
EXTENDING AN OBJECT-ORIENTED DESIGN METHOD:

A C++ EXTENSION FOR IDEF4

A Thesis

by

LI- TSUNG HSIEH

Submitted to Texas A&M University
in pardal fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

z' /

Ric ard J. Mayer
(Chair of Committee)

/ /

/

Chuan-Jun Su
(Member)g'

y 'th

em

William . Lively
(Member)

Way Kuo
(Head of Department)

May 1994

Major Subject: Industrial Engineering

Extending an Object-ariented Design Method:

a C++ Extension for IDEF4. (May 1994)

Li-Tsung Hsieh, B. S. , Tunghai University

Chair of Advisory Comminee: Dr. Richard J. Mayer

This research introduces an object-oriented implementation design method-

IDEF4/C++. IDEF4/C++ is an extension of the IDEF4 object-oriented design method

that incorporates C++ language considerations and practice to provide guidance and

structure to ease the transition from an IDEF4 conceptual design to its implementation in

C++.

To guide the development of IDEF4/C++, three IDEF5 ontological models are built:

(I) an ontology of general object-oriented concepts; (2) an ontology of the IDEF4 method

concepts; and (3) an ontology of the C++ programming language. Together these

ontologies form the conceptual foundation of this research effort. They also provide a

formal platform for understanding the mappings between the terminology and primitive

concepts in these domains.

Extensions included in the IDEF4/C++ are: (I) an extended method syntax; (2) a

transformation heuristic for transforming an IDEF4 conceptual design to an IDEF4/C++

implementation specification; (3) an IDEF3 model of the IDEF4/C++ design process with

design evolution configuration managemenr, and (4) best practice guidelines for the

application of lDEF4/C++, especiall focusing on design reuse.

The thesis concludes with a discussion of an integrated framework for object-oriented

system development. Without increasing the complexity of the IDEF4 method,

IDEF4/C++ takes advantage of C++ language features and best practice experience to

bridge the gap between the conceptual design phase and the implementation phase in a

software development project.

@@SI8lQR $4%42.
To my Mom, Mrs. Su-Xue Hsieh.

ACKNOWLEDGMENTS

Sincere thanks goes to Dr. Richard J. Mayer, my advisor. Without whose intensive

guidance and limitless patience, this research would not be possible. I thank him for

bringing me into the wonderfid world of system engineering and, he if anyone, is the

IDEF4/C++ method's godfather. I also wish to express my appreciation to Dr. Chuan-

Jun Su for his valuable suggestions on my work in the Knowledge Based Systems

Laboratory. I also wish to thank Dr. Jeffrey S. Smith and Dr. William M. Lively, the

other members of my committee, for their suggested clarlfications and constructive

comments which make this thesis a more complete document.

This thesis also owes much to many friends. Much credit goes to the other members

of the IDEF4/C++ development team, David Browne, Sue Wells, and Jim. Together we

conquered this challenge and I am deeply grateful for their contributions. Special thanks

goes to David for his intelligent ideas and incredible knowledge in C++. I also would

like to express my appreciation to Dr. Paula S. deWitte at the Knowledge Based Systems,

Inc. for her moral and financial support of this research.

I am also grateful to my friends in the KBS lab. Thanks goes to Sun, Wu, CFD, Su,

Eddie, Joe, and Mark. Those "day and night" discussions with them have been

invaluable in my study. Special thanks to Jyh and Jack for whose precious time and

generous input to both my academic study and personal growth.

Finally, I would like to express gratitude to Jake Stockton. I am indebted to Jake for

his patient navigation through the English language and constant encouragement during

my study-life overseas.

TABLE OF CONTENTS

ACKNOWLEDG~ .
TABLE OF CONTENTS . .
LIST OF TABLES. .
LIST OF FIGURES

CHAPTER

I INTRODUCTION .

1. 1 Introduction.
1. 2 Motivation.
1. 3 Research Goal and Objectives.
1. 4 Organization of the Thesis.

II BACKGROUND . .

1
2

. . 7
7

2. 1 Literature Review. .
2. 2 Domain Ontologies.

2. 2. 1 Ontology of General Object-oriented Concepts
2. 2. 2 Ontology of the IDEF4 Method Concepts
2. 2. 3 Ontology of the C++ Programming Language

III METHOD CONCEPTS . . .

9
. . 11

. 1 2

. 16

. 19

. 23

3. 1 Introduction. .
3. 2 Classes. .

3. 2. 1 Classes vs. Types
3. 2. 2 Classes vs. Objects. .
3. 2. 3 Class Box
3. 2. 4 Class Inheritance.

3. 3 Features .
3. 3. 1 Taxonomy of Features.
3. 3. 2 Inheritance of Features.
3. 3. 3 Presence of Features
3. 3. 4 Type of Features .

3. 4 Methods. .
3. 4. 1 Methods, Contracts, and Method Sets
3. 4. 2 Taxonomy of Method Sets.

3. 5 Constraints .

23
. 24
. 24
25

. . 26

. 27
. . . . 3 1

32
33
34
36
37

. . . 38
39

. 42

IV METHOD S YNTAX

4. 1 Organization of IDEF4/C++ Diagrams. . . .
4. 2 Class Lattice Diagrams. . 47

TABLE OF CONTENTS (CONTINUED)

CH|~R
4. 3 Class Inheritance Diagrams

4. 3. 1 Extended Class Box Syntax. „. , .
4. 3. 2 Public, Protected, and Private Inheritance Links.
4. 3. 3 Virtual Inheritance.
4. 3. 4 Feanne Symbols and Their Extensions.
4. 3. 5 Inheritance Diagrmns.
4. 3. 6 Class Invariant Data Sheets

4. 4 Method Taxonomy Diagrams.
4. 5 Type Diagrams. .
4. 6 Friend Diagrams. .
4. 7 Template Diagrams.
4. 8 Client Diagrams . .
4. 9 Instantiation Diagrams.
4. 10 Dispatch Mapping,

Page

50
. 50
. 52
. . . . 53
. 55

. . 63

. 67
, 71

78
. 80

. 81

. 84

. 86

V METHOD PROCEDURE . 88

5. 1

5. 2
5. 3
5. 4

Introduction.
Transformation from Generic IDEF4 to IDEF4/C++.
IDEF4/C++ Design Development Activities
IDEF4/C++ Design Development Process with
Developers .

. 88

. 89

. 92
Multiple

95

VI METHOD USES.

. . 104
. . . . 104

. 106
. . . . 107
. . . . 108
. . . . 109
. . . . 112

. 113

. 114
. . . . 115

. . 116
. 1 17
. 1 1 8
Features . . . 124
. 1 26
. 1 29

. 1 34
. 1 35
. 1 36
. 1 3 8

140
. 1 45

6. 1 Introduction. .
6. 1, 1 Inheritance vs. Aggregation.
6. 1. 2 Broadening the Design Scope

6. 2 Inheritance and Feature Access Control .
6. 2. 1 Protected Feature Access Control .
6. 2. 2 Private Inheritance and Access Specifier.
6. 2. 3 Public Inheritance and Feature Access Control

6. 3 Constructors and Destructors.
6. 3. 1 Protected Constructors.
6. 3. 2 Passing Parameters to Base Constructors
6. 3. 3 Virtual Destructors. .

6. 4 Pure Virtual Functions and Abstract Base Classes
6. 5 Designing Dynamic Polymorphism in IDEF4/C++. . .
6. 6 Implementation for Conflicting and Non-conflicting
6. 7 Features with Multiple Return Types .
6. 8 Avoiding Redundancy in Multiple Inheritance.
6. 9 Design with Reuse

6. 9. 1 Abstract Base Class and Pure Virtual Functions . .
6. 9. 2 Private Inheritance and Forwarding.
6. 9. 3 Aggregation with Forwarding. . .
6. 9. 4 Delegation .
6. 9. 5 Rules of Thumb for Design with Reuse.

VII CONCLUSION AND FUTURE EXTENSIONS. 147

TABLE OF CONTENTS (CONTINUED)

7. 1 Conclusion .
7, 2 Future Extensions.

REFERENCES .

APPENDIX A.

VITA

Page

147
148

. 152

155

. 161

LIST OF TABLES

Table 3-1. Presence of the Feanue Pay in the EmPloyee Class Hierarchy, 36
Table 5-1. Transformation fmm IDEF4 to IDEF4/C++. 90

LIST OF FIGURES

Page

Figure 1-1. CLOS and C++ Code Examples of Name Conflicts. ,
Figure 1-2. Different Name Conflict Resolutions of CLOS and C++. , . . . ,
Figure 2-1. Design Refinement and Implementation Refinement: P-Correct and

S-Correct.

Figure 3-1. Class Box in IDEF4.

Figure 3-2. Representation for Class Inheritance in IDEF4.
Figure 3-3, Partial Inheritance Diagram for an Employee Class.
Figure 3-4. Feature Taxonomy Hierarchy

Figure 3-5. Inheritance of Features.

Figure 3-6. Redefining Inherited Features in Class Inheritance. . . . , .
Figure 3-7. Classification of the Presence of Features. , .
Figure 3-8. A Partial Type Diagram Defining Types of Feamres.
Figure 3-9. Print Method Taxonomy and Associated Routines.
Figure 4-1. Organization of IDEF4/C++ Diagrams.

Figure 4-2. Example Class Lattice Diagram for an Employee Management

System.

3

5

10

27

28

30

32

33
34

35

37

41

46

, 48

Figure 4-3. Example C++ Code for the Class Project. .

Figure 4-4. Extended Class Box Syntax.

Figure 4-5. Inheritance of a Base Class and a Derived Class. . . ,
Figure 4-6. Comparison of Public, Protected, and Private Inheritances. . . .
Figure 4-7. Virtual Inheritance in IDEF4/C++.

Figure 4-8. Example of Feature Symbols.

Figure 4-9. Example of a Redefined Feature with New Contract.
Figure 4-10. Example of Extended Feature Symbols. .

. 49

51

. 5 1

. 53

55

56

. 57

Figure 4-11. A Partial Inheritance Diagram of Employee Management System. . . 62

Figure 4-12. The Programmer Class.

Figure 4-13. Class-invariant Data Sheet for Class Pmgrammer.

Figure 4-14. Contract Data Sheet. .
. . . . 66

68

Figure 4-15. Work pay Method Taxonomy Diagram with Dispatching

Mapping. .

Figure 4-16. Employee Inheritance Diagram with Dispatch Mapping.
Figure 4-17. Single-valued Type Link

69

70

72

LIST OF FIGURES (CONTINUED)

Page

72

73

74

76

Array. . 81

Figure 4-25. Client Diagram for Show-project-information of Class Project-

Manager. 82

Figure 4-26. C++ Code Example for Show-project-information. 83

Figure 4-27. An Instance Box - John. . . 84

Figure 4-28. Example Instantiation Diagrams. 85

Figure 4-29. Dispatch Mapping of Work pay Behavior. 87

Figure 5-1. IDEF3 Dynamic Model of IDEF4/C++ System Development

Figure 4-18. Multi-valued Type Link.

Figure 4-19. Single-valued Inverse Type Link.
Figure 4-20. Partial Inverse Type Link.

Figure 4-21. Textual Notation for Feature Return Types.
Figure 4-22. An Example Type Diagram for the Employee Management

System. . . 77

Figure 4-23. A Friend Diagram and C++ Code Example for Class Worker. . . , 79

Figure 4-24. A Template Diagram and C++ Code Example for Class Template

Process with Configuration Management. .
Figure 5-2. Configuration Items defined in IDEF4/C++. .

96

Figure 5-3. Flow of Control of Configuration Management in IDEF4/C++. 103

Figure 6-1. Inheritance vs. Aggregation.

Figure 6-2. Protected Feature Access Control.

106

. 109

Figure 6-3. Private Inheritance and Feauue Access Control. 1 1 1

Figure 6-4. Public Inheritance and Feature Access Control. . . .
Figure 6-5. Calling Base Constructors. .
Figure 6-6. Inheritance Diagram for Class Shape. .
Figure 6-7. IDEF/C++ Design for Run-time Binding. .
Figure 6-8. Adding a New Class — Triangle

Figure 6-9. Conflicting and Non-conflicting Constraints.
Figure 6-10. Example of Not Allowable Type Diagrams.

. . . 113

. 116
. 119

122

123

. . . 126

. . . . 126

Figure 6-11. Designing Multiple Return Types for Feature team-members. 128

Figure 6-12. Multiple Inheritance of the Class Project-Leader. . . .
Figure 6-13. Client Diagram of Project-Leader's Perform-task. . . .

. . . 130

. . . . 131

LIST QF FIGURES (CONTINUED)

Page

Figure 6-14. Separating Perform-tasks in Manager and Designer. 133

Figure 6-15. Avoiding Redundancy in Project-Leader's Perform-task. 134

Figure 6-16. An Abstract Base Class - Drill-Machine. 136

Figure 6-17. Using Forwarding in Private inheritance. 137

Figure 6-18. Reuse List by Aggregation. . . 139 .

Figure 6-19. Forwarding the Count Behavior. . 139

Figure 6-20. Forwarding the Has-item Behavior 139

Figure 6-21. Multiple Inheritance of Class Research-Assistant. , 141

Figure 6-22. Design Class Research-Assistant by Delegation. 141

Figure 6-23. Design Delegation for Class Research-Assistant. 142

Figure 7-1. An Integrated Framework of Object-oriented System Development. 149

CHAPTER I

INTRODUCTION

1. 1 Introduction

In software engineering, the traditional software development process is usuaUy

referred to in terms of the "waterfall" model (Boehm 76). Though further refining

works on the model have related to different levels of detailing, the three most

generally identified phases are analysis, design and implementation. Each of these

phases possesses discrete activities, has its own objectives, and is governed by

distinct philosophy. However, in recent years, the introduction of object-oriented

technology has blurred the distinct boundaries between them (Meyer 87)(Korson &

McGregor 90). The object-oriented technique combines the principles of

encapsulation, polymorphism, and inheritance to promote software reuse and to

reduce downstream errors and maintenance efforts.

The object-oriented technology blurs the boundaries between these phases for

several reasons. First, the elements (objects and their relationships) focused in each

phase become more tightly connected. The objects and their relationships identified

in the analysis phase cast a basic understanding of the problem domain. The design

and implementation phases consequently follow this understanding and are based on

these objects and relationships to conduct their own activities. Second, the system

development activities are conducted as "modes of thought" rather than as

sequential phases or iterations. The development team usually goes back and forth

between modes of thought, performing tasks to refine the design, analysis and

implementation, on the fly. The blur is especially obvious along the boundary

This thesis follows the style and format of International Journal of Production Research.

between the design and implementation phases (Meyer 87). An effective method

must support the process of filling in the details from the analysis through the

design specification and all the way to the working program. The promised benefits

of object-orientation can only be obtained by integrating these activities into a

seamless framework. This integration can also provide a paradigm for one of the

goals of Computer Aided Software Engineering (CASE) - code generation from

solution specification.

1. 2 Motivation

Unfortunately, object-orientedness means different things to different people

(Nelson 90). There is still no general and widespread agreement on the object-

oriented model; different object-oriented programming languages support different

notions of objects, such as those graphic-based object-oriented design methods and

tools (Booch 91, Rumbaugh 91). A method or a programming language's object

model is important because it determines the built-in semantics the method or the

language understands and is able to enforce. This variety between methods and

languages' object models brings out a problem while making the transition into the

implementation phase from the design phase in the software development process

(where the boundary blurs most). The object model that a design is based on may

be different from the one that the implementing language supports. More

specifically, the "object-oriented" features provided by a design environment may

not be supported by the target implementing language or vice versa. Different

languages might give different interpretations (implementation) to the same feature.

The designer may not be aware of this "Tower of Babel" in object-orientedness until

the implementation process begins. When encountering this problem, occasionally

the designers are forced to either change their original designs to suit the intended

implementing language or switch to a proper target language. As a result, this

dilemma increases the software development time and cost, and decreases

application's performance as well,

(a) (defctass UniversityEmpioyee Q

(
(name: accesstx name)
(depanment: accessor depanment)
(ssn: reader ssn)))

(defctass Studem Q

(
(name: accesstz name) (~t: accessm depanment)
(student-ID: accessor st-id)))

(h) class UniversityEmployee (
protected:

char «name;
char «department;
int ssn;

public:
char «get nameQ;
void put name(char «);
char 'get depanmentQ:
void put department(char «);
int get ssnQ;

);

class Student (
protected:

char 'name;
char «depanment;
int student-ID;

public:
char «get nameQ;
void put name(char «);
char «get departmentQ;
void put department(char «);
int get student IDQ;
void put student ID(int);

);

Figure 1-1. CLOS and C++ Code Examples of Name Conflicts.

For example, both the Common Lisp Object System (CLOS), an object-oriented

extension of Common Lisp, and the C++ object-oriented programming language

support multiple inheritance but implement it in somehow different way. Multiple

inheritance, which allows a subclass to inherit features from more than one

superclass, is straight-forward if no inherited features are multiply defined in the

superclasses. But if more than one superclass has defined (or inherited) the same

features, the language has to provide a strategy for resolving the name conflict

occurred in the subclass. The strategy reflects the approach the language constructs

and supports multiple inheritance, and conducts the method selection process as

well. CLOS and C++ adopt different appmaches of implementing this conflict

resolving strategy. Basically, CLOS uses a class precedence list as a means for

resolving the conflicts, which is in the order from most specific to least specific. On

the other hand, C++ provides both "single-copy" and "multiple-copy" approaches&.

For instance, consider that we have two classes: class UrtiversityErrtployee and class

Student, their declarations in CLOS and C++ are displayed in Figure 1-1(a) and (b)

respectively. If we define a class ResearcfrAssisrartr as a subclass of both

UrtiversityErrtployee and Srudertt as shown in Figure 1-2(a)2, there will be a name

conflict of the deparrrnertr slot because it is defined in both UrtiversityEmployee and

Snttfertt (Figure 1-2(b)). CLOS uses a class precedence list to resolve the conflict

and it will keep only one copy of department in ResearchAssistanl (Figure 1-2(c)),

whereas C++ keeps both copies of departrrtenr implicitly (if the multiple-copy

approach is applied). Both copies can be explicitly accessed by using class

identifiers (Figure 1-2(d)). Because CLOS only keep one copy of department, the

designer needs to determine which superclass is the department inherited from; does

it refer to the research assistant's academic department or the department that hires

him or her? Furthermore, the access to each of the department methods might be

different and there might be conflicts in their contracts. Thus, it is necessary for the

designer to decide which methods to be shadowed to hold the consistency.

I If the inheritance link is declared as v i rt ua 1, then single-copy appnMch is adopted. Otherwise,
multiple-copy is the default approach. See Section 6. 8 for more details.
2 The Figures are presented in terms of IDEF4/C++ notation. Where boxes represent classes and "S"
symbol represents a slot feature. See Chapter 4 for more details about the IDEF4/C++ syntax.

(a)
UniversityEmp Student

' (defclass ResetuchAss(sttmt (UniversityBmptoyee Student) 0)
Coact

dnss ResesrchAssistnnt: public UniversityBmployee, public Student ();

(b) (S) ~~m~ (S) apartment

UniversityEmployee Student

name conflict

ResearchAssisrant

(c)
[S) depanment (S) department

UniversityEmployee Student

(S) department

ResearchAssistant

CLOS only keeps one
copy of mhenred feature

(4) (S) ~~cut (S) department

UniversityEmployee C++ implicitly keeps two

copies. They csn be accessed
through class identiriers:

(S) deparunent

(S) department

esearc slsulltt

~ UniversityEmployeeudepartment

~ S mdenu: deparunent

Figure 1-2. Different Name Conflict Resolutions of CLOS and C++.

It is not our intent to judge which language is better and which is not, as

different languages are designed for different intents. For example, one of the

primary goals of CLOS is to gain flexibility and extensibility for the language,

whereas C++ is more focusing on run-time efficiency and implementational

simplicity. For the example illustrated above, mote design effort should be taken if

CLOS is considered as the target implemening languages.

The variety in interpretation (implementation) within the object-oriented

paradigm therefore shadows the promise that the technique has proclaimed.

Intuitively, the best solution is establishing a standard object model which every

vendor of the implementing languages and the developer community would agree

upon. Since object technology is still evolving, it is understandable that such a

paradise will not appear soon. The need of extensibility for the design environment

to support different implementing languages is therefore eminent.

One approach to solving the problem is to provide language-dependent

extensions for a language-independent design method. The idea is straight-forward.

Before the designer goes into the detailing mode (which is very related to the

implementation language selected), the generic design environment should be able

to be extended seamless in order to conduct this process efficiently.

More specifically, the design environment should be able to support the

evolutionary change from the conceptual design all the way down to the

implementation, smoothly and elegantly. Our intent is to construct an extensible

environment for designers to be able to move through the process seamlessly. In

addition, if an intended implementation language is found not to be expressive

enough for the specific design, by using a certain mechanism provided in the design

Here we only give a simplified example. However, for a more complicate design, there might be
some compromise to the reality and tradeoffs between picking up different approaches.

environment, the designer can backtrack to the generic design and evolve and

extend the design towards another target language.

1. 3 Research Goal and Objectives

The specific goal of this research is to construct a C++ extension for IDEF4, an

object-oriented design method, as a specialized design environment for the C++

implementation of a system. To achieve this goal, several objectives are identified.

We group these objectives into the following:

1. Analyze and understand the domain:

~ To capture the ontology of object-orientation.

~ To capture the ontology of the implementation independent IDEF4 object-

oriented design method.

~ To capture the ontology of the C++ object-oriented programming

language.

2. Design and develop the extended IDEF4/C++ method:

~ To develop a C++ extension of IDEF4 method.

1. 4 Organization of the Thesis

The results of this research are presented and organized as follows:

Chapter I introduces the object-oriented software development process, and

identifies the evidence of various dialects among the object-oriented

society, which motivates the activity of this research work. The

research objectives is stated in the chapmr as well.

