabla A.20.5. Rodamientos en los ejes de los Planetarios (24132CC/C3) (B)

Tipo de	Detalle	Hz	Hz	2x	3x	4x	5x	6x	7x	8x	9x	10x
frecuencia	del	(1510	(1810									
	Tipo	rpm)	rpm)									
Fi	BPFI (pista interior)	12,200	14,62	29	44	58	73	88	102	117	132	146
Fe	BPFO (pista exterior)	9,500	11,38	23	34	46	57	68	80	91	102	114
Fb	BSF (elementos rodantes)	7,890	9,45	19	28	38	47	57	66	76	85	95
Ft	FTF (proble mas en la canasta)	0,45	0,54	1	2	2	3	3	4	4	5	5

Tabla A.20.6. Rodamiento en la salida de la caja del lado del generador (22226 EC3) (F)

Tipo	Detalle	Hz	Hz	2x	3x	4x	5x	6х	7x	8x	9x	10x
	del Tipo	(1510	(1810									
		rpm)	rpm)									
Fi	BPFI (pista interior)	260,98	312,65	625	938	1251	1563	1876	2189	2501	2814	3127
Fe	BPFO (pista exterior)	191,72	229,68	459	689	919	1148	1378	1608	1837	2067	2297
Fb	BSF (elementos rodantes)	158,19	189,51	379	569	758	948	1137	1327	1516	1706	1895
Ft	FTF (proble mas en la canasta)	10,65	12,76	26	38	51	64	77	89	102	115	128

Tabla A.20.7. Rodamiento de salida de la caja del lado del generador (NJ 2224 E3/C3) (E)

Tipo	Detalle del Tipo	Hz (1510	Hz (1810	2x	3x	4x	5x	бх	7x	8x	9x	10x
		rpm)	rpm)									
Fi	BPFI (pista interior)	246,57	295,39	591	886	1182	1477	1772	2068	2363	2659	2954
Fe	BPFO (pista exterior)	180, 98	216,81	434	650	867	1084	1301	1518	1735	1951	2168
Fb	BSF (elementos rodantes)	160,1	191,80	384	575	767	959	1151	1343	1534	1726	1918
Ft	FTF (problemas en la canasta)	10,65	12,76	26	38	51	64	77	89	102	115	128

Tabla A.20.8. Rodamiento en la entrada de la caja (SL 181868-INA) (A)

Tipo	Detalle del Tipo	Hz (1510 rpm)	Hz (1810 rpm)	2x	3x	4x	5x	6х	7x	8x	9x	10x
Fi	BPFI (pista interior)	13,030	15,61	31	47	62	78	94	109	125	140	156
Fe	BPFO (pista exterior)	11,77	14,10	28	42	56	71	85	99	113	127	141
Fb	BSF (elemento s rodantes	7,890	9,45	19	28	38	47	57	66	76	85	95
Ft	FTF (problema s en la canasta)	0,19	0,23	0	1	1	1	1	2	2	2	2

Tabla A.20.9. Rodamiento en la entrada de la caja (SL 181892-INA) (C)

Tipo de frecuencia	Detalle del Tipo	Hz (1510 rpm)	Hz (1810 rpm)	2x	3x	4x	5x	бх	7x	8x	9x	10x
Fi	BPFI (pista interior)	12,230	14,65	29	44	59	73	88	103	117	132	147
Fe	BPFO (pista exterior)	10,97	13,14	26	39	53	66	79	92	105	118	131
Fb	BSF (elementos rodantes)	7,370	8,83	18	26	35	44	53	62	71	79	88
Ft	FTF (problemas en la canasta)	0,19	0,23	0	1	1	1	1	2	2	2	2

Anexo 21: Frecuencias de Falla en los engranes de la caja multiplicadora

Tabla A.21.1. Engranes de la caja en las diferentes etapas 16 .

