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ABSTRACT 

Convective Variability Associated with a Mesoscale Vortex in a Midlatitude Squall Line 

System. (May 1994) 

Svetla Mihaylova Hristova-Veleva, B. S. , University of Sofia 

Chair of Advisory Committee: Dr. Michael L Biggerstaff 

The relationship between the kinematic structure of the convective line and the 

mesoscale storm-relative flow associated with an embedded mesovortex in the trailing 

stratiform region of the 28 May 19&5 squall line system is examined using Doppler radar 

data collected during the Preliminary Regional Experiment for Stormscale Operational 

and Research Meteorology — Central Phase (PRE-STORM), Ten dual-Doppler analyses 

of the kinematic and reflectivity fields are constructed for toughly a 50-minute period 

over the storm's mature stage. 

Reflectivity and flow fields exhibit significant variability along the convective 

line. Large, somewhat isolated reflectivity ctues, elongated in the direction of storm 

propagation, wctu located in the southern and central portions of the storm. In contrast, 

the northern part of the convective line was characterized by smaller, more closely 

spaced ieflectivity cores which were organized perpendicularly to the storm propagation 

vector. Deepest reflectivity cores and strongest vertical drafts were consistently found 

on the southern flank of the system The southern end of the convective line expanded 

during the analysis period while the convective intensity of the northern end of the line 

continuously decreasetL 

A well organized cyclonic mesovortex was found at mid-level in the stratiform 

cloud trailing the north-central portion of the leading convective line, The variability in 

the strucnue of the convective cells along the convective line appeared to be related to the 

interaction between the mesoscale low-level outflow from this vortex and the 

environmental low-level inflow. The outflow was opposite the environmental inflow in 

the southern and central portions of the storm. In contrast, the outflow was directed 



nearly parallel to the inflow along the northern portion of the storm system. This hd to 

variation in the depth and direction of propagation of the convective downdrafl outflow 

such that there was greater low-level convergence and enhanced lifting in the southern 

and central portions of the convective line compaxed to the northern part, Hence, the 

variabiTity in convective structure appears to have resulted from a scale interaction 

between 8» storm-induced relative flow and the envixoxtmental winds. 
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CHAPTER I 

INTRODUCTION 

Squall line systems, often characterized by a leading line of deep cumulonimbus 

with trailing stratiform precipitation, represent a significant portion of thc mesoscah 

lxucfpitation systems observed over the central United States (Houze et aL 1990). 'Ihesc 

storms have been observed in both the tropics (Hamilton and Archibold 1945; Zipser 

1969) and midlatitudes (Newton 1950; Pujita 1955). While the general kinematic 

structure of squall lines is well known, thc interaction of the convective region with 

storm-induced mesoscale circulations is still not well undetstood. 

The latent heating and cooling that takes place within squall lines often leads to 

the formation of mesoscale pressure petturbations. A mid-level mesolow can form in 

assoc~on with lower level melting and evaporative cooling underneath latent heating in 

thc warm, buoyant stratiform cloud deck that often trails the convective line (e. g. 

Biggerstaff and Houze 1991a). This pressure field and another mesolow that exists 

underneath sloping updrafts in the convective region (LeMonc 1983) aid in the 

generation of rcar-to-front storm-relative flow. Midlevel convergence of positive 

absolute vorticity into the mesolow leads to the development of cyclonic relative vordcity 

at mid-levels in the trailing stratiform region (Zhang and Fritsch 1987, 1988; Brandes 

1990; Biggerstaff and Houze 1991b). 

Occasionally, the cyclonic vorticity forms a mesoscale vortex crculation in the 

trailing stratiform region with storm-relative tear-inflow in the southern branch of the 

vortex and storm-relative front-to-rear flow in the northern branch (e. g. Houze et al. 

1989; Brandes 1990). The storm-relative flow associated with these mesovortices can 

also affect the reflectivity structue of the squall line system by aiding in the development 

of an extensive stratiform precipitation region associated with the front-to-rear storm- 

rclative flow and limiting the areal coverage of stratiform precipitation in the dry, storm- 

tehttive rear-inflow branch. 

As suggested by Smull and Houze (1987) and modeled by Weisman (1992), the 

rear-inflow can also affect the evolution of the convective system by altering the 

structutc of the vertical drafts in the convective region. Moreover, along-line differences 

Thc style is that of the Monthly Weasher Review. 



in the intensity, depth and altitude of the tear-inflow into the convective region wouM 

also be associated with the mesovortex. However, the mechanism for the interaction 

between the mesoscah flow and the convective line remains obscure. No observations 

have been presented to document the association between a stratiform region mesovottex 

and differences in thc convective structure along the convective line. 

%Ms study addresses the question of scale interaction by examining the relation 

between the time and space variability of the mescvortex cuculation and tbe time and 

along-line variability of the convective mgion in a midlatinxie squall line system. 



CHAPTER II 

PREVIOUS STUDIES 

To inv~ the development of mesoscale cixculations and their impact on the 

evolution and structure of the mesoscale convective systems, studies have been 

conducted in thxec major areas: (i) generation and evolution of mesosctde vortices and 

their effect on thc longevity of the storm systems; (ii) ~hip between the midlevcl 

mcsovortcx and the kinematic and reflecnvity structure of the stratiform sxea; and (iii) 

xcladot tship between the mesoscah storm-xchuive flow and the structuxc and evolution of 

the convective axes. 

Generation and Evolution of Mesoscale Vortices and Their Effect on the 

Longevity of the Convective Systems 

Bosart and Sanders (1981) used synoptic and rawinsonde data to investigate the 

structure and evolution of the mesoscale convective complex which produced the 

Johnstown Hood of July 1977, They found that the storm system was characterized by 

a pool of cool air throughout the lower troposphere and by a strong cyclonic circulation 

in the lower axed middy troposphere, capped by an intense anticyclcxuc cnculation in the 

upper troposphere. The storm system went through periodic redevelopmcnt and 

persisted for more then five days, producing intensive rain over a very broad area 

Bosart and Sanders attributed the longevity of the system and its ability to 

xearganize to a positive feedback mechanism between the convection, the cool pool, a 

low level jet, and the convergence which was feeding the new convection. The mid- 

tropospheric mesovortex helped produce convergence which intensified the vertical 

velocity and helped to trigger new convection along the southern edge of the system. 

While this study indicated that the mesovortex could help sustain the storm system over 

a long period of time, interaction between the mesovortex and the structure of the 

convective mgion was not discussed. 

Zhang and Fritsch (1987) performed a numerical simulation of the Mesoscale 

Convective Complex (MCC) that produced the 1977 Johnstown flood to examine the 

development of the warm-core midlevel mesovortex and its role in determining the 

evolution of the MCC. They found that low-level mass and moisture convergence, 

associated with low- to mid-level latent heat release and surface pressure falls, werc 



responsible for the mesovortex deveJopment. Once the horizontal dimension of the 

mesovortex exceeded the Rossby radius of deformation, inertial stability extended the 

kutgevity of the cyclonic circulation. The apparent in~ between the environment 

and the mesoscale circulation suggests that inettially stable long-lived vortices can 

lengthen the lifetime of a storm system by aiding in redevelopment of ctxtvection as the 

vortex enters a convectively favomble envimnment. Hence the storm system, which 

consish of convective and stratiform precipitation along with the induced kinematic flow 

flelds, may go thmugh periods of convective redevelopment even after the original zone 

of convection has decayed. Unfortunately, this study did not discuss the mechanism 

through which the downscale interaction between the mesovortex and the convective 

activity took place. 

Zhang and Fritsch (1988) continued their investigation of warm-core mkflevel 

mesovortices. Confirming the results of their previous work, they found that the 

resolvable-scale condensation was primarily responsible for generating the vortex 

circulation through geostrophic adjustment of the air to the pressure perturbations 

produced by the latent heat release at low- to mid-levels. Once again, they emphasized 

the importance of the vertical uniformity of the horizontal momentum which, in 

combinauon with the relatively weak environmental flow, contributed to preservmg the 

moisuue and energy. This facilitated the generation and maintenance of the warm-care 

structure and vortex circulation. Again, inenial stability was used to explain the 

longevity of the storm system. Moreover, they speculated that the longevity of the 

circulation made the system highly deterministic. While the study revealed the structure 

and evolution of the vortex and discussed the mechanism of generation and maintenance 

of long-lived vortices, it did not focus on the interaction between the vortex and the 

convective activity of the system. 

Verlinde and Cotton (1990) used data collected during the Preliminary Regional 

Experiment for Stormscale Operational and Research Meteorology - Central Phase 

(PRE-STORM) to examine the structure and evolution of a mesosctde vortex couplet that 

developed in the Mesoscale Convective System (MCS) on 16-17 June 1985. Dual- 

Doppler analysis of the wind field revealed the meso-I) scale (diameter between 20-200 

km) dimensions of each of the vortices. While the mechanisms for the development of 

rotation on the thunderstorm scale (d S 10-20 km) (Klemp 1987) and meso-tz scale (d 2 

200 km) (Zhang et al. 1987; Brandes 1990) are fairly well understood, the dynamics of 

the vortices on the meso-P scale remains obscure. Based on the flow features and the 



vorticity budget analysis, Verlinde and Cotton proposed a mechanism for the formation 

of the observed circulation in which vorticity generation on both meso-ct and meso-7 

(dimensions 2-20 km) scales are present, but in a modified way. The study provided 

insight to undeistanding the development and evolution of meso-P scale circulations. 

However, the question of interaction of this mesocirculation with the convection that 

generated it was not addressed. 

Biggerstaff and Houze (1991b) studied the vertical vorticity suucture of the 10- 

11 June 1985 PRE-STORM squall line. They found that on average, strong positive 

vorticity was present throughout the depth of the convective region and at mid- to low- 

levels in the rear of the stratiform area. At mid-levels, the two regions were separated by 

anticyclonic vorticity. Based on their results, a conceptual model of how the vertical 

vorticity structure may have developed was proposed. The initial generation of 

horizontal vorticity was attributed to the vertical wind shear in the along-line direction of 

the storm, creating horizontal "vortex tubes". The primary mechanism in developing the 

observed banded vorticity structure was the tilting and stretching of the vortex tubes by 

the mesoscale up- and downdrafts. Biggerstaff and Houze (1991b) suggested that the 

negative vertical vorticity inhibited the development of inertially stable circulation in 

midlevels and may have affected the longevity of the system. While the study, like the 

others mentioned above, addressed the important question of how the vertical vorticity 

structure affects the storm longevity, it did not discuss the interaction between the 

vorticity field and the original convective region. 

Relationship between the Midlevel Mesovortex and the Kinematic and 

Reflectivity Structure of the Trailing Stratiform Area 

Smull and Houze (1985) studied the radar-echo structure of the 22 May 1976 

Oklahoma squall system. Wind fields were constructed based on time-space conversion 

of rawinsonde data. Superposition of the system relative flow and radar echo pattern 

suggested that the concavity, or notch, observed at the rear echo boundary of the 

stratiform region was produced by strong midlevel forward influx of dry air which 

evaporated the precipitation particles. Moreover the rear-to-front flow was associated 

with a midlevel cyclonic vorticity maximum identified by Ogura and Liou (1980) in their 

study of this case, Smull and Houze (1985) suggested that the development and 

forward expansion of the notch was followed by bulging and intensification of the 

convection downwind of the rear echo notch. However, the proposed relationship 



betwecst the midlevel cyclonic vortlcity, the rear-inflow and the convection was only 

qalitative since dual-Doppler synthesis of the airflow at the rear was not possible due to 

the restricted atua coveted by dual-Doppler radar data. 

Leary and Rappttptxt (1987) studied the internal seucum of a squall-line system 

which passed through the data- ollecting network of High Plains Coopemtive Program 

(HIPLEX) on 8 June 1980. The analysis used data collected with a C-band digitized 

radar and an upper-air network. Superimposing the flow and reflectivity fields, they 

found that the cyckutic mesovoitex, observed at 500 mb, was coincident with the center 

of curvature which the ieflectivity pattern acquired during the mauue stage of the 

system. They concluded that the curvature in the reflectivity pattern reflected an 

interaction between the mesoscale system-generated vortex and the fine scale 

substructure of the precipitation pattern. Analysis of the storm-relative flow field 

revealed that rear-to-front flow (RTF) conesponded to the southern portion of the 

midlevel mesovortex, while front-to-rear (FTR) flow predoininated elsewhere, 

Examitiatlon of the htrge scale wind field showed ttuu at midlevels there was no system 

relative RTF. Based on this observation, Leary and Rappaport concluded that the RTF 

relative winds, extending from the center of curvature of the rainbands downward 

toward the leading edge, were associated with the squall-line-generated mesovortex. 