Chapter II reviews related literature and presents the ontologies of the domain,

which include core concepts and terminology used to conduct the

Chapter III discusses the basic concepts of the IDEF4 object-oriented design

method family (IDEF4 and IDEF4/C++). The discussion is

intended to lay out a foundation for the succeeding chapters.

Chapter IV presents the syntax of the extended method - IDEF4/C++. A

number of examples and C++ code are given along with the

introduction of the notations,

Chapter V specifies the IDEF4/C++ design development procedure. An IDEF3

dynamic model describing the design process with multiple

developers / development teams is also presented.

Chapter VI discusses the principles and techniques of the use of the method.

The discussion focuses on issues of design with reuse in

IDEF4/C++. We conclude the chapter by summarizing rules of

thumb for reuse.

Chapter VII gives the conclusion drawn from this thesis. Future extensions of

the research are also discussed.

CHAPTER II

BACKGROUND

2. 1 Literamre Review

Both (Meyer 87) and (Korson 4 McGregor 90) mentioned the blurring between

design and implementation phases in the object-oriented software development.

Korson and McGregor suggest that the transition from design to implementation

should be smooth and this transformation should be part of the design process.

Meyer suggests that this is basically a technical problem (Meyer 88) and goes on to

present a tool named Eiffel, claiming that Eiffel is a language for both design and

implementation.

However, there is a major distinction between the philosophy and design

intention of IDEF4 and those of Meyer's that we would like to address in the first

place. We consider design and implementation4 as different activities, whereas

Meyer places the design process only at a higher level of abstraction than

implementation (Meyer 88). Design and implementation are different in terms of

the notion of correctness (Mayer 90). More specifically, the aim of the

implementation activity (the programming activity) is to produce a specific single

executable implementation which will run correctly and ultimately bug-free. This is

referred as P-Correct. On the other hand, the aim of the design activity is to narrow

the range of available choices so as to expedite the eventual acquisition of a correct

solution for the problem. This is referred as S-Correct. Figure 2-1 (Mayer 90)

describes the difference in the refinement process in these two activities. This

figure shows that the objective of design evolution is to gain a larger probability for

4 The term implementation used here mainly refers to the acdvity of programming.

10

conect implementation&. Based on this philosophy, unlike Meyer's approach

(Eiffel), we choose to extend an existing logical design method into a language

dependent implementation design methotL That is, we propose extending the

generic IDEF4 to IDEF4/C++, rather than turning a programming language into a

design tooL

Program
Rellnement

P-Correct but not
executable Conect but not

consistent with design

before
refinement

P&otretx and
closer to

executable

ottecl
consistetn with

desi

Consistent with design
but not correct

after
refinement

P-Correct but not
executable

O Conect and

executable

Correct but not
consistent with design

Correct snd
ccnsistent with

design

onsistent wtth desi
t not

Figure 2-1.

Design Refinement and Implementation Refinement: P-Correct and S-Correct.
Reprinted hom (Mayer 90).

S The larger the S-Correct proportion of the design means the more chances to derive a correct
implementation from the design model.

(Nelson 90) discusses the subject of variations in object-orientedness. He urges

an agreement on this area, at least in the basic terminology. Alan Snyder has

developed a common framework for general object-oriented terminology. He

proposes an abstract object model (Snyder 90 and 93) which has a good

organization on the basic concepts and terminology. Relating to this work is the

specification (OMG 91) prepared by the Object Management Gmup, which makes a

pmmise to become the standardization in this fiekL

Several object-oriented design methods including (Booch 91, Coad & Yourdon

91, and Rumbaugh 91) all have comprehensive discussions of the field. We include

the survey on these methods to gain a bmader understanding of object-oriented

design models. (Stroustrup 90), (Lippman 91), and (Coplien 92) give a thorough

overview on the C++ language, where issues such as type system, multiple

inheritance, dynamic binding, function overloading / overriding, class template etc. ,

are addressed and discussed in these sources. (DeMichiel 93) compares the

distinction between Common Lisp Object System (CLOS) and C~, which provides

some basic notions for understanding the design philosophy behind C++.

2. 2 Domain Ontologies

Every method or language has an object model, which plays the role as the

foundation for its notions of objects. The object model behind a method or a

language is important because it provides the underlying constructs for specifying

the built-in semantics that the method or the language understands and is able to

enforce. Therefore, before extending the generic IDEF4 object-oriented design

method to a specification for the C++ implementation purpose, the understanding

(analysis) of the object models in the domain (IDEF4 and C++) is essential and

12

necessary. This section presents the results of using IDEF5 ontological schematics

for capturing the ontology models of the IDEF4 method and the C++ language, as

well as the general concepts of object-orientedness. The concepts and syntax of

IDEFS method will not be discussed in the report, details of the method can be

referenced in (Mayer 92c). However, major efforts lay in the process of "name-

coining", which results in a set of core concepts for building up the target semantic

models, and establishing the terminology to be used in descriptions of the domain.

Section 2. 2. 1 presents the model of general object concepts. Section 2. 2. 2

presents the IDEF4 object model and Section 2. 2. 3 presents the C++ object model.

In these sections, only the summaries of the core concepts and key terms are

presented,

2. 2. 1 Ontology of General Object-oriented Concepts

Establishing the common concepts and perceptions of an object-oriented model

can greatly enhance the communication among object-oriented system developers,

users, and researchers. In this section, we identify a general object model for such

purpose, which is intended to provide an organized presentation of terminology and

primitive concepts for the research work. IDEF4 (Mayer 92a), Booch's method

(Booch 91), Rumbaugh's Object Modeling Technique (OMT) (Rumbaugh 91), and

C++ (Stroustrup 90, Lippman 91 and Coplien 92) are all the sources for this

ontology research. In addition, the ontology is also elaborated from the abstract

object model used in the Object Management Group*s (OMG) Common Object

Request Broker Architecture (CORBA) (OMG 91). The following summarizes the

core concepts and the key terms identified from the above sources.

13

~ An object is an identifiable, encapsulated entity that is capable of

requesting and/or providing one or more services. It has state, is

capable of performing some well-defined behavior and has an

unique identity .

The identity of an object is denoted by the term handle, which is

a value that unambiguously identifies an object. The name of an

object can be a handle to that object.

~ The state of an object is captured in terms of a set of arrribure-

value pairs .

~ The behavior of an object is captured in terms of a set of

operarions that the object can perform.

~ A feature is a generic term for presenting a particular

characteristic of the state or the behavior of an object.

A feature can be an attribute or an operation.

Packing related attributes and methods together is called

encapsulation. Encapsulation protects data from corruption by

other objects and hides low-level implementation details from the

rest of the system.

The mechanism for encapsulation is the object.

Objects interact with each other in terms of issuing requests.

An object that requests services is called a client object. An

object that provides services is called a server object.

14

~ A client object requests a service from a server object by issuing

the request to the server object.

A request is an event.

~ A service is a computation that may be performed to respond to a

~ The infortnation associated with a request consists of an

operation, a target server object, and zero or more parameters

required to provide the service.

An operation is specified to denote a service that can be

requested. It has an associated signature which describes the

types of the request parameters and return values.

A method is an implementation of an operation. It is the code

that may be executed / invoked to perform a requested service.

A service is pmvided by means of performing an operation.

An operation can be generic. A generic operation can be

performed differently by different target objects by invoking

different methods.

~ A binding is a computation that results in the selection of the

methods to perform a requested service. Binding can be dynamic

binding or static binding according to the time that the decision

is made.

15

~ A type is a specified predicate defined over expressions to serve

the purpose of membership checking or binding validation.

Therefore, the type of an operation can be considered as the

signature of the operation.

~ A class is a specified template for defining attributes and

operations for a particular type of objects. Objects of the same

class have the similar sets of attributes and operations. Class can

be instantiated to cteate objects.

An interface of a class is a description of operations and

attributes defined in that class. It includes the signatures of the

operations, and the types of the attributes.

Every class is a type, but not every type is a class. Type

classifies objects according to a common interface they share.

Therefore, the type of an object can be considered as the interface

of the class of that object.

~ Class inheritance is a specification of class definitions based

upon the generalization / specialization relations between classes.

Inheritance can be multiple inheritance or single inheritance.

~ Object aggregation is a relationship in which one object is

composed of other objects.

2. 2. 2 Ontology of the IDEF4 Method Concepts

In this section, we summarize the ontology of the object model of the genetic

IDEF4. The ontology is presented in terms of a set of the key concepts and coined

terminology described as follows.

~ An IDEF4 model consists of two submodels: a Class submodel

and a Method submodel. These submodels are connected by

means of a mechanism called Dispatch Mapping.

The IDEF4 class submodel is composed of Class Lattice

Diagrams, Inheritance Diagrams, Type Diagrams, and

Instantiati on Diag rams.

The IDEF4 method submodel is composed of Method Taxonomy

Diagrams and Client Diagrams.

Each class in IDEF4 is associated with a Class Invariant Data

Sheet (CIDS'), which specifies the constraints for the instances of

this class. Information such as direct present features,

superclasses and subclasses are also documented here. The

corresponding inheritance diagrams and type diagram of a class

are referenced on its CIDS.

~ In IDEF4 the term feature is used as a generic term to refer to

both attributes and routines. Attributes denote value-returning

features. Routines denote computation-initiating features.

17

~ A routine can be refined as a procedure or a funcnon in the late

(detailing) stages of a design. An attribute can be refined as a

function or a slot.

~ Routines (functions and procedures) are behavioral features; they

denote the behaviors of the instances of a class. Behavioral

features are listed in a class invariant data sheet (CIDS) according

to the generic behaviors they identify.

~ Inheritance relationship between classes are described in

inheritance diagrams.

Access of the features presented in a class can be public or

private; public features are accessible to other classes, private

features are accessible only to the owner class and all its

subclasses.

~ A method taxonomy diagram describes a generic behavior.

~ A method taxonomy diagram classifies a generic behavior into

several method sets according to the similarity of the constraints

on them. Method sets in a method taxonomy diagram are

arranged in a more specific order fiom left to right or from top to

bottom.

~ Each method set in method taxonomy diagrams is associated with

a Contract Data Shee! (CDS), which specifies the constraints that

the implemented methods in this method set should satisfy.

~ A contract is a set of constraints for the associated method set.

18

~ Methods in a method set must be implemented according to the

contract associated with the method set.

~ Behavioral features defined in the class submodel and method

sets in the method submodel are mapped with each other through

dispatch mapping.

~ Conflicting constraints are those constraints that redefine or

shadow the constraints from previous method sets. Non-

conflicting constraints are sets of pre- or post-conditions that

should be applied with the inherited constraints.

Type diagrams describe the aggregation relationship between

classes. Type links are used to represent the relationship.

The type of a feature in a class is specified as the class that is

connected by a type link. Predefined types are collected in the

User Predefined Data Type List associated with the method

submodel.

Only value-returning features, such as functions and slots can be

shown in type diagrams.

~ Type links have different kinds. Type links can be no inverse,

with inverse, or with partial inverse.

~ A client diagram describes the internal algorithmic structure (i. e. ,

subroutine calls) of a behavioral feature. In a client diagram, a

supplier routine is called by a client routine.

19

~ Routines in client diagrams usually are shown with their defining

classes. If a class associated with the routine is not specified,

then a dynamic (run time) binding will occur in the

implementation.

~ Class lattice diagrams provide a broad view for the lattice of

either the whole class submodel or the focused part of the

submodel.

~ Instantiation diagrams are associated with type diagrams in the

class submodel. Instantiation diagrams describe the anticipated

situations of composite links between instantiated objects that are

used to validate the design.

2. 2. 3 Ontology of the C++ Programming Language

This section presents a set of key terms and the core concepts for the ontology of

C++. We want to emphasize that the ontology is discovered and documented with

the intent of only mapping significant characteristics of the language to the

primitive object-oriented concepts; rather than focusing on the language syntax or

structure.

~ C++ derived class is a synonym of "subclass" in general object

terminology.

C++ base class is a synonym of "superclass" in general object

terminology.

20

~ C++ provides three feature accesses: public, private, and

protected. Public features can be accessed by the whole system.

Private features can be accessed only by the owner class.

Protected features can be accessed by the owner class and its

derived classes.

~ A derived class inherits those non-private features deflned in the

base class.

~ Private features in base classes can not be inherited by the

derived classes. Private feature access control provides a means

for implementing encapsulation.

Derivation in C++ means inheritance. C++ provides three types

of derivations: public, private, and protected.

Non-private features of the base class become protected features

of the derived class in a protected derivation.

Non-private features of the base class become private features of

the derived class in a private derivation.

In a public derivation, a derived class inherits a base class's non-

private features without changing their feature access.

~ A virtual derivation in a multiple inheritance is used to prevent

the name conflicts of the inherited features.

~ Features of a class are called class members in C++. Members in

C++ classes are data members or member funcnons.

21

~ C++ data members implement the slots defined in a class.

~ C++ member functions implement the functions or procedures in

a class.

~ C++ virtual function overriding is an example of dynamic

polymorphism, which is also called run-time polymorphism or

late binding. The invocation of a function is determined at run-

time.

C++ function overloading is an example of static polymorphism,

which is also called compile-time polymorphism or early

binding. The invocation of a function is determined at compile-

time.

~ C+e class template declaration implements the concept of

parameterized class.

~ C++ friend declaration provides a means to break encapsulation

(information hiding). Classes or functions declared as friends to

a class can access not only the non-private features but also the

private features of that class.

~ C++ stan'c class member declaration implements the use of class

variables and class operations. Class variables and operations are

the members that only keep one copy among all the instances of a

class.

~ Pure virtual member functions construct abstract base classes.

Member functions declared as pure can have no function bodies

22

implemented, which prevents any creation of instances from an

abstract base class.

~ Nested classes are the classes defined in other classes'

definitions. The visibility of a nested class is limited to the scope

of its enclosing class.

Note that we use request instead of the traditional term message for several

reasons. One major reason is that message serufing implies concurrent execudon by

the client and server objects (between the sender and the receiver). However, The

intent is not to present an unified object inodel nor to compare and judge the various

dialects in the object society (by saying who's right and who's wrong). Instead, we

carry out these ontological models to form the boundary for our research domain.

In other words, these models together intend to provide and define the primitive

object concepts and terminology that can be used in this research work; especially, a

set of terms that we can use for communication. A glossary of the terminology

identified is given in Appendix A.

23

METHOD CONCEPTS

3. 1 Intmduction

IDEF4 family are methods for object-oriented design; they are not object-

oriented programming languages (OOPL). However, basic object concepts

supported by either a design method or a programming language are similar. The

major elements for constructing an object-oriented system are commonly identified

as classes, features, and methods. These basic elements are incorporated into the

IDEF4 method family and form the foundation of IDEF4 and IDEF4/C++. In this

chapter, we will discuss these basic method elements and their representation in the

methods as well. Basic concepts such as class and type, class and object, class

inheritance, feature taxonomy, feature type, method taxonomy, contract, and

method set are included in the discussion.

A good way of thinking of an object-oriented system is of a space which

consists of a set of independent but cooperating objects. Each object has state and

behaviors. The state of an object is captured by a set of attributes with values

assigned, whereas the behaviors are actually implemented by a set of methods. In

the system development process, these objects are to be classified into a set of

"packages" according to the common state and behaviors that they possess. Both

the state and behaviors are characterized by a set of features in the design

evolution, and these "packages", in the common object-oriented terminology, are

called classes. Object-oriented design and programming activities tend to define

these features and methods for classes. However, a novice in object-orientedness

will often confuse the term type, class, and object.

3. 2 Classes

3. 2. 1 Classes vs. Types

Each class is a type, but not every type is a class. A class is specified by the

definition of a set of local, state-defining attributes and of a set of methods that

define the behaviors of the instances of that class and their relationship to the

instances of otha classes that make up the system. In other words, a class is a data

structure that includes a set of state-defining attributes and a set of methods that

apply to the instances of that class. A type, on the other hand, is specified by a

predicate defined over a set of expressions to serve the purpose of type checking or

operation binding. Many object-oriented languages have used run-time type

checking to ensure that the requests that are sent to an object are understood by that

object. The type of an operation is referred to as the signature of that operation

(signature type). Generally, a class can be instantiated to create objects in the

system, whereas type classifies objects in terms of the common interface of their

defining classess. In other words, the type of an object can be considered as the

interface of the class which that object belongs to. In this context, one of the

important properties of objects is the property of substitution (Atkins and Brown

91), which states that objects providing similar operations can be used exchangeably

if only the common behavior is required. In this sense, inheritance - a mechanism in

which subclasses possess common behaviors defined in superclasses, therefore

suggests that the type of an object should be associated with its class, and that the

instances of a subclass should be able to used in all the places where instances of the

superclass are expected. In other words, this formalizes the concept that instances

of a subclass are also instances of its superclass. Such a concept has formed the

Recall that an interface of a class is a description of the operations and attributes defined in that
class. It includes the signatures of operations and the types of attributes (Section 2. 2. 1).

basis of those strong-typed object-oriented languages, such as C++. C++

implements this concept in terms of type conversion, which enforces an efficient

request dispatch scheme and implements dynamic polymorphism (see Section 6, 5).

3. 2. 2 Classes vs. Objects

The self-referential definition of classes and objects, in which an object is

defined to be an instance of a class and a class is defined to be a description of

similar obj ecrs, is often confusing. The terms class and object are usually heavily

overloaded in the object-oriented literature. In (Mayer 92a), the meanings that the

term class may refer to are summarized into the following:

categories, or types, of objects in the real world (real-

world perspective);

data types representing categories of objects (data-item

perspective); and

modules of associated operations that define data types

(module perspective).

The meanings that the term object may refer to are summarized as:

real-world objects (real-world perspective); and

data items belonging to one class or another (data-item

perspective).

26

Consequently, class and object are defined by each other. We clarify this

confusion from the perspective of the system analysis and design processes. In the

system analysis process, one of the objectives is to identify the real-world objects

from the problem domain (real-world perspective for object). These real-world

objects are then classified into classes (real-world perspective for class) in the

design pmcess. Extra characteristics (features or classes) may be added for

constructing an object model which provides a solution to the problem (data-item

and module perspectives for class). Applying the solution to the problem is

therefore the process of instantiating and activating the instances from those model

classes. The object instances existing in a computer that forms the solution domain

are therefore referred to as model objects (data-item perspective for object).

In class-based systems, the analysis focuses on real-world objects, the design

focuses on classes of model objects. The classes are fabricated, rearranged, or

synthesized in the design process to form the solution model. Each class contains a

set of feature definitions that characterize the state and behavior of the instances of

that class. The set of feature definitions consists of attributes and methods. The

attribute definitions are used by the instances of the class to store their state. The

methods characterize the behavior of instances of the class.

3. 2. 3 Class Box

Classes aie the major syntactic construct in the IDEF4 method family, as in all

class-based object-oriented formalisms. In IDEF4 and IDEF4/C++, a class is

represented by a square-cornered box (see Figure 3-1) with the name of the class

listed below the double line at the bottom of the box. IDEF4 requires that the first

letter of the class name be capitalized. The features of the class are also displayed

27

in the Class Box with private features displayed below the export line and with

public features displayed above the export line7. Various feature symbols, prefixed

to the feature name displayed in the class box, may also be used to provide

additional information about the role that the feature plays. For each class defined,

IDEF4 method family allows the attachment of class-invariant constraints using

class-invariant data sheet (CIDS). These class-invariant constraints represent

additional information about the definition of a class that is true for all instances

created by the class at all times. The class-invariants described in a design provide

constraints on the implementation of the design and serve as part of the

specifications for a class. s

Public Peatures name

address

employee id

Private Features
salary

wort schedule

Figure 3-1. Class Box in IDEF4.

3. 2. 4 Class Inheritance

One of the most distinguishing characteristics of object technology is

inheritance, esperially multiple inheritance. Multiple inheritance allows a subclass

to inherit features from more than one superclasses. The concept of inheritance

7 IDEF4/C++ extends this representation with the addidon of the display of protected features. See
Chapter IV for more details.
S In an IDEF4/C++ implementation design, these CIDSs are the major sources for coding C++ class
definitions. Section 4. 3. 6 gives the detailed discussion.

28

provides a means of organizing related classes into an inheritance hierarchy and

supports for the reuse of methods and features in terms of subtyping (refer to

Chapter VI for reuse by inheritance). The inheritance mechanism operates and

follows the specialization/generalization relation. That is, the inheriting class

(subclass) is a specialization of the class from which it inherits (supefclass), and the

inherited class (superclass) is a gentian of the class (subclass) that inherits it.

Menagm and

Pmject Manager
inherits the definition of
compute~y fmm
Person

Person

Wage Mlxln

Manager Employee
Wage Employee
inherits the definition of
hour rate fiom
Wage Mixin end
redefines the inherited

compute~ay

compUte~y

Project Manager

Wage Employee Wage Programmer
inherits the redefined

compute~y

Wage . Programmer

Figure 3-2. Representation for Class Inheritance in IDEF4.

Figure 3-2 illustrates the representation in IDEF4 family for modeling a class-

inheritance hierarchy. The arrows, in the illustration, point from superclasses to

subclasses. In the figure, Manager is a subclass of the class Person; indicating that

29

any instance of Manager is also a specialization of an instance of Person.

Furthermore, any behavior exhibited by a person will also be exhibited by an

instance of Manager unless the behavior is specialized or redefined in the definition

of the Manager class. In the example, the class Employee is a direct subclass of

Person and the class Wage Employee is an indirect subclass of class Person. Each

subclass inherits the characteristics (features) associated with its direct and indirect

superclass(es). For example, the class Wage Employee inherits the features from

both the Wage Mixin and Employee classes and redefines the feature compute~ay.

In the inheritance hierarchy, features reappearing in the subclasses indicate that

those features are redefined (additional constraints or a new definition) in the

subclasses. The compute~ay feature is first presented in class Person, but

redefined in class Wage Employee,

From the module point of view, inheritance is a macro-like "virtual copy"

operation: all features associated with a superclass are automatically inherited by its

subclasses, with the exception of those features that are redefined in the subclass.

For example, in Figure 3-2, the Person class defines a feature named compute~ay.