Tipo	Detalle	0.5	N	1h	2h	3h	4h	5h	6h	7h	8h	9h	10h
	del Tipo												
Etapa Epicíclica	Conjunto de planetarios y sol	15	30	60	91	121	151	182	212	243	273	303	334
Etapa intermedia	Engranes en paralelo (morado)	102	204	408	612	816	1020	1224	1428	1632	1837	2041	2245
Etapa de salida	Engranes de salida (blanco)	467	934	1869	2803	3738	4673	5607	6542	7477	8411	9346	10281

¹⁶ La tabla muestra las frecuencias a la mitad de la frecuencia principal (0.5), a la frecuencia principal (N) y a las diferentes armónicas (xh).

Anexo 22: Puntos de medición de vibraciones en la caja, señalamiento y codificación de rodamientos

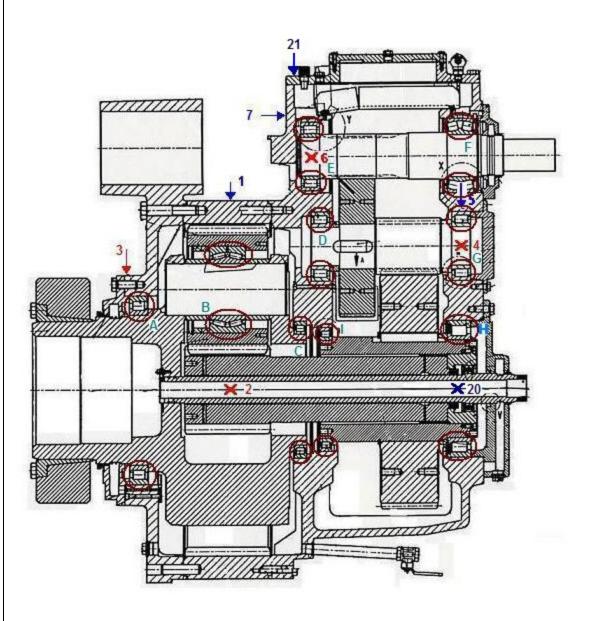


Figura.A.22.1. Puntos de medición en la Caja Multiplicadora

Anexo 23: Frecuencia de giro en los piñones de la caja por el Método Analítico de Tabulación.

En la siguiente figura se muestra una imagen de la Caja Flender PEAC 4300.4

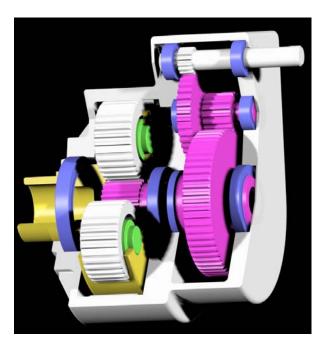


Figura.A.23.1. Distribución interna de la Caja Multiplicadora 17

Para una configuración planetaria igual a la presentada por la Caja Flender se presenta la tabla básica del Método de Tabulación¹⁸.

 ¹⁷ Tomado de la Presentación de las mejoras en las Cajas Multiplicadoras
 18 Esta tabla fue tomada del libro Mecanis mos y Dinámica de Máquina. Hamilton H. Mabie y Charles F. Reinholz.

Т	abla A.23.1. ⊤	abla de cálculos po	or el método de Tabu	lación
	Corona	Rueda sol	Piñón Planetario	Brazo transmisor
Movimiento con el Brazo relativo al bastidor	+1	+1	+1	+1
Movimiento relativo al brazo	-1	+ N1/N2	- N1 / N3	0
Movimiento total relativo al bastidor	0	1 + (N1/N2)	1 – (N1/N3)	+1

De esta forma, se obtienen las velocidades de cada elemento, sabiendo que se cuenta con 68 dientes en la corona de la carcaza, 26 dientes en el piñón planetario, 16 dientes en la rueda sol, que la relación de velocidades en la etapa intermedia es 24.04 y la relación de velocidades en la etapa de salida es 67.466.

