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This research introduces an object-oriented implementation design method- 

IDEF4/C++. IDEF4/C++ is an extension of the IDEF4 object-oriented design method 

that incorporates C++ language considerations and practice to provide guidance and 

structure to ease the transition from an IDEF4 conceptual design to its implementation in 

C++. 

To guide the development of IDEF4/C++, three IDEF5 ontological models are built: 

(I) an ontology of general object-oriented concepts; (2) an ontology of the IDEF4 method 

concepts; and (3) an ontology of the C++ programming language. Together these 

ontologies form the conceptual foundation of this research effort. They also provide a 

formal platform for understanding the mappings between the terminology and primitive 

concepts in these domains. 

Extensions included in the IDEF4/C++ are: (I) an extended method syntax; (2) a 

transformation heuristic for transforming an IDEF4 conceptual design to an IDEF4/C++ 

implementation specification; (3) an IDEF3 model of the IDEF4/C++ design process with 

design evolution configuration managemenr, and (4) best practice guidelines for the 

application of lDEF4/C++, especiall focusing on design reuse. 

The thesis concludes with a discussion of an integrated framework for object-oriented 

system development. Without increasing the complexity of the IDEF4 method, 

IDEF4/C++ takes advantage of C++ language features and best practice experience to 



bridge the gap between the conceptual design phase and the implementation phase in a 

software development project. 
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CHAPTER I 

INTRODUCTION 

1. 1 Introduction 

In software engineering, the traditional software development process is usuaUy 

referred to in terms of the "waterfall" model (Boehm 76). Though further refining 

works on the model have related to different levels of detailing, the three most 

generally identified phases are analysis, design and implementation. Each of these 

phases possesses discrete activities, has its own objectives, and is governed by 

distinct philosophy. However, in recent years, the introduction of object-oriented 

technology has blurred the distinct boundaries between them (Meyer 87)(Korson & 

McGregor 90). The object-oriented technique combines the principles of 

encapsulation, polymorphism, and inheritance to promote software reuse and to 

reduce downstream errors and maintenance efforts. 

The object-oriented technology blurs the boundaries between these phases for 

several reasons. First, the elements (objects and their relationships) focused in each 

phase become more tightly connected. The objects and their relationships identified 

in the analysis phase cast a basic understanding of the problem domain. The design 

and implementation phases consequently follow this understanding and are based on 

these objects and relationships to conduct their own activities. Second, the system 

development activities are conducted as "modes of thought" rather than as 

sequential phases or iterations. The development team usually goes back and forth 

between modes of thought, performing tasks to refine the design, analysis and 

implementation, on the fly. The blur is especially obvious along the boundary 

This thesis follows the style and format of International Journal of Production Research. 



between the design and implementation phases (Meyer 87). An effective method 

must support the process of filling in the details from the analysis through the 

design specification and all the way to the working program. The promised benefits 

of object-orientation can only be obtained by integrating these activities into a 

seamless framework. This integration can also provide a paradigm for one of the 

goals of Computer Aided Software Engineering (CASE) - code generation from 

solution specification. 

1. 2 Motivation 

Unfortunately, object-orientedness means different things to different people 

(Nelson 90). There is still no general and widespread agreement on the object- 

oriented model; different object-oriented programming languages support different 

notions of objects, such as those graphic-based object-oriented design methods and 

tools (Booch 91, Rumbaugh 91). A method or a programming language's object 

model is important because it determines the built-in semantics the method or the 

language understands and is able to enforce. This variety between methods and 

languages' object models brings out a problem while making the transition into the 

implementation phase from the design phase in the software development process 

(where the boundary blurs most). The object model that a design is based on may 

be different from the one that the implementing language supports. More 

specifically, the "object-oriented" features provided by a design environment may 

not be supported by the target implementing language or vice versa. Different 

languages might give different interpretations (implementation) to the same feature. 

The designer may not be aware of this "Tower of Babel" in object-orientedness until 

the implementation process begins. When encountering this problem, occasionally 



the designers are forced to either change their original designs to suit the intended 

implementing language or switch to a proper target language. As a result, this 

dilemma increases the software development time and cost, and decreases 

application's performance as well, 

(a) (defctass UniversityEmpioyee Q 

( 
(name: accesstx name) 
(depanment: accessor depanment) 
(ssn: reader ssn))) 

(defctass Studem Q 

( 
(name: accesstz name) (~t: accessm depanment) 
(student-ID: accessor st-id))) 

(h) class UniversityEmployee ( 
protected: 

char «name; 
char «department; 
int ssn; 

public: 
char «get nameQ; 
void put name(char «); 
char 'get depanmentQ: 
void put department(char «); 
int get ssnQ; 

); 

class Student ( 
protected: 

char 'name; 
char «depanment; 
int student-ID; 

public: 
char «get nameQ; 
void put name(char «); 
char «get departmentQ; 
void put department(char «); 
int get student IDQ; 
void put student ID(int); 

); 

Figure 1-1. CLOS and C++ Code Examples of Name Conflicts. 

For example, both the Common Lisp Object System (CLOS), an object-oriented 

extension of Common Lisp, and the C++ object-oriented programming language 

support multiple inheritance but implement it in somehow different way. Multiple 

inheritance, which allows a subclass to inherit features from more than one 

superclass, is straight-forward if no inherited features are multiply defined in the 

superclasses. But if more than one superclass has defined (or inherited) the same 

features, the language has to provide a strategy for resolving the name conflict 

occurred in the subclass. The strategy reflects the approach the language constructs 

and supports multiple inheritance, and conducts the method selection process as 



well. CLOS and C++ adopt different appmaches of implementing this conflict 

resolving strategy. Basically, CLOS uses a class precedence list as a means for 

resolving the conflicts, which is in the order from most specific to least specific. On 

the other hand, C++ provides both "single-copy" and "multiple-copy" approaches&. 

For instance, consider that we have two classes: class UrtiversityErrtployee and class 

Student, their declarations in CLOS and C++ are displayed in Figure 1-1(a) and (b) 

respectively. If we define a class ResearcfrAssisrartr as a subclass of both 

UrtiversityErrtployee and Srudertt as shown in Figure 1-2(a)2, there will be a name 

conflict of the deparrrnertr slot because it is defined in both UrtiversityEmployee and 

Snttfertt (Figure 1-2(b)). CLOS uses a class precedence list to resolve the conflict 

and it will keep only one copy of department in ResearchAssistanl (Figure 1-2(c)), 

whereas C++ keeps both copies of departrrtenr implicitly (if the multiple-copy 

approach is applied). Both copies can be explicitly accessed by using class 

identifiers (Figure 1-2(d)). Because CLOS only keep one copy of department, the 

designer needs to determine which superclass is the department inherited from; does 

it refer to the research assistant's academic department or the department that hires 

him or her? Furthermore, the access to each of the department methods might be 

different and there might be conflicts in their contracts. Thus, it is necessary for the 

designer to decide which methods to be shadowed to hold the consistency. 

I If the inheritance link is declared as v i rt ua 1, then single-copy appnMch is adopted. Otherwise, 
multiple-copy is the default approach. See Section 6. 8 for more details. 
2 The Figures are presented in terms of IDEF4/C++ notation. Where boxes represent classes and "S" 
symbol represents a slot feature. See Chapter 4 for more details about the IDEF4/C++ syntax. 



(a) 
UniversityEmp Student 

' (defclass ResetuchAss(sttmt (UniversityBmptoyee Student) 0) 
Coact 

dnss ResesrchAssistnnt: public UniversityBmployee, public Student (); 

(b) (S) ~~m~ (S) apartment 

UniversityEmployee Student 

name conflict 

ResearchAssisrant 

(c) 
[S ) depanment (S) department 

UniversityEmployee Student 

(S) department 

ResearchAssistant 

CLOS only keeps one 
copy of mhenred feature 

(4) (S) ~~cut (S) department 

UniversityEmployee C++ implicitly keeps two 

copies. They csn be accessed 
through class identiriers: 

(S) deparunent 

(S) department 

esearc slsulltt 

~ UniversityEmployeeudepartment 

~ S mdenu: deparunent 

Figure 1-2. Different Name Conflict Resolutions of CLOS and C++. 



It is not our intent to judge which language is better and which is not, as 

different languages are designed for different intents. For example, one of the 

primary goals of CLOS is to gain flexibility and extensibility for the language, 

whereas C++ is more focusing on run-time efficiency and implementational 

simplicity. For the example illustrated above, mote design effort should be taken if 

CLOS is considered as the target implemening languages. 

The variety in interpretation (implementation) within the object-oriented 

paradigm therefore shadows the promise that the technique has proclaimed. 

Intuitively, the best solution is establishing a standard object model which every 

vendor of the implementing languages and the developer community would agree 

upon. Since object technology is still evolving, it is understandable that such a 

paradise will not appear soon. The need of extensibility for the design environment 

to support different implementing languages is therefore eminent. 

One approach to solving the problem is to provide language-dependent 

extensions for a language-independent design method. The idea is straight-forward. 

Before the designer goes into the detailing mode (which is very related to the 

implementation language selected), the generic design environment should be able 

to be extended seamless in order to conduct this process efficiently. 

More specifically, the design environment should be able to support the 

evolutionary change from the conceptual design all the way down to the 

implementation, smoothly and elegantly. Our intent is to construct an extensible 

environment for designers to be able to move through the process seamlessly. In 

addition, if an intended implementation language is found not to be expressive 

enough for the specific design, by using a certain mechanism provided in the design 

Here we only give a simplified example. However, for a more complicate design, there might be 
some compromise to the reality and tradeoffs between picking up different approaches. 



environment, the designer can backtrack to the generic design and evolve and 

extend the design towards another target language. 

1. 3 Research Goal and Objectives 

The specific goal of this research is to construct a C++ extension for IDEF4, an 

object-oriented design method, as a specialized design environment for the C++ 

implementation of a system. To achieve this goal, several objectives are identified. 

We group these objectives into the following: 

1. Analyze and understand the domain: 

~ To capture the ontology of object-orientation. 

~ To capture the ontology of the implementation independent IDEF4 object- 

oriented design method. 

~ To capture the ontology of the C++ object-oriented programming 

language. 

2. Design and develop the extended IDEF4/C++ method: 

~ To develop a C++ extension of IDEF4 method. 

1. 4 Organization of the Thesis 

The results of this research are presented and organized as follows: 

Chapter I introduces the object-oriented software development process, and 

identifies the evidence of various dialects among the object-oriented 



society, which motivates the activity of this research work. The 

research objectives is stated in the chapmr as well. 

Chapter II reviews related literature and presents the ontologies of the domain, 

which include core concepts and terminology used to conduct the 

Chapter III discusses the basic concepts of the IDEF4 object-oriented design 

method family (IDEF4 and IDEF4/C++). The discussion is 

intended to lay out a foundation for the succeeding chapters. 

Chapter IV presents the syntax of the extended method - IDEF4/C++. A 

number of examples and C++ code are given along with the 

introduction of the notations, 

Chapter V specifies the IDEF4/C++ design development procedure. An IDEF3 

dynamic model describing the design process with multiple 

developers / development teams is also presented. 

Chapter VI discusses the principles and techniques of the use of the method. 

The discussion focuses on issues of design with reuse in 

IDEF4/C++. We conclude the chapter by summarizing rules of 

thumb for reuse. 

Chapter VII gives the conclusion drawn from this thesis. Future extensions of 

the research are also discussed. 



CHAPTER II 

BACKGROUND 

2. 1 Literamre Review 

Both (Meyer 87) and (Korson 4 McGregor 90) mentioned the blurring between 

design and implementation phases in the object-oriented software development. 

Korson and McGregor suggest that the transition from design to implementation 

should be smooth and this transformation should be part of the design process. 

Meyer suggests that this is basically a technical problem (Meyer 88) and goes on to 

present a tool named Eiffel, claiming that Eiffel is a language for both design and 

implementation. 

However, there is a major distinction between the philosophy and design 

intention of IDEF4 and those of Meyer's that we would like to address in the first 

place. We consider design and implementation4 as different activities, whereas 

Meyer places the design process only at a higher level of abstraction than 

implementation (Meyer 88). Design and implementation are different in terms of 

the notion of correctness (Mayer 90). More specifically, the aim of the 

implementation activity (the programming activity) is to produce a specific single 

executable implementation which will run correctly and ultimately bug-free. This is 

referred as P-Correct. On the other hand, the aim of the design activity is to narrow 

the range of available choices so as to expedite the eventual acquisition of a correct 

solution for the problem. This is referred as S-Correct. Figure 2-1 (Mayer 90) 

describes the difference in the refinement process in these two activities. This 

figure shows that the objective of design evolution is to gain a larger probability for 

4 The term implementation used here mainly refers to the acdvity of programming. 
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conect implementation&. Based on this philosophy, unlike Meyer's approach 

(Eiffel), we choose to extend an existing logical design method into a language 

dependent implementation design methotL That is, we propose extending the 

generic IDEF4 to IDEF4/C++, rather than turning a programming language into a 

design tooL 

Program 
Rellnement 

P-Correct but not 
executable Conect but not 

consistent with design 

before 
refinement 

P&otretx and 
closer to 

executable 

ottecl 
consistetn with 

desi 

Consistent with design 
but not correct 

after 
refinement 

P-Correct but not 
executable 

O Conect and 

executable 

Correct but not 
consistent with design 

Correct snd 
ccnsistent with 

design 

onsistent wtth desi 
t not 

Figure 2-1. 

Design Refinement and Implementation Refinement: P-Correct and S-Correct. 
Reprinted hom (Mayer 90). 

S The larger the S-Correct proportion of the design means the more chances to derive a correct 
implementation from the design model. 



(Nelson 90) discusses the subject of variations in object-orientedness. He urges 

an agreement on this area, at least in the basic terminology. Alan Snyder has 

developed a common framework for general object-oriented terminology. He 

proposes an abstract object model (Snyder 90 and 93) which has a good 

organization on the basic concepts and terminology. Relating to this work is the 

specification (OMG 91) prepared by the Object Management Gmup, which makes a 

pmmise to become the standardization in this fiekL 

Several object-oriented design methods including (Booch 91, Coad & Yourdon 

91, and Rumbaugh 91) all have comprehensive discussions of the field. We include 

the survey on these methods to gain a bmader understanding of object-oriented 

design models. (Stroustrup 90), (Lippman 91), and (Coplien 92) give a thorough 

overview on the C++ language, where issues such as type system, multiple 

inheritance, dynamic binding, function overloading / overriding, class template etc. , 

are addressed and discussed in these sources. (DeMichiel 93) compares the 

distinction between Common Lisp Object System (CLOS) and C~, which provides 

some basic notions for understanding the design philosophy behind C++. 

2. 2 Domain Ontologies 

Every method or language has an object model, which plays the role as the 

foundation for its notions of objects. The object model behind a method or a 

language is important because it provides the underlying constructs for specifying 

the built-in semantics that the method or the language understands and is able to 

enforce. Therefore, before extending the generic IDEF4 object-oriented design 

method to a specification for the C++ implementation purpose, the understanding 

(analysis) of the object models in the domain (IDEF4 and C++) is essential and 
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necessary. This section presents the results of using IDEF5 ontological schematics 

for capturing the ontology models of the IDEF4 method and the C++ language, as 

well as the general concepts of object-orientedness. The concepts and syntax of 

IDEFS method will not be discussed in the report, details of the method can be 

referenced in (Mayer 92c). However, major efforts lay in the process of "name- 

coining", which results in a set of core concepts for building up the target semantic 

models, and establishing the terminology to be used in descriptions of the domain. 

Section 2. 2. 1 presents the model of general object concepts. Section 2. 2. 2 

presents the IDEF4 object model and Section 2. 2. 3 presents the C++ object model. 