This feature will be inherited in all of its subclasses: Manager, Project Manager,

Employee, Wage Employee, and Wage Programmer. The definition for

compute~ay in Manager, Project Manager, and Employee is identical to that in

Person. However, because compute~ay reappears in Wage Employee, it is said to

be "redefined" for that class and its subclasses. Since Wage Programmer is a

subclass of Wage Employee, the definition applied to the compute~ay in

Wage Employee-will be the definition for the compute~ay in Wage Programmer.

A subclass is able to inherit (copy and use) any feature of its superclasses, but

not vice versa. The notion of inheritance conflicts with the traditional notion of

encapsulation (information-hiding) (Snyder 86). This violation, because it is

allowed in a controlled way (and in one direction only), is one of the keys to the

30

power of the object-oriented paradigm. A pmperly s ructured OOD uses inheritance

facilities to minimize duplication of modules. The IDEF4 method is focused on

structuring both classes and methods into two inheritance hierarchies - class

inheritances and method taxonomies to ensure that the resulting designs have no

duplication.

(S) amue

{S) emhlatyee~
(R) ~

(S) project
(A) schedule

Coaaultaut
(S) hour rate

(S) project team

Programmer

{I R) pay (! R) pey

Hourly~old Consultant Hourly~old Programmer

Figure 3-3. Partial Inheritance Diagram for an Employee Class.

In the IDEF4 method family, the class inheritance relationships are represented

in the inheritance diagram as shown in Figure 3-3. An inheritance diagram provides

information that describes the classes, their features, and any redefinition of

features. For example, the reader familiar with IDEF4 syntax can determine that an

instance of Hourly~aid Programmer inherits all features of the classes Employee,

31

Programmer, and Wage hfixin. Furthermore, it can be seen that the feature Pay is a

routine that has been redefined in both Hourly~aid Programmer and

Hottrly~aid Consultant. The details of inheritance diagrams will be discussed in

Section 4. 3.

3. 3 Features

"Feature" is a generic term used to capture either the state or behavior of

instances of a class. In the IDEF4 method concept, a feature may be value-returning

or side-effecting. For example, the class Employee has a feature salary that returns

(value-returning) the salary of an employee, and a feature prinr~aycheck that prints

out the employee's paycheck (side-effecting). However, whether a given value-

returning feature is implemented by storage or by computation is functionally

irrelevant in the initial design. That is, whether salary is implemented as a storage

(a variable) or whether the value is computed from other features of the employee (a

function) is not necessarily of concern in the initial design stages. This capability of

the delay of decision-making is supported in IDEF4 methods by the hierarchy of

feature taxonomy shown in Figure 3-4, which is presented by using the class

diagram syntax.

Value

Attribute Routttte

slot

Figure 3-4. Feature Taxonomy Hierarchy
Reprinted born (Mayer 92a).

3. 3. 1 Taxonomy of Features

The feature taxonomy allows features to be characterized in more general

representation initially; then, gradually, to be defined more specifically as the design

evolves. For example, a designer might first specify a characteristic of a class as a

feature. Then, as the design evolves, the designer can specialize the definition of

that feature to an auribute, a routine, a slot, a function, or a procedure as shown in

Figure 3-4.

Attributes represent those features that return values when queried (value-

returning), whereas routines represent the features which, when appropriately

triggered, will initiate a computational operation. Note that attributes and routines

are not mutually exclusive. Along the evolution of the design process, attributes can

be refined into slots or functions, and routines can be refined into functions or

procedures. Slots are those features that are characterized as storage-type variables.

Functions are features that are both value-returning and computation-initiating; they

33

return a value by computing it whenever queried. Procedures are computational

features that do not return any values; they are only executed for their side-effects.

3. 32 Inheritance of Features

All features defined in the superclass are automatically inherited by the subclass

through the inheritance of classes. Figure 3-5, for example, shows that the class

Employee has a feature pay. Subclasses of Employee such as Wage Employee and

Safary Employee inherit the pay feature from Employee.

Feature pay defined in

Employee

Subclass/Superclass
rehuions Employee

Salary Employee
Wage Employee

Salary Employer inherits the

fesrure pay fmm Employee

Wage Employee inherits the

feature pay fmm Employee

Figure 3-5. Inheritance of Features.

If pay is implemented as a computational feature, then using the general

payment calculation of employee for a wage employee would be inefficient.

Therefore, it might be desirable to redefine the pay for Wage Employee that it will

use the more specialized calculation for those wage employees. This. specialized

34

calculation would be invoked instead of the more general pay. Thus, the more

specialized feature "shadows" (redefines) the more general feature. Figure 3-6

illustrates a case in which feature pay in Wage Employee shadows (redefines) the

generic pay in Employee. The Salary Employee class continues to inherit pay &om

Employee.

Subclass/Superetssa
relations

Pesmre pay defhed m
Employee

'Salary Employee Wage Employee

Salary Empkryee inherirs the
feature pay fmm Employee

Wage Estp/oyee redefines the

feature pay

Figure 3-6. Redefining Inherited Features in Class Iriheritance.

3. 3. 3 Presence of Features

The presence of a feature indicates the way the designer intends to associate that

feature with a class (i. e. , defined in the class, redefined in the class, or an inherited

feature). Figure 3-7 shows the classification for the kinds of "feature presence"

provided by IDEF4.

Using this classification scheme, a feature that is associated in any way with a

class is said to be present in the class. Those features whose names are displayed in

the class box of a class A are said to be directly present in A. Those features present

35

in a superclass B of A axe considered to be present in A as well, and are actually

inherited features of A. Featuxes of A that axe both directly present and inherited in

A are redefined in A. They are dixectly present because the class A is giving

additional or revised infortnation (constraints) about them that is not pxesent in the

superclasses of A. Featuxes that axe directly present but not inherited in A are said

to be defined in A; those that are inherited but not directly present are said to be

virtual in A9.

Figure 3-7. Classification of the Presence of Features.

For example, Table 3-1 categorizes the pay feature of the class hierarchy

described in Figure 3-6. Table 3-1 shows the classification for the pay feature with

respect to each class in the hierarchy as 1) present, directly present, and defined in

the Employee class; 2) present, inherited, and virtual in the Salary Employee class;

and 3) present, directly present, inherited, and redefined in the Wage Employee

class.

9 The tenn 'vutual' addressed here is different fmm the ones used io C++. In C++, 'virtual function'
is used to enforce the ruu-time binding mechanism, aud 'vinual' inheritance is used to resolve the
name conflicts occurred iu a multiple inheritance.

36

Directly Inherited

Present

Defined Redefined Virtual

Em lo ee

Salary

Em lo e

Wage

Em lo ee

X X

X

X

Table 3-1. Presence of the Feature Pay in the Employee Class Hierarchy.

3. 3. 4 Type of Features

In the IDEF4 method family, value-returning features have a return type

defining the type of their return value. The return type can be a primitive type such

as integer or character supported by an implementation language; a class that

defined elsewhere in the design; or a collection of other classes. From the design

management point of view, the return type of a feature provides a means of

expressing other associations between classes. These associations between classes

are not visible in the class inheritance lattice presented in the inheritance diagrams.

In the IDEF4 method family, they are captured in the type diagrams. Experience

has shown that these associations are as important as inheritance relationships

among classes. The management of these associations is critical to the development

of large object-oriented systems. Only through the careful study and design of types

of features, can the development team capture the intended domain relations and

evolve the design in an orderly fashion.

37

Programmer

Figure 3-8. A Partial Type Diagram Defining Types of Features.

Figure 3-8 illustrates an example of a type diagram that defines the feature-

return-type relations. The Project Manager class defines two features (proj ecr and

project ream). Feature project returns an object of class Project, specifying the

current project that the project manager is conducting. Feature project team returns

a set of objects of class Programmer, specifying the members in the project team

under that project manager. The class Programmer also defines a feature project

which specifies the current project that the programmer is working on.

3. 4 Methods

As discussed previously, a class may have features that define the behaviors of

its object instances. The features that define behaviors are computation-initiating,

and by definition, they can be routines, functions, or procedures. Accordingly, the

functions and procedures are specializations of routines (see Figure 3-4). These

computation-initiating features are listed in groups according to the generic

38

behaviors they specify in CIDSs. For example, consider a Drawable Object class

that might have a generic behavior, d'raw, which is specified in its CIDS. For all the

drawing behaviors possessed by the instances of the Drawable Object class,

draw m screen and chaw roti rtrer, they will be included under the generic draw

behavior. However, the feature kinds (routines, functions, or procedures) of

draw to screen and draw ro~rinier might change over the evoludon of the design.

3. 4. 1 Methods, Contracts, and Method Sets

In OOPLs, each computation-initiating feature is implemented by a single

method That method provides the required computation for the behavior specified

by the feature. However, the notion of a method in IDEF4 is not the same as the

usual notion of a method from an object-oriented language point of view. In object-

oriented programming, a method is an executable piece of code which

algorithmically specifies the computation to be performed by means of a set of

language statements. For example, a C++ member function. In IDEF4, on the other

hand, methods are defined by the contract that they must fulfill. In fact, IDEF4

does not specify an individual method; rather, method sets. Any of the methods in

the set can fulfill a specific contract. In other words, we refer to the contract for a

method rather than the code; this is based on the notion of S-correct of design,

which was discussed in Section 2. 1. The contract for the associated method set is

documented in the Contract Data Sheet (CDS) related to that method set.

Computation-initiating features specify the behaviors of the instances of the

class. In IDEF4, each feature is mapped through the dispatch mapping to a method

set in the method submodel. This method set documents the constraints (in the

associated CDS) for implementing these behaviors. Some computation-initiating

39

features may bc presented in morc than onc class and may intend to specify different

specific behaviors dependmg on the class of objects upon which they perform their

computations. In other words, a generic behavior may have different method sets

mapped in different classes.

For example, the routine compute raise is a computation-initiating feature

defined and redefine in class Employee and ltfanager respectively (wherc Manager

is a subclass of Employee). It is also included under the generic behavior raise

which is specified in both the CIDSs of Employee and Manager. In a programming

language, different method implementations would be defined for each of these

routines, such as get-raised-as-employee and get-raised-as-manager. In IDEF4, on

the other hand, individual methods are not represented. get-raised-as-employee and

get-raised-as-manager would refer to method sets and their related contracts, which

will be illustrated in the raise method taxonomy (to be discussed in the following

section). Therefore, the computation-initiating feature compute raise and its class

Employee together specify a method set get-raised-as-employee. Any method in the

method set get-raised-as-employee would satisfactorily implement the feature

compute raise for the class Employee. The idea in IDEF4 is to describe or design

the behavior, not program the behavior.

3. 4. 2 Taxonomy of Method Sets

A method set can be considered as a computational characteristic defined by a

set of constraints that will pick out a set of possible correct implementations. This

set of constraints is called the contract for the method set. In an IDEF4 design, the

concern is with the definition of the contract, rather than individual method

implementations in the set.

However, similar contracts can be grouped together according to the behaviors

specified by the computation-initiating features that the method sets associate with.

In IDEF4, a Method Taxonomy Diagram classifiies a generic behavior into several

method sets according to the similarity of their contracts. For example, the method

taxonomy diagram in Figure 3-9 illustrates the design of the method sets for the

generic Print behavior. Each box in the graph represents a method set, which

requires a contract constraining the implementation of the methods in the set. The

method sets in a method taxonomy diagram are arranged in a more-specific order

from left to right or &om top to bottom; te-definition or additional constraints might

be added to the contracts of those more specific method sets. For instance, in the

Print method taxonomy diagram, the least-specific method would be Print-object.

However, for some classes such as Text-screen-object, additional constraints would

be required for the method set Text-screen-print which maps to the Print routine of

Text-screen-object as shown in the figure. The dispatch mapping between a method

set and a routine (a computation-initiating feature) is specified by "[]". The

additional symbol "!" on the left of the Print routine indicates that the routine has

been entirely redefined. For a redefined routine, the contract for the method set

dispatch-mapped with the routine may override or conflict with the preceding

method set contracts. More details about additional symbols are discussed in

Section 4. 3. 4.

41

Graphics-screen-print

Prinbgraphics
Graphics-printer-print

Graphics-to-p]otter

Text-screen-print

Print Method Taxonomy Diagram

Text-printer-print

Text-to-plotter

(R) Print (Printwbject]

Displayablewbject
Dispatch Mapping

(I R) Print (Print-graphics]

Gra hics-ob ect

(! R) Print (Print-text]

Textwbject

I
I

I
I

I
I

I
I

(! R) Print (Text-printer-print] (I R) Print (Text-scrccn-print]

Text-printermbject Text-screen-object

Displayable-object inheritance diagram

Figure 3-9. Print Method Taxonomy and Associated Routines.

42

3, 5 Constraints

In IDEF4 methods, constraints are used for specifying both class-invariant

definitions and contracts on method sets. Constraints will often be specified in

natural language statements in the design evolution. As the design progresses,

constraints will be refined and specified more formally (i. e. , in a formal language

such as first-order predicate logic).

For example, the class-invariant constraint on the feature Identity-number of

type integer in the class Employee may be expressed as:

"The Idenriry-number feature in the Employee class must be a unique

integer over all instances of the class Employee.
"

More formally, this might be written as the following constraint specifying that

no two employees may have the same identity number:

For-all(x y) (employee x)" (employee y) "(not-equal x y)

"(not-equal(identity-number x)(identity-number y)).

These constraints are hold as relations among design elements (classes, features,

and methods) that must be enforced by the system (implementation / program).

Class-invariant constraints are documented in class invariant data sheets (CIDSs)

associated with class boxes in inheritance diagrams. Method set contracts are

documented in contract data sheets (CDSs) associated with method sets in method

43

taxonomy diagrams. As the design evolves, these constraints wHI be refined more

speci6c to be implemented; in IDEF4/C++ implementation design, CIDSs will be

the major design specifications for the C++ class definitions, and CDSs will be the

specifications for function implementations.

CHAPTER IV

METHOD SYNTAX

4. 1 Organization of IDEF4/C++ Diagrams

In this chapter, we present the IDEF4/C++ notations and its syntactical

elements. The organization of the extended notations will be described in the first

place. Discussion of the each diagram will contain a concise description of their

graphical elements and the examples that demonstrate the use of the diagrams.

A completed IDEF4/C++ model consists of a class submodel and a method

submodel. Each submodel has diagrams and data sheets as model components.

The class submodel provides a system state view for the design, whereas the method

submodel provides a system behavior view. These submodels are connected

through dispatch mapping, as introduced in Figure 3-9, which is specified in both

inheritance diagrams and method taxonomy diagrams while Figure 4-1 gives an

overall picture of the organization of IDEF4/C++ diagrams. As shown in Figure 4-

1, diagrams are grouped into two submodels as follows. Each diagram type presents

a unique perspective and provides a mechanism for viewing and devising the

design.

~ Class Submodel

Class Lattice Diagrams

Class lattice diagrams provide a view for browsing the

class lattice.

Inheritance Diagrams

45

Inheritance diagrams describe inheritance

relationships and those directly presented features in

the class boxes.

~ Type Diagrams

Type diagrams specify return types of features or

composidonal relationships among classes.

Friend Diagrams

Friend diagrams declare the C++ friend associations

between a class and its friend functions and classes.

~ Template Diagrams

Template diagrams specify C++ class template

declarations.

~ Instantiation Diagrams

Instantiation diagrams validate the design by giving

existing composite relationships between instances.

~ Method Submodel

Method Taxonomy Diagrams

Method taxonomy diagrams classify method sets by

their behavioral similarity.

Client Diagrams

Client diagrams specify the calling relationships

between functions or procedures.

CIDS

pphut Dhpsteh Ms

Isheritssce Diagram

Method Taxonomy
Diagram CDS

CDS

late Dia am emp gr ~

Predenued
Type List

Friend Diagram ~
Type Diagram

Client Diagram ~
Method Submodel

Class Submodel Instsntiation Diagram

C++ class definitions
C++ member function
implementations

Figure 4-1. Organization of IDEF4/C++ Diagrams.

47

As a language-specialized design method, IDEF4/C++ adds the extensions to the

generic IDEF4. Feature symbols are extended to be used for the C++ class member

declarations. The user predefined data type list is provided as a supplementary

device for type diagrams for collecting those user predefined types in the design.

Class invariant data sheets (CIDSs) and Contract data sheets (CDSs) are also

extended to be able to provide more specific information for coding C++ class

definitions (usually managed in the . h/. hpp files) and member functions (. cpp files),

respectively.

4. 2 Class Lattice Diagrams

Class lattice diagrams are used to illustrate the class lattices, which browse the

whole class submodel or a particular part of the submodel. To provide a top

abstract view for the class submodel, only class names are shown in the diagram.

Three class relationships are also described in the lattice, they are graphically

presented in terms of arrows. Figure 4-2 illustrates an example class lattice

diagram. As a language extension of IDEF4, friend class and nested class links are

included into the presentation. Inheritance link arrows (shown as normal arrows)

point from the base classes to the derived classes.

~ ritance hntc
'ndicatie that dass
Ptogranuucr
is a derived class of
class Etnptopae.

Adtutntstrattve Assistant

Manager

Etnptoysr

Investor

Pticud class indicator.
indicating that class Manager
is a friend class of class Project.

Project

Ncstcd class mdiauon
indicating that class Budget
is a nested class in class Project.

Budget

Figure 4-2.

Example Class Lattice Diagram for an Employee Management System.
vArtcws with a dotted line point ftum a class to its friend classes.
vAtrows with a double line point &om the defming classes to their nested classes.

As shown in Figure 4-2, class Person is the root class of the lattice, where class

Employee and Employer are its directly derived classes. Three kinds of employees

defined are Programmer, Secretary and Administrative Assistant. Inheritance link

arrows pointing from Employee to each of these classes indicates that they all are

directly derived classes of class Employee. Two classes are designed as mixins for

work pay (salary/wage) calculation purposes; Wage rnixin and Salary rnixin. By

using these mixins, different work pay types of employees can be derived, such as

class Wage Programmer and Salary Programmer. Note that there is a nested class

indicator arrow pointing fmm class Project to class Budget, which indicates that the

49

class Budger is declared within the scope of the definition of the class Project. The

design intention here is to make the class Budger invisible from the rest of the

system, excluding the class Project. This prevents the information kept in Budget

from being accessed by other classes accidentally or on purpose. The C++ code

example for class Project is shown in Figure 4-3. We declare Budget as a private

member of Project to prevent any explicit access to the budget htfotmationttf, A

friend indicator, pointing from Project to Manager, indicates that the class Manager

is declared as a friend class of Project. By doing so, Manager is able to access any

features of Project, such as the budget information. By using a friend class

declaration (Manager) and a nested class declaration (Budget) together, we provide

a more safe mechanism for accessing the class Project and its budget information.

However, the class lattice diagram provides a means for presenting the design

intention such as the one discussed above, which is very handy and important

especially when we deal with large-scale systems that contain massive numbers of

classes.

class Project

j
friend class Manager;

friend class declaration

public:
char 'prj name;

private

class Budget j j;
nested class declsrstioa

Figure 4-3. Example C++ Code for the Class Project.

lf the nested class Budget is declared as a public member of Project, it can be explicitly accessed
by using the class identifier - Project::Budget.

50

4. 3 Class Inheritance Diagrams

As mentioned in Chapter III, inheritance diagrams are used to describe

inheritance relationships between classes. Extensions for the inheritance diagrams

include feature access control, types of inheritance links, and feature symbols. The

basic syntax consists of the class box, symbols that describe features, and arrows

presenting the inheritance links.

4. 3. 1 Extended Class Box Syntax

An IDEF4/C++ class box groups features into three areas: public, protected, and

private, for describing feature access. Public features are those that appear in the

top group and are visible to (accessible by) the rest of the system Protected features

are those that appear in the second group and are accessible by the owner class and

its directly derived classes. Private features appear in the third group. They can not

be accessed by any other class except for the owner class. Recall that, in IDEF4,

there are only two types of feature access control: public aud private. The private

features in IDEF4 can be accessed by their owner class as well as all its derived

classes. This is different from IDEF4/C++ and should be noted when evolving a

generic IDEF4 design into a IDEF4/C++ implementation design. Generally, the

default translation is to transform these generic IDEF4 private features to be the

protected features in IDEF4/C++. Figure 4-4 presents the class box syntax and an

example class box for the class Project. Where features project name, project no,

project manager, and project team are public features; Budget is a protected

feature and internal id is a private feature.

Budget

Clans Name

Figure 4-4. Extended Class Box Syntax.

An inheritance relationship (link) between classes is presented by an arrow

pointing from a base class to its derived class in the class inheritance diagram. For

example, following the class lattice described in Figure 4-2, there is an inheritance

relationship between the class Person and the class Employee: Employee is derived

fmm Person. The inheritance relationship is illustrated in Figure 4-5.

name

address

Vinoal to class
Employee

Base Chtss Person

Inheritance
relationship

work time

pay rate

Directly presented
in Employee

Derived Class
Employee

Figure 4-5. Inheritance of a Base Class and a Derived Class.

52

4. 3. 2 Public, Protected, and Private Inheritance Links

In IDEF4, the feature access types of inherited features in a subclass are the

same as they were in the base class. In IDEF4/C++, access types of inherited

features in a derived class are determined by both the original access type and the

type of inheritance links. IDEF4/C++ supports three types of inheritance links:

public, protected, and private. Different types of inheritance links give different

effects on determining the access types of inherited features. Non-private features

(public/protected) of a base class become private features of its derived class in a

private inheritance link. Non-private features of a base class become protected

features of its derived class in a protected inheritance link. Non-private features of a

base class will keep their original access in the derived class in a public inheritance

link . Figure 4-6 compares three different types of inheritance links between class

Person and class Employee, where Person has a public feature name, a protected

feature SSN and a private feature internal id. The feature internal id will not be

presented in Employee since it is private to Person. As shown in the figure, name

will remain public and SSN will remain protected in Employee, if there is a public

inheritance between Person and Employee. For a protected inheritance, both name

and SSN will become protected features of Employee, but for a private inheritance,

boih name and SSN will become private.