Tabla A.23.2. Tabla de velocidades y frecuencias de los ejes de la Caja Multiplicadora

	Velocidades de giro de	e los ejes en la Caja	
Velocidad en el brazo de	i = 1	26 rp m	0.43 Hz
entrada			
Velocidad en el piñón	i = -1.615	42 rp m	0.7 Hz
planetario			
Velocidad en la rueda sol	i = 5.25	136.5 rpm	2.275 Hz
Velocidad en la etapa	i= 24.04	625 rp m	10.41 Hz
intermedia			
Velocidad en la etapa de	i = 67.466	1812 rp m	30.2 Hz
salida			

Anexo 24: Muestra de Cálculo de las frecuencias de los Rodamientos Traseros y Delanteros del Generador

Tabla A.24.1. Tabla de datos de los rodamientos del generador

Tabla de Datos						
n bolas	8 bolas					
fr	1812 rpm	30.2 Hz				
dm	190 mm					
d	56 mm					
β	40°					

Tabla A.24.2. Frecuencias de falla en el generador

Fre	cuencia	Ecuación	Resultado (Hz)
Fi	BPFI	$0.6 (fr)(n_{esferas})$	144.96
Fe	BPFO	$0.4 (fr)(n_{esferas})$	96.64
Fb	BSF	$\frac{dm (fr)}{2d} [1 - ((d/d_m)^2 (\cos(\beta))^2)]$	48.620
Ft	FTF	$\frac{\text{fr}}{2d} [1 - ((d)(\cos(\beta)))]$	11.690

Anexo 25: Frecuencias de falla del Rodamiento Trasero y Delantero del Generador

Tabla A.25.1. Marca y designación de los rodamientos del generador

Marca	Designación
SKF	6324/C3VL0241

Tabla A.25.2. Velocidad y frecuencia del generador

Fre	ecuenc	ia de r	otación
1812	RPM	30.2	Hz

Tabla A.25.3. Frecuencias de falla en la Caja Multiplicadora

Tipo de	Detalle del	Hz	2x	3x	4x	5x	6x	7x	8x	9x	10x
frecuencia	Tipo										
Fi	BPFI (Inner Race; pista interior)	144.9	290	435	580	725	870	1015	1160	1305	1450
Fe	BPFO (Outer Race; pista exterior)	96.6	193	290	387	483	580	676	773	870	966
Fb	BSF (Ball Spin Frecuency; elementos rodantes)	48.6	97	146	194	243	292	340	389	438	486
Ft	FTF (Fundamental Train Frecuency; problemas en la canasta)	11.6	23	35	47	58	70	82	94	105	117