In these sections, only the summaries of the core concepts and key terms are 

presented, 

2. 2. 1 Ontology of General Object-oriented Concepts 

Establishing the common concepts and perceptions of an object-oriented model 

can greatly enhance the communication among object-oriented system developers, 

users, and researchers. In this section, we identify a general object model for such 

purpose, which is intended to provide an organized presentation of terminology and 

primitive concepts for the research work. IDEF4 (Mayer 92a), Booch's method 

(Booch 91), Rumbaugh's Object Modeling Technique (OMT) (Rumbaugh 91), and 

C++ (Stroustrup 90, Lippman 91 and Coplien 92) are all the sources for this 

ontology research. In addition, the ontology is also elaborated from the abstract 

object model used in the Object Management Group*s (OMG) Common Object 

Request Broker Architecture (CORBA) (OMG 91). The following summarizes the 

core concepts and the key terms identified from the above sources. 
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~ An object is an identifiable, encapsulated entity that is capable of 

requesting and/or providing one or more services. It has state, is 

capable of performing some well-defined behavior and has an 

unique identity . 

The identity of an object is denoted by the term handle, which is 

a value that unambiguously identifies an object. The name of an 

object can be a handle to that object. 

~ The state of an object is captured in terms of a set of arrribure- 

value pairs . 

~ The behavior of an object is captured in terms of a set of 

operarions that the object can perform. 

~ A feature is a generic term for presenting a particular 

characteristic of the state or the behavior of an object. 

A feature can be an attribute or an operation. 

Packing related attributes and methods together is called 

encapsulation. Encapsulation protects data from corruption by 

other objects and hides low-level implementation details from the 

rest of the system. 

The mechanism for encapsulation is the object. 

Objects interact with each other in terms of issuing requests. 

An object that requests services is called a client object. An 

object that provides services is called a server object. 
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~ A client object requests a service from a server object by issuing 

the request to the server object. 

A request is an event. 

~ A service is a computation that may be performed to respond to a 

~ The infortnation associated with a request consists of an 

operation, a target server object, and zero or more parameters 

required to provide the service. 

An operation is specified to denote a service that can be 

requested. It has an associated signature which describes the 

types of the request parameters and return values. 

A method is an implementation of an operation. It is the code 

that may be executed / invoked to perform a requested service. 

A service is pmvided by means of performing an operation. 

An operation can be generic. A generic operation can be 

performed differently by different target objects by invoking 

different methods. 

~ A binding is a computation that results in the selection of the 

methods to perform a requested service. Binding can be dynamic 

binding or static binding according to the time that the decision 

is made. 
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~ A type is a specified predicate defined over expressions to serve 

the purpose of membership checking or binding validation. 

Therefore, the type of an operation can be considered as the 

signature of the operation. 

~ A class is a specified template for defining attributes and 

operations for a particular type of objects. Objects of the same 

class have the similar sets of attributes and operations. Class can 

be instantiated to cteate objects. 

An interface of a class is a description of operations and 

attributes defined in that class. It includes the signatures of the 

operations, and the types of the attributes. 

Every class is a type, but not every type is a class. Type 

classifies objects according to a common interface they share. 

Therefore, the type of an object can be considered as the interface 

of the class of that object. 

~ Class inheritance is a specification of class definitions based 

upon the generalization / specialization relations between classes. 

Inheritance can be multiple inheritance or single inheritance. 

~ Object aggregation is a relationship in which one object is 

composed of other objects. 



2. 2. 2 Ontology of the IDEF4 Method Concepts 

In this section, we summarize the ontology of the object model of the genetic 

IDEF4. The ontology is presented in terms of a set of the key concepts and coined 

terminology described as follows. 

~ An IDEF4 model consists of two submodels: a Class submodel 

and a Method submodel. These submodels are connected by 

means of a mechanism called Dispatch Mapping. 

The IDEF4 class submodel is composed of Class Lattice 

Diagrams, Inheritance Diagrams, Type Diagrams, and 

Instantiati on Diag rams. 

The IDEF4 method submodel is composed of Method Taxonomy 

Diagrams and Client Diagrams. 

Each class in IDEF4 is associated with a Class Invariant Data 

Sheet (CIDS'), which specifies the constraints for the instances of 

this class. Information such as direct present features, 

superclasses and subclasses are also documented here. The 

corresponding inheritance diagrams and type diagram of a class 

are referenced on its CIDS. 

~ In IDEF4 the term feature is used as a generic term to refer to 

both attributes and routines. Attributes denote value-returning 

features. Routines denote computation-initiating features. 



17 

~ A routine can be refined as a procedure or a funcnon in the late 

(detailing) stages of a design. An attribute can be refined as a 

function or a slot. 

~ Routines (functions and procedures) are behavioral features; they 

denote the behaviors of the instances of a class. Behavioral 

features are listed in a class invariant data sheet (CIDS) according 

to the generic behaviors they identify. 

~ Inheritance relationship between classes are described in 

inheritance diagrams. 

Access of the features presented in a class can be public or 

private; public features are accessible to other classes, private 

features are accessible only to the owner class and all its 

subclasses. 

~ A method taxonomy diagram describes a generic behavior. 

~ A method taxonomy diagram classifies a generic behavior into 

several method sets according to the similarity of the constraints 

on them. Method sets in a method taxonomy diagram are 

arranged in a more specific order fiom left to right or from top to 

bottom. 

~ Each method set in method taxonomy diagrams is associated with 

a Contract Data Shee! (CDS), which specifies the constraints that 

the implemented methods in this method set should satisfy. 

~ A contract is a set of constraints for the associated method set. 
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~ Methods in a method set must be implemented according to the 

contract associated with the method set. 

~ Behavioral features defined in the class submodel and method 

sets in the method submodel are mapped with each other through 

dispatch mapping. 

~ Conflicting constraints are those constraints that redefine or 

shadow the constraints from previous method sets. Non- 

conflicting constraints are sets of pre- or post-conditions that 

should be applied with the inherited constraints. 

Type diagrams describe the aggregation relationship between 

classes. Type links are used to represent the relationship. 

The type of a feature in a class is specified as the class that is 

connected by a type link. Predefined types are collected in the 

User Predefined Data Type List associated with the method 

submodel. 

Only value-returning features, such as functions and slots can be 

shown in type diagrams. 

~ Type links have different kinds. Type links can be no inverse, 

with inverse, or with partial inverse. 

~ A client diagram describes the internal algorithmic structure (i. e. , 

subroutine calls) of a behavioral feature. In a client diagram, a 

supplier routine is called by a client routine. 
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~ Routines in client diagrams usually are shown with their defining 

classes. If a class associated with the routine is not specified, 

then a dynamic (run time) binding will occur in the 

implementation. 

~ Class lattice diagrams provide a broad view for the lattice of 

either the whole class submodel or the focused part of the 

submodel. 

~ Instantiation diagrams are associated with type diagrams in the 

class submodel. Instantiation diagrams describe the anticipated 

situations of composite links between instantiated objects that are 

used to validate the design. 

2. 2. 3 Ontology of the C++ Programming Language 

This section presents a set of key terms and the core concepts for the ontology of 

C++. We want to emphasize that the ontology is discovered and documented with 

the intent of only mapping significant characteristics of the language to the 

primitive object-oriented concepts; rather than focusing on the language syntax or 

structure. 

~ C++ derived class is a synonym of "subclass" in general object 

terminology. 

C++ base class is a synonym of "superclass" in general object 

terminology. 
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~ C++ provides three feature accesses: public, private, and 

protected. Public features can be accessed by the whole system. 

Private features can be accessed only by the owner class. 

Protected features can be accessed by the owner class and its 

derived classes. 

~ A derived class inherits those non-private features deflned in the 

base class. 

~ Private features in base classes can not be inherited by the 

derived classes. Private feature access control provides a means 

for implementing encapsulation. 

Derivation in C++ means inheritance. C++ provides three types 

of derivations: public, private, and protected. 

Non-private features of the base class become protected features 

of the derived class in a protected derivation. 

Non-private features of the base class become private features of 

the derived class in a private derivation. 

In a public derivation, a derived class inherits a base class's non- 

private features without changing their feature access. 

~ A virtual derivation in a multiple inheritance is used to prevent 

the name conflicts of the inherited features. 

~ Features of a class are called class members in C++. Members in 

C++ classes are data members or member funcnons. 
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~ C++ data members implement the slots defined in a class. 

~ C++ member functions implement the functions or procedures in 

a class. 

~ C++ virtual function overriding is an example of dynamic 

polymorphism, which is also called run-time polymorphism or 

late binding. The invocation of a function is determined at run- 

time. 

C++ function overloading is an example of static polymorphism, 

which is also called compile-time polymorphism or early 

binding. The invocation of a function is determined at compile- 

time. 

~ C+e class template declaration implements the concept of 

parameterized class. 

~ C++ friend declaration provides a means to break encapsulation 

(information hiding). Classes or functions declared as friends to 

a class can access not only the non-private features but also the 

private features of that class. 

~ C++ stan'c class member declaration implements the use of class 

variables and class operations. Class variables and operations are 

the members that only keep one copy among all the instances of a 

class. 

~ Pure virtual member functions construct abstract base classes. 

Member functions declared as pure can have no function bodies 
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implemented, which prevents any creation of instances from an 

abstract base class. 

~ Nested classes are the classes defined in other classes' 

definitions. The visibility of a nested class is limited to the scope 

of its enclosing class. 

Note that we use request instead of the traditional term message for several 

reasons. One major reason is that message serufing implies concurrent execudon by 

the client and server objects (between the sender and the receiver). However, The 

intent is not to present an unified object inodel nor to compare and judge the various 

dialects in the object society (by saying who's right and who's wrong). Instead, we 

carry out these ontological models to form the boundary for our research domain. 

In other words, these models together intend to provide and define the primitive 

object concepts and terminology that can be used in this research work; especially, a 

set of terms that we can use for communication. A glossary of the terminology 

identified is given in Appendix A. 
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METHOD CONCEPTS 

3. 1 Intmduction 

IDEF4 family are methods for object-oriented design; they are not object- 

oriented programming languages (OOPL). However, basic object concepts 

supported by either a design method or a programming language are similar. The 

major elements for constructing an object-oriented system are commonly identified 

as classes, features, and methods. These basic elements are incorporated into the 

IDEF4 method family and form the foundation of IDEF4 and IDEF4/C++. In this 

chapter, we will discuss these basic method elements and their representation in the 

methods as well. Basic concepts such as class and type, class and object, class 

inheritance, feature taxonomy, feature type, method taxonomy, contract, and 

method set are included in the discussion. 

A good way of thinking of an object-oriented system is of a space which 

consists of a set of independent but cooperating objects. Each object has state and 

behaviors. The state of an object is captured by a set of attributes with values 

assigned, whereas the behaviors are actually implemented by a set of methods. In 

the system development process, these objects are to be classified into a set of 

"packages" according to the common state and behaviors that they possess. Both 

the state and behaviors are characterized by a set of features in the design 

evolution, and these "packages", in the common object-oriented terminology, are 

called classes. Object-oriented design and programming activities tend to define 

these features and methods for classes. However, a novice in object-orientedness 

will often confuse the term type, class, and object. 



3. 2 Classes 

3. 2. 1 Classes vs. Types 

Each class is a type, but not every type is a class. A class is specified by the 

definition of a set of local, state-defining attributes and of a set of methods that 

define the behaviors of the instances of that class and their relationship to the 

instances of otha classes that make up the system. In other words, a class is a data 

structure that includes a set of state-defining attributes and a set of methods that 

apply to the instances of that class. A type, on the other hand, is specified by a 

predicate defined over a set of expressions to serve the purpose of type checking or 

operation binding. Many object-oriented languages have used run-time type 

checking to ensure that the requests that are sent to an object are understood by that 

object. The type of an operation is referred to as the signature of that operation 

(signature type). Generally, a class can be instantiated to create objects in the 

system, whereas type classifies objects in terms of the common interface of their 

defining classess. In other words, the type of an object can be considered as the 

interface of the class which that object belongs to. In this context, one of the 

important properties of objects is the property of substitution (Atkins and Brown 

91), which states that objects providing similar operations can be used exchangeably 

if only the common behavior is required. In this sense, inheritance - a mechanism in 

which subclasses possess common behaviors defined in superclasses, therefore 

suggests that the type of an object should be associated with its class, and that the 

instances of a subclass should be able to used in all the places where instances of the 

superclass are expected. In other words, this formalizes the concept that instances 

of a subclass are also instances of its superclass. Such a concept has formed the 

Recall that an interface of a class is a description of the operations and attributes defined in that 
class. It includes the signatures of operations and the types of attributes (Section 2. 2. 1). 



basis of those strong-typed object-oriented languages, such as C++. C++ 

implements this concept in terms of type conversion, which enforces an efficient 

request dispatch scheme and implements dynamic polymorphism (see Section 6, 5). 

3. 2. 2 Classes vs. Objects 

The self-referential definition of classes and objects, in which an object is 

defined to be an instance of a class and a class is defined to be a description of 

similar obj ecrs, is often confusing. The terms class and object are usually heavily 

overloaded in the object-oriented literature. In (Mayer 92a), the meanings that the 

term class may refer to are summarized into the following: 

categories, or types, of objects in the real world (real- 

world perspective); 

data types representing categories of objects (data-item 

perspective); and 

modules of associated operations that define data types 

(module perspective). 

The meanings that the term object may refer to are summarized as: 

real-world objects (real-world perspective); and 

data items belonging to one class or another (data-item 

perspective). 



26 

Consequently, class and object are defined by each other. We clarify this 

confusion from the perspective of the system analysis and design processes. In the 

system analysis process, one of the objectives is to identify the real-world objects 

from the problem domain (real-world perspective for object). These real-world 

objects are then classified into classes (real-world perspective for class) in the 

design pmcess. Extra characteristics (features or classes) may be added for 

constructing an object model which provides a solution to the problem (data-item 

and module perspectives for class). Applying the solution to the problem is 

therefore the process of instantiating and activating the instances from those model 

classes. The object instances existing in a computer that forms the solution domain 

are therefore referred to as model objects (data-item perspective for object). 

In class-based systems, the analysis focuses on real-world objects, the design 

focuses on classes of model objects. The classes are fabricated, rearranged, or 

synthesized in the design process to form the solution model. Each class contains a 

set of feature definitions that characterize the state and behavior of the instances of 

that class. The set of feature definitions consists of attributes and methods. The 

attribute definitions are used by the instances of the class to store their state. The 

methods characterize the behavior of instances of the class. 

3. 2. 3 Class Box 

Classes aie the major syntactic construct in the IDEF4 method family, as in all 

class-based object-oriented formalisms. In IDEF4 and IDEF4/C++, a class is 

represented by a square-cornered box (see Figure 3-1) with the name of the class 

listed below the double line at the bottom of the box. IDEF4 requires that the first 

letter of the class name be capitalized. The features of the class are also displayed 
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in the Class Box with private features displayed below the export line and with 

public features displayed above the export line7. Various feature symbols, prefixed 

to the feature name displayed in the class box, may also be used to provide 

additional information about the role that the feature plays. For each class defined, 

IDEF4 method family allows the attachment of class-invariant constraints using 

class-invariant data sheet (CIDS). These class-invariant constraints represent 

additional information about the definition of a class that is true for all instances 

created by the class at all times. The class-invariants described in a design provide 

constraints on the implementation of the design and serve as part of the 

specifications for a class. s 

Public Peatures name 

address 

employee id 

Private Features 
salary 

wort schedule 

Figure 3-1. Class Box in IDEF4. 

3. 2. 4 Class Inheritance 

One of the most distinguishing characteristics of object technology is 

inheritance, esperially multiple inheritance. Multiple inheritance allows a subclass 

to inherit features from more than one superclasses. The concept of inheritance 

7 IDEF4/C++ extends this representation with the addidon of the display of protected features. See 
Chapter IV for more details. 
S In an IDEF4/C++ implementation design, these CIDSs are the major sources for coding C++ class 
definitions. Section 4. 3. 6 gives the detailed discussion. 
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provides a means of organizing related classes into an inheritance hierarchy and 

supports for the reuse of methods and features in terms of subtyping (refer to 

Chapter VI for reuse by inheritance). The inheritance mechanism operates and 

follows the specialization/generalization relation. That is, the inheriting class 

(subclass) is a specialization of the class from which it inherits (supefclass), and the 

inherited class (superclass) is a gentian of the class (subclass) that inherits it. 