IDEF4 has no provision for different types of inheritance links. Yet, in IDEF4,

since all inherited features will keep the same access (public to public, private to

private) in a subclass, the type of inheritance is considered as public. Therefore,

while evolving a generic IDEF4 design towards IDEF4/C++, if the type of an

53

inheritance link has not been further specified, the inheritance type is public by

default.

SSN SSN SSN

pabllc
Inberltance

private
lnberltance

name

SSN

Employee

SSN

Employee

name

SSN

Employee

Figure 4-6. Comparison of Public, Pmtected, and Private Inheritances.

4. 3. 3 Virtual Inheritance

In the previous chapter, we discussed the inheritance of features finding that a

derived class will inherit all the characteristics/constraints from a base class unless

they have been redefined. However, the base classes, if there is more than one,

must agree on the common characteristics/constraints among them. This is usually

referred to as the name conflict problem in multiple inheritance as described in

Section 1. 2. In IDEF4/C++, name conflict is resolved by specifying the inheritance

as virtual.

For example, consider the Manager class illustrated in Figure 4-2. Manager is a

derived class from both Employee and Employer, which are all derived from the

class Person. If Person has a non-private feature name, both Employee and

Employer will inherit the name feature. If the inheritance links between Manager

and Employee, Manager and Employer are not specified as virtual, the class

Manager will keep both copies of name: one fiom Employee and the one from

Employer, To access the name features in every instances of Manager, one has to

explicidy specify the class identifiers:

John. Employee::name

John. Ernployen:name

This is certainly awkward. To be more elegant, one would like to specify both

inheritance links between Employee and Manager, Employer and Manager to be

"virtual". The inheritance diagram and its associated C++ code are illustrated in

Figure 4-7. Thus, the access to the feature name in each instance of Manager can

be quite straight-forward by using the following statement:

John. name

In summary, IDEF4/C++ provides a virtual inheritance declaration for resolving

name conflict in multiple inheritance and public, protected, and private inheritance

link types for managing access control of inherited features. Note that all these

extensions are to be specified in the CIDS associated with the focused class. Refer

to Section 4. 3. 6 for the format of CIDSs.

55

cares person {
public:
char name;

Empiaycc Emptoycr

class Employee:
public virtual Person (I;

class Employer:
public vtrtual Person (I;

class Manager:
public Employee, Employer (

I John;

Manager

Figure 4-7. Virtual Inheritance in IDEF4/C++.

4. 3. 4 Feature Symbols and Their Extensions

Recall that we have presented the IDEF4 feature taxonomy in Figure 3-4, which

demonstrates that features may be specified as routines, attributes, slots, functions,

or procedures as the design evolves. This delayed-decision practice in the design

process is perfectly acceptable and is likely to be the case in the early definition of

the features in a generic design. As the development of the design continues, the

designer will classify these features. Feature symbols are used to represent the

classification of features. For example, 'A' represents attributes. 'R' represents

routines. 'S ' represents slots. 'F' represents functions and 'P' represents

procedures. When a designer wishes to commit to the classification of a feature, the

proper symbol may be added to the left of the feature name in the class box within

braces '{)'. Figure 4-8 shows an example of using these feature symbols;

56

indicating the name, department and internal ld features to be implemented as

slots, work schedule as an attr(bute, and compute~ay as a routine.

(S} name

(S } etmmmm
(A} ~}entete

(R} enmtmm~y

Employee

Figure 4-8. Example of Feature Symbols.

As discussed in Section 3. 3. 3, inherited features may be redefined in rhe derived

class. Additional constraints or even a whole new contract may be given to redefine

the feature. Two symbols are used to represent the redefinitions: '+' indicates that

additional constraints are added to the contract associated with the named feature,

'! ' indicates that the named feature represents a new contract and has a same name

as the inherited feature. Conceptually, a redefined feature with new contract ('! ')

conflicts and shadows the inherited one, whereas the feature with additional

constraints ('+') just specializes the inherited feature. In Section 5. 6, issues of

conflicting and non-conflicting features will be discussed.

For example, consider that the Programmer class (Figure 4-9) is a subclass of

the Employee class, but the algorithm for calculating the work pay (feature

compute~ay) for an employee might be too general for a programmer (the

programmer might be paid by project). For this reason, the designer must specify a

redefinition for the compute~ay of Programmer.

57

(S) acme
(S) ~
(A) ~ho(vie

(R) compute~

(S) ~
(A) ctutent~oject
(S) project~et

(i R) competency

Progremmer

Figurc 4-9. Example of a Redefined Feature with New Contract.

Generally, attributes and routines can be refined further into either slots,

functions, or procedures. However, to devise an implementation design for C++

requires additional feature classification. In a C++ class definition, features are

called class members. The data members are used to store the state of each object

instance and the function members are used to implement the behaviors. Evolving

features in an IDEF4 generic design towards IDEF4/C++ is quite straight-forward.

Slots generally map to data members that are accompanied with their read/write

functions. Functions map to member functions and procedures map to the member

functions with void return types. However, there is more to be accomplished; C++

class members can be virtual, static, const etc. To be able to implement the design

in C++, slots, functions, and procedures have to be further specified. IDEF4/C++

provides an additional set of symbols for this purpose. They are used along with the

general symbols discussed previously and presented within the braces as well.

58

These additional symbols are described as follows;

VF Virtual function - The 'VF' symbol indicates that the named

feature is a C++ virtual member function. A member function

declared as virtual in the base class can be overridden by the

member function in the derived class that possesses the same

name and signature but with different implementation.

VO Pure virtual function- The 'VO' symbol indicates that the

named member function is a C++ pure vixtual function. A pure

virtual function is declared only for inheritance purpose and

since it serves as a placeholder, no implementation needs to be

given. In other words, a C++ pure function is "pure" in the

sense that it does not have a function body, only the function's

signature is specified.

C Const member function - The 'C' symbol indicates that the

named member function is a const member function. A

member function declared with const prevents any modification

to the data members that the function accesses.

S Static member - The 'S' symbol indicates that the named

feature has only one copy among all the instances of the owner

class. Data members declared to be static are therefore global

in the owner class scope and do not need be replicated from one

instance to another, thereby saving memory space and

maintaining consistency. Similarly, static member functions

are like global functions whose scope is within the owner class.

59

Usually, they are the member functions which access those

static data members.

NC Nested class - The 'NC' symbol indicates that the named class

is declared in the definition of the owner class as a data

member. Without explicitly specifying the owner class's

identifier, one can not access to the nested class.

Figure 4-10 in the following page gives an example of the presentation of these

extended feature symbols and the related C++ code. Where Proj ecr has a nested

class Budget and a static data member total number ofprojects. Project also

contains three static member functions; (1) addproj ects; (2) removeproj ecrr for

incrementing and decreasing the total number of, projects; and (3)

how manyprojects for querying the value. A const member function

get contract id which guarantees access to the data without making any changes is

also defined in Project.

(S) earns

(S) (P} how~~sets
(C) (P) get~jecud

(NC) (8) Budget

(8) (P) add~jeers

(S) (P) mnovs~jscts

(8} (S) to~ of~)sots
(S) proiecCid

class Project
(
public:
char 'name;
static int how many~rejects (void)

(return total number of~rejects;);
int get~roject id (void) const(return project id;);

protected:
class Budget

(public:
int budget number;

)'
static void add~rejects (void)

(total number of~rejects++;);
static void remove~rejects (void)

(total number of~rojects-;);

private:
static int total number of~rojects;
int project id;

Figure 4-10. Example of Extended Feature Symbols.

4. 3. 5 Inheritance Diagrams

The inheritance graph of a particular IDEF4/C++ model will be simply a single,

maximal inheritance diagram that shows all the classes and their direct inheritance

61

relationships. An inheritance diagram of this size would have little practical use if

actually drawn, but it is useful to keep in mind as a way of imagining the full scope

of inheritance diagrams In fact, this information is generally presented by the class

lattice diagram of the class submodel. Nevertheless, inheritance diagrams describe

mene detailed information (features presented, access of features, inheritance links

etc.) related to the focused classes.

This graphical approach for describing the class inheritance hierarchy structure

was designed to maximize the amount of key information displayed in a minimum

amount of space. Figure 4-11 shows a partial inheritance diagram for the example

Employee Management described in Figure 4-2. The arrow from Employee to

Programmer indicates that Programmer is a derived class of Employee.

Inheritance is also transitive. If Wage Programmer is a derived class of

Programmer and Programmer is a derived class of Employee, then

Wage Programmer is a derived class of Employee (indirectly). Employee is

therefore a direct base class of Programmer and Programmer is a direct derived

class of Employee.

Inheritance diagrams identify the features of the base classes and derived classes

that are displayed. They reveal; (1) details about the implementation (by feature

symbols); (2) inheritance of the features; and (3) their visibility within the system as

weH. Programmer, which is a direct derived class of Employee and an indirect

derived class of Person, inherits Employee's features in conjunction with the

features name, address, and SSN defined in Person. Investor has inherited features

from both the class Employer and Person. Since none of these inherited features are

redefined, they do not appear in the Investor class box.

62

(Sl name

(S) address

(S) SSN

(P) hire
(P) Ore

Employer

(S) epsruncnt
(S) war~e

(VO) (P) compute wor!anne

(VO) (P) compute~ay
(S) work time
(S) pay

Investor

(S) pmject
(S) assistant

Empoloyee

Manager

[S) manager

Admlnistive Asshdaat

S current~eject
(S) supervisor

{VF) (+F} compute worktime

{VF) (+F) ccmpute~y

Programmer

(S) manager

Secretary

(S) Salary

(VF) (F) compute mcnthly~y

(VF) (F) S}1 in work hours

(S) work rate

(VF) (F) adjust worMetc

(S) budget tt

(S} amount
(S) period

Salary Mlxln Wage Mixin

Budget

(S) name
(S) manager

(NC) (S} budget
(S) project id

project

(!F) compute~ay

Salary Programmer

(!F) comparably

Wage Programmer

Figure t(-11. A Partial Inheritance Diagram of Employee Management System.

63

The symbol 'VO' is added to functions compute workrirne and compttie~ay in

class Employee, indicating that these functions am to be implemented as C++ pure

virtual functions. Borh features are further entitled as virtual functions with the

symbol 'VF' in the class Programmer. Contpure~ay, which is refined as general

member functions ('F') in both Salary Programmer and Wage Programmer,

reveals where the actual implementation takes place. In Programmer, the plus sign

(+) preceding compute worktime and compute~ay indicates that these features

have additional constraints that specify the contracts inherited fmm the base class.

The symbol 'I' prefixing compute~ay presented in Salary Programmer and

Wage~rogramrner indicates that the constraints hold shadow the contracts

inherited from Programmer.

Wage Mixin is implemented as an abstract base class for any wage-paid

employees. The member functions in this class, such as adjusr work rate and

fill in work hours, are declared as virtual functions for possible further refinement

in its derived classes (More details of abstract base class are discussed in Section

6. 4).

The class box for describing a nested class is different from general classes in

that it uses a double class box, as the class Budget illustrated in the figure.

4. 3. 6 Class Invariant Data Sheets

In IDEF4/C++, each class has an associated specification for its class definition.

This specification is documented in the associated class invariant data sheet (CIDS).

CIDSs describe; (1) the definitions of features and behaviors that individual

instances of the class must possess; (2) the types of the direct inheritance links; and

(3) the class invariant constraints which must always be maintained as true.

One purpose of CIDSs is to pmvide documentation for those who will maintain

the installed system and for those who will implement the design. As shown in

Figure 4-1, IDEF4/C++ diagrams are centered on the classes defined for the system.

A CIDS includes numerical identifiers for referencing the diagrams associated with

the named class. The names of directly present features of a class are also included

to allow reference to the other design components such as method taxonomy

diagrams via dispatch mapping.

Generally, computation-initiating features are grouped and presented in CIDSs

according to their behaviors. The description of each feature, including the name of

the feature, the kind of the feature (generic feature, attribute, routine, slot, function,

and procedure), and the feature access (public, protected, and private), is also

captured in CIDSs. Virtual features can be accessed via the listing of the

inheritance links to the direct base classes. Constructors and destructors are also

documented in CIDSs. In addition, check boxes are used to indicate whether the

class is to be implemented as a struct, a union, a class template, or a class.

{S) current pmject
{S) supervisor

(P) schedule work

{VF) {IF) compute~ay
{S) work time

{S) pay
{S) work schedule

Programruer

Figure 4-12. The Programmer Class.

Figure 4-12 describes a Programmer class. Figure 4-13 presents an example

CIDS for the class Programmer. The name of the class and other relevant

bookkeeping information is identified at the top of the data sheet. IDs and captions

65

of the associated inheritance diagrams and type diagrams are specified for reference

purpose. Constraints on the implementation of the class can be described in plain

English (as shown in the example), first order logic, or other languages suitable for

expression. By providing the list of direct base classes, the implementor can locate

those inherited features. If the class Programmer were to be deleted or modified,

the direct base and derived class lists would provide those modifications to the

design with the means to quickly trace which classes in the system would be

affected by the change.

The list of directly present features is also presented in the CIDS. For each

directly present feature of Programmer, the CIDS will contain the name, feature

type, feature access etc. , that can be found in the Programmer inheritance diagram.

Behavior specifying features (routines/functions/procedures) sie grouped according

to their behavior types. For example, compute~ay is grouped under the ivork~ay

behavior. CIDSs are the only place in the design in which the textual definition of

features is provided.

Class Invariant Data Sheet

Class Inherimnce Diagram(s):

Type ~s):
Name&

Il - E ee ament S tern

Data Appmved:

Descri
'

and

Jake H. Deiu
cName MI

Surname&

I I 3

Pmgrammer is the basic pmgrammer employee type.
It is used as a base dass for all differuat types of pmgrammers in the company.

No instances for this class. The Pmgrammer class is used as a vinual base class for
subclassing.
Each programmer (insmnce of the derived class of Programmer) has at least a project
working on. (The value of feature current~aoject can't be NULL)

gg class Q struct Q union Q template

Direct Base Classes T of Link Direct Derived Classes T of Link

Employee Wage Programmer
Salary Programmer

Public
Public

Constructors

ProgrammerP -Program mar P

Friend Function(s)

(None)

Nested Class es

(None)

Features (Name, Kintk Access, defined / redefined, description):

cmrent~ject (slot, public, defined): This slot holds the name(s) of project(s)
currently working on.
supervisor (slot, public, defined): This slot holds the name of the supervisor.
work time (slot, ptrotected, defiend): This slot holds the number of total working time.

scheduling:
schedule work (procedure, protected, defined): This procedure is used for scheduling

the works of an employee. It is redefined in this class.

works:
compute~ay (function, protecteAL redefine): This function computes the pay for the

progsllllll ef.

Figure 4-13. Class-invariant Data Sheet for Class Programmer.

67

4. 4 Method Taxonomy Diagrams

As inheritance diagrams arrange classes in a generalization (specialization)

hierarchy, method taxonomy diagrams arrange method sets in the same way

according to their contracts.

In IDEF4/C++, a method is any implementation (i. e. , a C++ member function)

that satisfies the contract for the method set. A method set is completely determined

by its contract and logically equivalent contracts pick out identical method sets.

Just as the class-invariant constraints hold for all instances of a class, the contract

for a method set is invariant for aII the methods in the set.

Contract of a method set is documented in the associated Conuact Data Sheet

(CDS) as shown in Figure 4-14. One aim of using CDs is to facilitate

communication and coordination between designers and programmers in a large

software project since documenting method contracts confirms the same expected

system behavior as designed and implemented.

With a CDS, one can easily locate associated diagrams by using the feature

name and its defining class name. The class name refers to the CIDS of the class

and the CIDS can be used to locate the associated type diagram and inheritance

diagram. The generic behavior that groups the feature refers to the method

taxonomy diagram that classifies all the similarly-behaved features in the system,

such as the work~ay behavior documented in the class Programmer 's CIDS as

shown in Figure 4-13. However, for quick reference, the name of this method

taxonomy diagram is also documented in the CDS (see Figure 4-14). The

combination of the feature and class name allows one to reference the client

diagram that applies to the method set. Moreover, the signature of the feature is

also documented in the CDS, which includes the return type and the types of the

parameters of the feature. 'IItis information is critical for implementing the method

Conaact Data Sheen

Method Set Numb

Method Taxonomy Dhgram:

(Behavior Name)

Date Approved:

Deacri tion / Definition

Si

Return Type

Constraints

Parameter Types

Figure 4-14. Contract Data Sheet.

As mentioned previously, method sets in a design are grouped together by

related contracts (similar behaviors) to form a method taxonomy for a particular

type of system behavior. In other words, each method taxonomy diagram identifies

a generic system behavior. Therefore, by convention, the name of a method

taxonomy diagram is the generic behavior that is being described. Following the

previous Employee examplt'„we describe the ttayrk~ generic behavior in terms of

a inethod taxonomy diagram illustrated in Figure 4-15. The boxes represent method

sets and armws specify additional constraints (+) or redefinitions (!). The arrows

point from the less-specific to inore-specific method sets. A method taxonomy

diagram may be arranged either from left to right or top to bouom for the most-

general to the most-specific method set. In the diagram, the constraints on the

method set workptty indicate that the methods in the set will calculate the workpay

of any person who is classified as an employee. The other method sets in the

diagram represent specializations of the constraints placed on the first method set.

Pay-by-hour-default-rate and pay-by-hour-special-rate will calculate the workpay

only for the employees who are wage-paid. Method set pay-by-ttutnth specifies the

methods that will calculate the workpay only for the employees who are monthly-

paid. In both cases, the new or additional constraint supersedes or specializes the

contract on the method set workpay, requiring a more restrictive or specialized type

of behavior.

workpay

[compute-wotkpay: Employee]

pay-by-month

compute-workpay: Salary Employee]

pay-by-hour&efault-rate

[compute-wotkpay: Wage Employeel

pay-by-hour-spatial-rate

[compute-wotkpay: Wage Employee]

Figure 4-15. Work pay Method Taxonomy Diagram with Dispatching Mapping.

70

Figures 4-15 and 4-16 together illustrate how method taxonomy diagrams are

referred to from other components of the design using explicit dispatch mappings.

Dispatch mappings must be explicitly defined when more than one feature with

same name is defined in a class.

(R) compute-workpay [workpay]

I (R) compute-workpay)pay-by-mourh]

Salary Employee

(!R) compute-workpay
[pay-by-hour-default-rate)

(! R) compute-workpay
)pay-by-bour-special-rate]

Wage Employee

Figure 4-16. Employee Inheritance Diagram with Dispatch Mapping.

Figure 4-16 illustrates that in the class Salary Employee, the routine cornpute-

workpay is redefined and will be dispatched to the method set pay-by-month

described in Figure 4-15. This dispatch matching is specified by using '[]' in both

diagrams. The term "dispatched" refers to the way of indicating which method-set

contract is associated with the computation-initiating feature and its class. Two

compute-workpay routines are redefined in IVage Employee: one is dispatched to

the method set pay-by-hour-default-rate, the other is dispatched to pay-by-hour-

special-rate. In fact, these two compute-workpay routines specify the use of

overloaded functions in C++ as both are dispatched to different method sets in the

same method taxonomy diagram. This example shows that the method taxonomy

diagram does not necessarily group method sets in the same hierarchy that an

inheritance diagram presents behavioral features. Without being dispatched to their

related contracts, one can hardly specify the intent of overloaded functions.

Method taxonomy diagrams are important for designers as a means of

classifying and organizing method sets in that they specify the common behaviors

across a wide variety of systems as well as providing a catalog of previously coded

methods for reuse. If a particular contract is very widely used and studied (e. g. ,

sorting), the corresponding method set and its subsets may form quite a complex

taxonomy. Such a taxonomy may serve as a reusable resource for designers.

4. 5 Type Diagrams

Inheritance is generally considered as the primary relation between classes in

object-oriented modeling. Yet many other interesting relations are established

implicitly through the values of the attribute features in the classes as well. These

relations are generally structured around the roles of particular objects in relation to

other classes. These roles in IDEF4/C++ are specified by the attributes in the

classes. Therefore, the related object type is often a key constraint for capturing the

particular role that an object play in a particular relation. In IDEF4/C++, the

management of these role-definition processes is accomplished through type

diagrams. In the IDEF4/C++ discipline, each attribute has a return type which

defines the type of return value. Type diagrams, as a part of class submodel,

provide graphical and textual notations for displaying the return types of amibutes

of the classes.

Type diagrams are syntactically composed of class boxes and type links. Only

features that have return values, such as attributes, functions, or slots, will be shown

in the diagrams. There are four kinds of type links:

72

{A) f

Figure 417. Single-valued Type Link.

~ Single-valued type link

Figure 4-17 illustrates the notation for a single-valued type

link. A single-valued type link describes that the return

value for an attribute is an instance of a class. In the figure,

the return value of the amibute f is an instance of class B.

The type of f is B.

(A) f
A

Figure 4-18. Multi-valued Type Link.

~ Multi-valued type link

A multi-valued type link describes that the return value for

an attribute is composed of a structured collection of

instances of a class. As illustrated in Figure 4-18, the

values in the attribute f are a collection (i. e. , a list) of

instances of type B.

73

(a)

{A) f (A) g

B

Inst a Inst b

(c)

class A

{
class B
{

Bf; Ag;

)a; lb;

af=b; b. g = a;

Figure 4-19. Single-valued Inverse Type Link.

~ Single-valued inverse type link

Consider the example described in Figure 4-17. If an

instance b of class B has a feature g and the return value of

g is an instance of class A; and it is, in fact, just that

instance which has b as the return value of its feature f, then

we say the type link between A and B is single-valued

inverse. Figure 4-19(a) illustrates the notation of this type

of link. Figure 4-19(b) shows an instantiation diagram of

74

the example described above. We can think of the

instances of class B as having "where used" pointers to the

instances of class A. The C++ code example for these

diagrams is illustrated in Figure 4-19(c).