However, the evolution of the system was not obtained, due to the steady-state 

assumption in their composite analysis. 'IIius, the question of cause and effect could not 

be examiners 

Smull and Houze (1987b) investigated a number of squall line systems focusing 

on detaikd examination of the rear inflow (RI). Studying the variaMity of the RI on the 

time and space scale of the system, they examined the airflow structures of three 

midlatitude squall lines. The flow fields of the three cases revealed the same general 

features: (i) in the rear of the system the strongest forward flow was observed at 

midlevels in association with depressed values of equivalent potential tern~; (ii) 

the axis of the strongest RI then sloped downward toward the leading convective line, 

where it merged with the outflow from the convective-cell-downdrafts into the flow 

behind the gust front; and (iii) increased depth of the RI may have contributed to a 

decrease in the width of the stratiform area. Considering the magnitude and variability 

of RI in 18 different cases, Smull and Houze distinguished three different regimes cf 

storm-relative flow at the back edge of the stratiform precipitation area: STRONG RI, 

WEAK RI and STAGNATION ZONE (case with little if any inflow at midlevels). 



Examining the flow field of a STAGNANT-ZONE squall linc, they came to thc 

conclusion that RI developed in thc stratiform region, Smull and Houze pmposed that 

two separate pxocesses may be xesponsibic for the generation of the RI; (i) hydxostatic 

reduction of pressuxc under rearward sloped waxm convective updrafts (LeMone 1983, 

LcMonc et al. 1984); and (ii) the development of midlevcl mesolow in the trailing 

stratiform region in association with latent heating above lower level melting and 

evaporative cooling (Brown 1979). While the study investigated many of the 

characteristics of thc RI and hypothesized that RI plays an important feedback role in 

forcing the convection along thc leading linc, no direct cvidencc of the interaction 

between the RI and the convective region was presented. 

Brandcs (1990) used suxface mesonetwork, rawinsonde and Doppler radar data 

to study the effect of thc embedded midlevel mesovoxtex on the stratiform area of the 6 

May 1985 squall line observed during PRE-STORM. Analysis of the flow field, 

obtained from spatially adjusted rawinsonde observations, revealed the presence of 

stmng positive vertical vcrticity in thc lower io middle troposphere - levels dominated by 

strong tear inflow. From the analysis, Brandes concluded that the mcsovoxtcx enhanced 

the rear inflow which was confined to the southern part of the storm. The study 

emphasized the importance of the mesovoitex in organizing the storm structuxe. 

Howcvcr thc spatial and temporal resolution of the data did not allow the mesovortex- 

convective scale intnxactknxs to be investigated. 

Relationship between the Mesoscale Storm-relative Flow and the 

Structure nnd Evolution of the Convective Area 

Chong et al. (1987) studied the kinematic structure of a tropical squall line, 

observed during the Convection Pmfonde Tropicale in 1981 (COPT81). The airflow 

within the system was inferred fmm dual- and single Doppler radar data One of the 

distinct features was the RI which was observed throughout the 0-3 km layer and 

extended fmm the stratiform to the convective region. Chong et al. computed the mass 

transported by the convective and mesoscale downdrafts and estimated air mass flux 

observed thmugh the gust front. The mass balance revealed that the convective and 

mesoscale downdrafts accounted for 40% and 60%, respectively, of the rear-to-front 

flow behind the gust fmnt. The results suggested that the mesoscale downdxafts play an 

important role in the generation of thc deep cold rear-to-fmnt flow, and therefore in the 

foxcing of the convergence along the leading line. While Chong et al, demonstrated the 



importance of scale interaction, the mechanism of thc mesoscale ftMcing of the 

convectivc scale updrafts remained obscure and no indication on how this ~on 
affected the along-line ariability in the convective region was pmvided. 

Rotunno et aL (1988) used two- and duce-dimensional simulations m examine 

the interaction between the envimnment and the cold pool at the leading cdgc of squall 

linc systems. They suggested this interaction as tbe primary mechanism forcing 

convccion. Based on tbe tilt of the convective updrafts, they defined three states of thc 

system: greater-than-optimal, optimal and less-than-optimal. Furthermore, they 

pmposed that each of these states was the result of an interacts between the positive 

horizontal vorticity of thc vertical wind shear and the negative horizontal vorticity 

generated by the buoyancy gradients associate with the cold pool. While the theory 

(RKW) helps explain some observadons, it remains an oversimplification of the achutl 

flow field and does not address along-line variaMity in convective shuchue. 

Lafore and Moncrieff (1989) used a set of 13 two-dimensional numerical 

simulations based ou soundings from (COPT81) to study the organization and 

interaction of the convective and stratiform regions of tropical squall linc systems. 

Sensitivity tests revealed that the intensity of the RI increased with the initial convechve 

in tability and was a linear function of the African Easta'ly Jet speaL Inclusion of ice- 

phasc micmphysics led to an increase in the strength of the RI. Enhancing the 

precipitahon evaporation below the anvil intensified the mesoscale subsidence resulting 

in a less organized system. This somewhat surprising result can be explained by 

acknowledging that stmnger subsidence will lower the rear-to-front (RTF) circulation 

making thc RI less efficient in releasing the convective instabiTity thmugh convergence. 

Later stages of the development are characterized by lowered RI, decreased convective 

depth and intensity and increased slope. While acknowledging the importance of the 

coki pool forcing, Lafore and Moncrieff pmposed thc RI-enhanced convergence as 

another mechanism of convective forcing - an illustration of direct scale interaction 

emphasizing the "global" physics of the system as opposed to the "local" cold pool 

forcing. This study gave new insight on the structure and evolution of the system, 

emphasizing the imlurtance of scale interactions for thc storm dynamics. However, the 

study used a two4imcnsional model thus excluding many of the observed cases 

exhibiting a profound three-dimensionality. Therefore, questions of structural and 

dynamic variations in the along-line duection were not addressetL 



Favell and Ogura (1989) employed a tw&whmmsionai model to investigate the 

effect of the vertical wind shear on the mauue phase behavior of the model-sixxudated 

storms. Sensitivity tests showed that increased vertical wind shear forced the simulated 

RI to intensify and at the same time affected the vertical structure of the current - the 

point where the current entered the cold pool from the rear moved closer to the leading 

edge, while the top of the system-relative inflow ascendexL Thus, as the shear 

increased, the RI source region became elevated, therefore progressively dryer. The 

enhxuxced evaporative cooling along with the intensified RI, helped to cxeate deeper and 

colder outflow. The study showed that these cold pools were associated with more 

vertically oriented and faster propagating storms. Thus, the rear inflow, forced to 

intensify by the increased shear, may have been the major mechanism for establishing 

the systematic balance between the vertical shear and the depth of the cold pool. While 

the results suggested that the RI had played an important role in organizing the model 

storm, the particular mechanism of interaction with the convective xegion still @maim@ 

obscure. 

Zhang and Gao (1989) used mesoscale model simulations to examine the detafled 

structue and evolution of the RI. Conducting different sensitivity tests they found that 

the generation of the midlevel and surface pressure perturbations and the related 

descending portion of the RI were a dhect product of the latent-heat-induced meso- 

ixculatixnL As time Izxxgxessed, the RI descended forwaxd toward the leading edge and 

the mesoscale downdraft tilted upshear coinciding with the descending portion of the Rl. 

Zhang et al. (1989) described the role of the descending RI jet as a producer of 

convergence ahead of the system, thus aiding in the acceleration and suengthening of the 

leading convective activity when the system is in a convectively favorable envixxaunent, 

and injuring the storm otherwise. However, they did not elaborate on the mechanism of 

the interaction; nor did they discuss the different effects of the elevated verses 

descexxdbxg Rl on the leading convection. 

Weisman (1992) extended the Rotunno et al. (1988) theory by including the 

horizontal vorticity inherent in the rear inflow in the horizontal vorticity balance of the 

cold-pool-induced and vertical-wind-shear-inherent vorticity. Varying the ambient 

convective available potential energy and the vertical wind shear in three-dimensional 

simulations, he was able to reproduce many observed RI characteristics. Based on the 

vertical stmcture of the RI, Weisman discriminated between RI remaining elevated to 

near the leading edge of the convection line versus RI jets descending and spreading 



along thc surface well behind the leading edge. Considering the different contributions 

of thc two types of RI in the hctizoutal vorticity balance, Weisman concluded that thc 

development of descending jet accentuates the upshear-tilting pmcess, thus, weakening 

the system by amplifying the suboptimal state. The development of an elevated RI acted 

in favor of thc horizontal vorticity inherent in the vertical wind shear and therefore 

pmmotcd the re-establishment of an optimal state with stmng upright cells along the 

leading edge of the cold pool. Thus, an elevated RI contributed in producing a longer- 

lived system. While thc study gave new insights into thc mechanism through which the 

RI influcnccs the convection of thc parent storm, it did not elaborate on thc influence cf 

the mesoscale variability of the RI ptoperdes (associatol, for example, with the presence 

of a midlevel mesovortcx) on the evolution and structure of the system 

Over the past three decades many different types of data, techniques and tools 

have been employed in the investigation of the MCS's structure, evolution and influenc 

on the envimnmcna In the early studies the air motions associated with thc tropical 

squall lines have been inferred from the thermodynamic properties of the air flowing in 

and out of the systems (Hamilton and Archibold 1945; Zipser 1969, 1977; Houze 

1977). Later, analysis of rawinsonde data, collected in special networks, were used to 

construct composite wind fields, many times using time-space conversion technique 

under the assumption of steady state (Ogura and Liou 1980; Gamachc and Houze 1982). 

This type of study gave the first estimates of the mesoscale air motions. New 

technology (Doppler radars, wind profilers, etc. ), recently employed, resolves spatial 

and temporal variations on the convective scale. Over the years many studies made use 

of two- and three-dimensional numerical simulations, which provide dynamically 

consistent, four-dimensional, high resolution information. Important issues on storm 

structum and scale interaction were addressed by performing different sensitivity tests. 

However, no study thus far has addressed the question of how the three-dimensional 

cuculadon associated with a midlevel mesovortex may affect the initial convective region 

of thc storm system. 

Problem 

Onc of the most exciting recent discoveries in mesometeomlogy, as pointed by 

Zhang and Pritsch (1988), is that some Mesoscdc Convective Systems (MCSs) develop 

a mesoscale vortex within their stratiform region. During recent years many 

observational and numerical studies have auempted to answer different questions related 



to Mesoscale Convective Vortices (MCV): (i) Are they responsible for the increased 

longevity of the systems which produced them2 (ii) How do they affect the kinematic 

and reflectivity struck of the stnnifonn area2 (iii) What is the rehttionship between the 

mesosctde storm-relative rear inflow and the strucuue and evolution of the convective 

atea2 

However, to date, no observational study has documented the association 

between a stratiform region mesovortex and differences in the convective structure along 

the conveciive line. This case study examines the flow and reflectivity structme of the 

28 May 1985 squall line system addressing the following questions: (i) How did the 

structum and the intensity of the storm-relative horizontal flow vary along the length of 

the convective lineY (ii) Were thee as~ differences in the structum and intensity 

of the convective cells along the convective line2 (iii) Was there a relation between the 

space and time variability in the combined meso- and convective-scale outflow and the 

structure and tendencies of the convective regkxt2 



CHAPTER III 

DATA AND METHOD OF ANALYSIS 

Instrumentation and Data 

The data used in the study were obtained during the PRE-STORM project (sm 

Cunning 1986, for overview). The experiment took place in Oklahoma and Kansas 

during May and June of 1985. The observational network included four Doppler and 

three conventional National Weather Service (NWS) digitized radars, twelve 

supplemental rawinsonde sites, 14 NWS upper-air stations, 3 wind profiling systems, 

and a surface mesonetwork consisting of 84 automated stations with an average spacing 

of 50 km. Unfortunately, the supplemental upper-air network did not operate during the 

28 May 1985 event. 

The primary data for this study consists of 11 dual-Doppler analysis each 

covering a 120 x 120 km area of the 28 May 1985 squall line during the mature stage of 

the storm. The data were collected by the two 5-cm Doppler radars - (CP-3 and CP-4) ~ by the National Center for Atmospheric Research (NCAR). A brief summary 

of the characteristics of the NCAR Doppler radars is given in Table 1. The two radars 

were located on a 60 km north-northwest to south-southeast baseline near Wichita, 

Kansas. During the period 1027 - 1200 UTC the two radars were working in a dual- 

Doppler scanning mode, i. e. , obtaining volumes of Plan Position Indicator (PPI) scans 

in a synchmnized fashion every 5-10 minutes. Volume scans were taken by sweeping 

the antenna azimuthaly at a fixed elevation angle and then repeatmg the sweeps at several 

elevation angles between 0. 2 and 58 deg (the elevation angle is relative to the horizontal 

plane through the radar location). TypicaUy, volumes containing 25 full 360' azimuthal 

scans wae coHected every half-an-hour, with a series of three sector volume scans (over 

a subset of azimuths at 30 different elevation angles) collected in between. Full 360' 

volume scanning ensured better coverage of the entire storm, while sector scanning 

provided higher spatial and temporal resolution (6 min between consecutive scans). 