Menagm and 

Pmject Manager 
inherits the definition of 
compute~y fmm 
Person 

Person 

Wage Mlxln 

Manager Employee 
Wage Employee 
inherits the definition of 
hour rate fiom 
Wage Mixin end 
redefines the inherited 

compute~ay 

compUte~y 

Project Manager 

Wage Employee Wage Programmer 
inherits the redefined 

compute~y 

Wage . Programmer 

Figure 3-2. Representation for Class Inheritance in IDEF4. 

Figure 3-2 illustrates the representation in IDEF4 family for modeling a class- 

inheritance hierarchy. The arrows, in the illustration, point from superclasses to 

subclasses. In the figure, Manager is a subclass of the class Person; indicating that 
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any instance of Manager is also a specialization of an instance of Person. 

Furthermore, any behavior exhibited by a person will also be exhibited by an 

instance of Manager unless the behavior is specialized or redefined in the definition 

of the Manager class. In the example, the class Employee is a direct subclass of 

Person and the class Wage Employee is an indirect subclass of class Person. Each 

subclass inherits the characteristics (features) associated with its direct and indirect 

superclass(es). For example, the class Wage Employee inherits the features from 

both the Wage Mixin and Employee classes and redefines the feature compute~ay. 

In the inheritance hierarchy, features reappearing in the subclasses indicate that 

those features are redefined (additional constraints or a new definition) in the 

subclasses. The compute~ay feature is first presented in class Person, but 

redefined in class Wage Employee, 

From the module point of view, inheritance is a macro-like "virtual copy" 

operation: all features associated with a superclass are automatically inherited by its 

subclasses, with the exception of those features that are redefined in the subclass. 

For example, in Figure 3-2, the Person class defines a feature named compute~ay. 

This feature will be inherited in all of its subclasses: Manager, Project Manager, 

Employee, Wage Employee, and Wage Programmer. The definition for 

compute~ay in Manager, Project Manager, and Employee is identical to that in 

Person. However, because compute~ay reappears in Wage Employee, it is said to 

be "redefined" for that class and its subclasses. Since Wage Programmer is a 

subclass of Wage Employee, the definition applied to the compute~ay in 

Wage Employee-will be the definition for the compute~ay in Wage Programmer. 

A subclass is able to inherit (copy and use) any feature of its superclasses, but 

not vice versa. The notion of inheritance conflicts with the traditional notion of 

encapsulation (information-hiding) (Snyder 86). This violation, because it is 

allowed in a controlled way (and in one direction only), is one of the keys to the 
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power of the object-oriented paradigm. A pmperly s ructured OOD uses inheritance 

facilities to minimize duplication of modules. The IDEF4 method is focused on 

structuring both classes and methods into two inheritance hierarchies - class 

inheritances and method taxonomies to ensure that the resulting designs have no 

duplication. 

(S) amue 

{S) emhlatyee~ 
(R) ~ 

(S) project 
(A) schedule 

Coaaultaut 
(S) hour rate 

(S) project team 

Programmer 

{I R) pay (! R) pey 

Hourly~old Consultant Hourly~old Programmer 

Figure 3-3. Partial Inheritance Diagram for an Employee Class. 

In the IDEF4 method family, the class inheritance relationships are represented 

in the inheritance diagram as shown in Figure 3-3. An inheritance diagram provides 

information that describes the classes, their features, and any redefinition of 

features. For example, the reader familiar with IDEF4 syntax can determine that an 

instance of Hourly~aid Programmer inherits all features of the classes Employee, 



31 

Programmer, and Wage hfixin. Furthermore, it can be seen that the feature Pay is a 

routine that has been redefined in both Hourly~aid Programmer and 

Hottrly~aid Consultant. The details of inheritance diagrams will be discussed in 

Section 4. 3. 

3. 3 Features 

"Feature" is a generic term used to capture either the state or behavior of 

instances of a class. In the IDEF4 method concept, a feature may be value-returning 

or side-effecting. For example, the class Employee has a feature salary that returns 

(value-returning) the salary of an employee, and a feature prinr~aycheck that prints 

out the employee's paycheck (side-effecting). However, whether a given value- 

returning feature is implemented by storage or by computation is functionally 

irrelevant in the initial design. That is, whether salary is implemented as a storage 

(a variable) or whether the value is computed from other features of the employee (a 

function) is not necessarily of concern in the initial design stages. This capability of 

the delay of decision-making is supported in IDEF4 methods by the hierarchy of 

feature taxonomy shown in Figure 3-4, which is presented by using the class 

diagram syntax. 



Value 

Attribute Routttte 

slot 

Figure 3-4. Feature Taxonomy Hierarchy 
Reprinted born (Mayer 92a). 

3. 3. 1 Taxonomy of Features 

The feature taxonomy allows features to be characterized in more general 

representation initially; then, gradually, to be defined more specifically as the design 

evolves. For example, a designer might first specify a characteristic of a class as a 

feature. Then, as the design evolves, the designer can specialize the definition of 

that feature to an auribute, a routine, a slot, a function, or a procedure as shown in 

Figure 3-4. 

Attributes represent those features that return values when queried (value- 

returning), whereas routines represent the features which, when appropriately 

triggered, will initiate a computational operation. Note that attributes and routines 

are not mutually exclusive. Along the evolution of the design process, attributes can 

be refined into slots or functions, and routines can be refined into functions or 

procedures. Slots are those features that are characterized as storage-type variables. 

Functions are features that are both value-returning and computation-initiating; they 
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return a value by computing it whenever queried. Procedures are computational 

features that do not return any values; they are only executed for their side-effects. 

3. 32 Inheritance of Features 

All features defined in the superclass are automatically inherited by the subclass 

through the inheritance of classes. Figure 3-5, for example, shows that the class 

Employee has a feature pay. Subclasses of Employee such as Wage Employee and 

Safary Employee inherit the pay feature from Employee. 

Feature pay defined in 

Employee 

Subclass/Superclass 
rehuions Employee 

Salary Employee 
Wage Employee 

Salary Employer inherits the 

fesrure pay fmm Employee 

Wage Employee inherits the 

feature pay fmm Employee 

Figure 3-5. Inheritance of Features. 

If pay is implemented as a computational feature, then using the general 

payment calculation of employee for a wage employee would be inefficient. 

Therefore, it might be desirable to redefine the pay for Wage Employee that it will 

use the more specialized calculation for those wage employees. This. specialized 
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calculation would be invoked instead of the more general pay. Thus, the more 

specialized feature "shadows" (redefines) the more general feature. Figure 3-6 

illustrates a case in which feature pay in Wage Employee shadows (redefines) the 

generic pay in Employee. The Salary Employee class continues to inherit pay &om 

Employee. 

Subclass/Superetssa 
relations 

Pesmre pay defhed m 
Employee 

'Salary Employee Wage Employee 

Salary Empkryee inherirs the 
feature pay fmm Employee 

Wage Estp/oyee redefines the 

feature pay 

Figure 3-6. Redefining Inherited Features in Class Iriheritance. 

3. 3. 3 Presence of Features 

The presence of a feature indicates the way the designer intends to associate that 

feature with a class (i. e. , defined in the class, redefined in the class, or an inherited 

feature). Figure 3-7 shows the classification for the kinds of "feature presence" 

provided by IDEF4. 

Using this classification scheme, a feature that is associated in any way with a 

class is said to be present in the class. Those features whose names are displayed in 

the class box of a class A are said to be directly present in A. Those features present 
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in a superclass B of A axe considered to be present in A as well, and are actually 

inherited features of A. Featuxes of A that axe both directly present and inherited in 

A are redefined in A. They are dixectly present because the class A is giving 

additional or revised infortnation (constraints) about them that is not pxesent in the 

superclasses of A. Featuxes that axe directly present but not inherited in A are said 

to be defined in A; those that are inherited but not directly present are said to be 

virtual in A9. 

Figure 3-7. Classification of the Presence of Features. 

For example, Table 3-1 categorizes the pay feature of the class hierarchy 

described in Figure 3-6. Table 3-1 shows the classification for the pay feature with 

respect to each class in the hierarchy as 1) present, directly present, and defined in 

the Employee class; 2) present, inherited, and virtual in the Salary Employee class; 

and 3) present, directly present, inherited, and redefined in the Wage Employee 

class. 

9 The tenn 'vutual' addressed here is different fmm the ones used io C++. In C++, 'virtual function' 
is used to enforce the ruu-time binding mechanism, aud 'vinual' inheritance is used to resolve the 
name conflicts occurred iu a multiple inheritance. 
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Directly Inherited 

Present 

Defined Redefined Virtual 

Em lo ee 

Salary 

Em lo e 

Wage 

Em lo ee 

X X 

X 

X 

Table 3-1. Presence of the Feature Pay in the Employee Class Hierarchy. 

3. 3. 4 Type of Features 

In the IDEF4 method family, value-returning features have a return type 

defining the type of their return value. The return type can be a primitive type such 

as integer or character supported by an implementation language; a class that 

defined elsewhere in the design; or a collection of other classes. From the design 

management point of view, the return type of a feature provides a means of 

expressing other associations between classes. These associations between classes 

are not visible in the class inheritance lattice presented in the inheritance diagrams. 

In the IDEF4 method family, they are captured in the type diagrams. Experience 

has shown that these associations are as important as inheritance relationships 

among classes. The management of these associations is critical to the development 

of large object-oriented systems. Only through the careful study and design of types 

of features, can the development team capture the intended domain relations and 

evolve the design in an orderly fashion. 
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Programmer 

Figure 3-8. A Partial Type Diagram Defining Types of Features. 

Figure 3-8 illustrates an example of a type diagram that defines the feature- 

return-type relations. The Project Manager class defines two features (proj ecr and 

project ream). Feature project returns an object of class Project, specifying the 

current project that the project manager is conducting. Feature project team returns 

a set of objects of class Programmer, specifying the members in the project team 

under that project manager. The class Programmer also defines a feature project 

which specifies the current project that the programmer is working on. 

3. 4 Methods 

As discussed previously, a class may have features that define the behaviors of 

its object instances. The features that define behaviors are computation-initiating, 

and by definition, they can be routines, functions, or procedures. Accordingly, the 

functions and procedures are specializations of routines (see Figure 3-4). These 

computation-initiating features are listed in groups according to the generic 
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behaviors they specify in CIDSs. For example, consider a Drawable Object class 

that might have a generic behavior, d'raw, which is specified in its CIDS. For all the 

drawing behaviors possessed by the instances of the Drawable Object class, 

draw m screen and chaw roti rtrer, they will be included under the generic draw 

behavior. However, the feature kinds (routines, functions, or procedures) of 

draw to screen and draw ro~rinier might change over the evoludon of the design. 

3. 4. 1 Methods, Contracts, and Method Sets 

In OOPLs, each computation-initiating feature is implemented by a single 

method That method provides the required computation for the behavior specified 

by the feature. However, the notion of a method in IDEF4 is not the same as the 

usual notion of a method from an object-oriented language point of view. In object- 

oriented programming, a method is an executable piece of code which 

algorithmically specifies the computation to be performed by means of a set of 

language statements. For example, a C++ member function. In IDEF4, on the other 

hand, methods are defined by the contract that they must fulfill. In fact, IDEF4 

does not specify an individual method; rather, method sets. Any of the methods in 

the set can fulfill a specific contract. In other words, we refer to the contract for a 

method rather than the code; this is based on the notion of S-correct of design, 

which was discussed in Section 2. 1. The contract for the associated method set is 

documented in the Contract Data Sheet (CDS) related to that method set. 

Computation-initiating features specify the behaviors of the instances of the 

class. In IDEF4, each feature is mapped through the dispatch mapping to a method 

set in the method submodel. This method set documents the constraints (in the 

associated CDS) for implementing these behaviors. Some computation-initiating 



39 

features may bc presented in morc than onc class and may intend to specify different 

specific behaviors dependmg on the class of objects upon which they perform their 

computations. In other words, a generic behavior may have different method sets 

mapped in different classes. 

For example, the routine compute raise is a computation-initiating feature 

defined and redefine in class Employee and ltfanager respectively (wherc Manager 

is a subclass of Employee). It is also included under the generic behavior raise 

which is specified in both the CIDSs of Employee and Manager. In a programming 

language, different method implementations would be defined for each of these 

routines, such as get-raised-as-employee and get-raised-as-manager. In IDEF4, on 

the other hand, individual methods are not represented. get-raised-as-employee and 

get-raised-as-manager would refer to method sets and their related contracts, which 

will be illustrated in the raise method taxonomy (to be discussed in the following 

section). Therefore, the computation-initiating feature compute raise and its class 

Employee together specify a method set get-raised-as-employee. Any method in the 

method set get-raised-as-employee would satisfactorily implement the feature 

compute raise for the class Employee. The idea in IDEF4 is to describe or design 

the behavior, not program the behavior. 

3. 4. 2 Taxonomy of Method Sets 

A method set can be considered as a computational characteristic defined by a 

set of constraints that will pick out a set of possible correct implementations. This 

set of constraints is called the contract for the method set. In an IDEF4 design, the 

concern is with the definition of the contract, rather than individual method 

implementations in the set. 



However, similar contracts can be grouped together according to the behaviors 

specified by the computation-initiating features that the method sets associate with. 

In IDEF4, a Method Taxonomy Diagram classifiies a generic behavior into several 

method sets according to the similarity of their contracts. For example, the method 

taxonomy diagram in Figure 3-9 illustrates the design of the method sets for the 

generic Print behavior. Each box in the graph represents a method set, which 

requires a contract constraining the implementation of the methods in the set. The 

method sets in a method taxonomy diagram are arranged in a more-specific order 

from left to right or &om top to bottom; te-definition or additional constraints might 

be added to the contracts of those more specific method sets. For instance, in the 

Print method taxonomy diagram, the least-specific method would be Print-object. 

However, for some classes such as Text-screen-object, additional constraints would 

be required for the method set Text-screen-print which maps to the Print routine of 

Text-screen-object as shown in the figure. The dispatch mapping between a method 

set and a routine (a computation-initiating feature) is specified by "[ ]". The 

additional symbol "!" on the left of the Print routine indicates that the routine has 

been entirely redefined. For a redefined routine, the contract for the method set 

dispatch-mapped with the routine may override or conflict with the preceding 

method set contracts. More details about additional symbols are discussed in 

Section 4. 3. 4. 
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Graphics-screen-print 

Prinbgraphics 
Graphics-printer-print 

Graphics-to-p]otter 

Text-screen-print 

Print Method Taxonomy Diagram 

Text-printer-print 

Text-to-plotter 

(R) Print (Printwbject] 

Displayablewbject 
Dispatch Mapping 

( I R) Print (Print-graphics] 

Gra hics-ob ect 

(! R) Print (Print-text] 

Textwbject 

I 
I 

I 
I 

I 
I 

I 
I 

(! R) Print (Text-printer-print] (I R) Print (Text-scrccn-print] 

Text-printermbject Text-screen-object 

Displayable-object inheritance diagram 

Figure 3-9. Print Method Taxonomy and Associated Routines. 
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3, 5 Constraints 

In IDEF4 methods, constraints are used for specifying both class-invariant 

definitions and contracts on method sets. Constraints will often be specified in 

natural language statements in the design evolution. As the design progresses, 

constraints will be refined and specified more formally (i. e. , in a formal language 

such as first-order predicate logic). 

For example, the class-invariant constraint on the feature Identity-number of 

type integer in the class Employee may be expressed as: 

"The Idenriry-number feature in the Employee class must be a unique 

integer over all instances of the class Employee. 
" 

More formally, this might be written as the following constraint specifying that 

no two employees may have the same identity number: 

For-all(x y) (employee x)" (employee y) "(not-equal x y) 

"(not-equal(identity-number x)(identity-number y)). 