[A) f

A

[A) g

B

(b)

~ ~ ~

&Inst a& cInst b[1]& &Inst b[21& &Inst b[n]&

(c)

class A class B
[

B f[nl; Ag;

la; l b[nll

a. f[i] = b[i]; b[il. g = a;

Figure 4-20. Partial Inverse Type Link.

~ Partial inverse type link

Partial inverses are the inverse relations other than one-to-

one between classes. Figure 4-20(a) illustrates the notation

75

for a pardal inverse type link. Instance a of class A has a

feature f which holds a collection of instances of class B,

and each instances in this collection has a feature g which

holds exactly that instance a as the return value. This is

also described in Figure 4-20(b), which shows that each

instance of B points back to a. Figure 4-20(c) presents the

C++ code example.

In a type diagram, feature return types can also be specified by concatenating the

attribute's name with the return type. This alternative syntax is used in larger

diagrams to reduce the unnecessary clutter of the diagram by eliminating a number

of links. It can also be used by the designer to de-emphasize certain relations and

focus the attention of the design reviewers on specific relations (i. e. , those shown

with links). This approach is typically used for common data types such as integer

and Boolean. In IDEF4/C++, these common or user predefined types can be

defined and collected in the Predefined Data Type List, as well as classes in third-

party class libraries which are included in the design. For example, consider a user

predefined type such as String, which is defined as the char pointer in C++:

typedef String char';

The predefined type String will be collected in the Predefined Data Type List

with its typedef definition, allowing for the use of type diagrams. These predefined

types are placed behind a colon " . after the named feature as shown in Figure 4-

21(a). Another example shown in Figure 4-21(b) illustrates the use of the

predefined type from third-pany class libraries. Consider a design of the Employee-

dara-entry-form class as a part of the interface for the Employee Management

System. The class consists of two features with predefined types fitm the Borland

ObjectWindows class library: RTMessage and TCheckBox. The predefined type

RTMessage is defined as a pointer to the type TMessage which is a Borland

message data structure. TCheckBox is a predefined class used for displaying and

managing a check box as an input item of the data entry form. Again, both of them

must be specified in the Predefined Data Type List prior to use, as illustrated in the

example. Moreover, the CIDS for the TCheckBox and the CDSs for its member

functions have to be documented properly in the design, although these CDSs would

likely have only their signatures specified.

(a)

(S) name: Snmg

Employee

(b)

(S) (0-Message: RTMesssge

(S) genderwhee)sbox: TChee)snox

Employee-data~try-form

Figure 4-21. Textual Notation for Feature Return Types.

An example type diagram for the Employee Management System is illustrated

in Figure 4-22. In the diagram, type links specify the intended relations between

classes in the system, such that a vice president has an executive assistant, or both

the compute-workpay functions of Project-Manager and Programmer will return a

type of Workpay. A multi-valued link placed between class Programmer and class

Project indicates that the slot current-project of Programmer will return a

collection of instances of Proj err. This is done in a similar fashion as the feature

team-members defined in the class Project-Manager, whose return type is specified

by a link pointing to class Programmer.

Secretary

(S) assistam

Vice-President

Executive-Assistant

(S) department

(S) secretary

(S) project
(S) team-members

(F) compute-workpay

Project-Manager

(S) current-project

(S) language-specialized

(F) compute-workpay

Programmer

Workpay (S) insudled-machine

Programming-Language

(S) equipments

Department

Computer

(S) Budget

Project (S) Budget-amount: Money

Budget

Figure 4-22. An Example Type Diagram for the Employee Management System.

78

4. 6 Friend Diagrams

Friend diagrams, as extension to IDEF4, are used to show the C++ friend

declaration relationships between the focused classes and their friend classes /

functions.

Each &lend diagram focuses on one class at a time, describing all the friend

declarations within its definition. A friend diagram employs three diagram

symbols: class boxes, friend function boxes, and arrows. The class boxes are the

general class boxes as used in the IDEF4/C++ notations, which present both the

focused class and its friend classes. However, only the class name will be shown on

the class box; features and other unrelated class details won't be given in friend

diagrams. Friend functions are presented in terms of the whole function definition

by using the friend function boxes. A function definition includes: (1) the return

type of the function (if none, use void); (2) the function's name; and (3) the list of

the types of parameters. The arrows specify the friend declaration links, pointing

&om the focused class to its &iend classes and functions. Friend functions are listed

at the top of a diagram, where the friend classes are listed on the bottom.

Figure 4-23 gives an example of a friend diagram along with the C++ code,

which describes the friend declarations defined in the definition of class Worker.

The presentation is very straight-forward. In the figure, the friend class Supervisor

and Accounting Manager are displayed on the bottom of the diagram, where the

friend function compute tax is placed at the top. Friend declaration, as specialized

in C++, is used to break the default encapsulation mechanism supported by the

language. For example, both the friend function compute tax and the instances of

Supervisor and Accounting Manager, are able to access to the protected or private

features of Worker, such as salary through the &iend declarations However, the use

79

of friend diagrams really depends on the design intent with respect to other class

relations in the system. One should be cautious in applying such declarations.

Princd Puoctioru
Reuun Type + puecsion Neon + parameters' Types

Tsu compute Iss (Pay)

Worker

Supervisor Accounting Meaeger

class Worker

(
friend class Supervisor;
iriend class Accounting Manager;
iriend Tax compute tax (Pay);

public:

protected:
Pay salary;

Figure 4-23. A Friend Diagram and C++ Code Example for Class Worker.

80

4. 7 Template Diagrams

Template diagrams are used to specify the class template declaration in C++. A

C++ template class is a parameterizcd class and consequently different types of

parameters will allow different classes to be instantiated.

Template diagrams employ three diagram symbols: template class boxes,

parameter type list boxes, and arrows. A template diagram focuses on one class

template at a time, which is displayed in the center of the diagram Template class

boxes, as illustrated in terms of dotted class boxes, are used to present the focused

class templates. Similar to the general IDEF4/C++ class box, features defined in the

template would be shown in public, protected, and private groups. The template

name and its parameter list are placed where the class name would usually be shown

in the class box. The parameter type lists are presented by using single boxes.

Arrows pointing from the template to the parameter type list boxes indicate the

connection between the parameterized classes and their template.

For example, consider a C++ class template Array to be used as a template for

different types of arrays, such as integer, string, and complex. The template

diagram is illustrated in Figure 4-24 with the C++ code presented. In the diagram,

the template Array has only one parameter, type, which is used to indicate the type

of array to be instantiatetL To instantiate an array class (int-array), one needs to

"parameterize" the parameter type with the intended type provided (Integer). There

are three different types of arrays illustrated in the diagram: Integer, String, and

Complex. These types should be documented in the Predefined Data Type List and

the detailed definition of the template Array should be documented in its CIDS.

(Inta(ter)

I I

(Strlag) (Complex)

template &class type&
class Array (

Array (type);
// constructor for instantiating different types of array.

different types of array class can be lasteatlated by tais template:

Array &Integer& int-array;
Array &Complex& complex-array;
Array &String& string-array;

Figure 4-24.

A Template Diagram and C++ Code Example for Class Template Array.

4. 8 Client Diagrams

Client diagrams, as part of the method submodel, are used for algorithmic

decomposition, They are the only IDEF4/C++ diagrams that specify, however

abstractly, the internal structure of routines (computation-initiating features).

82

Figure 4-25 shows a sample client diagram for the routine show-project-

information as defined in the class Project-Manager, Routines are shown aloug

with their directly-defining class naines, such as Proj ecr-Manager:show-proj ect-

information. . The links between boxes mpresent conttol references or "subroutine

calls" Rom one routine (as the client) to another (as the supplier). For example, the

link between show-project-information and print-project specifies that the

implementation for show-project-informanon (the client) calls the feature print-

project defined in the class Project (the supplier).

Supplier.
Routine that is called

Project:
prmt-pmject

Project-Manage m

get-team-member
Employee:

ptint-employee

Project-Managers
show-pmj eat-mformation

Clienc
Routine that calls

Figure 425.
Client Diagram for Show-project-information of Class Project-Manager.

Figure 4-26(a) displays the C++ code for Project, Project-Manager, and

Employee, Each class defines the member functions to be called by show-project-

inforrnation, as indicated in Figure 4-25. Figure 4-26(b) presents the code for these

calling algorithm. To show project information, the client calls print-project

defined in Project first and then calls the get-ream-member defined in Proj ecr-

Manag er to get the members in the project team. Next, for each member (which is

83

an instance of Employee), the function print-emplcryee is called. In fact, the diagram

specifies that the implementation for the client (sjtotv-project-information) will call

each supplier directly, not some generic functions. If the class associated with the

client function has not been specified in the diagram&t, dispatching will occur at run

time for any implementation. For an implementation in C++, this wouM indicate

the need for a dynamic binding for prjrtr-project . This design issue is discussed in

Section 6. 5.

(a) class ProJect(class Employee(
friend Project-Manager; friend Project-Manager;
public: public:

protected:
8udget prj-budget;
void print-project(void);

protected:
Pay salary;
void printwmployee (void);

class ProJeet-Manager (
public. ".

project 'get-project(void);

protected:
void show-pro Ject-Information (Project ');
Employee 'get-team-member (Project ');

(b) void Project-Manager::show-project-Information (Project 'prj)

(
Employee 'person;

prj-~print-project();
while (person get-team-member(prj);)
(

person-&prlntwmployee0;

Figure 4-26. C++ Code Example for Show-project-information.

For instance, nc class name shown before print-project.

84

4. 9 Instantiation Diagrams

The purpose of instantiation diagrams is to facilitate the development of test case

scenarios. Test case scenarios, in turn, are used to validate the design and document

examples of the intended design. Ultimately, this validation process aids

programmers in implementing the design. An instantiation diagram looks much like

a type diagram, It uses a roundwornered box to represent instances of a class,

analogous to the IDEF4/C++ class box. For example, the instantiation of an

employee named JoAn from the class Employee (see the following code) has

"&Employee John&" as its unique identifier. The representation of instance John is

illustrated in Figure 4-27.

Employee John;

, or

Employee *John = new Employees;

Name
Address
Psy-rare

«Employee Johm

Figure 4-27. An Instance Box - John.

The instance attributes are listed in the upper region of the instance box.

Instantiation diagrams provide two ways to indicate the value assigned to or

returned by the attributes: directly displaying the value to the right of the attribute

(Figure 4-28(a)) or using value links (Figure 4-28(b)). In the case of attributes of

numeric type, it is acceptable to directly present the value in the box. The value

85

links used in instantiation diagrams are presented in terms of arrows, pointing from

an attribute to the class that is used as the return type. They stan inside the instance

box, next to the attribute whose value is being annotated, and end in an arrow

pointing to the boundary of an instance box as shown in the figure.

(n)

(S) name

(S) address

(S) payrata

class Employee (
publkc

Employee () (payrate 20;); II initial value for peyrate.
Employee (int rate) (payrate rate;); II ussr defined payrate.

Employee protected:
int peyrate;

earns
addmss

payrare 20

name
address

payrare 40

cEmployea Johns cEmployee Ttm&

Employee John; Employee Tim (40);

department

Employee Department

cEmployee Johns cDepartment Sate&

Figure 4-28. Example Instantiation Diagrams.

86

4. 10 Dispatch Mapping

In an IDEF4/C++ design, it is possible for a generic behavior to have more than

one computation-initiating feature specialized for that generic behavior in the same

class (i. e. , features of the same generic behavior group in a CIDS) or in diffetent

classes (i. e. , feanues of the same genaic behavior group but in different CIDSs). In

other words, in a method taxonomy diagram, more than one method set will be

associated with the genetic behavior described by the diagram and different features

in different classes may be implemented by them. Dispatch mapping, a connecting

mechanism between the class submodel and the method submodel, is used to refer

to the association between the computation-initiating feature and their related

method sets.

In Section 4. 4, we have described a work~ay method taxonomy diagram and an

Employee inheritance diagram. We continue the discussion by using these diagrams

to show the mapping between those behavioral features and method sets. Figure 4-

29 depicts the dispatch mapping. Note that in the inheritance diagram, these

work~ay behavioral features are all named as compute-workpay. However,

contracts to be applied to their implementations ste different. Employee's compute-

workpay is mapped to the workpay method, which is the most general method set in

the method taxonomy diagram. Salary Employee's compute-workpay is mapped to

pay-by-month and two compute-workpays in Wage Employee are mapped to pay-

by-hour-default-rate and pay-by-hour-special-rate separately.

In an IDEF4/C++ design, features with the same name but in different classes

indicate a design for the C++ virtual functions. Features with the same name but

defined in the same class indicate a design for the C++ function overloading.

However, detailed definitions (i. e. , parameter types and the number of parameters)

87

of these overloaded functions, can only be revealed from the association of their

CDSs with the method sets that they are mapping to.

wur)tpay [~~: Etnp(eyes]
r

r
r

s pay-by-month

compute-wotkpey: Ssbuy Employee]

pay-by-hour+fault-rate ~
[compute-wotkpey: Wage Employee]

I
I

I
t
I
I
t
t
I
I

work~ay method taxth)omy diagram

pay-by-bourdpectal-rate ~
[compute-workpay: Wage Employee)

t I

1
't

\
1
t
\
t
\

t
\
\
\
'I

t

(R) compute-workpsy [wotkpay]

Employee

I
I
t

I
I

I
I
I
I
I
I

I
I

I
I
I

I
I

I
I
I

I
t

I
I

I
I

I
I

I

! (R) compute-workpay [pey-by-month]

Salary Employee

(IR) compute-workpsy
[pay-by-hour-defauh-rate] t

(! R) compute-workpay
(psy-by-hots-specie(-rate)

Wage Employee

Employee class Inheritance diagram

Figure 4-29. Dispatch Mapping of Work pay Behavior.

88

CHAPTER V

METHOD PROCEDURE

5. 1 Introduction

Perhaps one of the greatest challenges of developing an object-oriented design

method is to define a development procedure. The purpose of such a procedure is

the organization of the design artifacts and activities, especially for adminisuative

purpose. Although the object-oriented design pmcess is iterative, a development

procedure defines a set of ordered activities allowing multiple developers or

development teams to communicate across the design process and supports change

control in the evolution of a design.

In the general object-oriented design process, there is a tension between the use

of class decomposition (inheritance), object composition (aggregation), algorithmic

decomposition, and polymorphic decomposition (message dispatching) (Mayer

92a). The "least commitment" philosophy employed by IDEF4 supports all four of

these design perspectives, allowing one to refine a design seamlessly over the

design evolution.

In this Chapter, we will address the issues of the transformation from generic

IDEF4 to IDEF4/C++ and present a design procedure for IDEF4/C++. We will also

provide an IDEF3 dynamic model of system development process which involves

multiple developers / development teams, with the consideration of configuration

management (change / version control).

89

5. 2 Transformation Rom Generic IDEF4 to IDEF4/C++

IDEF4/C++, as a language dependent design method, extends several method

features &om IDEF4. However, the IDEF4/C++ implementation design method is

not intended to replace IDEF4, a generic design method which creates language

independent designs. By employing an IDEF4 generic design as the initial design

for IDEF4/C++, the evolution of the design pmcess therefore can be conducted

seamlessly since both IDEF4 and IDEF4/C++ are derived from similar method

concepts (as described in Chapter IIp/. In general, the implementation design is a

process of adding implementational details to the generic design model. The

refinement is basically based on the language dependent features supported by the

extended method. Developers therefore follow the design specification and create

module prototypes by using the targeting language.

In this Section, we categorize the extended language dependent features

provided by IDEF4/C~. These extended features, which were presented and

discussed separately in the previous chapters, fabricate a set of transformation

guidelines for the evolution from an IDEF4 generic design to an IDEF4/C++

implementation design. Table 5-1 in the following page summarizes these

transformation features.

The table presents the basic transformation focus while evolving an IDEF4

design to an IDEF4/C++ design. Some features shown in the table such as class

feature access, inheritance type link, and class feature symbols, have their own

presentations in both methods. These transformation focuses have to be specified in

more details in the evolution from IDEF4 to IDEF4/C++. Some other focuses are

new to IDEF4 such as constructor / destructor, friend / template declarations, and

class variables / operations etc. . They are specified in the implementation design

process when needed. Routine signatures, which are necessary for coding method

90

sets, have to be defined in the CDSs of the IDEF4/C++ design model before any

implementation.

Transformation

Focus

Inheritance Link

Class Feature

Access Conuol

Class Feature

Symbols

Constructor /

Destructor

Implementation of

Class

Presentation in

IDEF4

N/A

Public / Private

'A', 'R', 'S', 'F',

'P'

N/A

N/A

Method

Element

Presented

CIDS

Class Box,

CIDS

Class Box

Class Box,

CIDS

CIDS

Presentation in

IDEF4/C++

virtual,

Public / Protected

Private

Public / Protected

/ Private

'A', 'R', 'S'(slot),

'F', 'P', 'VF',

'VO', 'C',

'S'(static), 'NC'

(I) procedures

showing in the

class box with

class name as the

procedure name.

(2) they are also

speciTied in CIDS

constructor /

destructor lists.

Class / Struct /

Union/Tem late

Default

Transformation

Public(in IDEF4)

-& Public (in

IDEF4/C++).

Private (iu IDEF4)

-& Protected (in

ID EF4/C++

If a feature is

specified by 'F' or

'P' in IDEF4, the

'VF' symbol will

be added by default

in IDEF4/C++.

N/A

Class

Table 5-1. Transformation from IDEF4 to IDEF4/C++.

91

Transformation

Focus IDEF4 Element

Presented

Presentation in Method Presentation in

IDEF4/C++

Default

Transformation

Friend Function /

Class

N/A Class Lattice

Diagram,

CIDS, and

Friend

Dhtttrm

(I) presented by

'w' in class

lanice diagrams.

(2) specified in

the CIDS friend

N/A

Nested Class

Class Variables /

rations

Parameterized

Class

N/A

N/A

N/A

Class Lattice

Diagram,

CIDS

Class Box

Template

Diagram

(3) A friend

diagram has to be

provided for the

class which has

friend functions /

classes defined.

(I) presented by

'--&' in class

lattice diagrams.

(2) specified in

CIDS nested class

list.

Specified by 'S'

static s mbol

Presented as

double-lined class

N/A

N/A

N/A

Routine Signature CDS Specil'ied in

IDEF4/C++ CDS

N/A

Table 5-1. (continued)

92

5. 3 IDEF4/C++ Design Development Activities

Development of an IDEF4/C++ design involves the creation of diagrams.

Diagrams provide different perspectives for describing artifacts (classes, features,

and method sets etc.) and the relationships among them. In general, the evolution of

an IDEF4/C++ design is an iterative process of panitioning, classifying / specifymg,

merging / eliminating, and rearranging these design artifacts. These operations are

employed in most of the design activities and might involve the creation /

modification of different diagrams in each. The following steps present the design

activities that are performed throughout the IDEF4/C++ design procedure.

~ Analyze evolving system requirements.

System requirements may or may not evolve through the design process.

However, examining the user evolving requirements over time keeps the design

on "the right track". User evolving requirements result in the occurrence of new

or additional constraints to the design. Such constraints might therefore

promote the need for creating new design artifacts or modifying the working

versions of the design artifacts. This will certainly cause another design

iteration, Moreover, if functional (such as IDEF8), informational (such as

IDEF1, IDEF1X), or process (such as IDEF3) models are available, they can be

used as inputs to this activity.

~ Develop and refine class hierarchy.

93

The development / refinement of the class hierarchy involves (1) detailing /

rearranging design artifacts such as classes and features, (2) specifying the

relationships between classes, and (3) refining the class-invariant constraints.

This activity includes the following steps:

Develop, refine or update class lattice diagram(s).

Develop, refine or update inheritance diagrams.

Create, refine features defined in the updated classes.

Refine or update CIDSs.

Create, refine or update fiend diagrams as needed,

Create, refine or update template diagrams as needed.

~ Develop and refine class composition structure.

Composition relationship (aggregation) between classes is specified in type

diagrams. The type links connect the value-returning features and the classes

which are specified as the return types. For those types predefined by users

(most likely the primitive data types such as inr, double etc.) or provided by

class library venders, the user predefined type list is to be used and further

refinement might be needed. Note that if the changes affect design such as class

definition or class relationship, the activities described in prior steps are

involved. This activity includes the following steps:

Develop and refine type diagrams.

Refine and update user predefined type list.

Update CIDSs as needed.

Update inheritance diagrams or lanice diagram(s) as
needed.

~ Develop and refine method taxonomy.

This activity involves design artifacts such as method sets, contracts, and

generic behaviors. Method sets are classified according to their common

functiomdity and generic system behaviors are specified with method set

groupings. Each generic system behavior will be described by a method

taxonomy diagram. The refinement of each method taxonomy requires

identifying additional constraints on the method sets / contracts as the design of

method submodel evolves. The creation of dispatch matchings also takes place

in this activity, which requires associating method sets with classes and features.

CDSs of the method sets to be implemented should be refined and additional

implementation details (i. e. , pseudo code) should be documented as needed.

The following are the steps in this activity:

~ Combine, rearrange, specialize method sets as needed.

~ Develop and refine method taxonomy diagrams.

~ Create and refine dispatch mappings.

~ Refine, update CDSs.

Changes might result in the iteration to the preceding activities.

~ Develop and refine algorithmic decomposition.

Client diagrams should be developed for each method set specified in the

previous activity. Client diagrams, as used to illustrate the algorithmic or

functional decomposition for routines, are crucial to the implementation of the

method sets that they are associated with. For example, the designs of service

requesting (message passing) or dynamic binding (Section 6. 5) are most likely

95

specifiied in terms of client diagrams. Again, changes might result in revisiting

the previous activities.

~ Develop and validate instantiations.

Instantiation diagrams are used to validate the design. Instances specified in the

diagrams might be the objects to be created in the implementation (pmgrams).

The creation of instantiation diagrams will also aid programmers in the

implementation process. However, the validation activity might result in the

modification of type diagrams, or class definitions / CIDSs and inheritance

diagrams, the revision to the previous activities is therefore required.