Spatial resolution should be considered as the worst resolution among all three 

directions. The azimuthal resolution of multiple Doppler radar data depends on both the 

mtation rate of the radar and the number of samples to average for an estimation and can 

be expressed as: 
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TaHe 1. Characteristics of the NCAR Doppler radars used during PRE-STORM. 

CP-3 CP-4 

Wavelength (cm) 

Maxhtntm Range (hm) 

Nyquist Velocity (ms t) 

Peal Power (kW) 

Pulse Width (p, s) 

Pulse Repetition Frequency (Hz) 

Minhnum Detectable Signal (dBm) 

Number of Range Gates 

Azimuthal Resolution (deg) 

Gate Spacing (meters) 

Number of Samples 

Beamwidth (deg) 

5. 45 
135 

15. 37 

400 
1. 0 

1111 
-113 
512 

0. 8 

260 

64 

1, 0 

5. 49 
135 

15. 24 

400 
1, 0 

1111 
-112 
512 

0. 8 

260 

64 

1. 0 



r80 = r x (Saxxtplex/PRF) x Rate (1) 
where r is the slant range along the radar beam, 58 is the azimuthal separation (in 

radiam) between beams, Samples is the number of pulses averaged together to make a 

single estimate of returned power, PRF is the pulse repetition frequency of the radar, 

and Rate is the rotation rate of the antenna (in radianss-1). The vertical resolution is the 

distance between beams, rQ, where Q is the angular vertical sepsrsdon between two 

successive PPI scans. Scanning strategy ~ during PRE-STORM (rotation rate of 

13. 3's 1 for sector scans and 14. 8's for the full 360' scans) yields azimuthal xcsolution 

no worse than 0. 9 hn within a 60 km slant range. Vertical resolution below 8 km is 

also no worse than 1 km. Thus, the inherent spatial xcsolution of the Doppler radar data 

used in this study is no worse than 1 km within 60 km slant range. 

Nearly continuous scanning between 1033 UTC and 1148 UTC provided five 

sector scans and three 360' scans from each radar (Table 2). All of these data have been 

analyzed as part of this study. 1308 UTC dual-Doppler analysis performed by Houze et 

al. (1989) was also included. 

To investigate the impact of the environmental variability on the along-line 

variance in the convective structure, the data from thc surface mesonetwork were 

studied. Each of the &4 stations recorded 5-minute averages of prcssure, temperature, 

moistuxe, and wind measurements, and 5-minute totals of the rainfall. For each station, 

these data were plotted in a time series to check for missing or suspect data which were 

removed from the data set if found. 

Storm Motion 

Subjective time series analysis of the surface mesonet data revealed the wind 

shift associated with the gust front pxopagation through the PRE-STORM area (Fig. 1). 

These isochrones of wind-shift were used to define the storm motion. For consistency 

with previous studies (e. g. Gamache and Houze 1982, 1985; Biggerstaff and Houze 

1991a) the storm motion is defined as the propagation vector of the bowed out central 

portion of the gust trout, It was determined to be from west-northwest (295 deg) at 20 

ms-i. All dual-Doppler derived winds shown here are relative to the storm motion. 
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Table 2, Summary of the dual-Doppler analyses times. 

Radar Start Time Stop Time 

(UTC) (UTC) 

Doppler Doppler 

Azimuth Elevation Analysis Lobes 

(deg) (deg) Time (UTC) 

CP-3 
CP-4 

CP-3 
CP-4 

CP-3 
CP-4 

CP-3 
CP-4 

CP-3 
CP-4 

CP-3 
CP-4 

10;33:28 
10:33:47 

10:40:00 
10:40:09 

10:38:17 
10:39:35 

10:50:12 
10:45:04 

11:06:50 11:12:33 
11:06:57 11:12:45 

11:12:38 
11:12:53 

11:20:00 
11:19:59 

11:34;30 
11:34:30 

11:18:21 
11:18:42 

11:30:09 
11:30:32 

11:40:15 
11:40;24 

11:48:00 
11:47:40 

11:58:08 
11:57:58 

11:40:20 11:46:04 
11:41:52 11:47:04 

195 - 350 
207 - 360 

000 - 360 
000- 360 

182- 338 
226- 022 

185 - 338 
226 - 022 

357 - 150 
335 - 128 

354- 150 
335 - 128 

000- 360 
000- 360 

0. 2 - 40. 4 
0. 2 - 58. 0 

0. 2 - 58. 0 
0. 2 - 13, 4 

0. 2 - 58. 0 
0. 2 - 58. 0 

0. 2 - 58. 0 
0. 2 - 58. 0 

0. 2 - 58. 0 
0. 2 - 58. 0 

0. 2 - 58. 0 
0, 2 - 58. 0 

0. 2 - 58. 0 
0. 2 - 44. 3 

0. 2 - 58. 0 
0. 2 - 58. 0 

10:36:32 West 

10:42:36 East/West 

1199;48 West 

11:15:40 West 

11;25:05 East/West 

11:37:27 East 

11:43:42 East 

11:52:54 East/West 

CP-3 
CP-4 

13:08; East 
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Figure 1. PRE-STORM radar and upper-air networks. Also plotted are the 

isochrones of the gust front associated with the 28 May 1985 squall line system, Gust 

front position was determined based on time-series analysis of the data from the PRE- 

STORM surface mesonetwork. 



Dual-Doppler Wind Analysis 

A separate dual-Doppler analysis was performed on each of the lobes of Doppler 

radar data collected at times in Table 2. The technique of Biggerstaff and Houze (1991a) 

was Used. 

Before initiating tbe analysis, Doppler data &om each of the radars were carefully 

edited using the RDSS (Research Data Support System) software (Oye and Carbone 

1981). Editing included velocity unfolding, removing of the noise in the velocity field 

by thresholding out points with returned power less than -110 dBm and, finally, 

removing areas of suspected second trip echoes. 

Next, the reflectivity and unfoMed radial velocity fmm each of the radars were 

interpolated from their polar coordinate systems into a common Cartesian grid with 

dimensions 120 x 120 x 15. 4 km with a 1 km horizontal grid spacing and 0. 5 km 

vertical spacing. The interpolation was accomplished using the biTinear interpolation 

method within SPRINT (Sorted Position Radar Interpolation) software (Mohr et al, 

1979). The bilinear scheme is designed to better preserve small variations in the 

observations (Mohr and Vaughan 1979) as compared to the Cressman interpolation. 

Radar reflectivity was converted from a logarithmic scale to a linear scale prior to the 

inunpolation. 

Dual-Doppler syntheses were then performed, using CEDRIC (Cartesian Editing 

and Display of Radar Data under Interactive Control) software (Mohr and Miller 1983), 

To account for the horizontal translation of the storm during the 6-10 minute scan time, 

each data point was adjusted horizontally based on the storm motion and the time 

between the data collected at that point and the mean time of the volume scan. 

Knowing the radial velocity fields from both radars and the radar geometry, 

initial estimates of the horizontal wind components were obtained, under the assumption 

of zero vertical velocity. Values at grid points with bad dual-Doppler geometry (for 

example along the baseline) were then removed by thresholding out those points for 

which either USTD or VSTD (geometric terms relating the variance in the u and v 

components to the variance in the radial velocity measurements) exceeded the value of 

5. 5, Since patching acts like a filter, this procedure was performed before patching the u 

and v components to minimize the effect of the bad velocity estimates on the rest of the 

data set. 

Fallspeeds were removed using a fallspeed-reflectivity relationship. For this, the 

maximum radar reflectivity fields fmm both radars were used at each grid point. 



Following Marks and Houze (1987), partide fallspeed was calculated based on the 

xeflectivity - fallspeed relationship: 

&=(pup) 'ax (2) 

where a 2. 6 b = 0. 107 for water 

a 0. 817 b = 0. 063 for ice 

where p is air density and po is the surface-level air density. 

The effective radar reflectivity factor Ze in suuuhrd units (mm6 m-3) was 

computed Rom the combined xeflectivity fiekL Particle fallspeeds were calculated in 

units ms 1. Density was assumed to have an exponential pmfile with a scale height of 

10 km. Particles were assumed to be water below? 9 km and ice above that level. A 

mixed layer of water and ice was assumed at 2. 9 km and the paxticle fallspeed was 

computed as the average of the two, These fallspeeds were then used along with the 

first estimate of the u and v components to compute a second estimate of the horizontal 

wind. 

Next, the horizontal wind field was patched to fill any well bounded smaU holes. 

Then a filter was applied to remove the short waves not resolved by the data. As already 

discussed, radar data resolution within a 60 km range was on the order of 1 km. 

According to Carbone et al. (1985) five independent samples within one wavelength 

ensuxe 75% recovery of the wave amplitude (i. e. energy) and a companMe accuracy of 

the phase distortions (expxessed in terms of spatial displacement from the actual position 

of sinusoidal nodes and peaks). Their study suggests that the energy and phase of a 

particular wavelength would be well resolved with six to eight independent 

measurements per wavelength. According to this, the 1 km resolution of the used data 

set determines the minimum resolvable wavelength to be on the order of 6 km. To filter 

out the smaller scale phenomena, a two-step Leise (scale-telescoped) filter (Leise 1981) 

was used. The frequency response for this filter indicates tluu 60% (80%) of the energy 

associated with 7 km (8 km) wavelength is xetained. Wavelengths of 5 km and less are 

almost totally cut off fess than 10% of the energy is retained). 

Patched and filtered horizontal wind components wexe used to compute the 

horizontal divergence field. Divergence was then patched and decimated at grid points 

were either u or v wind components did not originally exist. This was necessary to 

ensure good vertical continuity along the edges of the data To obtain the vertical 

velocity field the anelastic continuity equation 

p 5u/5x+ p 5vI5y+ 5(pw)/5z = 0 (3) 



was integrated downward from the echo top. Density was assumed to decay 

exponentially with height. The upper boundary condition for the vertical velocity field 

was defined as 0. 25 ms-1 at grid points where reflectivity exceeded 18 dBz and zero 

otherwise. Selection of this boundary condition reflects the idea that high reflectivity 

cores aloft are associated with e~ upward motion at upper levels ( Biggerstaff and 

Houze 1991a). The obtained vertical velocity field was decimated at grid columns where 

the downward integration began below 8 km, con~ these levels to be too far fiom 

the upper boundary for the boundary condition to be valid. The thresholded vertical 

velocity fieid was then patched and used with the original estimates of the u and v 

components (the one corrected for the particle fallspeed only) to compute the new 

estimates of the horizontal wind fielL 

The described procedure was repeated until the absolute value of the difference 

between two consecutive estimates of the horizontal wind components became on the 

mean less than 0. 1 ms-i at each level. Generally four to five iterations were requhed for 

the horizontal wind components to converge. The last u and v estimaie was then patched 

and filtered and vertical velocity was computed from the convergence field in order to 

ensure mass continuity between all three wind components. 
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CHAPTER IV 

CASE DESCRIPTION 

The storm system which moved through the PRE-STORM data collecting 

network on 28 May 1985 originated from isolated thunderstorms first observed along 

the Nebraska-Wyoming border at about 1930 UTC on the 27th. The convection activity 

intensified and by 2230 UTC the southernmost thunderstorm had developed a hook echo 

and Bounded Weak Echo Region (BWER), characteristic of a severe tornadic storm 

(Fig. 2)*. Infrared satellite imagery at 0030 UTC (Fig, 3) revealed another severe 

weather signature. There was a cold "V"-shape in the anvil top with marked 

downstream warming from the center of the V. McCann (1981) noted this satellite 

signature was associated with significantly deep overshooting cloud tops in severe 

thunderstorms. The storm system continued to intensify and propagate to the ESE, 

Augustine et al. (1988) noted that the anvil top of this storm system first satisfied the 

modified MCC criteria (Maddox 1980) at 0300 UTC on 28 May (Fig. 4). The 0235 

UTC radar summary (Fig. 5) reveals the supercellular character of the convection 

underneath this bmad circular cloud shield . 
The convective organization changed rapidly between 0535 UTC (Fig. 6a) and 

0735 UTC (Fig. 6b). By 0735 UTC, the supercellular characteristic had given way to a 

more multicellular character with an east-northeast to west-southwest orientation. The 

most intense convective cells, with cloud tops exceeding 16 km, were located in the 

southwest end of the line and may have retained some of its supercellular character. 