These constraints are hold as relations among design elements (classes, features, 

and methods) that must be enforced by the system (implementation / program). 

Class-invariant constraints are documented in class invariant data sheets (CIDSs) 

associated with class boxes in inheritance diagrams. Method set contracts are 

documented in contract data sheets (CDSs) associated with method sets in method 
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taxonomy diagrams. As the design evolves, these constraints wHI be refined more 

speci6c to be implemented; in IDEF4/C++ implementation design, CIDSs will be 

the major design specifications for the C++ class definitions, and CDSs will be the 

specifications for function implementations. 



CHAPTER IV 

METHOD SYNTAX 

4. 1 Organization of IDEF4/C++ Diagrams 

In this chapter, we present the IDEF4/C++ notations and its syntactical 

elements. The organization of the extended notations will be described in the first 

place. Discussion of the each diagram will contain a concise description of their 

graphical elements and the examples that demonstrate the use of the diagrams. 

A completed IDEF4/C++ model consists of a class submodel and a method 

submodel. Each submodel has diagrams and data sheets as model components. 

The class submodel provides a system state view for the design, whereas the method 

submodel provides a system behavior view. These submodels are connected 

through dispatch mapping, as introduced in Figure 3-9, which is specified in both 

inheritance diagrams and method taxonomy diagrams while Figure 4-1 gives an 

overall picture of the organization of IDEF4/C++ diagrams. As shown in Figure 4- 

1, diagrams are grouped into two submodels as follows. Each diagram type presents 

a unique perspective and provides a mechanism for viewing and devising the 

design. 

~ Class Submodel 

Class Lattice Diagrams 

Class lattice diagrams provide a view for browsing the 

class lattice. 

Inheritance Diagrams 
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Inheritance diagrams describe inheritance 

relationships and those directly presented features in 

the class boxes. 

~ Type Diagrams 

Type diagrams specify return types of features or 

composidonal relationships among classes. 

Friend Diagrams 

Friend diagrams declare the C++ friend associations 

between a class and its friend functions and classes. 

~ Template Diagrams 

Template diagrams specify C++ class template 

declarations. 

~ Instantiation Diagrams 

Instantiation diagrams validate the design by giving 

existing composite relationships between instances. 

~ Method Submodel 

Method Taxonomy Diagrams 

Method taxonomy diagrams classify method sets by 

their behavioral similarity. 

Client Diagrams 

Client diagrams specify the calling relationships 

between functions or procedures. 



CIDS 

pphut Dhpsteh Ms 

Isheritssce Diagram 

Method Taxonomy 
Diagram CDS 

CDS 

late Dia am emp gr ~ 

Predenued 
Type List 

Friend Diagram ~ 
Type Diagram 

Client Diagram ~ 
Method Submodel 

Class Submodel Instsntiation Diagram 

C++ class definitions 
C++ member function 
implementations 

Figure 4-1. Organization of IDEF4/C++ Diagrams. 
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As a language-specialized design method, IDEF4/C++ adds the extensions to the 

generic IDEF4. Feature symbols are extended to be used for the C++ class member 

declarations. The user predefined data type list is provided as a supplementary 

device for type diagrams for collecting those user predefined types in the design. 

Class invariant data sheets (CIDSs) and Contract data sheets (CDSs) are also 

extended to be able to provide more specific information for coding C++ class 

definitions (usually managed in the . h/. hpp files) and member functions (. cpp files), 

respectively. 

4. 2 Class Lattice Diagrams 

Class lattice diagrams are used to illustrate the class lattices, which browse the 

whole class submodel or a particular part of the submodel. To provide a top 

abstract view for the class submodel, only class names are shown in the diagram. 

Three class relationships are also described in the lattice, they are graphically 

presented in terms of arrows. Figure 4-2 illustrates an example class lattice 

diagram. As a language extension of IDEF4, friend class and nested class links are 

included into the presentation. Inheritance link arrows (shown as normal arrows) 

point from the base classes to the derived classes. 



~ ritance hntc 
'ndicatie that dass 
Ptogranuucr 
is a derived class of 
class Etnptopae. 

Adtutntstrattve Assistant 

Manager 

Etnptoysr 

Investor 

Pticud class indicator. 
indicating that class Manager 
is a friend class of class Project. 

Project 

Ncstcd class mdiauon 
indicating that class Budget 
is a nested class in class Project. 

Budget 

Figure 4-2. 

Example Class Lattice Diagram for an Employee Management System. 
vArtcws with a dotted line point ftum a class to its friend classes. 
vAtrows with a double line point &om the defming classes to their nested classes. 

As shown in Figure 4-2, class Person is the root class of the lattice, where class 

Employee and Employer are its directly derived classes. Three kinds of employees 

defined are Programmer, Secretary and Administrative Assistant. Inheritance link 

arrows pointing from Employee to each of these classes indicates that they all are 

directly derived classes of class Employee. Two classes are designed as mixins for 

work pay (salary/wage) calculation purposes; Wage rnixin and Salary rnixin. By 

using these mixins, different work pay types of employees can be derived, such as 

class Wage Programmer and Salary Programmer. Note that there is a nested class 

indicator arrow pointing fmm class Project to class Budget, which indicates that the 
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class Budger is declared within the scope of the definition of the class Project. The 

design intention here is to make the class Budger invisible from the rest of the 

system, excluding the class Project. This prevents the information kept in Budget 

from being accessed by other classes accidentally or on purpose. The C++ code 

example for class Project is shown in Figure 4-3. We declare Budget as a private 

member of Project to prevent any explicit access to the budget htfotmationttf, A 

friend indicator, pointing from Project to Manager, indicates that the class Manager 

is declared as a friend class of Project. By doing so, Manager is able to access any 

features of Project, such as the budget information. By using a friend class 

declaration (Manager) and a nested class declaration (Budget) together, we provide 

a more safe mechanism for accessing the class Project and its budget information. 

However, the class lattice diagram provides a means for presenting the design 

intention such as the one discussed above, which is very handy and important 

especially when we deal with large-scale systems that contain massive numbers of 

classes. 

class Project 

j 
friend class Manager; 

friend class declaration 

public: 
char 'prj name; 

private 

class Budget j . . . . . j; 
nested class declsrstioa 

Figure 4-3. Example C++ Code for the Class Project. 

lf the nested class Budget is declared as a public member of Project, it can be explicitly accessed 
by using the class identifier - Project::Budget. 
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4. 3 Class Inheritance Diagrams 

As mentioned in Chapter III, inheritance diagrams are used to describe 

inheritance relationships between classes. Extensions for the inheritance diagrams 

include feature access control, types of inheritance links, and feature symbols. The 

basic syntax consists of the class box, symbols that describe features, and arrows 

presenting the inheritance links. 

4. 3. 1 Extended Class Box Syntax 

An IDEF4/C++ class box groups features into three areas: public, protected, and 

private, for describing feature access. Public features are those that appear in the 

top group and are visible to (accessible by) the rest of the system Protected features 

are those that appear in the second group and are accessible by the owner class and 

its directly derived classes. Private features appear in the third group. They can not 

be accessed by any other class except for the owner class. Recall that, in IDEF4, 

there are only two types of feature access control: public aud private. The private 

features in IDEF4 can be accessed by their owner class as well as all its derived 

classes. This is different from IDEF4/C++ and should be noted when evolving a 

generic IDEF4 design into a IDEF4/C++ implementation design. Generally, the 

default translation is to transform these generic IDEF4 private features to be the 

protected features in IDEF4/C++. Figure 4-4 presents the class box syntax and an 

example class box for the class Project. Where features project name, project no, 

project manager, and project team are public features; Budget is a protected 

feature and internal id is a private feature. 



Budget 

Clans Name 

Figure 4-4. Extended Class Box Syntax. 

An inheritance relationship (link) between classes is presented by an arrow 

pointing from a base class to its derived class in the class inheritance diagram. For 

example, following the class lattice described in Figure 4-2, there is an inheritance 

relationship between the class Person and the class Employee: Employee is derived 

fmm Person. The inheritance relationship is illustrated in Figure 4-5. 

name 

address 

Vinoal to class 
Employee 

Base Chtss Person 

Inheritance 
relationship 

work time 

pay rate 

Directly presented 
in Employee 

Derived Class 
Employee 

Figure 4-5. Inheritance of a Base Class and a Derived Class. 
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4. 3. 2 Public, Protected, and Private Inheritance Links 

In IDEF4, the feature access types of inherited features in a subclass are the 

same as they were in the base class. In IDEF4/C++, access types of inherited 

features in a derived class are determined by both the original access type and the 

type of inheritance links. IDEF4/C++ supports three types of inheritance links: 

public, protected, and private. Different types of inheritance links give different 

effects on determining the access types of inherited features. Non-private features 

(public/protected) of a base class become private features of its derived class in a 

private inheritance link. Non-private features of a base class become protected 

features of its derived class in a protected inheritance link. Non-private features of a 

base class will keep their original access in the derived class in a public inheritance 

link . Figure 4-6 compares three different types of inheritance links between class 

Person and class Employee, where Person has a public feature name, a protected 

feature SSN and a private feature internal id. The feature internal id will not be 

presented in Employee since it is private to Person. As shown in the figure, name 

will remain public and SSN will remain protected in Employee, if there is a public 

inheritance between Person and Employee. For a protected inheritance, both name 

and SSN will become protected features of Employee, but for a private inheritance, 

boih name and SSN will become private. 

IDEF4 has no provision for different types of inheritance links. Yet, in IDEF4, 

since all inherited features will keep the same access (public to public, private to 

private) in a subclass, the type of inheritance is considered as public. Therefore, 

while evolving a generic IDEF4 design towards IDEF4/C++, if the type of an 



53 

inheritance link has not been further specified, the inheritance type is public by 

default. 

SSN SSN SSN 

pabllc 
Inberltance 

private 
lnberltance 

name 

SSN 

Employee 

SSN 

Employee 

name 

SSN 

Employee 

Figure 4-6. Comparison of Public, Pmtected, and Private Inheritances. 

4. 3. 3 Virtual Inheritance 

In the previous chapter, we discussed the inheritance of features finding that a 

derived class will inherit all the characteristics/constraints from a base class unless 

they have been redefined. However, the base classes, if there is more than one, 

must agree on the common characteristics/constraints among them. This is usually 

referred to as the name conflict problem in multiple inheritance as described in 

Section 1. 2. In IDEF4/C++, name conflict is resolved by specifying the inheritance 

as virtual. 



For example, consider the Manager class illustrated in Figure 4-2. Manager is a 

derived class from both Employee and Employer, which are all derived from the 

class Person. If Person has a non-private feature name, both Employee and 

Employer will inherit the name feature. If the inheritance links between Manager 

and Employee, Manager and Employer are not specified as virtual, the class 

Manager will keep both copies of name: one fiom Employee and the one from 

Employer, To access the name features in every instances of Manager, one has to 

explicidy specify the class identifiers: 

John. Employee::name 

John. Ernployen:name 

This is certainly awkward. To be more elegant, one would like to specify both 

inheritance links between Employee and Manager, Employer and Manager to be 

"virtual". The inheritance diagram and its associated C++ code are illustrated in 

Figure 4-7. Thus, the access to the feature name in each instance of Manager can 

be quite straight-forward by using the following statement: 

John. name 

In summary, IDEF4/C++ provides a virtual inheritance declaration for resolving 

name conflict in multiple inheritance and public, protected, and private inheritance 

link types for managing access control of inherited features. Note that all these 

extensions are to be specified in the CIDS associated with the focused class. Refer 

to Section 4. 3. 6 for the format of CIDSs. 
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cares person { 
public: 
char name; 

Empiaycc Emptoycr 

class Employee: 
public virtual Person ( I; 

class Employer: 
public vtrtual Person ( I; 

class Manager: 
public Employee, Employer ( 

I John; 

Manager 

Figure 4-7. Virtual Inheritance in IDEF4/C++. 

4. 3. 4 Feature Symbols and Their Extensions 

Recall that we have presented the IDEF4 feature taxonomy in Figure 3-4, which 

demonstrates that features may be specified as routines, attributes, slots, functions, 

or procedures as the design evolves. This delayed-decision practice in the design 

process is perfectly acceptable and is likely to be the case in the early definition of 

the features in a generic design. As the development of the design continues, the 

designer will classify these features. Feature symbols are used to represent the 

classification of features. For example, 'A' represents attributes. 'R' represents 

routines. 'S ' represents slots. 'F' represents functions and 'P' represents 

procedures. When a designer wishes to commit to the classification of a feature, the 

proper symbol may be added to the left of the feature name in the class box within 

braces '{ )'. Figure 4-8 shows an example of using these feature symbols; 
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indicating the name, department and internal ld features to be implemented as 

slots, work schedule as an attr(bute, and compute~ay as a routine. 

(S} name 

(S } etmmmm 
(A} ~}entete 

(R} enmtmm~y 

Employee 

Figure 4-8. Example of Feature Symbols. 

As discussed in Section 3. 3. 3, inherited features may be redefined in rhe derived 

class. Additional constraints or even a whole new contract may be given to redefine 

the feature. Two symbols are used to represent the redefinitions: '+' indicates that 

additional constraints are added to the contract associated with the named feature, 

'! ' indicates that the named feature represents a new contract and has a same name 

as the inherited feature. Conceptually, a redefined feature with new contract ('! ') 

conflicts and shadows the inherited one, whereas the feature with additional 

constraints ('+') just specializes the inherited feature. In Section 5. 6, issues of 

conflicting and non-conflicting features will be discussed. 

For example, consider that the Programmer class (Figure 4-9) is a subclass of 

the Employee class, but the algorithm for calculating the work pay (feature 

compute~ay) for an employee might be too general for a programmer (the 

programmer might be paid by project). For this reason, the designer must specify a 

redefinition for the compute~ay of Programmer. 
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(S) acme 
(S) ~ 
(A) ~ho(vie 

(R) compute~ 

(S) ~ 
(A) ctutent~oject 
(S) project~et 

(i R) competency 

Progremmer 

Figurc 4-9. Example of a Redefined Feature with New Contract. 

Generally, attributes and routines can be refined further into either slots, 

functions, or procedures. However, to devise an implementation design for C++ 

requires additional feature classification. In a C++ class definition, features are 

called class members. The data members are used to store the state of each object 

instance and the function members are used to implement the behaviors. Evolving 

features in an IDEF4 generic design towards IDEF4/C++ is quite straight-forward. 

Slots generally map to data members that are accompanied with their read/write 

functions. Functions map to member functions and procedures map to the member 

functions with void return types. However, there is more to be accomplished; C++ 

class members can be virtual, static, const etc. To be able to implement the design 

in C++, slots, functions, and procedures have to be further specified. IDEF4/C++ 

provides an additional set of symbols for this purpose. They are used along with the 

general symbols discussed previously and presented within the braces as well. 
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These additional symbols are described as follows; 

VF Virtual function - The 'VF' symbol indicates that the named 

feature is a C++ virtual member function. A member function 

declared as virtual in the base class can be overridden by the 

member function in the derived class that possesses the same 

name and signature but with different implementation. 

VO Pure virtual function- The 'VO' symbol indicates that the 

named member function is a C++ pure vixtual function. A pure 

virtual function is declared only for inheritance purpose and 

since it serves as a placeholder, no implementation needs to be 

given. In other words, a C++ pure function is "pure" in the 

sense that it does not have a function body, only the function's 

signature is specified. 

C Const member function - The 'C' symbol indicates that the 

named member function is a const member function. A 

member function declared with const prevents any modification 

to the data members that the function accesses. 

S Static member - The 'S' symbol indicates that the named 

feature has only one copy among all the instances of the owner 

class. Data members declared to be static are therefore global 

in the owner class scope and do not need be replicated from one 

instance to another, thereby saving memory space and 

maintaining consistency. Similarly, static member functions 

are like global functions whose scope is within the owner class. 
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Usually, they are the member functions which access those 

static data members. 