5. 4 IDEF4/C++ Design Development Process with Multiple Developers

Thus far, we have presented the transformation from IDEF4 to IDEF4/C++ and

the activities in the IDEF4/C++ design procedure. However, the development of

large-scaled systems often requires multiple developers / teams. As the design

evolves, different design versions might be created concurrently and the

communication between developers or the development teams tends to be more

complicate. This will require a broader view for the identification of the inter-

developer or inter-team activities. Consideration of configuration management for

the development process and the control for the changes of versions are also

required. In the following discussion, we will present an IDEF3 dynamic model

describing the system development process with multiple developers / development

teams from the perspective of configuration management.

X
Jl

Identify domain

objects / classes
and the

relauonships

between rhem

gt

J2

Specify
features of
each class

Specify
object
behaviors

X
J4

Create the
system's initial

IDEF4/C++
design

Functionally
decompom dm

systetn Inat

subsystems md
co tporleflts

Transform the

IDEF4 design

JDEF4/C++

Perform

configurati

identification

Perform
interface

identification

dt X

I J

Create
sl'steal

baseline

Merge variants of
Cls which exist in

more then one

subsystem /

coolpollent

Create
new

baseline

X

Jg

Percolate
new

baselme

Prepare

IDEF4/C++

design of each

basal ines

Figure 5-1. IDEF3 Dynamic Model of IDEF4/C++ System Development Process with Configuration Management.

X 0

Expand

subsystem

baseline

Develop / refine
current level

design

Goto /
Percolate

new baselin

Goto /

J10

Modify / update

current level

design

Goto/

J10

Provide current
level design to
the programming
tealll

0
Jl

Code new

classes /

tnethods
0

Jl

Goto /

J10

Modify

existing
code

Suggest
design

changes

Review

change
request

x
J13

Appmve

change

Gom/M
/ update

cununt level

design

Reject
change

Goto / Code
new classea /
methods

Figure 5-1. (continued)

Publish Iransien

current level

design

Merge existing

subsystem /

component
code

Test
Illel gati

code

X
Jl

Accept
merged

code

Goro / Suggest
design changes

Discover conflicts /

mismatches of
module interface

0
Jl

Goto / Modi

/ update

current level

dad gn

Merge
final

code

Test

ay s telll

code J15
Accept

Release
completed

design dt

code

Goto /
JS

Gom / Suggest
design changes

Discover conflicts /

mismatches of
module interface

0
J17

Goto / Modify

/ update

cwrent level

design

Goto /

JS

Figure 5-1. (continued)

Figure 5-1 illustrates the IDEF3 model The following are the definitions of the

terminology used in the model.

partaf
System module

is-a
Component

A collection of associated
classes and method sets to
provide the required
functionarity.

Figure 5-2. Configuration Items defined in IDEF4/C++.

~ Configttratiort item (CI): System, subsystem, component, class, or method

set.

CI is any design element whose state is to be recorded and whose changes

are to be processed (controlled). A CI can be the system, a subsystem, a

component, a class, or a method set. Figure 5-2 illustrates the relationships

between these CIs. A system can be functionally decomposed into several

subsystems and components. Both subsystems and components are system

modules. Subsystems can also be decomposed further into subsystems and

components, or only components. Components, on the other hand, represent

the software modules which require no further decomposition to purchase or

build. Any component can be considered as a collection of associated

classes and method sets in the context of an IDEF4/C++ design.

~ Coqfigurarionidettrificariott: Identifying each CI and its interface.

~ Interface iriertrificarion: Identifying all functional characteristics relevant to

the interfacing of two or more CIs.

~ Version: A version is a recorded state of a CI at some point of time.

~ Version tree: The hierarchy formed by the versions of a CI created over its

design evolution.

Variant: A branch of a version tree. Note that the occurrence of variants of

a CI indicates that the CI is included in more than one component and the

changes to different copies of the CI are made concurrently.

Merge: The process of resolving conflicts between two or more than two

variants of a CI and creating a single version for it.

Baseline: A version of a CI serves as a baseline. A baseline represents a

well-specified state of a CI in its design evolution. Baselining a CI is the

process of assembling the baselines of its element CIs. If the element CIs

have variants, baselining a CI will involve the process of merging.

Percolate: The process of decomposing the current baseline of a CI into the

baselines of its element CIs.

Publish: The process of preparing the current baseline of a CI to be

assembled with other CI baselines at the same leveL Publishing a CI results

in the re-baselining of the composed CI (the CI at upper level).

The process starts at the creation of an initial design. An IDEF4/C++ initial

design can be derived from either (1) specifying / discovering domain objects /

classes and the features / behaviors of these objects, or (2) transforming an existing

IDEF4 generic design (Section 5. 2). Since the design process involves multiple

developers / development teams, a functional decomposifion for the initial design

system, followed up by the activities of configuration identification and interface

identification, is therefore necessary, Each decomposed subsystem / component

will be assigned to the responsible developers / development teams and the major

focus of the design piocess will be on these system modules.

Before the module design process begins, the system baseline has to be specified

and percolated to create the baselines for each modules at subsequent levels. This

pmcess will repeat until the percolation reaches the bottom level of the system

configuration - where all the modules are components. The developers /

development teams therefore base on their own module baselines, carrying out the

design activities concurrently. This stage includes activities such as (1) developing

and refining the current module, which involves the design activities as described in

Section 5. 3, or (2) expanding current module, which iterates the process of

percolation and creates another level of baselines.

As the design evolves, the working design version might be provided for

prototyping or a matured design version might be provided for coding. These

activities will revolve around the interactions between design and programming

teams if there is a change to the design version which is requested or suggested by

the implementors. The approved change request will invoke the process of

modifying the existing design version and allow an opportunity for another iteration

of team interactions. The working version can also be published to the upper level

as needed. However, the decision of publishing a working version will call up the

process of re-baselining the upper level module.

If variant versions are created across those components / classes / methods

which exist in more than one subsystem / component, the process of merging

variants is therefore required before creating the new baseline. The code merging

might also reveal some interface conflicts / mismatches between system modules.

The modification at the merged module level or even the process of re-perfortning

interface identification is therefore needed. This brings out another development

iteration until the final system reaches its release version. Figure 5-3 presents the

basic flow of control of the configuration management in IDEF4/C++.

103

START

Perfinm merge
oparalson

MRS
vafmnta

7

NO

Cream new beselines of
ent modules

modify the

module design

Develop / refine
the module design Need for

percolation
'r

NO

OR

0 eady for

merging

NO
Ready for
coding?

0 eady for
publishing

?

Publish the current

module design to the

upper level baseline

ppmve
the clumge

7

0

Any
YES change NO

suggested OR

Code rhe module
as designed

Modify
existin code

Merge
existing code

NO

Any
interface

amflicts /
'

match

?

NO

Test
OK?

Release the complete

design 4 code
Ready for

releasing?

Figure 5-3. Flow of Control of Configuration Management in IDEF4/C++.

CHAPTER VI

METHOD USES

6. 1 Introduction

In a sense, object-oriented design is a type of design fashion using the technique

of indirection (i, e. , abstraction, inheritance, encapsulation, or polymorphism etc.).

A good object-oriented designer should be able to practice these techniques

competently. Two points are worth emphasizing: the importance of language

support for these techniques and the design principles behind them. This chapter

focuses on the discussion of these techniques by targeting on the practice of

designing with reuse using IDEF4/C++. Several language-dependent design issues

such as inheritance and feature access control, constructors and destructors, the

design of dynamic polymorphism in IDEF4/C++, and abstract base classes etc. , will

be addressed prior to the introduction of the techniques for design with reuse. A

general set of "rules of thumb", which facilitates the application of reuse issues

examined in this chapter, will also be presented.

6. 1. 1 Inheritance vs. Aggregation

The solution model is not only constructed by the individual objects (classes)

distilled from the problem domain, but also those relationships among them as well.

Two of the most common relationships captured in the object model are subtyping

(IS-A relationship) and containment (HAS-A relationship). Subtyping is

implemented by inheritance and containment is implemented by aggregation.

105

Typically, software components (classes) are reused through the mechanisms of

inheritance and aggregation. A new class can be constructed by specializing

existing (reusable) base classes or containing the reusable classes as return types of

the new class's attributes in order to reuse their functionalities. However, due to the

reuse intent, it is possible to apply either of these different mechanisms in the same

context (semantics) I&. Consider the example illustrated in Figure 6-1, which shows

two design alternatives for constructing the Salary-Employee class. Salary-

Employee is defined by combining the functionalities of Employee and Salary. This

can be done by 1) defining Salary-Employee as a specialization of both Employee

and Salary in the fashion of multiple inheritance, or 2) subclassing Salary-Employee

from Employee, while aggregating Salary into Salary-Employee class definition. In

the first approach, class Employee and Salary are reused as mixins for providing

functionalities by inheritance. Whereas in the second approach, Salary is

incorporated into Salary-Employee as its attribute and functionality is provided

through forwarding. The tradeoffs that need to be taken into account between these

two alternatives in the same semantics are sometimes subtle and difficult. Final

decision usually accompany comprises. However, unless the relationship is exactly

a subtyping (generalization / specialization) relationship, aggregation combined

with forwarding is preferable for serving the reuse purpose. Section 6. 9 will discuss

this issue in more details.

If we only focus on directly mapping those nature relationships into our model in the design
process, life will be much easier.

Reuse Setmy
rtrrough ioberitaooe

Employee
Reuse Salary
rtrrough aggregation

iS) Salary

Salary-Employee

Figure 6-1. Inheritance vs. Aggregation

6. 1. 2 Broadening the Design Scope

Typically, the orientation of a design process tends to create classes suitable for

use in a particular problem, but are not general enough for broad reuse. The intent

of design reuse is the main reason we want to broaden the design scope. It is

important to leverage our perspective beyond the current design scope while we are

conducting a design process. A broader scope (purpose) for constructing the

abstractions (classes/method sets) leads to improved chances for reusing these

abstractions in the future. More specifically, broadening our design scope prepares

us to deal with new abstractions which are similar to those in the current problem

domain, Broadening the design scope also helps to smooth the evolutionary process

when the inheritance mechanism is adopted as a means of reuse. A broad design

can better accommodate the variety of the intended behaviors than a design ftom a

single perspective can. Generally, the process of broadening the design scope leads

to two extremes in terms of the size of abstractions (classes); fat base class and

skinny base class. The "fat class" is a consequence of the intent that we want the

interface of a base class to be able to provide all possible behaviors for further

inheritance purposes. Abstract base classes (mixins) are the examples. On the other

hand, the "skinny class" promises that it is generally easily specialized from while

specific behaviors can be easily added into the derived classes. However, there are

always some trade-offs. The question that we must ask ourselves is: "When

broadening our design scope, what is the proper granularity for the size of those

classes to be reused?"

6. 2 Inheritance and Feature Access Control

As a general rule, classes should avoid exporting their internal structure, even to

their derived classes; inheritance is not a license to violate encapsulation. However,

when we are concerned about the issue of encapsulation (information hiding), we

must also examine the effects of inheritance on the access of features.

In this subsection, we will discuss the language-dependent design issues

concerning different types of inheritance and feature access control. In IDEF4/C++,

feature access types can be public, protected, or private. Public features are visible

to the whole system Protected features can only be accessed by the owner class and

all its directed and undirected derived classes. Private access prevents the features

108

irom being accessed by other classes, thereby providing a means of encapsulation.

Types of inheritance can be public', protected, or private. In general, a public

inheritance provides a means for specifying a subtyping relationship between a base

class and its derived class, whereas the private inheritance supports reuse (see

Section 6. 2. 2 and Section 6. 9. 2). In the following, we will revise the issues of the

pmtected feature access type, private inheritance with access specifier, as well as

changing feature access type in the public inheritance.

6. 2. 1 Protected Feature Access Control

Protected feature access control in IDEF4/C++ is the same as the private access

in IDEF4. All the derived classes have the access to those features that are declared

as protected in the base class. Figure 6-2 illustrates this notion; so that both derived

classes B and C have access to the protected feature f declared in the base class A.

Note that the private feature g in class A still can not be accessed by either B or C:

consequently even the derived classes have no more right to violate the base class

encapsulation than any other class. However, declaring a base class feature

"protected", is similar to declaring all the derived classes friends to the base class,

which provides an alternative avenue to break the base class's encapsulation. The

protected feature access contml can be very useful to the design of mixins (abstract

classes) so it can be used to prevent these abstract classes from creating instances of

their own. This is discussed in Section 6. 3. 1.

Proracaat fessors f is
aeesshle ro B ead C.

Prtvaar faatexa g ceo ba
accessed by A.

Figure 6-2. Protected Feature Access Control.

6. 2. 2 Private Inheritance and Access Specifier

As described in Section 4. 3. 2, private inheritance collects all the non-private

features (public and protected) defined in a base class and redefines their feature

access types as private in the derived class. However, by specifying an access

specifier (Coplien 92) for each inherited feature separately, the access of the

inherited feature can be re-specified back to public or protected as needed.

Generally, the intent of using a private inheritance is for reuse without breaking any

natural relationship between two classes. By redefining the non-private features of

a base class as private to a derived class, the functionality that the base class

pmvides can thus be reused by the derived class. Note that the intent of using a

private inheritance is different from the public inheritance, which is used mainly to

denote a subtyping relationship. However, for some inherited features which are

also suitable for constructing the interface of the derived class in a private

inheritance, it is necessary to redefine these features (back) to public. For example,

consider a List class and a Ser class both illustrated in Figure 6-3. We construct the

Ser dass by reusing the class List in the fashion of a private inheritance since their

functionalities are similar, however, they do not possess a subtyping relationship

(Ser is not a subtype of List). As illustrated in Figure 6-3, class List has five

features; head, tail, count, has-item, and insert. Features head and tail have no

meaning to a set and are hidden within the private area of class Ser . Insen and Jras-

item providing functionalities that are appropriate to the interface of class Set, are

also re-shown in the public area of Ser class box, indicating that their access type is

redefined (back) to public. Note that since there is no change to their contracts

(implementation constraints), neither symbol "+" nor "!" need to be added to their

definitions. Feature insert follows the same intent, except that its contracts need to

be redefined since no duplicate items are allowed to exist in a set. However, the

CIDS of class Set should document all the design intents. The C++ implementation

is shown as follows':

class List (

public:

void head0;

void 'lail0;

int count0;

Boolean has-item(void');

void insert(void');

);

class Set: private List (

public:

This example is extended from James O. Copliea, 'Advanced C++'(p 100).

void insert(void 'm); // redefine its contracts

List:xount; // access speci((er

List:Stag-item // access specifier

Where members count and has-iterrt only have their names shown in the Ser

class definition, prefixed by the List class specifier "List: ',

List::count;

List::has-item;

They are called access specifiers. Note that one can not do the opposite. That

is, using access specifiers in a public inheritance to change feature access will cause

a compiling error in C++. The following section discusses public inheritance.

(P) head

(P) tail

(F) count

(F) has-item

(P) insert

a private inheritance
which is documented in
the Set's ClDS.

No! or + symbols indicates
count and has-item only ciumge

rheir feature access.

(F) count

(F) has-item

(I P) insert

Set

Symbol! indicates

insert is redefined.

Figure 6-3. Private Inheritance and Feature Access Control.

112

6. 2. 3 Public Inheritance and Feature Access Control

Changing feature access type in a public inheritance is straight-forward.

Inherited features which change their feature access in a derived class are only

needed to re-display in the intended access contml area of the class box. For

example, consider a design illustrated in Figure 64 where two features are defined

in the Base class: method-I and method-2. hfethod-2 is virtual to Derived,

indicating that Derived follows all the contracts the inherited feature carries from

Base and has no intent to redefine it. Two copies of method-1 are re-displayed in

Derived; one being public and the other being protected. The public redefined

method-I in Derived is prefixed by a redefining symbol "I", indicating that it has

new conuacts different I'rom those inherited (for example, adding an inr parameter).

The new contracts can be referred to in the CDS of this copy of method-1. The

protected redefined method-l, on the other hand, has no prefixing redefining

symbols. It is re-displayed only for the purpose of showing the change of its access

class Base (

public:

void method-1(void);

void method-2(void);

class Derived: public Base (

public:

void method-1(int);

protected:

void method-1(void); li change in access type.

(R) method-1

(R) method-2

(I R) method-1

(R) method-1

Derived
This copy of
method-1 only
changes its access.

Figure 6-4. Public Inheritance and Feature Access Contml.

In IDEF4/C++, a derived class may redefine a feature inherited from a base

class. If the intent is to add some new contracts (adding an inf parameter as in the

example), symbols "I" or "+" have to be presented, If the intent is only to change

the feature's access, only the name needs to be displayed in the intended access

control area.

6. 3 Constructors and Destructors

Constructors and Destructors in IDEF4/C++ are used for the instantiation and

termination of instances of a class. In this section, we will discuss constructors and

destructors in the context of inheritance.

6. 3. 1 Pmtected Constructors

Some base classes (such as mixins) are created only for the inheritance purpose.

No instances of the mixin classes will be created. One of the design techniques to

serve this purpose utilizes protected constructors, Ftn example, consider the design

of an employee system; Employee class is defined as an abstract base class for the

derived classes: Programmer, Analyst, and Designer. Instances exist in the system

which are either programmers, analysts, or designers; no instance of a generic

employee is allowed. To prevent the creation (incident or on purpose) of instances

of Employee, we hide the constructors of Employee in the protected area. This is

demonstrated in the following code:

class Employee {
public:

protected:

EmployeeQ;

private:

class programmer:public Employee { l;

class Analyst: public Employee { l;

class Designer: public Employee { l;

This guarantees that no generic employees will exist in the system since no

classes have the access to the Employee's constructor, except for its derived classes.

Moreover, by using protected constructors, the base class constructors can still be

115

implicitly called when an instance of the derived class is instantiated. In

IDEF4/C++, this intent is to be documentei in the CIDS of the base class.

6. 3. 2 Passing Parameters to Base Constructors

When instantiating an instance of a derived class, the base class constructors

will automatically be invoked in the execution of the derived class constructors.

However, they (base constructors) can also be invoked explicitly. Consider a shape

system, where the class Square is a specialization of the class Rectangle. The major

distinction between them is that the creation of a square needs only one parameter,

the length of a side, whereas the rectangle needs two; both length and width. To

reduce unnecessary efforts, one may let the constructor of the class Square call the

constructor of the class Rectangle, instead of re-implementing the whole initiating

algorithm. This is shown as follows:

class Square: public Rectangle (

public:

Square (Point center, int side): Rectangle (cenler, side, side) ();

To fulfill this design intent, the designer needs to document this constraint into

the CDS of Square's constructor, and construct a client diagram as illustrated in

Figure 6-5 for it.

Square's ~ Squae calls
rbe ~ af its bssa dass-
Rceamgla.

Figure 6-5. Calling Base Constructors.

6. 3. 3 Virtual Desuuctors

Unlike constructors, base destructors cannot be invoked implicitly

(automatically) during a cleanup process. Consider the following code example:

class Employee (

public:

-Employeeo;

)'

Employee Joe new Programmer;

delete Joe;

The delete process will have no idea that Joe is a programmer since it is typed as

Employee. Instead of calling the right destructor, Prograrrtrrter's destructor, the

destructor of Employee will be invoked. The consequence is that some additional

resources allocated for the specialization, Programmer, will not be freed by the

117

Employee's destructor, resulting as garbage in the system. To avoid this, one can

declare Employee's destructor vinual:

class Employee (

public:

virtual -Empioyeso;

)'

If the destructor of a base class is declared virtual, the system will then

automatically invoke the proper destructor for its derived types (i. e. , Programmer)

and call the base destructors afterwards This design intent is to be documented in

the CIDS of the base class.

6. 4 Pure Virtual Functions and Abstract Base Classes

Recall that, in Section 6. 3. 1, in order to prevent any incidental creation for the

instances of a generic base class (i. e. , Employee), we declare the base constructors

as protected. Another design alternative is to use pure virtual functions. In

IDEF4/C++, pure virtual function declaration is specified by using the feature

symbol "VO", indicating the feature (a computation-initiating feature) is not

intended to have its function body. This enforces an obligation on the derived class

to redefine / override the pure virtual functions and prevents any instantiation of the

base class. Note that an abstract base class is a specialization of an abstract data

type (ADT), if all its member functions are pure virtual. This is one of the

techniques of design with reuse which will be addressed more specifically in

Section 6. 9. 1.

118

6. 5 Designing Dynamic Polymorphism in IDEF4/C++

In general, the object-oriented technique is characterized by inheritance and run-

time binding (dynamic polymorphism). Inheritance provides a hierarchical structure

for defining generalization / s~tion relationships between classes. Attributes

common to several classes can be moved up to their base classes (generalizarion)

and derived classes can specify their own behaviors by redefining those more

general behaviors in the base classes (specialization). Run-time binding

encapsulates these behavioral details in the inheritance hierarchy and simplifies the

implementation of the use of them in the pmgram. Inheritance together with run-

time binding organize a design in a way of supporting software reuse. For example,

consider a class hierarchy with a base class Shape and its two direct derived classes,

Circle and Rectangle, and each class has a behavioral feature, draw. Draw features

in Circle and Rectangle are redefined from the more general draw in the base class

Shape through the inheritance mechanism. To draw a shape object in the system, a

generic draw function is called which is augmented with the intended object (it

might be known or not at compile-time). A good design (in terms of reusability)

indicates that Adding a new class, for instance a Triangle class, as a derived class in

the system requires no modification to be done for the implementation of the

generic draw function. In other words, extension or modification for the system

should have as minimal an impact on the existing design / code as possible. We

address how to achieve this intent in IDEF4/C++ as follows.

In IDEF4/C++, inheritance relationship is specified in the inheritance diagrams,

whereas run-time binding is supported in terms of defining those behavioral features

as virtual and invoking them through a public base class reference or pointer.

Consider the example described previously. The class inheritance hierarchy is

119

illustrated in Figure 6-6 and the C++ class definitions for these classes would look

c)ass Shape {
public:

vfrtua) void draw (void); // detined as a virtual function.

class Circle: public Shape {
public:

void draw (void); // redefined draw.

class Rectangle: public Shape {
public:

void draw (void); // redefined draw.