Anexo 26: Puntos de medición de vibraciones en el Generador

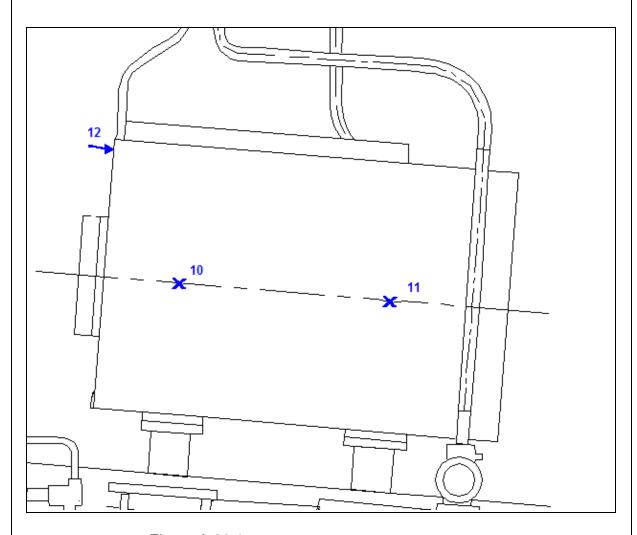


Figura A.26.1 Puntos de medición en el Generador Elin

Anexo 27: Configuración de las mediciones de Velocidad

Tabla A.27.1. Configuración de las mediciones de velocidad

	Configuración de n	nediciones de Velocidad
Full scale	10 mm/sec	El máximo esperable de los datos de velocidad es 10 mm/sec. Después de ese valor, una falla es obvia.
Input mV/EU	100	Este es el valor del sensor original del equipo.
Detection	RMS	Las tablas de la Norma ISO 2374 están en RMS
Low Frecuency limit	2 Hz	El limites de baja frecuencia debe ser un valor bajo.
Save Data	FFT and Time	Al salvar los datos en modo FFT and Time, se toma en cuenta el valor de la señal en el tiempo y se obtienen mejores señales
AutoCapture	Always	Con el modo de captura de datos en Always se agilizan las mediciones
Frequency Type	Fixed Span	El tipo Order Track es especial para toma de fases. En esta ocasión, la toma de fase no se aplica.
Speed	136 RPM	Esta velocidad cambia conforme cambia el punto a medir.
Start Frequency	0 Hz	Se inicia en 0 Hz con tal de no perder las señales en bajas frecuencias.
Lines	400	El número de lineas recomendable es 400. Un valor menor implica menos capacidad de análisis, y un valor mayor implica una toma de datos más lento.
End Frecuency	4000 Hz	Este dato puede cambiar a partir de la velocidad del elemento monitoreado.
Storage Depht	12	Para planes de monitoreo de vibraciones a largo plazo este dato debe incrementarse.
Window	Hanning	Este parámetro se usa para medición generales.
Averages	3	El número de datos con el cual obtiene el promedio debe ser bajo para agilizar la medición y evitar medidas sobrecargadas.
Speed Ratio	1	

Anexo 28: Configuración de las mediciones de Enveloping

Tabla A.28.1. Configuración de las mediciones de Enveloping

	Configuración de m	ediciones de Velocidad
Full scale	25 gE	El máximo esperable de los datos de velocidad es
		25 gE. Ese valor es exagerado y no debería pasar de 10 gE.
Input mV/EU	100	Este es el valor del sensor original del equipo.
Detection	Peak to Peak	Usualmente los valores de Enveloping se miden de pico a pico.
Input Filter Range	500 Hz to 10 kHz	Para aplicaciones de 1800 rpm se usa el filtro 3 de Enveloping.
Save Data	FFT and Time	Al salvar los datos en modo FFT and Time, se toma en cuenta el valor de la señal en el tiempo y se obtienen mejores señales
AutoCapture	Always	Con el modo de captura de datos en Always se agilizan las mediciones
Frequency Type	Fixed Span	El tipo Order Track es especial para toma de fases. En esta ocasión, la toma de fase no se aplica.
Speed	1810 RPM	Esta velocidad cambia conforme cambia el punto a medir.
Start Frequency	0 Hz	Se inicia en 0 Hz con tal de no perder las señales en bajas frecuencias.
Lines	400	El número de líneas recomendable es 400. Un valor menor implica menos capacidad de análisis, y un valor mayor implica una toma de datos más lento.
End Frecuency	4000 Hz	Este dato puede cambiar a partir de la velocidad del elemento monitoreado.
Storage Depht	12	Para planes de monitoreo de vibraciones a largo plazo este dato debe incrementarse.
Window	Hanning	Este parámetro se usa para medición generales.
Averages	3	El número de datos con el cual obtiene el
		promedio debe ser bajo para agilizar la medición y evitar medidas sobrecargadas.
Speed Ratio	1	