During the previous six hours radar observed hail had been continuously reported in 

association with this portion of the storm. Moreover, a severe weather watch had been 

placed into effect for the same area from 0530 to 0830 UTC. More uniform, weaker 

intensity echoes were found trailing the convective line to the northwest. Infrared 

satellite imagery (not shown) indicates that a single neatly-circular upper-level cloud 

shield extended over the entire convective system. 

The squall line system passed through the PRE-STORM meso-network roughly 

between 0800 and 1500 UTC on 28 May. Low-level radar reflectivity from the Wichita 

WSR57 radar indicates that the structure of the storm changed significantly during this 

~ Legibility of the text on this and the other Radar Summary figures is not important. 
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Figure 2. Composite of radar detected storm intensity at 2235 UTC on 27 May 

1985. Contoured are intensity levels 1, 3 and 5 representing, respectively weak, strong, 

and intense echoes. Wind barbs indicate area or line propagation vector (speed is in 

knots). Bold lines mark solid lines of echoes. Underscored numbers represent echo 

tops in hundreds of feet. Dashed boxes mark weather watch areas, declared by the 

NWS. HOOK indicates probable tornado and VAULT marks Bounded Weak Echo 

Region (BWER) - radar signature indicating very strong updrafts, likely related to severe 

weather. 
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Figure 3. Cold cloud tops depicted by the infrared satellite imagery at 0030 UTC 

on 28 May 1985. Alternating white/black pattern denotes successively colder cloud 

tops. 
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Figure 4. As in Fig. 3 except for 0300 UTC. 
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Figure 5. As in Fig. 2 except for 0235 UTC. 
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Figure 6b. As in Fig. 2 except for 0735 UTC. 
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period. Activity in the southern end of the storm weakened considerably after 0735 

UTC. By 0910 UTC the convection was organized in a quasi-two-dimensional 

continuous line of intense reflectivity extending for about 1&0 km in a northeast- 

southwest direction (Fig. 7). Stratiform precipitation trailed the convective line to the 

northwest. The stratiform region expanded to the north and northwest after 0910 UTC 

and the southern flank of the convective region also expanded. However, along the 

southern end of the storm system there was little stratiform precipitation, as inferred 

Qom the radar reflectivity (Fig. 8). Hence, after 0910 UTC the stratiform region became 

asymmetric, with most of the echo confined to the northern half of the storm system 

It is believed that this asymmeuy in the distribution of stratiform precipitation 

was associated with both the rapid expansion of the southern end of the convective line 

and the development of a midlevel cyclonic circulation which may have acted to 

evaporate hydrometeors in the southern, rear-inflow, branch of the circulation. Thus, 

the cyclonic circulation appears to have been well formed by 1150 UTC on 28 May. 

The storm system noted at 1150 UTC exhibits many of the features characteristic of an 

asymmetric squall line system as captured in the conceptual model of Houze et aL (1989; 

1990) (Fig, 9a and Fig. 9b). First, the distribution of stratiform rain was highly 

asymmetric and was located behind the north-central portion of the leading convective 

line. Secondly, both the observed and conceptual storm systems tend to bow out in the 

south-central portion of the line (Fig. 9a). Finally, there is significant variability in the 

structure of the convective cells along the line with more isolated cells located on the 

southern flank of the system and generally weaker cells along the northern end of the 

convective line (Fig. 9b). The strong correlation between the 28 May 1985 storm 

system and the conceptual model of an asymmetric squall line system suggests that the 

28 May storm may be extremely representative of this class of convective system. 

Hence, the results of this study should extend well beyond our single case analysis. 

During the next hour the system continued to expand in length, becoming even 

more asymmetric, as the stratiform cloud progressively dissipated in the southern 

portion of the system (Fig. 10). However, the isolated ieflectivity cores observed earlier 

were no longer evident. Instead, the convection was organized in an almost continuous 

line of intense reflectivity with the strongest cores located in the bowed out south-central 

portion of the line. Close examination of the reflectivity data between 1150 and 1310 

UTC suggests that the new organization developed as a result of two processes: 

southward expansion of the convection, and merging between the isolated south-central 
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Figure 7. Low level radar reflectivity as seen from the Wichita (ICT), Kansas 

WSR-57 10 cm storm surveillance radar at 0910 UTC on 28 May 1985. Antenna 

elevation is 1. 3'. Range rings are every 50 km. Shading corresponds to radar 

reflectivity as follows: light gray - & 0 dBz; dark gray — from 1 to 14 dBz; black - from 

15 to 24 dBz; white — from 25 to 29 dBz; repeat black - & 30 dBz. 



Figure 8. As in Fig. 7 except for 1150 UTC and antenna elevation of 0', 
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Figure 9a. Conceptual model of a horizontal cross-section through mid-level 

flow field and low-level reflectivity field, associated with symmetric (left) and 

asymmetric (right) squall line systems. Shading indicates regions of higher reflectivity. 

From Houze et al. (1989). 

50 km 

Figure 9b. As in Fig, 9a except for radar reflectivity field only. Large vector 

indicates direction of system motion. Levels of shading denote increasing radar 

reflectivity, with most intense values corresponding to convective cell cores. Horizontal 

scale and north arrow are shown. From Houze et al. (1990). 
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Figure 10. As in Fig, 7 except for 1310 UTC and antenna elevation 0'. 
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ceIIL The previously observed tendency for weaker convection along thc northern 

portknt of the line was even more pronounced at the latter dmc. 

Dual-Doppler analysis of the flow field at 1308 UTC, performed by Houze et aL 

(1989), mvealed the presence of a weIIMfined mcsovortex (horizontal dimensions on 

the order of 100 km) located in the stratiform area (about 100 km due north of thc radar 

site). This vcncx signature is clearly observed in the reflectivity field 'ndicated in Fig. 

10. There is enhanced stratiform precipitation in the FTR branch of the chculation 

associated with the continuous backward transport of icc particles and cloud drops 

expefled fmm thc convective region. To the south, the RI branch entrained dry, 

midlevel, low equivalent potential temperature air which produced significant 

evaporation and lead to the observed rcflec6vity notch (75 km due north from thc radar 

site). By 1401 UTC, the satellite lR pattern suggests a suong anticyclonic upper-level 

outflow above the midlevcl cyclonic mesovortex (Fig. 11). The Wichita radar indicates 

that important changes in the structure of the convective line have also taken place during 

tlie past hour. 

Three important tendencies were noted in the evolution of the reflectivity 

structure during tbc period between 1310 and 1510 UTC. First, the preferred location 

of the most intense reflectivity cores was consistently on the southern flank of the 

convective line. Secondly, the continuous strong convection along the south-central 

portion of the line was associated with extension of the stratiform cloud further to the 

south, behind the central portion of the storm. Lastly, the central portion of tbe storm 

continued to bow forward and exhibited a significant displacement relative to thc 

rctnainder of the linc at 1507 UTC (Fig. 12). 

By 1507 UTC, the squall line had ahcsdy propagated past the denser portion of 

the PRE-STORM network. National radar summaries and satellite data indicate that the 

storm system continued propagating to the east-southeast. At 1730 UTC the system 

entered northwestern Arkansas. It appears that the storm system intensified between 

1735 and 1935 UTC (Fig. 13). A severe weather watch was issued for the region 

covered by the southern flank where echo tops exceeded 15 km, Progressive drying out 

in the stratiform cloud behind this portion of the storm was apparent in the 1801 UTC 

satellite IR data which showed a significant notch at the rear of the southern portion of 

the cloud shield (Fig. 14). By 2000 UTC the leading line of convection passed through 

Little Rock, Arkansas while the stratiform area extended north-northwestward into 

central Missouri. Wind fields from upper-air soundings taken at Monett, Missouri 
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Figure 11. As in Fig. 3 except for 1401 UTC. 
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Figure 12. As in Fig. 7 except for 1507 UTC. Shading indicates radar 

reflectivity as follows: dark gray - & 0 dBz; light gray - from 1 to 14 dBz; black - from 

15 to 24 dBz; white - from 25 to 29 dBz; repeat black - ) 30 dBz. 
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Figure 138. As in Fig. 2 except for 1735 UTC. 
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Figure 14. As in Fig. 3 except for 1801 UTC. 
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(UMN) show a storm-relative nonwnvironmental RTF flow at levels between 4 and 6 
km (Fig. 15). This suggests that the mesoscale cyclonic circulation was still intact and 

passed to the north of UMN before 0000 UTC on 29 May. The radar summary at 2135 

UTC (Fig, 16) further illustrates the pronounced curvature of the leading line of 
convection and the asymmetric distribution of stratiform precipitation, assumed to be 

depicted by the intensity level 1. 
The storm system continued moving through the southeast portkm of the United 

States but began to dissipate. By 0130 UTC on 29 May the anvil cloud no longer met 

the MCC criteri (Augustine et aL 1988). By 0535 UTC on 29 May only stratiform 

ptecqntation was evident in the national radar summary. 

The system, which fust originated on the Nebraska-Wyoming border, lived for 

about 35 hours and propagated more than 1600 km before it dissipated along the 

Mississippi-Alabama border at about 06 UTC on 29 May. It produced an extensive 

cloud shield which satisfied the modified MCC criteria for a period of 30 hours and was 

found to be the longest lived MCC observed durmg PRE-STORM (Augustine et al. 

1988). The well-organized mesoscale midlevel cyclonic vortex, observed in the 

stratiform area of this highly asymmetric squall line system, was likely instrumental in 

prolonging the life of the system. 
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Figure 15. Time-height cross-section of the wind field, constructed from the 

Monett, Missouri upper-air data. Time (UTC) increases from right to left. Plotted are 

storm-relative winds (in knots). Assumed storm motion is fiom 295' at 20 ms-t. 
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CHAPTER V 

STORM MORPHOLOGY 

The squall line system propagated through the CP3 and CP4 dual-Doppler area 

between 10 and 14 UTC on 28 May. To ensure higher time resolution, the sector- 

scanning strategy was adopted with attention being contiguously focused on different 

segments of the system as it passed through. As a result, the south and north portions 

of the line were observed at slightly different time periods. Fortunately, the 1125 and 

1152 UTC volume scans covered both portions of the storm From these data we can 

determine the along-line variability without having to be concerned about temporal 

variations affecting our interpretation. 

Since the storm system evolved as it transversed the Doppler network, the 

kinematic and precipitation structure will first be described using a single analysis 

period, 1152 UTC, After carefully documenting the mature-stage structure of the storm 

system, the evolution of the squall line as it propagated thxough the Doppler network 

will be presented. Note that at 1152 UTC the southernmost flank of the convective line 

had aheady passed out of the dual-Doppler analysis domain. Therefore it is not possible 

to elaborate on the kinematic structure of this part of the storm. However, the 

reflectivity and flow features of this region will be presented in the next chapter where 

the evolution of the system's southern portion is described. 