NC Nested class - The 'NC' symbol indicates that the named class 

is declared in the definition of the owner class as a data 

member. Without explicitly specifying the owner class's 

identifier, one can not access to the nested class. 

Figure 4-10 in the following page gives an example of the presentation of these 

extended feature symbols and the related C++ code. Where Proj ecr has a nested 

class Budget and a static data member total number ofprojects. Project also 

contains three static member functions; (1) addproj ects; (2) removeproj ecrr for 

incrementing and decreasing the total number of, projects; and (3) 

how manyprojects for querying the value. A const member function 

get contract id which guarantees access to the data without making any changes is 

also defined in Project. 



(S) earns 

(S) (P} how~~sets 
(C) (P) get~jecud 

(NC) (8) Budget 

(8) (P) add~jeers 

(S) (P) mnovs~jscts 

(8} (S) to~ of~)sots 
(S) proiecCid 

class Project 
( 
public: 
char 'name; 
static int how many~rejects (void) 

( return total number of~rejects; ); 
int get~roject id (void) const(return project id;); 

protected: 
class Budget 

( public: 
int budget number; 

)' 
static void add~rejects (void) 

( total number of~rejects++;); 
static void remove~rejects (void) 

( total number of~rojects-;); 

private: 
static int total number of~rojects; 
int project id; 

Figure 4-10. Example of Extended Feature Symbols. 

4. 3. 5 Inheritance Diagrams 

The inheritance graph of a particular IDEF4/C++ model will be simply a single, 

maximal inheritance diagram that shows all the classes and their direct inheritance 
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relationships. An inheritance diagram of this size would have little practical use if 

actually drawn, but it is useful to keep in mind as a way of imagining the full scope 

of inheritance diagrams In fact, this information is generally presented by the class 

lattice diagram of the class submodel. Nevertheless, inheritance diagrams describe 

mene detailed information (features presented, access of features, inheritance links 

etc. ) related to the focused classes. 

This graphical approach for describing the class inheritance hierarchy structure 

was designed to maximize the amount of key information displayed in a minimum 

amount of space. Figure 4-11 shows a partial inheritance diagram for the example 

Employee Management described in Figure 4-2. The arrow from Employee to 

Programmer indicates that Programmer is a derived class of Employee. 

Inheritance is also transitive. If Wage Programmer is a derived class of 

Programmer and Programmer is a derived class of Employee, then 

Wage Programmer is a derived class of Employee (indirectly). Employee is 

therefore a direct base class of Programmer and Programmer is a direct derived 

class of Employee. 

Inheritance diagrams identify the features of the base classes and derived classes 

that are displayed. They reveal; (1) details about the implementation (by feature 

symbols); (2) inheritance of the features; and (3) their visibility within the system as 

weH. Programmer, which is a direct derived class of Employee and an indirect 

derived class of Person, inherits Employee's features in conjunction with the 

features name, address, and SSN defined in Person. Investor has inherited features 

from both the class Employer and Person. Since none of these inherited features are 

redefined, they do not appear in the Investor class box. 
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(Sl name 

(S) address 

(S) SSN 

(P) hire 
(P) Ore 

Employer 

(S) epsruncnt 
(S) war~e 

(VO) (P) compute wor!anne 

(VO) (P) compute~ay 
(S) work time 
(S) pay 

Investor 

(S) pmject 
(S) assistant 

Empoloyee 

Manager 

[S) manager 

Admlnistive Asshdaat 

S current~eject 
(S) supervisor 

{VF) (+F} compute worktime 

{VF) (+F) ccmpute~y 

Programmer 

(S) manager 

Secretary 

(S) Salary 

(VF) (F) compute mcnthly~y 

(VF) (F) S}1 in work hours 

(S) work rate 

(VF) (F) adjust worMetc 

(S) budget tt 

(S} amount 
(S) period 

Salary Mlxln Wage Mixin 

Budget 

(S) name 
(S) manager 

(NC) (S} budget 
(S) project id 

project 

(!F) compute~ay 

Salary Programmer 

(!F) comparably 

Wage Programmer 

Figure t(-11. A Partial Inheritance Diagram of Employee Management System. 
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The symbol 'VO' is added to functions compute workrirne and compttie~ay in 

class Employee, indicating that these functions am to be implemented as C++ pure 

virtual functions. Borh features are further entitled as virtual functions with the 

symbol 'VF' in the class Programmer. Contpure~ay, which is refined as general 

member functions ('F') in both Salary Programmer and Wage Programmer, 

reveals where the actual implementation takes place. In Programmer, the plus sign 

(+) preceding compute worktime and compute~ay indicates that these features 

have additional constraints that specify the contracts inherited fmm the base class. 

The symbol 'I' prefixing compute~ay presented in Salary Programmer and 

Wage~rogramrner indicates that the constraints hold shadow the contracts 

inherited from Programmer. 

Wage Mixin is implemented as an abstract base class for any wage-paid 

employees. The member functions in this class, such as adjusr work rate and 

fill in work hours, are declared as virtual functions for possible further refinement 

in its derived classes (More details of abstract base class are discussed in Section 

6. 4). 

The class box for describing a nested class is different from general classes in 

that it uses a double class box, as the class Budget illustrated in the figure. 

4. 3. 6 Class Invariant Data Sheets 

In IDEF4/C++, each class has an associated specification for its class definition. 

This specification is documented in the associated class invariant data sheet (CIDS). 

CIDSs describe; (1) the definitions of features and behaviors that individual 

instances of the class must possess; (2) the types of the direct inheritance links; and 

(3) the class invariant constraints which must always be maintained as true. 



One purpose of CIDSs is to pmvide documentation for those who will maintain 

the installed system and for those who will implement the design. As shown in 

Figure 4-1, IDEF4/C++ diagrams are centered on the classes defined for the system. 

A CIDS includes numerical identifiers for referencing the diagrams associated with 

the named class. The names of directly present features of a class are also included 

to allow reference to the other design components such as method taxonomy 

diagrams via dispatch mapping. 

Generally, computation-initiating features are grouped and presented in CIDSs 

according to their behaviors. The description of each feature, including the name of 

the feature, the kind of the feature (generic feature, attribute, routine, slot, function, 

and procedure), and the feature access (public, protected, and private), is also 

captured in CIDSs. Virtual features can be accessed via the listing of the 

inheritance links to the direct base classes. Constructors and destructors are also 

documented in CIDSs. In addition, check boxes are used to indicate whether the 

class is to be implemented as a struct, a union, a class template, or a class. 

{S) current pmject 
{S) supervisor 

(P) schedule work 

{VF) {IF) compute~ay 
{S) work time 

{S) pay 
{S) work schedule 

Programruer 

Figure 4-12. The Programmer Class. 

Figure 4-12 describes a Programmer class. Figure 4-13 presents an example 

CIDS for the class Programmer. The name of the class and other relevant 

bookkeeping information is identified at the top of the data sheet. IDs and captions 
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of the associated inheritance diagrams and type diagrams are specified for reference 

purpose. Constraints on the implementation of the class can be described in plain 

English (as shown in the example), first order logic, or other languages suitable for 

expression. By providing the list of direct base classes, the implementor can locate 

those inherited features. If the class Programmer were to be deleted or modified, 

the direct base and derived class lists would provide those modifications to the 

design with the means to quickly trace which classes in the system would be 

affected by the change. 

The list of directly present features is also presented in the CIDS. For each 

directly present feature of Programmer, the CIDS will contain the name, feature 

type, feature access etc. , that can be found in the Programmer inheritance diagram. 

Behavior specifying features (routines/functions/procedures) sie grouped according 

to their behavior types. For example, compute~ay is grouped under the ivork~ay 

behavior. CIDSs are the only place in the design in which the textual definition of 

features is provided. 



Class Invariant Data Sheet 

Class Inherimnce Diagram(s): 

Type ~s): 
Name& 

Il - E ee ament S tern 

Data Appmved: 

Descri 
' 

and 

Jake H. Deiu 
cName MI 

Surname& 

I I 3 

Pmgrammer is the basic pmgrammer employee type. 
It is used as a base dass for all differuat types of pmgrammers in the company. 

No instances for this class. The Pmgrammer class is used as a vinual base class for 
subclassing. 
Each programmer (insmnce of the derived class of Programmer) has at least a project 
working on. (The value of feature current~aoject can't be NULL) 

gg class Q struct Q union Q template 

Direct Base Classes T of Link Direct Derived Classes T of Link 

Employee Wage Programmer 
Salary Programmer 

Public 
Public 

Constructors 

ProgrammerP -Program mar P 

Friend Function(s) 

(None) 

Nested Class es 

(None) 

Features (Name, Kintk Access, defined / redefined, description): 

cmrent~ject (slot, public, defined): This slot holds the name(s) of project(s) 
currently working on. 
supervisor (slot, public, defined): This slot holds the name of the supervisor. 
work time (slot, ptrotected, defiend): This slot holds the number of total working time. 

scheduling: 
schedule work (procedure, protected, defined): This procedure is used for scheduling 

the works of an employee. It is redefined in this class. 

works: 
compute~ay (function, protecteAL redefine): This function computes the pay for the 

progsllllll ef. 

Figure 4-13. Class-invariant Data Sheet for Class Programmer. 
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4. 4 Method Taxonomy Diagrams 

As inheritance diagrams arrange classes in a generalization (specialization) 

hierarchy, method taxonomy diagrams arrange method sets in the same way 

according to their contracts. 

In IDEF4/C++, a method is any implementation (i. e. , a C++ member function) 

that satisfies the contract for the method set. A method set is completely determined 

by its contract and logically equivalent contracts pick out identical method sets. 

Just as the class-invariant constraints hold for all instances of a class, the contract 

for a method set is invariant for aII the methods in the set. 

Contract of a method set is documented in the associated Conuact Data Sheet 

(CDS) as shown in Figure 4-14. One aim of using CDs is to facilitate 

communication and coordination between designers and programmers in a large 

software project since documenting method contracts confirms the same expected 

system behavior as designed and implemented. 

With a CDS, one can easily locate associated diagrams by using the feature 

name and its defining class name. The class name refers to the CIDS of the class 

and the CIDS can be used to locate the associated type diagram and inheritance 

diagram. The generic behavior that groups the feature refers to the method 

taxonomy diagram that classifies all the similarly-behaved features in the system, 

such as the work~ay behavior documented in the class Programmer 's CIDS as 

shown in Figure 4-13. However, for quick reference, the name of this method 

taxonomy diagram is also documented in the CDS (see Figure 4-14). The 

combination of the feature and class name allows one to reference the client 

diagram that applies to the method set. Moreover, the signature of the feature is 

also documented in the CDS, which includes the return type and the types of the 



parameters of the feature. 'IItis information is critical for implementing the method 

Conaact Data Sheen 

Method Set Numb 

Method Taxonomy Dhgram: 

(Behavior Name) 

Date Approved: 

Deacri tion / Definition 

Si 

Return Type 

Constraints 

Parameter Types 

Figure 4-14. Contract Data Sheet. 

As mentioned previously, method sets in a design are grouped together by 

related contracts (similar behaviors) to form a method taxonomy for a particular 

type of system behavior. In other words, each method taxonomy diagram identifies 

a generic system behavior. Therefore, by convention, the name of a method 



taxonomy diagram is the generic behavior that is being described. Following the 

previous Employee examplt'„we describe the ttayrk~ generic behavior in terms of 

a inethod taxonomy diagram illustrated in Figure 4-15. The boxes represent method 

sets and armws specify additional constraints (+) or redefinitions (!). The arrows 

point from the less-specific to inore-specific method sets. A method taxonomy 

diagram may be arranged either from left to right or top to bouom for the most- 

general to the most-specific method set. In the diagram, the constraints on the 

method set workptty indicate that the methods in the set will calculate the workpay 

of any person who is classified as an employee. The other method sets in the 

diagram represent specializations of the constraints placed on the first method set. 

Pay-by-hour-default-rate and pay-by-hour-special-rate will calculate the workpay 

only for the employees who are wage-paid. Method set pay-by-ttutnth specifies the 

methods that will calculate the workpay only for the employees who are monthly- 

paid. In both cases, the new or additional constraint supersedes or specializes the 

contract on the method set workpay, requiring a more restrictive or specialized type 

of behavior. 

workpay 

[compute-wotkpay: Employee] 

pay-by-month 

compute-workpay: Salary Employee] 

pay-by-hour&efault-rate 

[compute-wotkpay: Wage Employeel 

pay-by-hour-spatial-rate 

[compute-wotkpay: Wage Employee] 

Figure 4-15. Work pay Method Taxonomy Diagram with Dispatching Mapping. 
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Figures 4-15 and 4-16 together illustrate how method taxonomy diagrams are 

referred to from other components of the design using explicit dispatch mappings. 

Dispatch mappings must be explicitly defined when more than one feature with 

same name is defined in a class. 

(R) compute-workpay [workpay] 

I (R) compute-workpay )pay-by-mourh] 

Salary Employee 

(!R) compute-workpay 
[pay-by-hour-default-rate) 

(! R) compute-workpay 
)pay-by-bour-special-rate] 

Wage Employee 

Figure 4-16. Employee Inheritance Diagram with Dispatch Mapping. 

Figure 4-16 illustrates that in the class Salary Employee, the routine cornpute- 

workpay is redefined and will be dispatched to the method set pay-by-month 

described in Figure 4-15. This dispatch matching is specified by using '[ ]' in both 

diagrams. The term "dispatched" refers to the way of indicating which method-set 

contract is associated with the computation-initiating feature and its class. Two 

compute-workpay routines are redefined in IVage Employee: one is dispatched to 

the method set pay-by-hour-default-rate, the other is dispatched to pay-by-hour- 

special-rate. In fact, these two compute-workpay routines specify the use of 

overloaded functions in C++ as both are dispatched to different method sets in the 

same method taxonomy diagram. This example shows that the method taxonomy 

diagram does not necessarily group method sets in the same hierarchy that an 



inheritance diagram presents behavioral features. Without being dispatched to their 

related contracts, one can hardly specify the intent of overloaded functions. 

Method taxonomy diagrams are important for designers as a means of 

classifying and organizing method sets in that they specify the common behaviors 

across a wide variety of systems as well as providing a catalog of previously coded 

methods for reuse. If a particular contract is very widely used and studied (e. g. , 

sorting), the corresponding method set and its subsets may form quite a complex 

taxonomy. Such a taxonomy may serve as a reusable resource for designers. 

4. 5 Type Diagrams 

Inheritance is generally considered as the primary relation between classes in 

object-oriented modeling. Yet many other interesting relations are established 

implicitly through the values of the attribute features in the classes as well. These 

relations are generally structured around the roles of particular objects in relation to 

other classes. These roles in IDEF4/C++ are specified by the attributes in the 

classes. Therefore, the related object type is often a key constraint for capturing the 

particular role that an object play in a particular relation. In IDEF4/C++, the 

management of these role-definition processes is accomplished through type 

diagrams. In the IDEF4/C++ discipline, each attribute has a return type which 

defines the type of return value. Type diagrams, as a part of class submodel, 

provide graphical and textual notations for displaying the return types of amibutes 

of the classes. 

Type diagrams are syntactically composed of class boxes and type links. Only 

features that have return values, such as attributes, functions, or slots, will be shown 

in the diagrams. There are four kinds of type links: 
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{A) f 

Figure 417. Single-valued Type Link. 

~ Single-valued type link 

Figure 4-17 illustrates the notation for a single-valued type 

link. A single-valued type link describes that the return 

value for an attribute is an instance of a class. In the figure, 

the return value of the amibute f is an instance of class B. 

The type of f is B. 

(A) f 
A 

Figure 4-18. Multi-valued Type Link. 