(VF) (P) draw

Shape

(I P) draw (! P) draw

Circle Rectangle

Figure 6-6. Inheritance Diagram for Class Shape.

120

As shown in both the inheritance diagram and the code example, draw of Shape

is defined as a virtual function. To consuuct a run-time binding mechanism for the

draw behavior, an independent draw function is defined and it is augmented with

the type Shape. It looks like:

void draw (Shape &obj)

(

obi. draw();

)

The trick is that instances of the derived classes Circle or Recrartgle are also

instances of the base class Shapet4. The type of the instance that the parameter obj

references (might be Circle or Rectangle) will be resolved at run time to invoke the

"right" draw method.

Circle circle;

Rectangle rectangle;

Shape &s = circle; IIs is a circle.

draw (s); II draw a circle.

s = rectangle; II s is a rectangle.

draw (s): II draw a rectangle.

The independent draw function need not know about any future evolution of

Shape hierarchy (for example, a new Triangle class), as long as the intended object

holds a redefined draw inherited from the Shape class. The inheritance diagram and

method taxonomy diagram with dispatch mappings of the example are illustrated in

Figure 6-7(a) and (b). Where the generic draw function does not have a dispatch

mapping to any class in the design, one should indicate that it is independent and

The substitution property of objects was discussed in Section 3. 2. 1.

121

does not belong to any class. Figure 6-7(c) illustrates the client diagram for this

generic draw, showing that the generic draw function calls the draw function

defined in class Shape. Since Shape defines its draw as a virtual function, the actual

suppher will not be invoked until run-time. However, the CDS for the generic draw

should document all the intent.

This run-time type resolution encapsulates the implementation details in

inheritance hierarchy I'rom the program. In turn, it simplifies the extension of class

hierarchy. Adding a new derived class, 'Triangle", is straight-forward and will not

involve any modification of existing code about the generic draw.

Triangle triangle;

s = triangle; // s is a reference to Triangle.

draw (s); // draw a uiangle.

In IDEF4/C++, in order to add the Triangle class into the system, we only need

to modify the inheritance diagram and the method taxonomy diagram (Figure 6-8(a)

and (b)). No further change is required for the client diagram of the generic draw

(same as Figure 6-7(c)). Easier extension of the design and the reusability of the

software component is therefore gained.

Note that, the inheritance links between all the derived classes and their base

class have to be public to support the run-time type resolution. Protected and

private inheritance links do not have the provision for this implicit type conversion.

122

(a)

(VP) (P) draw
draw

(! P) draw

[drawee]

Circle

(i P] draw

[draw-recumgle]

Recttmgle

Shape Inheritance Diagram

The generic draw is an independent
funcdon; it does not belong to any
class, therefore, it doesn't have a
dispatch mapping.

(b)

draw
draw-shape

draw-circle
[draw:Cirde]

[draw: Shape]

draw-rectangle
[dtawtgecumgle]

Draw Method Taxonomy Diagram

(c)

Shapet
draw

The draw method in class Shape is
a virtual function, the actual draw

function that is called depends on
the result of the run-time type
resolution.

Draw Client Diagram

Figure 6-7.]DEF/C++ Design for Run-time Binding.

123

(a]
Shape Inheritance Diagram

(VF) (P) draw

[draw-shape]

Shape

(! P) draw
[draw-circ]e]

(! P) draw

[diaw-rectangle]

Rectaagle

[! P) draw

[draw-triangle]

Triangle

draweircte
[draw: Circle]

draw-shape
[draw: Shape]

draw-rectangle
[draw:Rectangle]

draw-triangle
[draw: Triangle]

Draw Method Taxonomy Diagram

Figure 6-8. Adding a New Class - Triangle.

In summary, the design discussed in this subsection provides a simple approach

for implementing dynamic polymorphism in IDEF4/C++. It simplifies the software

maintenance process because the modification of class hierarchy has the least

impact on existing code, providing a means for software reuse.

6. 6 Implementation for Conflicting and Non-conflicting Features

In an IDEF/C++ model, generalization / specialization relationships between

classes are specified in inheritance diagrams; whereas between behaviors, it is

specified in method taxonomy diagrams. Specializer(on between a base class and a

derived class is actually implied by the set of specialized features inherited &om the

base class but redefined in the derived class. These redefined features are mapped

to their associated method sets which carry the same semantics. In IDEF4/C++, the

semantics of "specialization" can be categorized into two different types of

additional constraints: conflicting and non-conflicting, represented by symbols "!"

and "+", respectively. Conflicting constraints are those that specialize or redefine

the inherited constraints. As a result, the redefined feature overrides / shadows the

inherited one. Non-conflicting constraints, on the other hand, merely represent the

addition of constraints that are new and independent to the inherited constraints.

This indicates that the implementation of the redefined feature will also execute the

implementation of its inherited feature in order to fulfill the unchanged constraints.

For example, consider the following two different C++ implementations of the

redefined feature — mer/rod-l,

class Base (

public:

void method-1 (parameter-1);

class Derived: public Base (

public:

void method-1 (parameter-1);

125

(1)

void Derivadcmathod-1 (parameter-1 p1)

(-----);

(2)

void Derived::method-1 (parameter-1 p1)

(

Basesmethod1 (p1); rr call Base's method1.

In the first implementation, the feature merhod-I redefined in Derived has its

own (new) implementation (it does not call Base's method-I), indicating that the

redefined constraints held by this copy of merhod-I are conflicting to the inherited

constraints of the method-I in Base and that the merhod-I in the Derived class

shadows the merhod-I in the Bose class. In the second implementation, the method-

I in Derived calls the one defined in Base, indicating that the constraints are non-

conflicting and that Derived's method-1 has to execute Base's method-I to fulfill

those inherited constraints. Figure 6-9 illustrates the intended IDEF4/C++ design

for each implementation, where symbol "!" clearly specifies the conflicting situation

and symbol "+" specifies the non-conflicting additional constraints.

126

(P) medtod-t (P) method-1

method-1 hoMs
nmscrmnicting
sddthnnd comnrsinls.

(! P) method-1 (+ P) method-1

Figure 6-9. Conflicting and Non-conflicting Constraints.

System-Designer

(S) team-members:

Project Manager Programmer

Figure 6-10. Example of Not Allowable Type Diagrams.

6. 7 Features with Multiple Return Types

Design of multiple return types is not explicitly supported in the IDEF4/C++

type diagrams; that is, every feature described in a type diagram can have one and

only one type link fanning out from its defining class box to its return type. A

design such as the one described in Figure 6-10 is not allowed. However, in reality,

for those collection-type features such as array, list, or queue etc. , elements in the

collection might have different return types (but similar in some sense). An

approach to solve this problem is to define a general base class for all these similar

but specialized types and have the type link of the feature point to the general type.

127

This is especially important in IDEF4/C++, due to the reason that C++ is a strong-

typed language. Consider the example described in Figure 6-10 where class

Project-Manager has a collection-type feature, team-members, which collects thc

team members of a project. A pmject development team will consist of members

such as system analysts, system designers, and progrannners as welL To model this

situation, a base class, Employee, is introduced as the general base class for the

classes System-Analyst, System-Designer, and Programmer . Figurc 6-11(a)

presents the inheritance diagram. The type diagram for this approach is illustrated

in Figure 6-11(b), showing that the type link for team-members points to the general

type Employee. The C++ code implementation for the design will look like:

class Project-Manager [
public:

Employee team-members[10);

) John;

class Programmer:public Employee {) Tirn;

class System-Analyst: public Employee [.) Martha;

class System-Designer: public Employee {) Ted;

John. team-members[0) = &Tim;

John. team-members[1) = &Martha;

John. team-members[2) = &Ted;

This Employee type collection feature, team-member, therefore can collect

different types of instances, such as programmer Tim, system analyst Manha, and

system designer Ted (as shown above). Through C++ type conversion, the multiple

return types for such a collection feature is therefore feasible. However, implicit

128

type conversion (as in the example) is only supported through public inheritance.

For non-public inheritance links such as protected or private, an exphcit type casting

must be provided in the code.

class System-Analyst: protected Employee (.) Martha;

class System-Designer: private Errgytoyee (.) Ted;

John. team-members(t] (Employee ') &Martha;

John. team-members(2] (Employee *) &Ted;

Again, all these intents and constraints for implementing the design must be

explicitly documented in the CIDS for the class Project-Manager.

(a) Employee Inheritance Dbtgram

Employee

System-Analyst System-Designer

Project-Manager Type Diagram

(S l team-members

Project-Maaeger
Employee

Figure 6-11. Designing Multiple Return Types for Feature Team-members.

129

6. 8 Avoiding Redundancy in Multiple Inheritance

One of the significant problems that might occur in a multiple inheritance

structure occurs with name conflicts between inherited features. In Section 4. 3. 3,

we have discussed this problem and introduced the virtual inheritance declaration

for resolving the conflict (Figure 4-7). However, resolving name conflicts is

considered an important design issue and designers of object-oriented systems

should avoid any name conflicts in their designs. In the following section, we will

discuss more details of this issue, as well as how to avoid the redundancy

accompanying the resolution process of conflicts.

Name conflicts can be categorized into two types: ambiguities (conflicts)

between data type features and behavior type features. Recall that the example

shown in Figure 4-7, where ambiguity between two copies of the inherited data type

feature name in the derived class Manager can be avoided by declaring virtual

inheritance. For the ambiguities between inherited behaviors, consider the example

described in Figure 6-12, where the class Project-Leader inherits the features from

both Manager and Designer; indicating that a project leader is also responsible for

the system design work.

(P) perform-task

(I P) perform-mrk (l P) pedonn-task

Manager

(! P) perform-task

Project-Leader

Figure 6-12. Multiple Inheritance of the Class Project-Leader.

Manager and Designer both redefine their own behavioral feature - perforrn-

task, indicating that they possess different tasks (responsibi)ities) in the

development of a project. The ambiguity occurs because Project-Leader inherits

both behaviors. The resolution of this conflict is described in the client diagram of

the perform-task behavior redefined in Project-Leader and illustrated in Figure 6-

13; where the Project-Leader's perform- task calls both Manag er's perform- task and

Designer's perform- task.

class Employee (

public:

void perform-task (void);

)'

131

class Manager: public Employee (

pubic:

void perform-task (void); II overriding Employee:qmrlorm-task.

)l

class Designer: public Employee (

pubic:

void perform-task (void)

)'

// overriding Employee::perform-task

class Project-Leader: public Manager, public Designer (

public:

void perform-task (void) II redefined for its own behavior.

II The behavior of a project leader to perform his/her tasks can be

// thought of as a combination of the managing and designing work.

void Project-Leader::perform-task(void) (

// work particular to a project leader

Manager::perform-task();

Designer:: perform-task();

Manager:
perform-teak

Designer:
perform-teak

Project-Leader:
perform-task

Figure 6-13. Client Diagram of Project-Leader's Perform-task.

132

The order of performing a manager's tasks and a designer's tasks depends on the

domain requirements. However, since both Manager and Designer inherit this

behavior fmm Efnpioyee, it is not surprising to see that these traits possess common

behavior. Redundancy might occur, but avoided with careful design. First, we

separate that common behavior (most likely, it comes from Emp/oyee) from each of

the feature perforrrf-tasks possessed in Manager and Designer and then "re-arrange"

the design;

class Manager: public Employee (

public:

void perform-task (void) (

perform-managing-tasko; // pertorm its own behavior

Employee::perform-tasks; // perform the common behavior

);

protected:

void perform-managing-task (void);

)'

class Designer: public Employee (

public:

void perform-task (void) (

perform-designing-tasks; // perform its own behavior

Employee::perform-task(); // perform the common behavior

protected:

void perform-designing-task (void);

);

133

Rmptoyeer
pediotln-task

Manager's perform-task Cgent Diagram

Deslgser.
perfmm~ignins-task

Employee:
perform-task

Designer:
perform-task

Designer's perform-task Client Diagram

Figure 6-14. Separating Perform-tasks in Manager and Designer.

Figure 6-14 shows the client diagrams. Both the managing and designing tasks

are separated and declared as protected behaviors. The same design is applied to the

derived class Project-Leader. The redundancy in perform-frisk behavior therefore

can be avoided and it can also be more selective on ordering these separated

activities:

class Project-Leader: public Manager, public Designer (

public:

void perform-task (void) (

Manager::perform-managing-tasko;

Designer::perform-designing-tasks:

perform-project-leading-task 0;
Employee zperfonn-tasko;

)'

protected:

void perform~)act-leading-task (void);

)'

perfonll-
'n -task

Desigaeri
perfann4esigning-

iask

Project-Leader t
perform-pNJect-

leadia -task

Employee:
perform-task

Project-Leader:
perform-task

Project-Leader's perform-task Client Diagram

Figure 6-15. Avoiding Redundancy in Project-Leader's Perform-task.

Figure 6-15 illustrates the client diagram of Project-Leader's perform-task

behavior, the redundancy of the common behaviors is eliminated.

6. 9 Design with Reuse

In this section, we will address techniques of design with reuse in IDEF4/C++

first. We will then summarize the chapter by giving a set of rules of thumb of this

issue.

The techniques that object-oriented design provides: encapsulation, inheritance,

and abstraction etc. , are sometimes confused with the approaches to design with

135

reuse. One might think a design that makes the most effective use of inheritance

promises reuse or a design that follows the direct mapping from the problem domain

provides more chances for reuse. This is not necessarily true. An optimized class

inhnitance structure or a nature object structure do not really promise reusability.

Design with reuse is a process that needs careful observation and deep

understanding of the problem domain, patience in the process of prototyping and

refining, and intelligent application of the techniques for reuse.

In general, reusability can be achieved through two major mechanisms,

inheritance and aggregation. However, the techniques discussed in the following

section utilize these mechanisms in different flavors.

6. 9. 1 Abstract Base Class and Pure Virtual Functions

The first technique of reuse is using abstract base classes and pure virtual

functions. Base classes possess virtual functions defined to be "pure" (at least one

virtual function), indicating that no instances can be created from the class.

Therefore the base class is abstract (if such instances exist, the system would not

know how to deal with the behavior specified by a pure virtual function since no

function body is defined for that function). This is a quite intuitive approach for

reuse purpose. Recall that, in the discussion of broadening the design scope for

reuse, abstract base classes are usually one of the extreme results that we will get.

An abstract base class which is designed for reuse often possesses a "fat" (enlarged)

interface due to the reason that we tend to provide a complete set of (pure) virtual

functions in order to sufficiently describe all the behaviors. An example of an

abstract base class with virtual functions is illustrated in Figure 6-16, showing that

the class Drill-Machine is designed as an abstract base class for specializing

136

different types of drilling machines. Spcializations such as Gang-Dril!-Mactune,

Radial-Drill-Mactune, and Turret-Drill-Machine, can be defined through a pubhc

inheritance from Drill-Machine. Each specialization has to redefine its own

behaviors by filling out the bodies of those pure virtual functions. For example,

drill is defined as a pure virtual function in Drill-Machine to represent the drilling

behavior. However, this drilling behavior is only a generic behavior; different types

of drilling machines have different ways for drilling. Specializations have to

override drill in order to make their own instances. This enforces the intent of

reuse, which is the purpose that we design the class Drill-Machine.

(s)
(s)
(s)
(s)
(s)

(vo)(p)
(vp)(p)
(vp)(p)

id-numher

capecit)l
weight
dimension
feed-speed
driu
load
unload

(P) Drill-Machine

Drill-Machine

Figure 6-16. An Abstract Base Class - Drill-Machine.

6. 9. 2 Private Inheritance and Forwarding

In Section 6. 2. 2, we discussed the design technique for using a private

inheritance with access specifiers. This technique can be applied for the reuse

purpose as well. In general, a public inheritance captures the nature subtyping

(specialization) relationship between a base class and a derived class, while a

private inheritance implements the intent of reuse. Through a private inheritance,

137

the functionalities that a base class provides can be reused by the derived class. The

base and the derived class do not really need to maintain a subtyping relationship.

Consider the example given in Section 6. 2. 2, class Ser is not a specialization of class

List. However, due to our intent to reuse the functionalities (a set of functions)

pmvided by List to simplify the design of Ser, Lisr is privately inherited by Sar. To

be able to more efficiently use these inherited functionalities, access specifiers are

applied to switch the intended behavioral features Rom private back to public.

Another alternative is using forwarding. Figure 6-17 shows how to use the client

diagram to design forwarding in this sense. Features set-count and sef-has-item are

new defined in the public area of the class Sef. Instead of changing the feature

access type of count and luis-ifeflt (both are inherited from List), count is called by

the public feature sef-courtr and has-iferrt is called by the public feature sef-has-item

in the class Sef.

coun
Set privately inherirs

count horn List.

Set:
set&olmt

The feature set-count is
defined as public.

Set:
has-Ite

Set priv ately inherits
has-item &om List.

Set: .
set-has-item

The feanue set-has-item is
defined as public.

Figure 6-17. Using Forwarding in Private Inheritance.

138

class Set: private Ust (

public:

void Insert(void);

// public feature set-count forwards to the private count.

Int set-count (void) (return count(););

// pubsc feature set-has-item forwards to the private has-item.

Boolean set-hasritem (void') (return has~tom(););

6. 9. 3 Aggregation with Forwarding

As mentioned previously, aggregation is another mechanism that can be used for

the reuse purpose. The class to be reused is declared as a type of a private feature

defined in the new class. The new class, therefore, can reuse the functionalities

provided by that reusable class through forwarding. Reconsider the List and Ser

example again. One might feel that inheriting Ser from List confuses the nature

semantics between them. It just does not seem right. Figure 6-18 presents the other

appmach that uses aggregation. The class List is contained in the class Ser and is

handled by the feature alisr. The functionalities of List can therefore be reused by

forwarding those behavioral features, such as counr and /ras-item, from Ser to List

through the handle alist. This forwarding is described by the client diagrams of

counr and /ras-item, which are shown in Figure 6-19 and 6-20.

class Set (

public:

int count (void) (return alist. count0;);

Boolean has-item (void 'item) (return alist. has-item(item););

void insert (void *item) (if (Ihas-item (item)) alist. insert(item););

private:

139

List aiist;

)i

Set Type Diagram

(Si alist

Figure 6-18. Reuse List by Aggregation.

Set's couat Client Diagram

Set's count behavior is forwarded

to List's count behavior in terms

that Setucount calls Listucount by
usmg the feature ahst.

Set:
coullt

Figure 6-19. Forwarding the Count Behavior.

Set's has-item Client Diagram

Llstt
has-irem

Set's hss-item behavior is forwarded

to Liars hss-item behavior in tenne
that Setuhas-item cells List::has-item

by using the feamre slist.

SeL
hss-item

Figure 6-20. Forwarding the Has-item Behavior.

By using aggregadon with the forwarding technique, we are able to reuse the

functionalities of Lisr while the semantics of class Set can be preserved. Note that

reuse by aggregation indicates that no signiticant relationships exist between two

classes. Ser associates with List purely for the purpose of reuse. Reuse by

ce suggests a chance for violating the encapsulation of the reused base class

(its protected features); whereas reuse by aggregation avoids this drawback in a

nature way.

6. 9. 4 Delegation

Another technique of reuse is delegation. Delegation is to object instances what

inheritance is to object classes. In delegation, a behavioral feature of an object can

be forwarded to another object, invoking the delegated behavior of the second

object in the context of the first one. Delegation provides mechanism for two or

more separate objects to appear as one. This is particularly helpful in simulating

multiple inheritance as the example presented in the following. With language such

as Actors and Self support delegation; in the IDEF4/C++, we use forwarding to

simulate delegationtS. Consider a class inheritance hierarchy as illustrated in Figure

6-21. Class Research-Assismnr inherits both class Employee and Student so that

Employee has a behavioral feature - work and Sntdenr has a behavior feature — study.

Instead of modeling these class relationships as shown in Figure 6-21, in delegation,

we construct these classes in the hierarchy as presented in Figure 6-22.

Delegation can be more precisely slmuhted by overloading the pointing "-&" operator. Sce C++
language reference for morc details.

fp) work (P) smdy

Research-Assistant

Figure 6-21. Multiple Inheritance of Class Research-Assistant.

Person

(P) work
(P) work

(P) study (P) study

Rtu ployee Research-Assistant Student

Figure 6-22. Design Class Research-Assistant by Delegation.

Class Research-Assistant is no longer a derived class of Employee and Student,

instead, it is also directly derived from the base class - Person. Behaviors work of

Employee and study of Student can therefore be reused in Research-Assistant by

forwarding. This is presented in Figure 6-23(a), (b), and (c); where (a) shows the

type diagram of Research-Assistant. The class Research-Assistant defines two

142

features; as-an-employee and as-a-sntdent. Both of these are used for forwarding

(see the code example) and ate typed as Person-Pointer. The type Person-Pointer,

which is defined in thc Prcdcfined Data Type List, denotes a pointer to the type

(class) Person.

Research-Asslstaat Type Diagram

ss-un~ployee: Person-Pointer
as-s-student: Person-Pointer

Research-Assistant

(h)
Client Diagram oF Research-Assistant's Constructor

Student:
Student

Employee:
Employee

Research-Assistant:
Research-Assistant

Figure 6-23. Design Delegation for Class Research-Assistant.

143

Client Diagrams of Research-Assistaat's work and study

Student;
study

Research-Assistaat:
work

Research-Assistant:
study

Figure 6-23. (continued)

Since instances of a derived class are also instances of its base class, we use

these two features to store an instance of Employee and an instance of Student

respectively in the Research-Assistant's constructor. Figure 6-23(b) illustrates this;

where Research-Assistant's constructor calls Employee's constructor and Student' s

constructor. Therefore, the feature as-an-employee holds a pointer to an instance of

class Employee and the feature as-a-student holds a pointer to an instance of class

Student, Figure 6-23(c) illustrates the client diagrams for Research-Assistant's work

and snuty. Both of these are executed by forwarding to the work in Employee and

the study in Student. The C++ code for this approach is shown as follows:

class Person (

class Employee: public Person (

public:

void work (void);

class Student: public Person {
public:

void study (void);

class Research-Assistant {
public:

Research-Assistant(void) {
as-an-employee - new Employee;

as-a-student - new Student;

II as designed in Figure 6-23(b).