The low-level reflectivity field (Fig. 17) is characterized by an extensive 

stratiform precipitation region trailing the northern and north-central portions of the 

convective line. The absence of stratiform precipitation behind the southern flank 

convection classifies the squall line system as asymmetric (Fig. 9a and Fig. 9b). The 

broad region of stratiform precipitation is separated from the leading convection by a 

well defined reflectivity minimum, or transition zone (Biggerstaff and Houze 1993). 
This organization is common for many leading-line trailing-stratiform squall line systems 

(Houze et al. 1989). Indeed, a two-dimensional vertical cross-section perpendicular to 

the orientation of the convective line is often used as a conceptual model for this class of 

storm system (Fig. 18). However, the structure of this convective line was not stiictly 

two-dimensional. The central portion of the line was characterized by strong, large, 

somewhat isolated reflectivity cells, which were elongated in the direction of storm 

propagation. The northern flank of the storm was dominated by smaller, closely spaced, 



Figure 17. Low-level (1. 1') PPI of radar reflectivity from CP4 Doppler radar at 1148 UTC on 28 May 1985 . Maximum 

range of the circular display is 135 km. 
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Figure 18. Conceptual model of a squall line with a trailing stratiform area viewed in a vertical cttoss section oriented 

perpendicular to the convective line (ie. , parallel to its motion). From House et al. (1989). 
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weaker reflectivity cores which were organized in a line perpendicular to storm 

propagation. The southern flank of the convective line was rapidly developing at this 

time. This region developed characteristics more typical of the central portion of the 

storm than the northern portion. This along-line variability in the reflectivity structure 

can not be represented in the two-dimensional conceptual model of squall line systems. 

Yet, the low-level reflectivity structure presented in the plan view conceptual model (Fig. 

9b) indicates that this along-line variability may be fundamental mode of organization in 

asymmetric squall line systems. It is likely that the basic flow patterns observed in this 

case will also be generally representative of other asymmetric squall lines. 

The description of the air flow patterns is first suMivided by height intervals and 

presented in horizontal cross-sections to depict the full three-dimensional variability of 
the storm system. Representative vertical cross-sections taken perpendicular to the 

convective line orientation over different parts of the storm will be used at the end to 

summarize the vertical structure and along-line variability. In the lowest layer (surface to 

1. 9 km), the convergence between the meso- and convective-scale outflow and the 

environmental inflow is well documented. Between 1. 9 and 3. 9 km the cyclonic 

circulation associated with the mesovortex is best illustrated, The rear-inflow portion of 
the mesovortex circulation is evident up through 8. 4 km. Above 8. 4 km, only the 

strong divergent fmnt-to-rear flow was observed. 

Low Levels (surface to 1. 9 km) 

The surface flow at 1150 UTC as illustrated by the ground-relative 

streamline/isotach analysis from surface mesonetwork data (Fig. 19a) shows the sharp 

line of confluence between the mesoscale and convective-scale outflows and the 

environmental inflow. Interestingly, the curvature of the convective line corresponds to 

the orientation that maximizes the low-level convergence at the front of the storm 

system. The almost north-south orientation of the northern portion of the system is 

almost perpendicular to the easterly inflow in that part of the environment (southeast 

Kansas). The central portion of the convective line is also oriented to nearly 

perpendicular to the low-level inflow, as the environmental winds in northcentral 

Oklahoma are from the southeast. The east-west orientation of the southern flank of the 

convective line is almost perpendicular to the southerly low-level inflow in that part of 

the environment (northwest Oklahoma). Hence, the orientation of the convective line 

seems to be strongly related to the interaction between the outflow from the storm 



Figure 19a. Streamline/isotach analysis of ground-relative winds, measured in 

the PRE-STORM surface mesonetwork at 1150 UTC on 28 May 1985. Dimensions of 
the domain are 500 x 650 km. Wind speed is contoured every 2. 5 ms-1 (dashed lines). 



system and the envirwumntal inflow at low levels. Despite the cortespontlence between 

the squall hne curvature and the direction of environmental inflow, the strongest 

convergence was located along the southern and central portions of the system (Fig. 

19b). The ground-relative flow (Fig. 19a) suggests that the main reason for this 

asymmetry (with respect to the leading line) was the preferred southward expansion of 
the divergent outflow. (Note that the region of maximum divergence was in the northern 

portion of the storm system in association with the heaviest stratiform precipitation). In 

a recent modeling study, Skamarock et aL (1993) found that tbe Coriolis force acted to 

deflect the mesoscale outflow to the right of its direction of propagation, thus aiding the 

southward enhancement of the outflow winds. 

For consistency with the storm-relative dual-Doppler derived winds discussed 

hereafter, the storm-relative surface flow is also shown (Fig. 19c). However, 

subtracting the considerably high storm speed (20. 5 ms-1) from the rather weak 

envhonmental flow masks the spatial variability of the surface winds, thus practically 

hiding the convergence line marked in the ground-relative flow. The poor representation 

of the surface convergence line at this time is probably also due io the insufficient spatial 

resolution of the surface mesonetwork (the distance between the stations is on the order 

of 50 km). 

Dual-Doppler analysis of the radar data reveals the highly three-dimensional 

structure of the flow above the surface in regions where sufficient precipiuuion particles 

were present to return signal above the noise level of the radar receiver (Fig. 20 a-c). 
The center of divergence appears to be located in the northern portion of the storm 

system in an area of mesoscale descent, associated with the most intense stratiform 

precipitation (Fig. 20 a-c). Based on this, the low level outflow, located well behind the 

leading convection, is associated with the mesoscale downdraft instead of convective 

do~t. Note the presence of two distinct flow regimes, found on either side of the 

divergence line. The cyclonic curvature of the flow in the northern pordtst of the system 

is directed nearly parallel to the inflow observed just ahead of the strong reflectivity 

cores (Fig. 20a). Hence, the mesoscale outflow does not contribute significantly to the 

convergence along the leading edge of the northern portion of the squall line system In 

contrast, the anticyclonically curved mesoscale outflow in the central portion of the 

storm is directed nearly opposite the low-level inflow along the central portion of the 

squall line. Here the mesoscale outflow adds a significant component to the low-level 

convergence. Indeed, the orientation of the reflectivity cores is along the direction of the 



Figure 19b. Divergence field (x 10-~ s-t) measured in the PRE-STORM surface 

mesonetwork at 1150 UTC on 28 May 1985. Dimensions of the domain are 500 x 650 

km Divergence field is contoured every 4x10. ~s-t with solid (dashed) lines indicating 

positive (negative) values. 
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Figure 19c. Streamline/isotach analysis of storm-relative winds at 1150 UTC on 

28 May 1985. Storm motion of 20 ms-t from 297' is subtracted from the ground- 

relative winds measured in the PRE-STORM surface mesonetwork. Dimensions of the 

domain are 500 x 650 ltnL Wind speed is contoured every 2. 5 ms-1 (dashed lines). 



Figure 20a. 1152 UTC dual Doppler analysis of kinematic and reflectivity field at 1. 4 km Mean Sea Level (MSL). 

Reflectivity field is contoured every 5 dBz starting at 5 dBz. Areas with reflectivity in excess of 25 dBz are shaded. Overlaid are 

the storm-relative streamlines. Plotted area is 200 x 160 km with 1 km grid spacing. The origin of the grid is collocated with the 

CP4 radar. 
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Figure 20b. 1152 UTC dual Doppler analysis of the storm-relative horizontal flow field at 1. 4 km Mean Sea Level (MSL). 

Wind speed is contoured every 5 ms t. Areas with wind speed ( 15 ms-t are shaded. Overlaid are the storm-relative sneamlines. 

Plotted area is 200 x 160 km with 1 km grid spacing. The origin of the grid is collocated with the CP4 radar. 
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Figure 20c. 1152 UTC dual Doppler analysis of the vertical velocity field at 1. 4 km Mean Sea Level (MSL). Contours are 

every 5 ms-1 with dashed lines depicting downdraft cores and shaded areas denoting updraft regions. Overlaid are the storm- 

relative streamlines. Plotted area is 200 x 160 km with 1 km grid spacing. The origin of the grid is collocated with the CP4 radar. 
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~e outflow. This suggests that the location of new cell development has been 

influenced by the direction of the mesoscale outflow. The southern flank of the 

convective line is outside the dual-Doppler analysis domain, However, there is a 
southward directed outflow immediately behind the southernmost convective cells 

(between X = -50 to -20 for Y & -15 in Fig. 20). At this time, this region of outflow 

appears to be more associated with the convective cells than the mesoscale region of 
stratiform rain farther to the north. 

Comparison between the low-level flow and the verdcal velocity flelds (Fig. 20c) 

illustrates an important interaction between the meso- and convective scale outflows. 

The outflow fmm the convective downdrafts is embedded in the mesoscale outflow 

which apparently affects the direction in which the convectively generated coM pool can 

spread. The anticyclonically curving mesoscale outflow, opposing the environmental 

inflow in the central portion of the stonu system, prevents the convective outflows from 

spreading backwards. This would result in the piling up of cold air behind the south- 

central and central portions of the leading convective line, as well as forcing this 

convective downdrafl outflow to spread southward in along-line duection. At the same 

time, the cyclonically curving mesoscale outflow found in the northern portion of the 

system, does not appear to restrict the rearward spreading of the convective scale cold 

olltflow. 

An illustration of the along-line component of the outflow from convective 

downdrafts is the along-line current coincident with the leading convective line (Fig. 

20a). The divergent region (located about X = 50, Y = 65 at 1152 UTC), found in a 

close proximity with the mesoscale divergence line, clearly separates southerly from 

northerly along-line flow. This suggests that the orientation of the along-line convective 

downdraft outflow is suongly affected by the interaciion between the mesoscale outflow 

and the environmental ldnematic fieM. 

The interaction between the meso- and convective scale outflows is better 

illustrated in a vertical cross-section (1137 UTC), taken tluough the central portion of 
the convective line (Fig. 21). The storm-relative horizontal flow pmpagating in along- 

line direction (normal to the plane of the cross-section) is presented in the upper right 

panel. It illustrates a surprisingly deep, southward spreading flow, confined in a narrow 

area behind the leading convection. This flow represents the along line current, 

collocated with the convective line and detected in the horizontal cross-sections (Fig, 

20). Comparison with the vertical velocity field (Fig. 21, lower left panel) indicates the 



Figure 21. Vertical cross-section of reflectivity (upper-left panel), vertical velocity (lower-left panel), storm-relative 

horizontal flow in the along-line direction (upper-right panel) and storm-relative horizontal flow in the cross-line direction (lower- 

right panel) at 1137 UTC. The cross-section is located in the central portion of the squall line (location is marked by the X and Y 

coonInates of the end points, given at the two ends of the X axis) and oriented in direction, normal to the local orientation of the 

convective line (the horizontal axis is pointing towards 117' from true north). Distance along X axis is 123 km. Reflectivity is 

contoured every 5 dBz, starting at 5 dBz. Shaded are areas with reflectivity in excess of 25 dBz. Vertical velocity is contoured 

every 5 ms-t, with dashed lines depicting the downdraft cores and shaded areas indicating the updraft regions. Along-line storm- 

relative flow component (normal to the plane of the cross-section) is contoured every 5 ms-t. Shaded are negative values (flow 

out of the page), representing northerly flow. Cross-line storm-relative flow (component in the plane of the cross-section) is 

contoured every 5 tns-t. Shaded are positive values (flow from left to right), depicting the rear-to-front component of the flow. 
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convective outflow origin of this flow. A close examination of the structure of the two 

horixontal flow components, the along-line and the cross line component (tangential to 

tbe cmss-section plane - lower right panel), reveals more details about the discussed 

scale interaction. The deep and extensive layer of surface RTF flow, mostly 

representing the mesoscale outflow, keeps the convective downdrafts from spreading 

rearward (note that FTR flow is not observed in the lowest levels as the two-dimensional 

conceptual model suggests). Thus, the convectively generated outflow must either 

deepen behind the convective line, surge forward as part of the rear-to-front flow, or 

surge outward in an along-line tbtection. From the analysis, it appears that a signiflcant 

portion of the outflow is directed outward along tbe line, in the same along-line directim 

as tbe mesocsale outflow in which the convective downdraft outflow is embedded. 

Hence, the mesoscale circulation aids in the development of the deep layer of along-line 

convective outflow and affects its direction of propagation - the along-line flow is forced 

to spread northward in the northern flank, and southward in the central and south-central 

portions of the line. The southward along-line flow is confined to a nanow, but deep, 

channel which may affect the vertical orientation of the updrafts in the forward portion of 
the convective line. As noted by Weisman (1992) vertically oriented updrafts tend to be 

stronger then upshear tilted updrafts. 