~ Multi-valued type link 

A multi-valued type link describes that the return value for 

an attribute is composed of a structured collection of 

instances of a class. As illustrated in Figure 4-18, the 

values in the attribute f are a collection (i. e. , a list) of 

instances of type B. 
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(a) 

{A) f (A) g 

B 

Inst a Inst b 

(c) 

class A 

{ 
class B 
{ 

Bf; Ag; 

)a; lb; 

af=b; b. g = a; 

Figure 4-19. Single-valued Inverse Type Link. 

~ Single-valued inverse type link 

Consider the example described in Figure 4-17. If an 

instance b of class B has a feature g and the return value of 

g is an instance of class A; and it is, in fact, just that 

instance which has b as the return value of its feature f, then 

we say the type link between A and B is single-valued 

inverse. Figure 4-19(a) illustrates the notation of this type 

of link. Figure 4-19(b) shows an instantiation diagram of 
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the example described above. We can think of the 

instances of class B as having "where used" pointers to the 

instances of class A. The C++ code example for these 

diagrams is illustrated in Figure 4-19(c). 

[A) f 

A 

[A) g 

B 

(b) 

~ ~ ~ 

&Inst a& cInst b[1]& &Inst b[21& &Inst b[n]& 

(c) 

class A class B 
[ 

B f[nl; Ag; 

la; l b[nll 

a. f[i] = b[i]; b[il. g = a; 

Figure 4-20. Partial Inverse Type Link. 

~ Partial inverse type link 

Partial inverses are the inverse relations other than one-to- 

one between classes. Figure 4-20(a) illustrates the notation 
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for a pardal inverse type link. Instance a of class A has a 

feature f which holds a collection of instances of class B, 

and each instances in this collection has a feature g which 

holds exactly that instance a as the return value. This is 

also described in Figure 4-20(b), which shows that each 

instance of B points back to a. Figure 4-20(c) presents the 

C++ code example. 

In a type diagram, feature return types can also be specified by concatenating the 

attribute's name with the return type. This alternative syntax is used in larger 

diagrams to reduce the unnecessary clutter of the diagram by eliminating a number 

of links. It can also be used by the designer to de-emphasize certain relations and 

focus the attention of the design reviewers on specific relations (i. e. , those shown 

with links). This approach is typically used for common data types such as integer 

and Boolean. In IDEF4/C++, these common or user predefined types can be 

defined and collected in the Predefined Data Type List, as well as classes in third- 

party class libraries which are included in the design. For example, consider a user 

predefined type such as String, which is defined as the char pointer in C++: 

typedef String char'; 

The predefined type String will be collected in the Predefined Data Type List 

with its typedef definition, allowing for the use of type diagrams. These predefined 

types are placed behind a colon " . after the named feature as shown in Figure 4- 

21(a). Another example shown in Figure 4-21(b) illustrates the use of the 

predefined type from third-pany class libraries. Consider a design of the Employee- 

dara-entry-form class as a part of the interface for the Employee Management 



System. The class consists of two features with predefined types fitm the Borland 

ObjectWindows class library: RTMessage and TCheckBox. The predefined type 

RTMessage is defined as a pointer to the type TMessage which is a Borland 

message data structure. TCheckBox is a predefined class used for displaying and 

managing a check box as an input item of the data entry form. Again, both of them 

must be specified in the Predefined Data Type List prior to use, as illustrated in the 

example. Moreover, the CIDS for the TCheckBox and the CDSs for its member 

functions have to be documented properly in the design, although these CDSs would 

likely have only their signatures specified. 

(a) 

(S) name: Snmg 

Employee 

(b) 

(S) (0-Message: RTMesssge 

(S) genderwhee)sbox: TChee)snox 

Employee-data~try-form 

Figure 4-21. Textual Notation for Feature Return Types. 

An example type diagram for the Employee Management System is illustrated 

in Figure 4-22. In the diagram, type links specify the intended relations between 

classes in the system, such that a vice president has an executive assistant, or both 

the compute-workpay functions of Project-Manager and Programmer will return a 

type of Workpay. A multi-valued link placed between class Programmer and class 

Project indicates that the slot current-project of Programmer will return a 

collection of instances of Proj err. This is done in a similar fashion as the feature 



team-members defined in the class Project-Manager, whose return type is specified 

by a link pointing to class Programmer. 

Secretary 

(S) assistam 

Vice-President 

Executive-Assistant 

(S) department 

(S) secretary 

(S) project 
(S) team-members 

(F) compute-workpay 

Project-Manager 

(S) current-project 

(S) language-specialized 

(F) compute-workpay 

Programmer 

Workpay (S) insudled-machine 

Programming-Language 

(S) equipments 

Department 

Computer 

(S) Budget 

Project (S) Budget-amount: Money 

Budget 

Figure 4-22. An Example Type Diagram for the Employee Management System. 
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4. 6 Friend Diagrams 

Friend diagrams, as extension to IDEF4, are used to show the C++ friend 

declaration relationships between the focused classes and their friend classes / 

functions. 

Each &lend diagram focuses on one class at a time, describing all the friend 

declarations within its definition. A friend diagram employs three diagram 

symbols: class boxes, friend function boxes, and arrows. The class boxes are the 

general class boxes as used in the IDEF4/C++ notations, which present both the 

focused class and its friend classes. However, only the class name will be shown on 

the class box; features and other unrelated class details won't be given in friend 

diagrams. Friend functions are presented in terms of the whole function definition 

by using the friend function boxes. A function definition includes: (1) the return 

type of the function (if none, use void); (2) the function's name; and (3) the list of 

the types of parameters. The arrows specify the friend declaration links, pointing 

&om the focused class to its &iend classes and functions. Friend functions are listed 

at the top of a diagram, where the friend classes are listed on the bottom. 

Figure 4-23 gives an example of a friend diagram along with the C++ code, 

which describes the friend declarations defined in the definition of class Worker. 

The presentation is very straight-forward. In the figure, the friend class Supervisor 

and Accounting Manager are displayed on the bottom of the diagram, where the 

friend function compute tax is placed at the top. Friend declaration, as specialized 

in C++, is used to break the default encapsulation mechanism supported by the 

language. For example, both the friend function compute tax and the instances of 

Supervisor and Accounting Manager, are able to access to the protected or private 

features of Worker, such as salary through the &iend declarations However, the use 
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of friend diagrams really depends on the design intent with respect to other class 

relations in the system. One should be cautious in applying such declarations. 

Princd Puoctioru 
Reuun Type + puecsion Neon + parameters' Types 

Tsu compute Iss (Pay) 

Worker 

Supervisor Accounting Meaeger 

class Worker 

( 
friend class Supervisor; 
iriend class Accounting Manager; 
iriend Tax compute tax (Pay); 

public: 

protected: 
Pay salary; 

Figure 4-23. A Friend Diagram and C++ Code Example for Class Worker. 
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4. 7 Template Diagrams 

Template diagrams are used to specify the class template declaration in C++. A 

C++ template class is a parameterizcd class and consequently different types of 

parameters will allow different classes to be instantiated. 

Template diagrams employ three diagram symbols: template class boxes, 

parameter type list boxes, and arrows. A template diagram focuses on one class 

template at a time, which is displayed in the center of the diagram Template class 

boxes, as illustrated in terms of dotted class boxes, are used to present the focused 

class templates. Similar to the general IDEF4/C++ class box, features defined in the 

template would be shown in public, protected, and private groups. The template 

name and its parameter list are placed where the class name would usually be shown 

in the class box. The parameter type lists are presented by using single boxes. 

Arrows pointing from the template to the parameter type list boxes indicate the 

connection between the parameterized classes and their template. 

For example, consider a C++ class template Array to be used as a template for 

different types of arrays, such as integer, string, and complex. The template 

diagram is illustrated in Figure 4-24 with the C++ code presented. In the diagram, 

the template Array has only one parameter, type, which is used to indicate the type 

of array to be instantiatetL To instantiate an array class (int-array), one needs to 

"parameterize" the parameter type with the intended type provided (Integer). There 

are three different types of arrays illustrated in the diagram: Integer, String, and 

Complex. These types should be documented in the Predefined Data Type List and 

the detailed definition of the template Array should be documented in its CIDS. 



( Inta(ter) 

I I 

(Strlag) ( Complex ) 

template &class type& 
class Array ( 

Array (type ); 
// constructor for instantiating different types of array. 

different types of array class can be lasteatlated by tais template: 

Array &Integer& int-array; 
Array &Complex& complex-array; 
Array &String& string-array; 

Figure 4-24. 

A Template Diagram and C++ Code Example for Class Template Array. 

4. 8 Client Diagrams 

Client diagrams, as part of the method submodel, are used for algorithmic 

decomposition, They are the only IDEF4/C++ diagrams that specify, however 

abstractly, the internal structure of routines (computation-initiating features). 
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Figure 4-25 shows a sample client diagram for the routine show-project- 

information as defined in the class Project-Manager, Routines are shown aloug 

with their directly-defining class naines, such as Proj ecr-Manager:show-proj ect- 

information. . The links between boxes mpresent conttol references or "subroutine 

calls" Rom one routine (as the client) to another (as the supplier). For example, the 

link between show-project-information and print-project specifies that the 

implementation for show-project-informanon (the client) calls the feature print- 

project defined in the class Project (the supplier). 

Supplier. 
Routine that is called 

Project: 
prmt-pmject 

Project-Manage m 

get-team-member 
Employee: 

ptint-employee 

Project-Managers 
show-pmj eat-mformation 

Clienc 
Routine that calls 

Figure 425. 
Client Diagram for Show-project-information of Class Project-Manager. 

Figure 4-26(a) displays the C++ code for Project, Project-Manager, and 

Employee, Each class defines the member functions to be called by show-project- 

inforrnation, as indicated in Figure 4-25. Figure 4-26(b) presents the code for these 

calling algorithm. To show project information, the client calls print-project 

defined in Project first and then calls the get-ream-member defined in Proj ecr- 

Manag er to get the members in the project team. Next, for each member (which is 
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an instance of Employee), the function print-emplcryee is called. In fact, the diagram 

specifies that the implementation for the client (sjtotv-project-information) will call 

each supplier directly, not some generic functions. If the class associated with the 

client function has not been specified in the diagram&t, dispatching will occur at run 

time for any implementation. For an implementation in C++, this wouM indicate 

the need for a dynamic binding for prjrtr-project . This design issue is discussed in 

Section 6. 5. 

(a) class ProJect( class Employee( 
friend Project-Manager; friend Project-Manager; 
public: public: 

protected: 
8udget prj-budget; 
void print-project(void); 

protected: 
Pay salary; 
void printwmployee (void); 

class ProJeet-Manager ( 
public. ". 

project 'get-project(void); 

protected: 
void show-pro Ject-Information (Project '); 
Employee 'get-team-member (Project '); 

(b) void Project-Manager::show-project-Information (Project 'prj) 

( 
Employee 'person; 

prj-~print-project(); 
while (person get-team-member(prj);) 
( 

person-&prlntwmployee0; 

Figure 4-26. C++ Code Example for Show-project-information. 

For instance, nc class name shown before print-project. 
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4. 9 Instantiation Diagrams 

The purpose of instantiation diagrams is to facilitate the development of test case 

scenarios. Test case scenarios, in turn, are used to validate the design and document 

examples of the intended design. Ultimately, this validation process aids 

programmers in implementing the design. An instantiation diagram looks much like 

a type diagram, It uses a roundwornered box to represent instances of a class, 

analogous to the IDEF4/C++ class box. For example, the instantiation of an 

employee named JoAn from the class Employee (see the following code) has 

"&Employee John&" as its unique identifier. The representation of instance John is 

illustrated in Figure 4-27. 

Employee John; 

, or 

Employee *John = new Employees; 

Name 
Address 
Psy-rare 

«Employee Johm 

Figure 4-27. An Instance Box - John. 

The instance attributes are listed in the upper region of the instance box. 

Instantiation diagrams provide two ways to indicate the value assigned to or 

returned by the attributes: directly displaying the value to the right of the attribute 

(Figure 4-28(a)) or using value links (Figure 4-28(b)). In the case of attributes of 

numeric type, it is acceptable to directly present the value in the box. The value 
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links used in instantiation diagrams are presented in terms of arrows, pointing from 

an attribute to the class that is used as the return type. They stan inside the instance 

box, next to the attribute whose value is being annotated, and end in an arrow 

pointing to the boundary of an instance box as shown in the figure. 

(n) 

(S) name 

(S) address 

(S) payrata 

class Employee ( 
publkc 

Employee () ( payrate 20; ); II initial value for peyrate. 
Employee (int rate) ( payrate rate; ); II ussr defined payrate. 

Employee protected: 
int peyrate; 

earns 
addmss 

payrare 20 

name 
address 

payrare 40 

cEmployea Johns cEmployee Ttm& 

Employee John; Employee Tim (40); 

department 

Employee Department 

cEmployee Johns cDepartment Sate& 

Figure 4-28. Example Instantiation Diagrams. 
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4. 10 Dispatch Mapping 

In an IDEF4/C++ design, it is possible for a generic behavior to have more than 

one computation-initiating feature specialized for that generic behavior in the same 

class (i. e. , features of the same generic behavior group in a CIDS) or in diffetent 

classes (i. e. , feanues of the same genaic behavior group but in different CIDSs). In 

other words, in a method taxonomy diagram, more than one method set will be 

associated with the genetic behavior described by the diagram and different features 

in different classes may be implemented by them. Dispatch mapping, a connecting 

mechanism between the class submodel and the method submodel, is used to refer 

to the association between the computation-initiating feature and their related 

method sets. 

In Section 4. 4, we have described a work~ay method taxonomy diagram and an 

Employee inheritance diagram. We continue the discussion by using these diagrams 

to show the mapping between those behavioral features and method sets. Figure 4- 

29 depicts the dispatch mapping. Note that in the inheritance diagram, these 

work~ay behavioral features are all named as compute-workpay. However, 

contracts to be applied to their implementations ste different. Employee's compute- 

workpay is mapped to the workpay method, which is the most general method set in 

the method taxonomy diagram. Salary Employee's compute-workpay is mapped to 

pay-by-month and two compute-workpays in Wage Employee are mapped to pay- 

by-hour-default-rate and pay-by-hour-special-rate separately. 

In an IDEF4/C++ design, features with the same name but in different classes 

indicate a design for the C++ virtual functions. Features with the same name but 

defined in the same class indicate a design for the C++ function overloading. 

However, detailed definitions (i. e. , parameter types and the number of parameters) 
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of these overloaded functions, can only be revealed from the association of their 

CDSs with the method sets that they are mapping to. 

wur)tpay [~~: Etnp(eyes] 
r 

r 
r 

s pay-by-month 

compute-wotkpey: Ssbuy Employee] 

pay-by-hour+fault-rate ~ 
[compute-wotkpey: Wage Employee] 

I 
I 

I 
t 
I 
I 
t 
t 
I 
I 

work~ay method taxth)omy diagram 

pay-by-bourdpectal-rate ~ 
[compute-workpay: Wage Employee) 

t I 

1 
't 

\ 
1 
t 
\ 
t 
\ 

t 
\ 
\ 
\ 
'I 

t 

(R) compute-workpsy [wotkpay] 

Employee 

I 
I 
t 

I 
I 

I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 

I 
I 

I 
I 
I 

I 
t 

I 
I 

I 
I 

I 
I 

I 

! (R) compute-workpay [pey-by-month] 

Salary Employee 

(IR) compute-workpsy 
[pay-by-hour-defauh-rate] t 

(! R) compute-workpay 
(psy-by-hots-specie(-rate) 

Wage Employee 

Employee class Inheritance diagram 

Figure 4-29. Dispatch Mapping of Work pay Behavior. 
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CHAPTER V 

METHOD PROCEDURE 

5. 1 Introduction 

Perhaps one of the greatest challenges of developing an object-oriented design 

method is to define a development procedure. The purpose of such a procedure is 

the organization of the design artifacts and activities, especially for adminisuative 

purpose. Although the object-oriented design pmcess is iterative, a development 

procedure defines a set of ordered activities allowing multiple developers or 

development teams to communicate across the design process and supports change 

control in the evolution of a design. 