<u>Volver</u>

Anexo 29: Configuración de las mediciones de Aceleración

Tabla A.29.1. Configuración de las mediciones de Aceleración

(Configuración de m	ediciones de Velocidad
Full scale	6 Gs	El máximo esperable de los datos es de 6 Gs.
Input mV/EU	100	Este es el valor del sensor original del equipo.
Detection	Peak	Usualmente los valores de Aceleración se miden en pico.
Low Frequency Limit	2 Hz	Este valor debe ser bajo.
Save Data	FFT and Time	Al salvar los datos en modo FFT and Time, se toma en cuenta el valor de la señal en el tiempo y se obtienen mejores señales
AutoCapture	Always	Con el modo de captura de datos en Always se agilizan las mediciones
Frequency Type	Fixed Span	El tipo Order Track es especial para toma de fases. En esta ocasión, la toma de fase no se aplica.
Speed	1810 RPM	Esta velocidad cambia conforme cambia el punto a medir.
Start Frequency	0 Hz	Se inicia en 0 Hz con tal de no perder las señales en bajas frecuencias.
Lines	400	El número de lineas recomendable es 400. Un valor menor implica menos capacidad de análisis, y un valor mayor implica una toma de datos más lento.
End Frecuency	4000 Hz	Este dato puede cambiar a partir de la velocidad del elemento monitoreado.
Storage Depht	12	Para planes de monitoreo de vibraciones a largo plazo este dato debe incrementarse.
Window	Hanning	Este parámetro se usa para medición generales.
Averages	3	El número de datos con el cual obtiene el promedio debe ser bajo para agilizar la medición y evitar medidas sobrecargadas.
Speed Ratio	1	

Anexo 30: Cálculo de la vida nominal del rodamiento del generador

El dato del L_{10h} es la vida alcanzada por al menos el 90% de una serie de rodamientos idénticos bajo las mismas condiciones y un buen funcionamiento.

El cálculo del L_{10h} para el rodamiento del Generador (6324/C3VL0241) es el que sigue:

 $L_{10h} = (1000000/60 \text{ x n}) (C/P)^p$

Donde n = 1812 es igual a la velocidad en rpm de giro del eje; C = 208 kN es la capacidad de carga dinámica y corresponde a un dato de catálogo; P = 1.15 toneladas es la carga dinámica correspondiente al peso del rotor principal distribuido en dos apoyos (el peso del eje del generador es mucho menor que el del eje principal); y p = 3 para rodamientos de bolas (dato de catálogo).

Sustituyendo los valores:

 $L_{10h} = (1000000/60 \text{ x } 1812) (208000N/1150 \text{ Kgf x } 9.8 \text{ N/Kgf})^3 = 57850 \text{ h} = 6 \text{ años}, 7 \text{ meses}.$

Anexo 31: Cotización de Electricidad Americana sobre el software del Proyecto del Historiador de datos
Cotización del Software
<u>Volver</u>

Anexo 32: Manuales digitales para la conexión y programación del PLC Mitsubishi FX _{1N} y sus dispositivos.

programacion del PLC Mitsubishi FX _{1N} y sus dispositivos.
Manual del hardware de la Tarjeta de FX 1N-485BD
Manual del Módulo de comunicación de la serie Q
Manual de comunicación por RS-485, RS-232, RS-422
Manual del Hardware del PLC FX 1N
Manual Completo de Programación (Para observar la función RS ver página 237)

Anexo 33: Información sobre sensores y dispositivos por comunicar Dispositivo de vibraciones TAC 84c Anemómetro PT100: Sensor de temperatura SEG: Relé de protección por bajo voltaje o baja frecuencia

Anexo 34: Diagrama de escalera del sensor de RPM

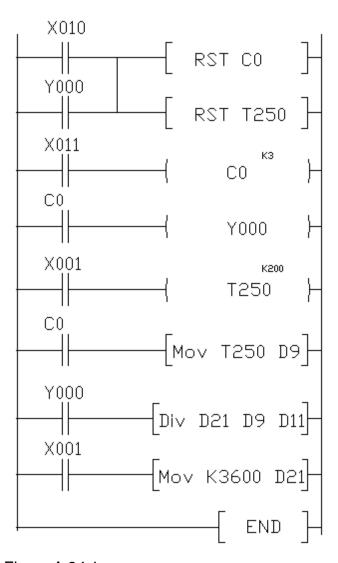


Figura A.34.1 Diagrama escalera para control del RPM

Notas: El sensor funciona con pulsos de 24V, por ello se conecta como la entrada digital X11. El programa necesita hacer reset antes de iniciar el sensado. El reset es X10. El X10 debe presionarse por un momento solamente. Para activar el sensor debe dejarse activa la entrada X1.