The location and structure of the central portion reflectivity cores (Fig. 20a) 
further illustrate the combined effect of the meso- and convective scale produced 

convergence. The northwest-southeast elongated reflectivity cores, observed in the 

central and south-central porlions of the line, likely reflect the preferential gmwth of new 

cores on the southeast side of the old ones where convergence is enhanced by the 

southward spreading of the convective outflow. The steadiness of the reflectivity 

features in the central portion of the storm further illustrates the importance of 
convective-scale forcing (convection continuously redevelops in close proximity of the 

convective outflow from the strong old cells). In this case, the new cells form nearly 

adjacent to the mature older cells, similar to the "weak evolution" noted by Foote and 

Frank (1983). The location of this somewhat steady reflectivity core (found in the area 

whete tbe mesoscale outflow is directly opposing the environmental inflow) illustrates 

the important effect of the mesoscale outflow on the strength of convective activity along 

the squall line. 

The along-line variability in the mesoscale outflow with a strong rear-to-front 

component at low-levels is in stark contrast to the conceptual model (Fig. 18) where 



58 

only front-to-rear relative flow is indicated for low-levels between the heavy stratiform 

precipitation region and the convective line. It will be shown later that this mesoscale 

outflow is associated with the mesoscale downdraft in the rear-inflow branch of the 

cyclonic mesovortex. As such, the variability in the strength and orientation of the low 

level mesoscale outflow, and the associated variance in the convective outflow structure, 

may be the mechanism through which the cyclonic mesovortex affects the initial 

convective line of the MCS. 

Mid-to-Low Levels (2. 4 to 3. 9 km) 

At 3. 4 km altitude strong front-to-rear flow was found throughout the convective 

region and extending rearward into the leading edge of the heaviest stratiform 

precipitation (Fig. 22a). Speeds in the FTR flow were maximum near the leading edge 

of the convection (Fig. 22b). Smull and Houze (1987a) showed a similar increase in 

FTR flow in the convective region and attributed the increase in wind speed to 

acceleration resulting from a low pressure penurbation found beneath sloping updrafts in 

the convective region (LeMone 1980, 1983). Near the leading edge of the strongest 

stratiform echo, the FI'R current converged with the cyclonic circulation of the 

mesovortex. The center of the mesovortex was located behind the north-central portion 

of the system and slightly off the analysis domain (near X = -30, Y = 85 in Figs. 22a-c), 

While the mean vertical profile in the vortex area (Fig. 23) depicts 2 km altitude as the 

level of maximum relative vorticity, the flow field indicates that at this time the cyclonic 

circulation was best defined near the melting level (3. 4 km). This discrepancy likely 

reflects the apparent backward tilt with height of the vortex center (at higher levels the 

vortex is out of the analysis domain) at this time. 

Mean descent found at mid-to-low levels over the RTF branch of the mesovortex 

(Fig. 23) suggests that the outflow from the midlevel mesovortex is what was observed 

at lower levels. It is this descending branch of the cyclonic mesovortex (Fig. 22c) that 

affects the mesoscale outflow near the surface. Vertical advection of positive vorticity 

helps account for the cyclonic curvature of the outflow in the northern portion of the 

storm system. The low-level outflow in the central and southern portions of the storm 

system has a more characteristic anticyclonic curvature. 

A specific example of the descending RTF flow is the reflectivity notch observed 

in the southern portion of the enhanced stratiform precipitation (near X = -10, Y = 40 in 

Fig. 22a), Its location suggests the entrainment of dry midlevel air by the RTF branch 
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of the cyclonic mesovortex. As this drier air descends through the stmtiform region, it is 

readily cooled by both evaporation and melting and represents a significant portion of the 

mesoscale cold pool observed at lower levels. 

Mid-to-Upper Levels (4. 4 fo 8. 9 km) 

The closed cyclonic circulation is not observed above 4. 4 km at 1152 UTC. 

Instead, as illustrated by the 6. 9 km analysis (Fig. 24a), a broad region of FIR flow is 

found emanating from the northern portion of the convective region. A cyclonic 

circulation is implied in the streamline analysis (Fig, 24b) behind the central and 

southern portions of the convective line, but the vertical motion suggests that this 

apparent circulation consists of two separate mesoscale flow features — a descending 

rear-inflow and an ascending FTR flow (Fig. 24c). The interface between these two 

mesoscale flows is associated with area-average convergence and positive relative 

vorticity. Hence, the cyclonic curvature of the flow may increase with time, but at this 

altitude and at this time the air parcels are not trapped in a closed cyclonic circulation. 

Rather, the rear inflow branch of the circulation represents the vertical extension of the 

RTF branch of the mesovortex found at mid levels (Fig. 22 c). It is hypothesized that as 

the rear inflow descends toward the back of the convective line, the convergence of 
positive absolute vorticity acts to increase the cyclonic curvature of the parcel's trajectory 

and helps create the closed, or nearly closed, circulation observed at lower levels. 

Brandes (1990) makes a similar argument for the development of cyclonic mesovortex in 

another asymmetric squall line system. 

The relatively strong rear-inflow (Smull and Houze 1987b) for the 28 May 1985 

storm system may be a result of the favorable environmental wind profile. A stmng 

west-northwesterly flow is observed between 6 -10 km in the 00 UTC Topeka (not 

shown here) and Dodge City, Kansas soundings and also in the 12 UTC sounding from 

Oklahoma City, Oklahoma (Figs. 25a, b). These wind profiles indicate the presence of 
rear-inflow in the base-state environment. The RTF component of motion was likely 

increased through accelerations associated with the low pressure perturbations 

commonly found toward the rear of stratiform rain regions (e. g. Biggerstaff and Houze 

1991a) and also underneath the slopping convective updrafts (LeMone 1983). 
While the strength of the maximum rear-inflow at this level is likely related to the 

favorable base-state environment, the along-line variability of the strength and extent of 
the rear-inflow at this level appears to be more related to mesoscale storm dynamics than 
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Figure 25b. As in Fig. 25a except for Oklahoma City, Oklahoma 1200 UTC. 
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an inherent feature of the base state environment. The broad FIR flow (hence a lack of 
RTF flow) in the northern portion of the storm system is consistent with detrainment 

from the more shallow convective updrafts in the northern flank of the convective line. 

While high spatial resolution sounding data are not available to firmly rule out the 

possibility of significant thermodynamic along-line gradients ahead of the storm system 

that could affect the overall storm structure as found by Barritt and Biggerstaff (1993) 
for the 10-11 June 1985 symmetric squall line system, inspection of low-level PPIs of 
"clear air" velocity data from the CP3 and CP4 radars suggests that significant 

differences in the low-level shear ahead of the storm did not exists, at least over the 

approximately 100 km scale covered by the Doppler radars. Surface mesonet data 

revealed a north-south oriented temperature gradient associated with the base-state 

environmental wind shear. This temperatme gradient likely resulted in some along-line 

variability in the amount of convective available potential energy (CAPE; Moncrieff and 

Miller, 1976). But Weisman and Klemp (1982) tested the sensitivity of model storms to 

buoyancy and found only minor differences in updraft strength and depth for slight 

changes in CAPE. Moreover, the recent numerical simulation of Skamarock et al. 

(1993) was first conducted for a thermodynamically uniform base-state. Yet, their 

model asymmetric squall line still exhibited the same along-line variability in convective 

development as observed in the 28 May 1985 storm system The broad FTR flow in the 

northern portion of the convective system at mid-to-upper levels is consistent with 

detrainment &om the relatively shallow convective cells in that part of the storm system. 

The vertical velocity field (Fig. 24c) illustrates in yet another way the along-line 

variability in convective activity. The strongest vertical velocities, with updraft cores in 

excess of 35 ms-1 are located on the southern flank of the system, Up- and downdraft 

intensity weaken northward, with an updraft maxima of 15 ms-1 observed in the central 

portion of the line, and only 10 ms-1 on the northern flank. Again, these features are 

consistent with the weaker, more shallow convective activity in the northern portion of 
the convective line where the mesoscale outflow contributed the least to the low-level 

convergence at the leading edge of the storm system 

Upper Levels (9. 4 km and above) 

Above 9. 4 km, the flow field is dominated by FTR convective outflow through- 

out the analysis domain, except in the forward anvil of the stomt. As illustrated by the 

11. 4 km dual-Doppler analysis (Figs. 26a-c), there is strong divergence associated 
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with the convective cells. The strong divergence coupled with the upper-level strong 

northwesterly environmental flow (Figs. 25a, b) is consistent with the RTF flow found 

in the extensive forward anvil of the storm system. Thorpe et aL (1982) found that 

increasing winds aloft were favorable for the development of extensive forward anvils. 

At this time, the strongest updraft cores at upper levels were located near the 

central portion of the convective line (Fig. 26c). However, it is possible that equally 

strong or even stronger updrafts existed in the southern flank convection just outside of 
the dual-Doppler region. Regardless, the northern portion of the convective line, which 

was well shaped at this time, did not exhibit strong convective drafts at upper levels. 

Vertical Cross-Sections 

Significant along-line variability in storm structure was noted in the horizontal 

cross-sections of all of the fields. Southern and central portions of the leading 

convective line were characterized by large, isolated reflectivity cores elongated in 

direction of storm propagation. At the same time, the northern flank was dominated by 

smaller, mote closely spaced cores organized in a line perpendicular to the storm motion 

(Fig, 17 and 20). Strongest vertical drafts were preferably found on the southern flank 

of the system The updrafts observed there were one-and-a-half times stronger than the 

ones found in the central portion of the line (Fig. 24c) and up to three times more intense 

than the northern flank updrafts. All this suggests the existence of three distinct regions 

along the convective line, with different convective characteristics. To summarize the 

vertical storm structure and illustrate the along-line variability, vertical cross-sections 

taken perpendicular to the local orientation of the convective line are presented. These 

vertical cross-sections allow for direct comparison to the two-dimensional conceptual 

model of squall line systems shown in Fig. 18. Moreover, the interaction between the 

low-level mesoscale outflow and the outflow from convective scale downdrafts is better 

illustrated by the vertical cross-sections. 

SrtttthguXlank 

Given that the front edge of the convective line was outside the dual-Doppler 

analysis domain at 1152 UTC, we will use cross-sections at 1152 UTC (Fig. 27a) and 

1125 UTC (Fig. 27b) to allow for better observation of the convective structure along 

the southern flank of the system. Both cross-sections are taken such that the horizontal 

axis is pointing towards 160' from true north. 
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Deepest reflectivity cares (although not n~y highest intensity) were found 

in the southern flank of the convective line (Fig. 27a). This was also the region 

charttcterized by deep and intense vertical drafts, with updraft velocities greater than 30 
ms-1 and downdrafts stmnger than 15 ms t, Noteworthy is the vertical orientation of 
both updrafts and reflectivity cores (at 1152 UTC). Stratiform cloud, trailing to 
northwest, was not very intense as compared to the other portions of the line (Fig. 28 

and Fig, 29). Hence, in relative sense, processes of cooling through evaporation, 

melting or sublimation are not expected to have been of significant importance in the 

southern flank of the system. This may explain why tbe RTF flow, depicted by the 

cross-hne storm-relative horizontal component, retnahted ~ (at 4 km altitude) to 

near the back of the convective line at 1152 UTC. As suggested earlier, this mid-to- 

upper level RTF flow illustrates the environmental mesoscale response to the entire 

convective ensemble. An area of convectively generated low-level RTF flow was found 

immediately beneath the leading convective line (Fig. 27b). Note that the observed flow 

structure suggests little if any contribution fiom the elevated RTF flow into the low level 

RTF flow. Hence, in this portion of the storm system, the mesoscale RTF flow 

apparently did not contribute significantly to the low-level cold pool near the leading 

edge of the convective line. 

The along-line component of the flow depicts southwestward spreading 

convective downdrafts (Fig. 27a). It is speculated that this convective outflow, 

spreading south in an along-line direction, was mainly responsible for the southward 

expansion of convective activity discussed in the next chapter. 