In the general object-oriented design process, there is a tension between the use 

of class decomposition (inheritance), object composition (aggregation), algorithmic 

decomposition, and polymorphic decomposition (message dispatching) (Mayer 

92a). The "least commitment" philosophy employed by IDEF4 supports all four of 

these design perspectives, allowing one to refine a design seamlessly over the 

design evolution. 

In this Chapter, we will address the issues of the transformation from generic 

IDEF4 to IDEF4/C++ and present a design procedure for IDEF4/C++. We will also 

provide an IDEF3 dynamic model of system development process which involves 

multiple developers / development teams, with the consideration of configuration 

management (change / version control). 
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5. 2 Transformation Rom Generic IDEF4 to IDEF4/C++ 

IDEF4/C++, as a language dependent design method, extends several method 

features &om IDEF4. However, the IDEF4/C++ implementation design method is 

not intended to replace IDEF4, a generic design method which creates language 

independent designs. By employing an IDEF4 generic design as the initial design 

for IDEF4/C++, the evolution of the design pmcess therefore can be conducted 

seamlessly since both IDEF4 and IDEF4/C++ are derived from similar method 

concepts (as described in Chapter IIp/. In general, the implementation design is a 

process of adding implementational details to the generic design model. The 

refinement is basically based on the language dependent features supported by the 

extended method. Developers therefore follow the design specification and create 

module prototypes by using the targeting language. 

In this Section, we categorize the extended language dependent features 

provided by IDEF4/C~. These extended features, which were presented and 

discussed separately in the previous chapters, fabricate a set of transformation 

guidelines for the evolution from an IDEF4 generic design to an IDEF4/C++ 

implementation design. Table 5-1 in the following page summarizes these 

transformation features. 

The table presents the basic transformation focus while evolving an IDEF4 

design to an IDEF4/C++ design. Some features shown in the table such as class 

feature access, inheritance type link, and class feature symbols, have their own 

presentations in both methods. These transformation focuses have to be specified in 

more details in the evolution from IDEF4 to IDEF4/C++. Some other focuses are 

new to IDEF4 such as constructor / destructor, friend / template declarations, and 

class variables / operations etc. . They are specified in the implementation design 

process when needed. Routine signatures, which are necessary for coding method 
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sets, have to be defined in the CDSs of the IDEF4/C++ design model before any 

implementation. 

Transformation 

Focus 

Inheritance Link 

Class Feature 

Access Conuol 

Class Feature 

Symbols 

Constructor / 

Destructor 

Implementation of 

Class 

Presentation in 

IDEF4 

N/A 

Public / Private 

'A', 'R', 'S', 'F', 

'P' 

N/A 

N/A 

Method 

Element 

Presented 

CIDS 

Class Box, 

CIDS 

Class Box 

Class Box, 

CIDS 

CIDS 

Presentation in 

IDEF4/C++ 

virtual, 

Public / Protected 

Private 

Public / Protected 

/ Private 

'A', 'R', 'S'(slot), 

'F', 'P', 'VF', 

'VO', 'C', 

'S'(static), 'NC' 

(I) procedures 

showing in the 

class box with 

class name as the 

procedure name. 

(2) they are also 

speciTied in CIDS 

constructor / 

destructor lists. 

Class / Struct / 

Union/Tem late 

Default 

Transformation 

Public(in IDEF4) 

-& Public (in 

IDEF4/C++). 

Private (iu IDEF4) 

-& Protected (in 

ID EF4/C++ 

If a feature is 

specified by 'F' or 

'P' in IDEF4, the 

'VF' symbol will 

be added by default 

in IDEF4/C++. 

N/A 

Class 

Table 5-1. Transformation from IDEF4 to IDEF4/C++. 
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Transformation 

Focus IDEF4 Element 

Presented 

Presentation in Method Presentation in 

IDEF4/C++ 

Default 

Transformation 

Friend Function / 

Class 

N/A Class Lattice 

Diagram, 

CIDS, and 

Friend 

Dhtttrm 

(I) presented by 

'w' in class 

lanice diagrams. 

(2) specified in 

the CIDS friend 

N/A 

Nested Class 

Class Variables / 

rations 

Parameterized 

Class 

N/A 

N/A 

N/A 

Class Lattice 

Diagram, 

CIDS 

Class Box 

Template 

Diagram 

(3) A friend 

diagram has to be 

provided for the 

class which has 

friend functions / 

classes defined. 

(I) presented by 

'--&' in class 

lattice diagrams. 

(2) specified in 

CIDS nested class 

list. 

Specified by 'S' 

static s mbol 

Presented as 

double-lined class 

N/A 

N/A 

N/A 

Routine Signature CDS Specil'ied in 

IDEF4/C++ CDS 

N/A 

Table 5-1. (continued) 
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5. 3 IDEF4/C++ Design Development Activities 

Development of an IDEF4/C++ design involves the creation of diagrams. 

Diagrams provide different perspectives for describing artifacts (classes, features, 

and method sets etc. ) and the relationships among them. In general, the evolution of 

an IDEF4/C++ design is an iterative process of panitioning, classifying / specifymg, 

merging / eliminating, and rearranging these design artifacts. These operations are 

employed in most of the design activities and might involve the creation / 

modification of different diagrams in each. The following steps present the design 

activities that are performed throughout the IDEF4/C++ design procedure. 

~ Analyze evolving system requirements. 

System requirements may or may not evolve through the design process. 

However, examining the user evolving requirements over time keeps the design 

on "the right track". User evolving requirements result in the occurrence of new 

or additional constraints to the design. Such constraints might therefore 

promote the need for creating new design artifacts or modifying the working 

versions of the design artifacts. This will certainly cause another design 

iteration, Moreover, if functional (such as IDEF8), informational (such as 

IDEF1, IDEF1X), or process (such as IDEF3) models are available, they can be 

used as inputs to this activity. 

~ Develop and refine class hierarchy. 
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The development / refinement of the class hierarchy involves (1) detailing / 

rearranging design artifacts such as classes and features, (2) specifying the 

relationships between classes, and (3) refining the class-invariant constraints. 

This activity includes the following steps: 

Develop, refine or update class lattice diagram(s). 

Develop, refine or update inheritance diagrams. 

Create, refine features defined in the updated classes. 

Refine or update CIDSs. 

Create, refine or update fiend diagrams as needed, 

Create, refine or update template diagrams as needed. 

~ Develop and refine class composition structure. 

Composition relationship (aggregation) between classes is specified in type 

diagrams. The type links connect the value-returning features and the classes 

which are specified as the return types. For those types predefined by users 

(most likely the primitive data types such as inr, double etc. ) or provided by 

class library venders, the user predefined type list is to be used and further 

refinement might be needed. Note that if the changes affect design such as class 

definition or class relationship, the activities described in prior steps are 

involved. This activity includes the following steps: 

Develop and refine type diagrams. 

Refine and update user predefined type list. 

Update CIDSs as needed. 

Update inheritance diagrams or lanice diagram(s) as 
needed. 



~ Develop and refine method taxonomy. 

This activity involves design artifacts such as method sets, contracts, and 

generic behaviors. Method sets are classified according to their common 

functiomdity and generic system behaviors are specified with method set 

groupings. Each generic system behavior will be described by a method 

taxonomy diagram. The refinement of each method taxonomy requires 

identifying additional constraints on the method sets / contracts as the design of 

method submodel evolves. The creation of dispatch matchings also takes place 

in this activity, which requires associating method sets with classes and features. 

CDSs of the method sets to be implemented should be refined and additional 

implementation details (i. e. , pseudo code) should be documented as needed. 

The following are the steps in this activity: 

~ Combine, rearrange, specialize method sets as needed. 

~ Develop and refine method taxonomy diagrams. 

~ Create and refine dispatch mappings. 

~ Refine, update CDSs. 

Changes might result in the iteration to the preceding activities. 

~ Develop and refine algorithmic decomposition. 

Client diagrams should be developed for each method set specified in the 

previous activity. Client diagrams, as used to illustrate the algorithmic or 

functional decomposition for routines, are crucial to the implementation of the 

method sets that they are associated with. For example, the designs of service 

requesting (message passing) or dynamic binding (Section 6. 5) are most likely 
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specifiied in terms of client diagrams. Again, changes might result in revisiting 

the previous activities. 

~ Develop and validate instantiations. 

Instantiation diagrams are used to validate the design. Instances specified in the 

diagrams might be the objects to be created in the implementation (pmgrams). 

The creation of instantiation diagrams will also aid programmers in the 

implementation process. However, the validation activity might result in the 

modification of type diagrams, or class definitions / CIDSs and inheritance 

diagrams, the revision to the previous activities is therefore required. 

5. 4 IDEF4/C++ Design Development Process with Multiple Developers 

Thus far, we have presented the transformation from IDEF4 to IDEF4/C++ and 

the activities in the IDEF4/C++ design procedure. However, the development of 

large-scaled systems often requires multiple developers / teams. As the design 

evolves, different design versions might be created concurrently and the 

communication between developers or the development teams tends to be more 

complicate. This will require a broader view for the identification of the inter- 

developer or inter-team activities. Consideration of configuration management for 

the development process and the control for the changes of versions are also 

required. In the following discussion, we will present an IDEF3 dynamic model 

describing the system development process with multiple developers / development 

teams from the perspective of configuration management. 
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Figure 5-1. IDEF3 Dynamic Model of IDEF4/C++ System Development Process with Configuration Management. 
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Publish Iransien 

current level 

design 

Merge existing 

subsystem / 

component 
code 

Test 
Illel gati 

code 

X 
Jl 

Accept 
merged 

code 

Goro / Suggest 
design changes 

Discover conflicts / 

mismatches of 
module interface 

0 
Jl 

Goto / Modi 

/ update 

current level 

dad gn 

Merge 
final 

code 

Test 

ay s telll 

code J15 
Accept 

Release 
completed 

design dt 

code 

Goto / 
JS 

Gom / Suggest 
design changes 

Discover conflicts / 

mismatches of 
module interface 

0 
J17 

Goto / Modify 

/ update 

cwrent level 

design 

Goto / 

JS 
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Figure 5-1 illustrates the IDEF3 model The following are the definitions of the 

terminology used in the model. 

partaf 
System module 

is-a 
Component 

A collection of associated 
classes and method sets to 
provide the required 
functionarity. 

Figure 5-2. Configuration Items defined in IDEF4/C++. 

~ Configttratiort item (CI): System, subsystem, component, class, or method 

set. 

CI is any design element whose state is to be recorded and whose changes 

are to be processed (controlled). A CI can be the system, a subsystem, a 

component, a class, or a method set. Figure 5-2 illustrates the relationships 

between these CIs. A system can be functionally decomposed into several 

subsystems and components. Both subsystems and components are system 

modules. Subsystems can also be decomposed further into subsystems and 

components, or only components. Components, on the other hand, represent 

the software modules which require no further decomposition to purchase or 



build. Any component can be considered as a collection of associated 

classes and method sets in the context of an IDEF4/C++ design. 

~ Coqfigurarionidettrificariott: Identifying each CI and its interface. 

~ Interface iriertrificarion: Identifying all functional characteristics relevant to 

the interfacing of two or more CIs. 

~ Version: A version is a recorded state of a CI at some point of time. 

~ Version tree: The hierarchy formed by the versions of a CI created over its 

design evolution. 

Variant: A branch of a version tree. Note that the occurrence of variants of 

a CI indicates that the CI is included in more than one component and the 

changes to different copies of the CI are made concurrently. 

Merge: The process of resolving conflicts between two or more than two 

variants of a CI and creating a single version for it. 

Baseline: A version of a CI serves as a baseline. A baseline represents a 

well-specified state of a CI in its design evolution. Baselining a CI is the 

process of assembling the baselines of its element CIs. If the element CIs 

have variants, baselining a CI will involve the process of merging. 

Percolate: The process of decomposing the current baseline of a CI into the 

baselines of its element CIs. 

Publish: The process of preparing the current baseline of a CI to be 

assembled with other CI baselines at the same leveL Publishing a CI results 

in the re-baselining of the composed CI (the CI at upper level). 

The process starts at the creation of an initial design. An IDEF4/C++ initial 

design can be derived from either (1) specifying / discovering domain objects / 

classes and the features / behaviors of these objects, or (2) transforming an existing 

IDEF4 generic design (Section 5. 2). Since the design process involves multiple 



developers / development teams, a functional decomposifion for the initial design 

system, followed up by the activities of configuration identification and interface 

identification, is therefore necessary, Each decomposed subsystem / component 

will be assigned to the responsible developers / development teams and the major 

focus of the design piocess will be on these system modules. 

Before the module design process begins, the system baseline has to be specified 

and percolated to create the baselines for each modules at subsequent levels. This 

pmcess will repeat until the percolation reaches the bottom level of the system 

configuration - where all the modules are components. The developers / 

development teams therefore base on their own module baselines, carrying out the 

design activities concurrently. This stage includes activities such as (1) developing 

and refining the current module, which involves the design activities as described in 

Section 5. 3, or (2) expanding current module, which iterates the process of 

percolation and creates another level of baselines. 

As the design evolves, the working design version might be provided for 

prototyping or a matured design version might be provided for coding. These 

activities will revolve around the interactions between design and programming 

teams if there is a change to the design version which is requested or suggested by 

the implementors. The approved change request will invoke the process of 

modifying the existing design version and allow an opportunity for another iteration 

of team interactions. The working version can also be published to the upper level 

as needed. However, the decision of publishing a working version will call up the 

process of re-baselining the upper level module. 

If variant versions are created across those components / classes / methods 

which exist in more than one subsystem / component, the process of merging 

variants is therefore required before creating the new baseline. The code merging 

might also reveal some interface conflicts / mismatches between system modules. 



The modification at the merged module level or even the process of re-perfortning 

interface identification is therefore needed. This brings out another development 

iteration until the final system reaches its release version. Figure 5-3 presents the 

basic flow of control of the configuration management in IDEF4/C++. 
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Figure 5-3. Flow of Control of Configuration Management in IDEF4/C++. 



CHAPTER VI 

METHOD USES 

6. 1 Introduction 

In a sense, object-oriented design is a type of design fashion using the technique 

of indirection (i, e. , abstraction, inheritance, encapsulation, or polymorphism etc. ). 

A good object-oriented designer should be able to practice these techniques 

competently. Two points are worth emphasizing: the importance of language 

support for these techniques and the design principles behind them. This chapter 

focuses on the discussion of these techniques by targeting on the practice of 

designing with reuse using IDEF4/C++. Several language-dependent design issues 

such as inheritance and feature access control, constructors and destructors, the 

design of dynamic polymorphism in IDEF4/C++, and abstract base classes etc. , will 

be addressed prior to the introduction of the techniques for design with reuse. A 

general set of "rules of thumb", which facilitates the application of reuse issues 

examined in this chapter, will also be presented. 

6. 1. 1 Inheritance vs. Aggregation 

The solution model is not only constructed by the individual objects (classes) 

distilled from the problem domain, but also those relationships among them as well. 

Two of the most common relationships captured in the object model are subtyping 

(IS-A relationship) and containment (HAS-A relationship). Subtyping is 

implemented by inheritance and containment is implemented by aggregation. 
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Typically, software components (classes) are reused through the mechanisms of 

inheritance and aggregation. A new class can be constructed by specializing 

existing (reusable) base classes or containing the reusable classes as return types of 

the new class's attributes in order to reuse their functionalities. However, due to the 

reuse intent, it is possible to apply either of these different mechanisms in the same 

context (semantics) I&. Consider the example illustrated in Figure 6-1, which shows 

two design alternatives for constructing the Salary-Employee class. Salary- 

Employee is defined by combining the functionalities of Employee and Salary. This 

can be done by 1) defining Salary-Employee as a specialization of both Employee 

and Salary in the fashion of multiple inheritance, or 2) subclassing Salary-Employee 

from Employee, while aggregating Salary into Salary-Employee class definition. In 

the first approach, class Employee and Salary are reused as mixins for providing 

functionalities by inheritance. Whereas in the second approach, Salary is 

incorporated into Salary-Employee as its attribute and functionality is provided 

through forwarding. The tradeoffs that need to be taken into account between these 

two alternatives in the same semantics are sometimes subtle and difficult. Final 

decision usually accompany comprises. However, unless the relationship is exactly 

a subtyping (generalization / specialization) relationship, aggregation combined 

with forwarding is preferable for serving the reuse purpose. Section 6. 9 will discuss 

this issue in more details. 