Anexo 35: Información técnica del aceite de la caja	
ceite de la Caja Multiplicadora (Mobil Gear)	
<u>olver</u>	

Anexo 36: Diagrama de instalación del sensor de nivel buscado

buscado			
La imagen puede apreciarse mejor en su archivo digital			
Diagrama propuesto de colocación del Sensor de Nivel			
Tecnología de Sensor propuesto			
<u>Volver</u>			

Anexo 37: Información sobre el sensor de flujo Hydac
Catálogo del sensor de flujo Hydac
Makaa
<u>Volver</u>

Anexo 38: Información Técnica y enlaces a catálogos y documentos electrónicos

Tabla A.38.1. Enlaces a documentos electrónicos

Catálogos e información digital		
Líneas de transmisión y postes: Cálculos de diseño	PDF: linea2	
Aspas LM: Información general.	PDF: General+info	
Aspas LM: protección contra descargas	PDF: Lightning+Prot	
Aspas LM: Manual de Instalación y Mantenimiento	JPEG: Carpeta	
Aspas LM: Información de LM	PDF: Información LM	
Contactores ABB: EH, EK	PDF: EH700_Manual	
Arrancador EH 700: Esquema físico	<u>PDF: EH700S9</u>	
Contactores ABB: Guía de Inspección y Mantenimiento	PDF:EH_700_Service_Manual	
Contactores ABB: Datos de Placa	EXCEL: Placa de contactor	

Generador: Datos de Placa	JPEG: generador_plate
Comunicación: Diagrama de fibra óptica	PDF: fiber_optic_park PDF: fiber_optic_park_PC
Torres Meteorológicas: Controlador WP1000	PDF: IC1000_Weather_St
Breaker ABB: Catálogo técnico	PDF: Isomax_es
Breaker ABB: Catálogo técnico, protección para motores.	PDF: MotorProtection_en
Breaker ABB: Información general	PDF: PromoIsomax_ES
Relé SEG Main Decoupling Relay: Catálogo	PDF: SEG_MRN3
Panel de Control: Thyristor	PDF: Thyristor
Mita Teknik A/S: Presentation general	PDF: Wind_GB
WP3000: Información general	PDF: WP3000_controller
Fibra Optica: Tarjeta WP 3045 de interfase de fibra óptica	PDF: WP3045_1_Board

RS-232: Tarjeta WP 3046 interfase de RS-232	PDF: WP3046_Board
Panel: Display WP3059	PDF: WP3059_Display
Transformadores de medición de voltaje WP3090: Información General	<u>PDF: WP3090</u>
Módulo de conexión WP4060: Información general	PDF: WP4060_Connection
Norma 60034-1: Máquinas eléctricas rotativas. Parte 1	PDF: iec60034-1{ed10.2}b
Norma 60034-1: Máquinas eléctricas rotativas. Enmienda 1. Parte 1	PDF: iec60034-1-amd1{ed10.0}b
Norma 60034-1: Máquinas eléctricas rotativas. Enmienda 2. Parte 1	PDF: iec60034-1-amd2{ed10.0}b
Norma 60034-1: Máquinas eléctricas rotativas. Parte 2	PDF: iec60034-2{ed3.0}b.img
Norma 60034-1: Máquinas eléctricas rotativas. Correcciones a la Parte 3	PDF: iec60034-3-cor1{ed4.0}b

Norma 60034-1: Máquinas eléctricas rotativas. Parte 14. Vibraciones mecánicas	PDF: iec60034-14{ed2.0}b
Norma 60034-1: Máquinas eléctricas rotativas. Carga y elevación de la temperatura	PDF: iec61986{ed1.0}b
Generador: Mobil Temp SHC 100	HTML: Mobiltemp SHC 100
Generador: Conceptos teóricos para turbinas eólicas y su electrónica de potencia	PDF: ris-r-1205
Sensor: RPM: Carta técnica	PDF: sensor_rpm
Análisis de Vibraciones: Programa de SKF para Condition Monitoring en turbinas eólicas	PDF: SKF_DATA
Motores de Guiñada: información técnica y de diseño. Parte 1	PDF: 300_1
Parte 2	PDF: 300_2
Parte 3	PDF: 300_3
Parte 4	PDF: 300_4