):
void work (void) (as-an-employee-&work; }; II as designed in Figure 6-23(c).

void study (void) (as-a-student-&study;);

private:

Person 'as-an-employee, 'as-a-student;

);

// as designed in Figure 6-23(a).

Reuse by delegation has more run-time flexibility than reuse by inheritance. As

shown in the example, we enforce delegation by using forwarding:

voidwork (void) (as-an-employee-&work;);
void study (void) (as-a-student-&study;);

An instance of Research-Assistant performs its work behavior by forwarding the

operation to the behavior work of an instance of Employee and that instance of

Employee is pointed by as-an-employee. However, unlike inheritance, delegation

145

by reuse works well in simple cases and most importantly, it can be used without

violating any abstractions,

6. 9. 5 Rules of 'Ihumb for Design with Reuse

In summary, the following summarizes the rules of thumb for reuse:

~ In general, behavioral features in the classes which are to be put into a class

library should be defined as virtual even though they do not have any

derived classes in the initial design. This allows the extension of the reuse

for these behaviors by inheritance and the design for the dynamic

polymorphism (Section 6. 5) in the future.

~ A good domain analysis is crucial to the reuse intent by discovering the good

objects and more importantly, the reusable ones. Reusability often comes

from iteratively experimenting with prototypes. Patience and imagination

are the keys.

~ Cut the class with the right size. "Fat classes" and "skinny classes" are used

to serve different reuse intents. "Fat classes" are often reused by public

inheritance and "skinny classes" are more likely to be reused by aggregation.

Moreover, "fat classes" may be more easily reused in the similar domains,

whereas the "skinny classes" may have a broader reuse scope.

~ If the intent is reuse of behaviors, one must use abstract base classes.

Abstract base classes with virtual functions defined, provide an intuitive and

efficient mechanism for behavior reuse. Reuse of behaviors means either

adding or rewriting the interface constructed by those virtual functions on a

case-by-case basis.

~ If the intent is solely for reuse and no subtyping (generalization /

specialization) relationship exists between classes, use aggregation instead

of inheritance. Aggregation states the reuse intent more clearly than

inheritance in this sense.

~ If there does exist a subtyping relationship between classes, but the intent is

solely for reuse, use private inheritance instead of public inheritance. Public

inheritance is used for reflecting class generalization / specialization

relationship.

147

CONCLUSION AND FUTURE EXTENSIONS

In this chapter, we sumnutrize the research c~ for this thesis and present

conclusions drawn from the work. We conclude with a discussion of an integrated

framework that provides direction for future extensions.

7. 1 Conclusion

By discovering and organizing the ontologies of IDEF4 and C++ object models

and extending related method concepts, syntax, procedure, and the practice of the

method, this research contributes to the construction of a complete implementation

design method. The proposed IDEF4/C++ with the addressed techniques is

intended to provide an efficient and comprehensive implementation design method

for the development of object-oriented software systems in C++.

Three ontological models identified the semantics and terminology of (1)

general object model; (2) IDEF4; and (3) C++. These ontologies together specified

the boundary of the research domain and defined the primitive concepts and

terminology for conducting the research work.

Method concepts were introduced in the discussion of classes, features, and

methods, which are identified as the primitive constructs for laying out an

IDEF4/C++ design. The notion of classes was introduced through the comparison

with the notions of types and objects. The self-referential definition of classes and

objects was also clarified. Features - the design constructs used for capturing the

characteristics of instances of classes, were introduced in terms of the discussions of

feature inheritance, feature presence, feature type, and feature taxonomy. This in

148

turn supported the IDEF4 "least commitment" philosophy. Additionally, the

concepts of method sets, contracts, and methods were also introduced.

We extended IDEF4 notations and developed mote specific method syntax for

IDEF4/C++. A transformation heuristic from IDEF4 to IDEF4/C++ is given, which

summarizes the design foci for the transformation. The activities involved in the

IDEF4/C++ design ptocedure are also discussetL In general, each activity employs

the processes of partitioning, classifying / specifying, merging / eliminating, and

rearranging design artifacts. Moreover, the design steps in each activity are also

specified and outlined for conducting an IDEF4/C++ design. We proposed a

dynamic model of the configuration management in IDEF4/C++. The development

process described in the model starts at an initial design, iterating through the design

and implementation processes until the final design and program are released.

We also provided a set of techniques which target the reuse intent in

IDEF4/C++. Reusability can be gained through public inheritance (abstract base

classes), private inheritance with forwarding, aggregation with forwarding, and

delegation. However, if no subtyping relationship between two classes exists, reuse

by aggregation is recommended since it states the reuse intent more clear than

inheritance.

Without increasing the complexity of the IDEF4 method, IDEF4/C++ takes

advantage of C++ language features and best practice experience to bridge the gap

between the conceptual design phase and the implementation phase in a software

development project.

7. 2 Future Extensions

149

Figure 7-1 in the following page illustrates an integrated framework for object-

oriented software system development which pmvides research directions of the

future extensions. The following section discusses thoughts that fabricated this

framework and the future extensions that can be derived from the hnework:

r
Domain Objects

i Pmblem Dotnshi. Qg
0~i

I 0
Initiate / create
model objects

Domain Analysis

IDEFH
IDEFS Evolving

Analysis rettuhem etl ts
IDEF3

I
I
I
I

I
I

/ conlribum

I

I

I

I

I
Reuieve objects &
reuse by aggregation

objects / classes
for reuse by

aggregation

Coruribute domain
dependem objects
for future reuse

I

I

I

Gener
domain
objects

objects / classes
for reuse by
inheritance

I

, R Ci s/M~~
I

I

IDEF4

IDEF4/C++

varification

0

Solutioa Model /

the design

Reuieve objects &
reuse by inheritance

t

IDEP4,
IDEF4/C++
Instantiation

Diagrams

IDEPS
I

I validation
I
I

I

I

I

I
Diagramming support

I eavironmeat
I

Implements son

Object-oriented
Programming Tools

Visual
Pmgrsmming Tools

Code Generauu

P rogramming suppon toolsets

Program /

Configuration
Management / Version
Control Mechanism

I
I

I

I

I
I

I

I

I

Programming support
eavlroameat I

Figure 7-1. An Integrated Framework of Object-oriented System Development.

150

~ The concept of Computer Aided Software Engineering (CASE) has occasionally

been associated with two different development cultures: Environments culture

(programming support environment) and Diagramming Tools culture

(Schefstmm 93). The former culture, also called "Back-End CASE",

emphasizes the later stages in the software life cycle (implementation, test dt

veriflcation). Whereas the later culture, such as IDEF4 and IDEF4/C++, has

more of an industrial and administrative flavor and emphasizes the earlier

software development stages (analysis, design, and implementation). This, of

course, is based on the philosophy that a good design makes the coding trivial.

However, evidence has shown that the difference between these two cultures

decreases as both cultures are gradually integrated (Schefstrom 93). The CASE

tools have widened their scope, often by attempting integration with code

generation or programming support toolsets (i. e. , reusable class libraries). We

follow this understanding, and construct the integrated framework.

~ An object model (IDEF4 or IDEF4/C++) only provides a static object structure

viewpoint towards the solution design. However, to accomplish a complete

design of the solution model, other perspectives, such as the system's dynamic

behavior (IDEF3) and functional decomposition / architecture (IDEF8), also

have to be provided. One of the future research directions, therefore, is to

provide a platform for the integration of these IDEF methods. The platform

should provide an automate transforming mechanism between the artifacts

specified in each perspective (model).

~ The primitive software constructs for an object-oriented system are classes and

methods. These constructs are the nature reuse modules. Generallv, methods

are reused in terms of incorporating their defining classes into the design. An

efficient class library management system is therefore crucial. Such a system is

more than a class browser. The abiTity for controlling changes and the support

for the evolution of reusable constructs should be provided. A dynamic modeL

which includes the reuse concerns into the development process, should be

developed for constructing such a system

~ As shown in Figure 7-1, a complete configuration management system is more

than a source code version control device in the integrated framework. The

control levels should be multiple and flexible. The configuration item (as

defined in Section 5. 4) can be the system, its subsystems, components, a class,

or even a method.

~ To integrate two different CASE cultures, one effort is to construct an efficient

and seamless transforming mechanism between the method support environment

and those programming support toolsets. The mechanism extends the method

culture and is especially beneficial to an implementation design method (such as

IDEF4/C++) to attain code generation ability. Language supports should be

developed as modules in the mechanism to gain extensibility and malleability

for the integrated framework.

152

REFERENCES

Atkins, M. C. , and Brown, A. W. , 1991, Principles of Object-oriented Systems, In

McDermid, J. A. , editor, Software Engineer's Reference Book (Oxford,

England: Butterworth-Heinemann Ltd), Chapter 39,

Boehm, B. W. , 1976, Software Engineering. IEEE Transactions on Computers, C-

25, 1226-1241.

Boehm, B. W. , 1988, A Spiral Model of Software Development and Enhancement.

IEEE Computer, 21, 61-72.

Booch, G. , 1991, Object Oriented Design with Applications (Redwood City, CA:

The Benjamin/Cummings Publishing Company, Inc.).

Coad, P. , and Yourdon E. , 1991, Object-Oriented Design (Englewood Cliffs, NJ:

Yourdon Press).

Coplien, J. O. , 1992, Advanced C++ Programming Styles and Idioms (Reading MA:

Addison-Wesley Publishing Co.).

DeMichiel, L. G. , 1993, CLOS and C++: A Comparison, In Paepcke, A. , editor,

Object-Oriented Programming; The CLOS Perspective (Cambridge, MA:

The MIT Press), pp. 157-180.

Henderson-Sellers, B. , and Edwards, J. M. , 1990, The Object-oriented Systems Life

Cycle. Comrnunicanons of she ACM, 33, 142-159.

Kim, W. , Bertino, E. , and Garza, J. F. , 1988, MCC Technical Report: Composite

Objects Revisited (Austin, TX: Microelectronics and Computer Technology

Co.), ACA-ST-387-88, pp. 15-19.

Korson, T. , and McGregor, J. D. , 1990, Understanding Object-Oriented: A Unifying

Paradigm. Communications of the ACM, 33, 40-60.

Lippman, S. B. , 1991, C++ Primer (Reading, MA: Addison-Wesley Publishing

Co.).

153

Mayer, R. J. , and Edwards D. D. , 1990, IDEF4 Technical Report(College Station,

TX: Knowledge Based Systems Laboratory).

Mayer, R. J. , Keen, A. , and Wells, M. S. , 1992a, IDEF4 Object Oriented Design

Method Report (Dayton, OH: Integrated information Systems Evolution

Environment Project, United States Air Force AL/HRGA, Wright-Patterson

Air Force Base), AL-TR-1992-0056.

Mayer, RJ. , Menzel, C. P. , and Mayer, P, S. D. , 1992b, IDEF3 Process Description

Capture Method Report (Dayton, OH: Integrated Information Systems

Evolution Environment Project, United States Air Force AL/HRGA, Wright-

Patterson Air Force Base), AL-TR-1992-0057,

Mayer, R. J. , Benjamin, P. C. , Fillion, F. , Futrell, M. F. , and deWitte, P. S. , 1992c,

IDEF5 Method Report (Draft) (Dayton, OH: Integrated Information Systems

Evolution Envimnment Project, United States Air Force AL/HRGA, Wright-

Patterson Air Force Base).

Menzel, C. P. , and Mayer, R. J. , 1991, IDEF5 Concept Report, Final Technical

Report (Dayton, OH: Integrated Information Systems Evolution

Environment Project, United States Air Force AL/HRGA, Wright-Patterson

Air Force Base).

Meyer, B. , 1987, Reusability: The Case for Object-Oriented Design. IEEE Software,

March, 50-64.

Meyer, B. , 1988, Object-Oriented Software Construcrion (Englewood Cliffs, NJ:

Premice Hall).

Nelson, M. L. , 1990, An Object-oriented Tower of Babel (Monterey, CA: Naval

Postgraduate School), Technical Report.

Object Management Group, 1991, The Common Object Request Broker:

Architecture and Specification. OMG Document Number 91. 12. 1 Revision

1. 1.

154

Rutnbaugh, J. , Blahs, M. , Premerlani, W. , Eddy, F. , and Lorensen, W. , 1991,

Object-oriented hfodeling and Design (Englewood Cliffs, NJ: Prentice

Hall).

Schefstrom, D„and van den Broek, G. , Editor, 1993, Tool Integration:

Environments and Frameworks (Chichester, England: John Wiley & Sons

Luk).

Snyder, A. , 1986, Encapsulation and Inheritance in Object-Oriented Programming

Languages. OOPSLA '86 Proceedings, September, pp. 38-45.

Snyder, A. , 1990, An Abstract Model for Objec-Oriented Systems (Palo Alto, CA:

Software Technology Laboratory, Hewlett-Packard Laboratories), Report

STL-90-22.

Snyder, A. , 1993, The Essence of Objects: Concepts and Terms. IEEE Software, 10,

31-42.

Stroustrup, B. , 1990, The Annotated C++ Reference Manual (Reading, MA:

Addison-Wesley Publishing Co.).

Wirfs-Brock, R. J. , and Johnson R. E. , 1990, Survey on Current Object-oriented

Design. Communicarions of the ACM, 33, 104-124.

155

Iect: An yst:
Ontology How std
of Object-
oriented
technology
Version: 2 Date:

6/30/93

Term Glossary
eviewer: ocument

Number.

Date:

A stract class

A stracnon

Actor o lect

Agent object

Association

Attribute

Base c ass

Behavior

Class

lass hierarchy

Ac ass tiscrea o y or e
purpose of inheritance or for defining
methods and attributes that will be
inherited b lower-level classes.

eprocesso o y ocusmgon the
essential characteristics of an object that
distinguish it from other objects in a
s cified domain.
An object that can send message to other
objects. It is a synonym of "sender
ob'ect".
An agent o lect sen s messages to other
objects and receives messages from other
ob'ects as well.
Association is a relationstup between two
or more classes describing the semantics
hold b them.
An atmbute is a data variable held by the
objects in a class. Each attribute has a
value for each object instance. In IDEF4,
the term "attribute" has different
meaning. An attribute is a value-
retuming feature, and it can be further
cate orized into a slot or a function.
In ++, a "base class" re ers to a
su erclass.
ObIect behavior specifies how an ob]ect
acts and reacts, and how the state
chan csin terms ofmessa e- assin .
A template for defimng meth s and
attributes for a particular type of objects.
All objects of a given class are identical
in data structure and behavior but contain
different values for their attributes.
A tree structure representing the
inheritance relationship among a set of
classes.

156

ossary

ass operation

ass v e

omposite object

Constructor

Data member

Derived class

Destructor

Dynamic
polymorphism

Encapsulauon

Feature

An operauon can operated on and by
the class itself. Methods like
constructors can only be applied by and
on the class ~ the objects being ~ on haven't been created yet.
Examples such as a query for the
summary information of the class (how
many instances in this classY), or a
browsing function for a list of attributes
and methods of a class.

c ass vartab e is an attn ute espec y
used to describe the class structure. It is
shared by all the instances of the class. It
is implemented in C++ in terms of "static
member" declaration.
An o)ect at contains one or more other
objects, typically by storing references to
the objects as the return values of its
features.
A constructor is a method that creates
instances (objects) of the class and/or
initializes their states (by giving
attributes values). Constructors use the
class name as the function name. In
C++, constructors can be overloaded.
The imp ementauon of the attributes
defined in a C++ class definition.
In ++, a eiiv c ass" refers to a
subclass.
A destructor is a method that deletes
objects and free the memory they use.
Destructors can be overloaded in C++.
Destructors use the class name as the
function name.
The invocation o a method is not
determined until the run time. Example
such as C++ function overridin .
A mechanism in which data (attributes)
is packaged together with its
corresponding procedures (methods). In
object-oriented technology, the
mechanism for encapsulation is the
ob'ect.
In IDEF4, the term feature is a generic
term represents either an attribute or a
method.

157

Friend

enertc uncnon

ormanon g

Inheritance

Instance

Instaniianon

Iterator

Member function

Function or c s that is dec as
friend to a class can access private
definition of the class. This mechanism
is defined in C++ to pve a flexibility on
sometimes over-restricted information-
hidin rules.

e term generic ctton is a
synonym used in CLOS to refer to
"message". In CLOS, user can define a
"message" (a generic function) by using
the function "defgeneric". Note that the
methods that can be invoked by a generic
function use the same name as the

eneric function.
e tec ue o makmg the mternal

details of a module inaccessible to other
modules, protecting the module Irom
outside interference, and preveniing other
modules from relying on details that
mi ht chan cover time.
A mechamsm w ereby c asses can m e
use of the methods and attributes defined
in all classes which are their ancestors in
the structure of the class hierarchy.
Inheritance refers to the mechanism of
sharing attributes and methods using the
generalization relationship. In C++,
"inheritance" is also referred to as
"derivation".
A term used to refer to an o ject that
belon s to a articular class.
Instannanon is e process that creates
instances from a class (metaclass as
well .
An operation that contro s iteration over
a range of values or a collection of
objects. For example, sort operation of a

ueue.
A link is an instance o an association. It
is a "physical or conceptual connection
between ob'ects" Rumbau h).
The implementation of a method defined
in a class is referred to as a member
function in C++.

158

ossary

Message

Metao)ect

Method

Mulnple inheritance

Mu tip e polymorphism

Object

Operation

sl one o]ect to ano er that
requests the receiving object to carry out
one of its methods. A message consists
of three parts: the name of the receiver
object, the method it is to carry out, and
the ters the method ma uire.

etac ass isac s or scn g e
structure and behavior of other classes,
Its instances are themselves classes.

stances o metac ses are ves
classes, but they can also be considered
as objects. These classes are called
metaobjects. Metaobjects contain class
attributes and class operations (methods)
that can help to manipulate and query the
structure and behavior of the class that is
intended to describe.
A procedure attac to an o)ect that is
made available to other objects for ihe
purpose of requesting services of the
owner object. Most communication
between objects takes place through
invokin methods.
A scheme for structuring inheritance
relationship among classes where each
class can have any number of
su erclasses.
The mvocation of a method is based on
more than one parameters. Examples
such as C++ function overloading or
CLOS multi-methods.
A software packet containing a collection
of related amibutes (variables) and
methods (functions / procedures). The
term is used inconsistently in the
literature, sometimes referring to
instances and other times to classes. The
term object refers to a specific instance
of a class and possesses the
characteristics of that class.
An operation simply refers to a request
(message) that may be applied to or by
objects in a class. Itis a synonym of
"messa e".

159

ossaty

0 g

Parameterized class

Po ymorp ism

Private

Private derivation

Property

Protect

The assignment o m nple meanmgs to
the same method, allowing a single
message to invoke different methods
depending on the number and types of

arainetefs all it
caseo ov gmw ch

the same name is given to a method or
variable at two or more levels on the
same branch of a class hierarchy. The
name of the method which is the lowest
in the hierarchy takes precedence,
overriding the more general definitions
(methods) further u in he hierarch .
Parame class provides a template
for creating other classes. Similar classes
(array of integer, array of string) can be
created from same template by filling in
different values for the parameters that
the template carries. The term "generic
class" is a synonym of "parameterized
class".
The mechaiusm to hide different
implementations behind a common
interface, simplifying the
communications among objects.
Polymorphism means that the same
operation may behave differently on
different classes (ob'ects).
A declaration specifies that e ec ared
features are accessed only by their owner
class. Note that IDEF4 has a different
scope for general "private" definition. In
IDEF4, private features can be accessed
by their owner class and also aII the
derived classes.
In a private derivation, the inherited
nonprivate features of the base class
become private features of the derived
class.
Piopernes of an object is a synonym of
"attributes". Both are defined for
associatin values.
A declaration that lets the declared
features can be accessed only by their
owner class and the direct subclasses.
(C++)

Protec vanon

Pu c ertvanon

Return v ue

Routine

Single inherttance

ingle polymorphism

Static polymorphism

Virtual function

A protected vanon ets e ert
nonprivate features fiom the base class
become protected features of the derived
class. C++

ec on s ies that e dec
features are accessed by every class in
the

a pu c rtvanon, e crit
nonprivate features of the base class
become public features of the derived
class.

o]cot or a ta type at a receiver
object passes to a sender object to
res nd to that messa e.
In IDEF, rounne is u to re er to a
feature which is computational-initiating.
The term "routine" is a synonym of
"method", which is used to implement
object behavior. In the late design phase,
a routine can be further specified as a
function or a rocedure.
A scheme or structuring inheritance
relationship among classes so that each
class has only one superclass. Single
inheritance assures that all class
hierarchies will conform to a simple tree
structure.
The mvocanon of a method is based only
on the name of the receiver object.
Example such as C++ function
ovemdin .
The invocanon o a me od is
determined at compile-time. Example
such as C++ function overloadin .
In ++, only the class member funcnons
can be declared as virtuaL Virtual
functions, which are bound dynamically
at run-time, provide a way of hiding
(encapsulating) the implementation
details of a class inheritance hierarchy
from programs that make use of the class
hierarchy. Note that, only the member
functions that are declared as virtual can
be overridden b subclass.

LI-TSUNG HSIEH received a B. S. degree in Industrial Engineering from

Tunghai University, Taichung, Taiwan in 1988. He was a consulting assistant for

projects entrusted by the Ministry of Economic Affairs in Taiwan from 1987 to

1988. He served in the Army from 1988 to 1990. From 1990 to 1991, he worked as

a full-time teaching assistant with the Computer Center of the College of

Management at Tunghai University. He is currently a research assistant in the

Knowledge Based Systems Laboratory of the Industrial Engineering Department at

Texas A~ University. His research interests include object-oriented system

development, modeling methodology, and expert system applications. His

permanent address is 4F NO 3 LN 3, Hsintung Street, Taipei, Taiwan.