CcauuLZanian 

While the deep and intense reflectivity cores found in the cenual portion of the 

storm were rather similar to the southern flank convection, the flow structure in the 

central portion was quite different (Fig. 28). Cmss-line wind component reveals storm- 

relative RTF flow descending to the surface well behind the leading convective line. As 

already discussed, this roughly 2 km deep layer of RTF flow spreading along the 

surface for more than 50 km behind the convective line is not captured in the conceptual 

model of the squall-line systems (Fig. 18). Our study suggests that the current 

conceptual model which prhmufiy reflects the structure of symmetric squall hne systems, 

may not be representative for the asymmetric case. Indeed, the current co~ model 
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fails to identify the primary mechanism through which the mid-level mesovortex may 

affect the convective line. 

Considering that the deep layer of surface RTF flow (assumed to represent the 

mesoscale cold pool) was likely unbalanced by the moderate shear envhanment, the 

deep and rather suong convection found in the cenual portion of the storm is unexpected 

in view of RKW theory. A numerical study' by Weisman (1992) also concludes that 

RTF flow descending to the surface well behind the convective line will accentuate the 

upshetu tiling process and weaken the storm system, The discrepancy betwem our case 

study and cunent theory may be explained in part by a vertical extension of convective 

ftMcing associated with the deep along-line band of southward spreading convective 

outflow which was confined to a narrow area behind the leading convection by the 

central portion mesoscale outflow. The enhanced low-to-midlevel forcing may help 

support the stmng and rather vertical updrafts observed in the central portion of the 

convective line. 

EamhcmLhnk 

Reflectivity and flow structure of the northern flank were distinctly different 

from these observed at the cenuul and southern portions of the system (Fig. 29). 
Smaller and shallower reflectivity cores were associated with much weaker vertical 

drafls. Cross-line component of the storm-relative flow depicts a rather narrow current 

of very weak RTP flow, gently slopping toward the surface. 

No southerly along-line flow was found on the northern flank of the storm. The 

northward spmading of the convective outflow in this portion of the storm is entirely 

attributed to the effect the northern flank cyclonicaly curving mesoscale outflow has on 

the direction of propagation of the embedded convective outflow (Fig. 20c). It is 

speculated that the weaker convective activity observed in the area resulted &om the fact 

that north' flank tneso- and convective scale outflows spread in direction parallel to the 

envirotunental flow, thus creating lesser low-level convergence as compared to the other 

portions of the convective line. 



Figure 29. As in Fig. 21 except for the cross-section is taken through the northern portion of the storm at 1152 UTC. The 

X axis is pointing toward 90' from true north. Distance along the X axis is 110 km. Vertical velocities are contoured every 2. 5 

ms-1 with positive values shaded every 5 ms-t. 
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CHAPTER VI 

STORM EVOLUTION 

The 28th May squall line system moved through the PRE-STORM dual-Doppler 

analysis domain between approximately 1030 and 1310 UTC. During this period the 

storm underwent significant evolution as evidenced by the structure of the low-level 

reflectivity field (Fig. 30). Radar reflectivity at 1010 UTC (as seen by CP3 radar) 

illustrates the quasi-two-dimensional nature of the intense leading convective line at this 

time. Similar to the three-dimensional numerical simulation of Skamarock et aL (1993), 
the northern and southern ends of the line were slightly bowed forward. This is 

apparently characteristic of the early stage of the simulated asymmetric squall line system 

and represents the three-dimensionality of the flow interactions around the line ends. 

Even at this time, signs of developing as~ were observed in the structure of the 

stratiform precipitation region. An east-west oriented region of weak, isolated 

convective activity located on the southern flank of the system added to the asymmetry 

of the storm system. 

The storm organization, observed one-and-a-half hours later was quite different. 

The total storm system had expanded and developed a highly three-dimensional storm 

structure. Repeated convection and advection of ice particles in the upper-level FIR 
flow led io a general intensification of the stratiform precipitation in the northern portion 

of the storm system, while progressive dissipation of stratiform echo was observed on 

the convective line's southern flank. The general character of the leading convection had 

also changed significantly. The south-central portion of the system had intensified with 

the southern flank extending southwest-northeast rather than east-west. Meanwhile, the 

intensity of the convective activity along the northern end of the convective line had 

decreased. In short, two-dimensionality observed earlier had diminished with the new 

convective organization characterized by isolated reflectivity cores, elongated in the 

direction of storm propagation and preferably located in the bowed out south-central 

portion of the storm. Thus, both dissipation of the stratiform precipitation in the 

southern portion of the system and the surging out and intensification of the southern 

flank convection contributed to the development of the asymmetric shape of the low- 

level radar teflectivity. 



Figure 30. As in Fig. 17 except for a four panel plot presenting the reflectivity as seen by either CP3 or CP4 at four 

different time periods: upper-left panel - 1010 UTC low level reflectivity field as observed by the CP3 radar, lower-left panel- 

1040 UTC teflectivity as seen by the CP4 radar, upper-right -1120 UTC reflectivity as seen by CP3; and lower-right - 1148 UTC 

teflectivity as observed by CP4 radar. 
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Southern Flank (West Dual-Doppler Analysis Lobe) 
As noted befoxe, the different segments of the system were observed during 

different time periods and for that reason the evolution of the southern and northern 

flanks of the system are discussed separately. Six dual-Doppler analyses aver the 

southern portion of the system cover about 75 minutes of the storm system evolution 

(available are analyses at 1037, 1042, 1109, 1115, 1125, and 1152 UTC). Since the 

primary interest is in mesoscale features, the time resolution (5 to 27 minutes between 

analyses) is appmpriate. 

Presented here is the west lobe of the dual Doppler analysis domain which 

extended aver the southernmost portion of the northesst-southwest oriented leading line 

and the moderate intensity band of convection akmg the southern flank of the system 

(Fig. 31). Attention is focused on the observed metamorphosis in this convective band 

as it passed through the west-lobe analysis domain. 

Structural changes in the low-level convective organization are illustrated by the 

evolution of the 3. 4 km ieflectivity field (Fig. 31). At 1042 UTC isolated, variable 

intensity cells were organized in a 20 km wide east-west oriented band, running 

approximately between grid points -120 & X ( -50. The band was embedded in a rather 

uniform weak intensity stratiform area, A mote intense convective cell was centered 

near X = -30, Y = 43. This cell weakened between 1042 and 1109 UTC and then 

moved outside the dual-Doppler analysis domain. Another elongated high reflectivity 

core was centered at X = -70, Y = 8. As time progressed, the structure of this cell 

became more complex, revealing an ensemble of reflectivity cores. Storm intensity 

increased and the ensemble expanded in a northwest-southeast direction as new 

convection developed ahead of the old, preferably on the south-southeast end. This 

evoludon is further illustrated by a sequence of 6. 4 km reflectivity (Fig. 32) and 5. 4 km 

vertical velocity fields (Fig. 33) which depict new reflectivity and updraft cores 

developing on the southern end in conjunction with a relative decrease in convective 

activity toward the north-northwest. Discrete pmpagation lead to south-southeast 

expansion of the convection and surge of the convective ensemble to where the ensemble 

became aligned with the northern portion of the convective line by 1152 UTC (Fig. 30, 
lower-right panel). Pronounced decrease in reflectivity in the immediate vicinity of the 

convective ensemble accompanied its intensification and south-southeastward 



Figure 31. Dual-Doppler constructed reflectivity field of the southern flank convection at 3. 4 km altitude and four time 

periods: upper-left panel - 1042 UTC; lower-left - 1109 UTC; upper-right - 1125 UTC; lower-right - 1152 UTC. Reflectivity is 

contoured every 5 dBz, starting at 10 dBz. Shaded are areas with reflectivity in excess of 25 dBz. Plotted area is 120 x 120 km 

(with 1 km grid spacing) covering the west lobe of the dual-Doppler analysis domain. 
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expansion. By 1152 UTC this ensemble was the dominant feature of this portion of the 

storm system. 

Observed structural changes in the reflectivity field are a manifestation of the 

flow evolution. At 1042 UTC the prominent feature of the 1. 4 kin wind field was the 

northerly mesoscale outflow which dominated the area behind the southern flank 

convective band (Fig. 34). The proximity of the stratiform precipitation region and scale 

of the divergent northerly flow coming from the heaviest stratiform rain region of the 

system indicate that the northerly flow was associated with outflow flom the mesoscale 

downdraft. The extensive area of ncstherly flow generated an east-west oriented band of 
enhanced low-level convergence which apparently aided the initial development of 
convective activity along the observed east-west band on the southern flank of the storm 

system, 

As time progressed the relative flow became more front-to-rear. Apparently as 

the isolated convective ensemble intensified, the convectively generated low-level 

outflow became the primary source of convergence which forced new development 

ahead and south-southeast of the old. Discrete propagation separated the leading edge 

from the mesoscale outflow and amplified the role of forcing by the convectively 

generated outflow. The much smaller scale of the convective outflow helps explain why 

only the growth of the isolated ensemble was stimulated. 

By 1125 UTC, the only northerly flow in this region was associated with 

outflow from convective downdrafts (Fig. 35). Both available soundings (0000 UTC 

sounding from DDC and 1200 UTC sounding from OKC, Figs. 25a, b) show the level 

of free convection slightly below 4 km. This suggests that the southward spreading 

convectively generated outflow must have been very deep. As time progressed, the 

depth and intensity of the along-line flow increased, reflecting the additive contribution 

by all central and north-central convective outflows that were forced to spread southward 

by the low-level mesoscale flow. 

At the earlier time period (1042 UTC) the upper-level flow was dominated by 

FTR outflow from the convective cells. Some rear-to-front flow was found in the 

forward anvil and coming into the system around the southern end of the line (Fig. 36). 
Time and space consistency between observed reflectivity and maxima in the FIR flow 

(Fig. 37) leaves little doubt that low-level momentum transported upward by convection 
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was the source of the strong PTR flow found at upper levels. Indeed, the sttength of the 

FIR flow near the leading line ~ with the convection. 

As time pmgressed, a RTF flow developed in response to the active convective 

ensemble along the southern end of the line. Both divergence from convective cells 

farther back and forward acceleration of the flow in response to the growing convective 

ensemble likely contributed to the develolnnent of the RTP flow in this region. Since the 

area covered by RTP flow incteased as the ~ convective cells di~ most of 
the RTP momentum at the later times may have been a response to the growing 

convective ensemble and the temtdttder of the leading convective line. RTP flow was 

also observed at successively lower altitudes later in the analysis period. Smull and 

Houze (1987b) and Biggerstaff and Houze (1991a) discuss how RTF momentum 

develops in the stratiform precipitation region in response to pressure perturbations 

associated with the squall line sysuun. 

The distribudon of RTF and FIR flow led to the initial development of cyclonic 

curvature in the wind field. More importantly, there was a band of convergence 

associated with the interaction of these two flows. As the area covered by RTF flow 

increased, the convergence region expanded. It is likely that the convergence of positive 

absolute vorticity contributed to the formation of a more coherent mesoscale vortex, 

present over a deeper layer of the troposphere as suggested by Brandes (1990) for a 

simihr squall line system. However, development of a deep vortex over the southern 

portion of the convective line did not occur. The combination of FIR flow carrying 

cloud condensate north-northwestward and the influx of dry mid-level air in the RTF 

flow led to dissipation of the stratiftnm precipitation behind the southern flank of the 

convective line. With liule stratiform precipitation, latent heating and cooling would be 

redutxxl which would likely reduce the thermodynamically induced mesoscale pressure 

perturbations needed to maintain the midlevel convergent circulation. As a result, a 

significant midlevel mesoscale circulation would be less likely to form along the 

southern portion of the storm system than the northern portion where enhanced 

stratiform precipitation (and the associated pressure perturbations) was found. 

North and Central Portions of the System (East Dual-Doppler Analysis 

Lobe) 
Four dual Doppler analyses covering the period 1125 to 1152 UTC provide 

better temporal resolution over the northern and central portions of the storm than that 
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availaMe for the southern portion of the storm Unf~y, the observed period was 

shorter, 27 minutes compaxed to 75 minutes. FurthernMue, the stratiform precipitation 

region was not well sampled by the earliest (1125 UTC) analysis (Fig. 38). 

Despite the short period of observation, significant changes in the structure of the 

convective line were observed. Pronounced weakening in the convective activity in tbe 

northern portion of the storm is evidenced by the reflectivity Qekl (Fig. 38) in which 

there was a 5 dB decreLe in xeflectivity over the 27 minute analysis period. Using 

standard reflectivity-rainfall relationship (e. g. Battan 1973), a 5 dB decxease in 

reflectivity cxnxesponds to a factor of 2 ~ in rainrate. The trend toward weaker 

convective activity was also well captured in the vertical velocity fxeM. A signiflcant 

decrease in updraft velocities between 1143 and 1152 UTC was observed (e, g, Fig, 39). 
In contrast, convective activity remained quite steady in the central portion of the 

convective line. 