Parte 5	PDF: 300_5
Parte 6	PDF: 300_6
Parte 7	PDF: 300_7
Motores de Guiñada: Aplicaciones eólicas	PDF: 700_eolico_uk
Motores de Guiñada: Información técnica	PDF: bn_1 PDF: bn_2
Motores de Guiñada: Manual de Instalación, operación y servicio	PDF: man300ind
Motores de Guiñada: Información técnica	PDF: mancafsbn1 PDF: mancafsbn2
Estación Hidráulica: Sensor de presión Danfoss	PDF: 03M33
Estación Hidráulica: Catálogo de AVN	PDF: Profilemagazine
Estación Hidráulica: Acumulador AVN	PDF: Acumulador
Estación Hidráulica: Bomba	PDF: Bomba
Estación Hidráulica: Tipos de Bomba	PDF: Tipos de Bomba

Estación Hidráulica: Slip Ring	PDF: slip_ring
Turbina M1500: Manual en español	JPEG: Carpeta
WP3000: Alarmas, notas y programación	Word: Carpeta
Turbina NM750: Datos Técnicos	PDF: DATOS_TECNICOS_750_44
WP3000: A larmas	PDF: r_statuskoderoversigt_5_2_gb PDF: r_statuskoderudvidet_5_3_gb
Sensores: Veletas	PDF: OD04_1 PDF: OD05_1H
Sensores: PT100	PDF: PT100_100.60
Sensores: Anemómetro: Datos	PDF: PV01_2
Sensor de torsión de cables: Datos	PDF: SIEK-UV1
Motor del ventilador: Instalación, alineación	PDF: AEG_Motors_spanish
Motor del ventilador: Catálogo de motores	PDF: MOTORES_AEG
Comunicación: Convertidor de RS-232 a fibra óptica	PDF: Standard_LS16

Comunicación: Programa WPMS: Información	PDF: wpms
Comunicación: Programa WPMS: Web Browser	PDF: WPMS_WEB
Turbina NM750: Especificaciones Técnicas	PDF: NM750_44_GB
Transmisión: Recloser	PDF: 28030
Transmisión: Recloser: Procesador	PDF: recloser
Subestación: Cargador de baterías	PDF: cargador_baterias
Subestación: interruptores	PDF: sk1021dgb
Transformadores: Información	PDF: GET-6859B
Freno de disco: Ejemplo con información	PDF: 035_nce_shd5
Caja Multiplicadora: Bomba Hydac	PDF: BombaHydace5702
Subestación: Cargador SAFT	PDF: cargador_saft
Acoples: Centa link	PDF: centa PDF: Centalink

Turbina NM750: Certificado Danés	PDF: CertificadoDanesTurbina
Turbina NM750: Datos Técnicos	PDF: datos_tech_750
Control: Esquema eléctrico de la turbina	PDF: ESQUEMA_ELECTRICO
Grasa general: Mobilith	PDF: glxxengrsmomobilithshcseries
Grasa generador: Mobiltemp	PDF: glxxengrsmomobiltempshcseries
Aceite Caja Multiplicadora	PDF: glxxenindmomobilgearshcxmpseries
Generador: Bomba: Catálogo	PDF: Grundfos literature- 1865BombaAgua
Generador: Bomba: Manual de instalación y operación	PDF: InstallationandOperationGrundfos
Subestación: Multilin: Información Software	PDF: Multilin239-d9_6
Caja Multiplicadora: Presentación de las mejoras en la Caja	Power Point: presentation_master_UK_180200
Freno de disco: Sistema de Softbrake: Información	PDF: softbrake

Caja Multiplicadora: Esquema	JPEG: flender
Caja Multiplicadora: Información de Analisis de Vibracion, Flender	PDF: condition_monitoring_of
Caja Multiplicadora: Datos de Vibración, Flender	PDF: GEARFREQUENCYC4300
Reportes de Service B	Excel: Turbina 1 (aeroenergia #1) Excel: Turbina 3 (aeroenergia #3)