The structure and apparent movement of the convective cells also differed 

between the northern and central portion of the storm. In the north, the cells were 

smaUer, mote isolated, and had a more noxthwaxd component of motion. In the central 

region, the cells were organized in an intense convecdve ensemble which was elongated 

in the d'xection of storm propagation and rather steady in shape and intensity throughout 

the 27 minute analysis period. Just to the southwest of the steady convective ensemble, 

the convective activity apparently increased with the & 45 dBz echo region expanding 

slightly. 

While a 27 minute period is not long enough to make a general statement about 

the tendency of convection along the line, the 1310 UTC analysis ( Fig. 10) suggests 

that the northern portion of the line remained weak while the south-central portion 

continued to increase. The central portion remained rather steady. These trends in 

convective activity were likely associated with the interaction between the low-level 

mesoscale outflow and the environmental inflow (Fig. 40). 
The along-line variaMity of the mesoscale outflow was discussed in the previous 

chapter. Cyclonic mesoscale outflow with a northward component in the northern 

portion of the system was directed parallel to the inflow and anticyclonic outflow in the 

central and southern portion of the system was directed nearly opposite the 

environmental inflow. During the 27 minute period sampled, this structure remained 



Figure 38. Dual-Doppler constructed reflectivity field of the central and northern portions of the convective line at 3. 4 km 

altitude and four time periods: upper-left panel - 1125 UTC; lower-left - 1137 UTC; upper-right - 1143 UTC; lower-right - 1152 

UTC. Reflectivity is contoured every 5 dBz, starting at 10 dBz. Shaded are areas with reflectivity in excess of 25 dBz. Plotted 

area is 120 x 120 km (with 1 km grid spacing) covering the east lobe of the dual-Doppler analysis domain. The origin of the grid 

is collocated with the CP4 radar. 
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Figure 39. Dual-Doppler constructed vertical velocity field of the central and northern portions of the convective line at 7. 9 

km altitude and four time periods: upper-left panel — 1125 UTC; lower-left - 1137 UTC; upper-right - 1143 UTC; lower-right- 

1152 UTC. Contouring and shading are like in Fig. 33. Plotted area is 120 x 120 km (with 1 km grid spacing) covering the east 

lobe of the dual-Doppler analysis domain. The origin of the grid is collocated with the CP4 radar. 
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Figure 40. Dual-Doppler constructed storm-relative horizontal flow field of the central and northern portions of the 

convective line at 1. 9 km altitude and four time periods: upper-left panel - 1125 UTC; lower-left - 1137 UTC; upper-right - 1143 

UTC; lower-right - 1152 UTC. Contoured and shaded is the storm-relative wind speed with contour intervals and shading like in 

Fig. 35. Overlaid are the storm-relative streamlines. Plotted area is 120 x 120 km (with 1 km grid spacing) covering the east lobe 

of the dual-Doppler analysis domain. The origin of the grid is collocated with the CP4 radar. 
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relatively steady with only a slight tendency for stmnger convergence in the south- 

central part of the line. With time, the mesoscale outflow in the area opposed more 

strongly the environmental inflow and apparently affected the intensity of the southward 

spreading convective outflows. Vertical cross-sections (Figs. 41a, b) illustrate the 

association between intensification in the along-line flow and the observed south-central 

convective development with time. The cross-sections also reveal the relationship 

between the along-line flow and the enhanced convergence in the acmss-line flow. The 

strong convergence was found ahead of the surface layer of RTF flow and was co- 

located with the leading edge of the southward-spmading flow. This further illustrates 

the important contribution of the convectively generated along-line outflow in forcing 

convergence at the leading line. Consistently preferred south-central location of the 

strongest surface convergence, depicted by the surface mesonetwork (Fig. 19b), further 

describes the southward spreading combined meso- and convective outflows as one of 
the very important flow features, largely contmlling the dynamics of this highly three- 

dimensional squall line system. This flow structure is consistent with the observed 

changes in the reflectivity field. The slightly stronger convergence in the south-central 

part of the storm likely led to the enhanced convective activity toward the end of the 

analysis period. The continued weak convergence along the northern part of the line 

may have been insufflcient to generate significantly deep convective activity. 

Unlike the southern portion of the storm, no RTF flow was found at upper levels 

in the northern portion of the system (Fig. 42). Instead, highly divergent FIR flow was 

observed. The strongest divergence appeared to be located just ahead of the strongest 

upper-level reflectivity cores (Fig. 43). Enhanced FTR flow was associated with the 

convective cells. The region of strong FTR flow expanded southward in association 

with the convective development in the south-central portion of the system. Dispite the 

decrease in low-level reflectivity in the northern port of the line, there was little change in 

the strength of the upper-level outflow. 
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CHAPTER VH 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY 

Reflectivity and flow structuxe of the 28th May squall line system were highly 

four-dimensionaL A transition fxum quasi-tw~sional spatial structure to a well 

developed three-dimensional spatial stxucture was observed during the analyses period. 

Both evaporxuion of the stxatifoxm ~tation behind the southern flank of the system 

and continuous southward expansion of convective activity contributed to the 

development af the asymmetxic xeflectivity pauexn. 

Dual-Doppler analyses of the flow field revealed the presence of a midlevel 

mesoscale cyclonic circulation, located in the stratiform area, trailing the northwentral 

portion of the convective line, While low-to-midlevel (slightly above and below the 

melting level) mesovtnxex circulation was found during the entire observation period, a 

deep vertically oriented mesovortex was found only in the last analysis time (1308 
UTC). %Vis may have been the xesult of the circulation sloping with height such that the 

circulation was outside the analysis domain at the earlier time periods. Or, the 

mesovorlex may have deepened with time through convergence of phnetaxy and posiflve 

xelative vorticity, consistently observed ahead and above the cyclonic cixculation center. 

Interestingly, the area of cyclonic circulation was dominated by mesoscale descent at 

lower levels. 

The southern, or rear-to-front, branch of the mesoscale cyclonic cuculation was 

associated with the strongest mesoscale descent which indicated that dry midlevel air 

was entrained into the stratiform cloud and readily chilled by evaporation, sublimation 

and melting, The descending mesoscale outflow comprised a significant portion of the 

mesoscale cold pool found behind the leading convective line. Two distinct flow 

regimes (cyclonic northward flowing and anticyclonic southward flowing) charactxrized 

the low-level outflow. Along-line variability of the depth and direction of the mesoscale 

outflow implies that it contributed differently to the leading line convergence in the 

northern as compared to the central and southern portions of the convective line. 

Moteover, the northward and southward spreading mesoscale outflows affected very 

differently the structure and direction of propagation of the convective outflow, thus 

further accentuating the along-line variability of the leading-line convergence produced 

by the combined meso- and convective scale outflows. 
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The reflectivity structure also exhibited significant variability along the 

convective line. Larger, mote isolated reflectivity cores, elongated in direction of storm 

propagation, were located in the southern and central portions of the storm, while 

northern flank convection was characterized by smaller, more closely spaced teflectivity 

coins which were organized in a line perpendicular to the storm propagation vector. 

Deepest reflectivity cores and suongest vertical drafts wete consistently found in 

the southern pan of the convective line. In this portion of the storm an elevated stonn- 

rehulve rear-inflow, almost reaching the back of the convective line, was associated with 

the deep convection. However, the elevated rear-to-&out flow is perceived as a 

consequence and not a cause for the vertically oriented strong updrafts. Indeed, strong 

and deep convection was also observed in the central portion of the storm where the 

rear-to-front flow was confined to lower levels. It is suggested that the strong 

convective activity on the southern flank of the system was aided by the deep southward 

spreading convective outflow, confined by the anticyclonically curving mesoscale 

outflow in a narrow area behind the leading line. Southward spreading of the convective 

and ~e outflow led to the southward expansion of convective activity with time. 

The northern portion of the line was characterized by the weakest convection. 

No southward convective outflow and a very weak rear-to-front flow, confined in a 

nartow layer, were associated with this portion of the line. Both across-line and along- 

line components of the flow suggested lesser leading line convergence as compared to 

the other areas of the storm 

As time progressed, northern flank convective activity decreased. At the same 

time the central portion of the convective line ~ very active and the southern flank 

intensified significantly. The steady nature of reflectivity cores in the central and 

southern portion of the line, as well as their shape (elongated in direction of storm 

propagation) further illustrated the important interaction between the mesoscale and 

convective outflows which led to significant along-line variaMity in the forcing of new 

convective cells. 

In summary, all of the observed parameters exhibited significant along-line 

variability on the scale of the mesovortex, illustrating a scale-interaction process. 

Presented hereafter is a new conceptual model (Fig. 44) reflecting the observed flow and 

scale interaction which we believe is fundamental to the structure of the mature 

asymmetric squall lines. The midlevel mesovonex, trailing the northern portion of the 

line is one of the fundamental features of the flow field. Associated with the midlevel 
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Figure 44. Conceptual model of the flow field of an asymmeuic squall line system with an embedded midlevel mesovortex. 
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cyclonic cixculation is a significant along-linc variability in the structure of the meso- 

scale storm-relative horizontal flow. Primarily mechanism by which the mesovortex 

affects the convective structure is by focusing the midlevel RI and altering the mesoscale 

low-level outflow; (i) in the nonhern portion of the system the mesoscale outflow is 

parallel to the envixoxunental flow, thus creating less convergence; (ii) mesoscale 

outflow is strongly opposing the environmental inflow in the central and south-central 

portions of the storm, thus enhancing the convergence there; (iii) moreover, the altered 

low-level mesoscale outflow affects differently the direction of propagation of the 

embedded convective outflows, thus further accentuating the along-line variability of the 

storm-relafive horizontal flow: convective outflows embedded in the northern-portion 

cyclonicaly curving mesoscale flow are free to spread both backward and northwaxd, in 

direction almost parallel to the environmental inflow; at the same time, convective 

outflows embedded in the central and southern portion anticyclonically curving 

mesoscale flow, are forced to spread forward and southward, thus contributing to the 

production of the deep southward spreading along-line flow. This deep flow, confined 

in a narrow area co-located with the leading convective lixxe, is viewed as the source for 

the enlxanced convective forcing in the central and southern portions of the storm system 

as compared to the northern flank. Well pronounced along-line variability in the 

convective suucture is associated with the observed variability in the pauern of combined 

meso- and convective scale low-level outflows, Stronger vertical updrafts and deeper 

reflectivity cores are consistently found in the southern and central portions of the 

system, where ~ convergence was created by the system scale flow. Moreover, 

the observed along-line vaxiaMity iu the trends of convective evolution is explained in 

terms of the proposed scale interaction between the envimnmental inflow and the 

combined meso- and convective-scale outflows. 

The numerical study by Skamaxock et al. (1993) simulated an asymmetric squall 

line system with strikingly similar low-level flow and convective structure. The 

asymmetry of the system as well as the system's significant growth and migration to the 

south (right) of the original centerline were attributed to the effect of the Coriolis force. 
Their conceptual model is quite similar to ours, however it does not focus on the along- 

line variability of the mesoscale outflow, nor does it discuss the effect of this mesoscale 

outflow on the depth and direction of propagation of the convective outflows. The 

similarities between the two models, however, strongly suggest their applicabihty in the 

general case of the asymmetric squall-line systems. 



110 

To further the results of this study in determining the scale interaction between 

the mesovortex and the along-line convective variability, future work shouM focus on 

four main questions: (i) what is the contribution of the along-line Os gradient in 

developing the convective variability along the line2 (ii) do mature asymmetric storms 

always exhibit this type of along-line variability'2 (iii) is the distribution of severe 

weather, particularly damaging winds, associated with the scale interaction process 

illustrated in the conceptual model? (iv) can the increased depth of convective foning, 

hypothesized in the conceptual model aid the longevity of the initial convective region by 

helping to maintain deep lifting needed to generate new convective cells in otherwise 

poor environmental conditions2 

Additionally, more case-studies and numerical simulations should be analyzed to 

assess the general applicability of the proposed coexptual model of the scale interaction 

between the midlevel mesovortex and the along-line variability in structure and evolution 

of the parent convective line. 
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