If we only focus on directly mapping those nature relationships into our model in the design 
process, life will be much easier. 
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Figure 6-1. Inheritance vs. Aggregation 

6. 1. 2 Broadening the Design Scope 

Typically, the orientation of a design process tends to create classes suitable for 

use in a particular problem, but are not general enough for broad reuse. The intent 

of design reuse is the main reason we want to broaden the design scope. It is 

important to leverage our perspective beyond the current design scope while we are 

conducting a design process. A broader scope (purpose) for constructing the 

abstractions (classes/method sets) leads to improved chances for reusing these 

abstractions in the future. More specifically, broadening our design scope prepares 



us to deal with new abstractions which are similar to those in the current problem 

domain, Broadening the design scope also helps to smooth the evolutionary process 

when the inheritance mechanism is adopted as a means of reuse. A broad design 

can better accommodate the variety of the intended behaviors than a design ftom a 

single perspective can. Generally, the process of broadening the design scope leads 

to two extremes in terms of the size of abstractions (classes); fat base class and 

skinny base class. The "fat class" is a consequence of the intent that we want the 

interface of a base class to be able to provide all possible behaviors for further 

inheritance purposes. Abstract base classes (mixins) are the examples. On the other 

hand, the "skinny class" promises that it is generally easily specialized from while 

specific behaviors can be easily added into the derived classes. However, there are 

always some trade-offs. The question that we must ask ourselves is: "When 

broadening our design scope, what is the proper granularity for the size of those 

classes to be reused?" 

6. 2 Inheritance and Feature Access Control 

As a general rule, classes should avoid exporting their internal structure, even to 

their derived classes; inheritance is not a license to violate encapsulation. However, 

when we are concerned about the issue of encapsulation (information hiding), we 

must also examine the effects of inheritance on the access of features. 

In this subsection, we will discuss the language-dependent design issues 

concerning different types of inheritance and feature access control. In IDEF4/C++, 

feature access types can be public, protected, or private. Public features are visible 

to the whole system Protected features can only be accessed by the owner class and 

all its directed and undirected derived classes. Private access prevents the features 
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irom being accessed by other classes, thereby providing a means of encapsulation. 

Types of inheritance can be public', protected, or private. In general, a public 

inheritance provides a means for specifying a subtyping relationship between a base 

class and its derived class, whereas the private inheritance supports reuse (see 

Section 6. 2. 2 and Section 6. 9. 2). In the following, we will revise the issues of the 

pmtected feature access type, private inheritance with access specifier, as well as 

changing feature access type in the public inheritance. 

6. 2. 1 Protected Feature Access Control 

Protected feature access control in IDEF4/C++ is the same as the private access 

in IDEF4. All the derived classes have the access to those features that are declared 

as protected in the base class. Figure 6-2 illustrates this notion; so that both derived 

classes B and C have access to the protected feature f declared in the base class A. 

Note that the private feature g in class A still can not be accessed by either B or C: 

consequently even the derived classes have no more right to violate the base class 

encapsulation than any other class. However, declaring a base class feature 

"protected", is similar to declaring all the derived classes friends to the base class, 

which provides an alternative avenue to break the base class's encapsulation. The 

protected feature access contml can be very useful to the design of mixins (abstract 

classes) so it can be used to prevent these abstract classes from creating instances of 

their own. This is discussed in Section 6. 3. 1. 



Proracaat fessors f is 
aeesshle ro B ead C. 

Prtvaar faatexa g ceo ba 
accessed by A. 

Figure 6-2. Protected Feature Access Control. 

6. 2. 2 Private Inheritance and Access Specifier 

As described in Section 4. 3. 2, private inheritance collects all the non-private 

features (public and protected) defined in a base class and redefines their feature 

access types as private in the derived class. However, by specifying an access 

specifier (Coplien 92) for each inherited feature separately, the access of the 

inherited feature can be re-specified back to public or protected as needed. 

Generally, the intent of using a private inheritance is for reuse without breaking any 

natural relationship between two classes. By redefining the non-private features of 

a base class as private to a derived class, the functionality that the base class 

pmvides can thus be reused by the derived class. Note that the intent of using a 

private inheritance is different from the public inheritance, which is used mainly to 

denote a subtyping relationship. However, for some inherited features which are 



also suitable for constructing the interface of the derived class in a private 

inheritance, it is necessary to redefine these features (back) to public. For example, 

consider a List class and a Ser class both illustrated in Figure 6-3. We construct the 

Ser dass by reusing the class List in the fashion of a private inheritance since their 

functionalities are similar, however, they do not possess a subtyping relationship 

(Ser is not a subtype of List). As illustrated in Figure 6-3, class List has five 

features; head, tail, count, has-item, and insert. Features head and tail have no 

meaning to a set and are hidden within the private area of class Ser . Insen and Jras- 

item providing functionalities that are appropriate to the interface of class Set, are 

also re-shown in the public area of Ser class box, indicating that their access type is 

redefined (back) to public. Note that since there is no change to their contracts 

(implementation constraints), neither symbol "+" nor "!" need to be added to their 

definitions. Feature insert follows the same intent, except that its contracts need to 

be redefined since no duplicate items are allowed to exist in a set. However, the 

CIDS of class Set should document all the design intents. The C++ implementation 

is shown as follows': 

class List ( 

public: 

void head0; 

void 'lail0; 

int count0; 

Boolean has-item(void'); 

void insert(void'); 

); 

class Set: private List ( 

public: 

This example is extended from James O. Copliea, 'Advanced C++'(p 100). 



void insert(void 'm); // redefine its contracts 

List:xount; // access speci((er 

List:Stag-item // access specifier 

Where members count and has-iterrt only have their names shown in the Ser 

class definition, prefixed by the List class specifier "List: ', 

List::count; 

List::has-item; 

They are called access specifiers. Note that one can not do the opposite. That 

is, using access specifiers in a public inheritance to change feature access will cause 

a compiling error in C++. The following section discusses public inheritance. 

(P) head 

(P) tail 

(F) count 

(F) has-item 

(P) insert 

a private inheritance 
which is documented in 
the Set's ClDS. 

No! or + symbols indicates 
count and has-item only ciumge 

rheir feature access. 

(F) count 

(F) has-item 

(I P) insert 

Set 

Symbol! indicates 

insert is redefined. 

Figure 6-3. Private Inheritance and Feature Access Control. 
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6. 2. 3 Public Inheritance and Feature Access Control 

Changing feature access type in a public inheritance is straight-forward. 

Inherited features which change their feature access in a derived class are only 

needed to re-display in the intended access contml area of the class box. For 

example, consider a design illustrated in Figure 64 where two features are defined 

in the Base class: method-I and method-2. hfethod-2 is virtual to Derived, 

indicating that Derived follows all the contracts the inherited feature carries from 

Base and has no intent to redefine it. Two copies of method-1 are re-displayed in 

Derived; one being public and the other being protected. The public redefined 

method-I in Derived is prefixed by a redefining symbol "I", indicating that it has 

new conuacts different I'rom those inherited (for example, adding an inr parameter). 

The new contracts can be referred to in the CDS of this copy of method-1. The 

protected redefined method-l, on the other hand, has no prefixing redefining 

symbols. It is re-displayed only for the purpose of showing the change of its access 

class Base ( 

public: 

void method-1(void); 

void method-2(void); 

class Derived: public Base ( 

public: 

void method-1(int); 

protected: 

void method-1(void); li change in access type. 



(R) method-1 

(R) method-2 

(I R) method-1 

(R) method-1 

Derived 
This copy of 
method-1 only 
changes its access. 

Figure 6-4. Public Inheritance and Feature Access Contml. 

In IDEF4/C++, a derived class may redefine a feature inherited from a base 

class. If the intent is to add some new contracts (adding an inf parameter as in the 

example), symbols "I" or "+" have to be presented, If the intent is only to change 

the feature's access, only the name needs to be displayed in the intended access 

control area. 

6. 3 Constructors and Destructors 

Constructors and Destructors in IDEF4/C++ are used for the instantiation and 

termination of instances of a class. In this section, we will discuss constructors and 

destructors in the context of inheritance. 



6. 3. 1 Pmtected Constructors 

Some base classes (such as mixins) are created only for the inheritance purpose. 

No instances of the mixin classes will be created. One of the design techniques to 

serve this purpose utilizes protected constructors, Ftn example, consider the design 

of an employee system; Employee class is defined as an abstract base class for the 

derived classes: Programmer, Analyst, and Designer. Instances exist in the system 

which are either programmers, analysts, or designers; no instance of a generic 

employee is allowed. To prevent the creation (incident or on purpose) of instances 

of Employee, we hide the constructors of Employee in the protected area. This is 

demonstrated in the following code: 

class Employee { 
public: 

protected: 

EmployeeQ; 

private: 

class programmer:public Employee { . . . . . . . . . . l; 

class Analyst: public Employee { . . . . . . . . . . l; 

class Designer: public Employee { . . . . . . . . . . l; 

This guarantees that no generic employees will exist in the system since no 

classes have the access to the Employee's constructor, except for its derived classes. 

Moreover, by using protected constructors, the base class constructors can still be 
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implicitly called when an instance of the derived class is instantiated. In 

IDEF4/C++, this intent is to be documentei in the CIDS of the base class. 

6. 3. 2 Passing Parameters to Base Constructors 

When instantiating an instance of a derived class, the base class constructors 

will automatically be invoked in the execution of the derived class constructors. 

However, they (base constructors) can also be invoked explicitly. Consider a shape 

system, where the class Square is a specialization of the class Rectangle. The major 

distinction between them is that the creation of a square needs only one parameter, 

the length of a side, whereas the rectangle needs two; both length and width. To 

reduce unnecessary efforts, one may let the constructor of the class Square call the 

constructor of the class Rectangle, instead of re-implementing the whole initiating 

algorithm. This is shown as follows: 

class Square: public Rectangle ( 

public: 

Square (Point center, int side): Rectangle (cenler, side, side) ( ); 

To fulfill this design intent, the designer needs to document this constraint into 

the CDS of Square's constructor, and construct a client diagram as illustrated in 

Figure 6-5 for it. 



Square's ~ Squae calls 
rbe ~ af its bssa dass- 
Rceamgla. 

Figure 6-5. Calling Base Constructors. 

6. 3. 3 Virtual Desuuctors 

Unlike constructors, base destructors cannot be invoked implicitly 

(automatically) during a cleanup process. Consider the following code example: 

class Employee ( 

public: 

-Employeeo; 

)' 

Employee Joe new Programmer; 

delete Joe; 

The delete process will have no idea that Joe is a programmer since it is typed as 

Employee. Instead of calling the right destructor, Prograrrtrrter's destructor, the 

destructor of Employee will be invoked. The consequence is that some additional 

resources allocated for the specialization, Programmer, will not be freed by the 
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Employee's destructor, resulting as garbage in the system. To avoid this, one can 

declare Employee's destructor vinual: 

class Employee ( 

public: 

virtual -Empioyeso; 

)' 

If the destructor of a base class is declared virtual, the system will then 

automatically invoke the proper destructor for its derived types (i. e. , Programmer) 

and call the base destructors afterwards This design intent is to be documented in 

the CIDS of the base class. 

6. 4 Pure Virtual Functions and Abstract Base Classes 

Recall that, in Section 6. 3. 1, in order to prevent any incidental creation for the 

instances of a generic base class (i. e. , Employee), we declare the base constructors 

as protected. Another design alternative is to use pure virtual functions. In 

IDEF4/C++, pure virtual function declaration is specified by using the feature 

symbol "VO", indicating the feature (a computation-initiating feature) is not 

intended to have its function body. This enforces an obligation on the derived class 

to redefine / override the pure virtual functions and prevents any instantiation of the 

base class. Note that an abstract base class is a specialization of an abstract data 

type (ADT), if all its member functions are pure virtual. This is one of the 

techniques of design with reuse which will be addressed more specifically in 

Section 6. 9. 1. 
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6. 5 Designing Dynamic Polymorphism in IDEF4/C++ 

In general, the object-oriented technique is characterized by inheritance and run- 

time binding (dynamic polymorphism). Inheritance provides a hierarchical structure 

for defining generalization / s~tion relationships between classes. Attributes 

common to several classes can be moved up to their base classes (generalizarion) 

and derived classes can specify their own behaviors by redefining those more 

general behaviors in the base classes (specialization). Run-time binding 

encapsulates these behavioral details in the inheritance hierarchy and simplifies the 

implementation of the use of them in the pmgram. Inheritance together with run- 

time binding organize a design in a way of supporting software reuse. For example, 

consider a class hierarchy with a base class Shape and its two direct derived classes, 

Circle and Rectangle, and each class has a behavioral feature, draw. Draw features 

in Circle and Rectangle are redefined from the more general draw in the base class 

Shape through the inheritance mechanism. To draw a shape object in the system, a 

generic draw function is called which is augmented with the intended object (it 

might be known or not at compile-time). A good design (in terms of reusability) 

indicates that Adding a new class, for instance a Triangle class, as a derived class in 

the system requires no modification to be done for the implementation of the 

generic draw function. In other words, extension or modification for the system 

should have as minimal an impact on the existing design / code as possible. We 

address how to achieve this intent in IDEF4/C++ as follows. 

In IDEF4/C++, inheritance relationship is specified in the inheritance diagrams, 

whereas run-time binding is supported in terms of defining those behavioral features 

as virtual and invoking them through a public base class reference or pointer. 

Consider the example described previously. The class inheritance hierarchy is 
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illustrated in Figure 6-6 and the C++ class definitions for these classes would look 

c)ass Shape { 
public: 

vfrtua) void draw (void); // detined as a virtual function. 

class Circle: public Shape { 
public: 

void draw (void); // redefined draw. 

class Rectangle: public Shape { 
public: 

void draw (void); // redefined draw. 

(VF) (P) draw 

Shape 

(I P) draw (! P) draw 

Circle Rectangle 

Figure 6-6. Inheritance Diagram for Class Shape. 
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As shown in both the inheritance diagram and the code example, draw of Shape 

is defined as a virtual function. To consuuct a run-time binding mechanism for the 

draw behavior, an independent draw function is defined and it is augmented with 

the type Shape. It looks like: 

void draw (Shape &obj) 

( 

obi. draw(); 

) 

The trick is that instances of the derived classes Circle or Recrartgle are also 

instances of the base class Shapet4. The type of the instance that the parameter obj 

references (might be Circle or Rectangle) will be resolved at run time to invoke the 

"right" draw method. 

Circle circle; 

Rectangle rectangle; 

Shape &s = circle; IIs is a circle. 

draw (s); II draw a circle. 

s = rectangle; II s is a rectangle. 

draw (s): II draw a rectangle. 

The independent draw function need not know about any future evolution of 

Shape hierarchy (for example, a new Triangle class), as long as the intended object 

holds a redefined draw inherited from the Shape class. The inheritance diagram and 

method taxonomy diagram with dispatch mappings of the example are illustrated in 

Figure 6-7(a) and (b). Where the generic draw function does not have a dispatch 

mapping to any class in the design, one should indicate that it is independent and 

The substitution property of objects was discussed in Section 3. 2. 1. 
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does not belong to any class. Figure 6-7(c) illustrates the client diagram for this 

generic draw, showing that the generic draw function calls the draw function 

defined in class Shape. Since Shape defines its draw as a virtual function, the actual 

suppher will not be invoked until run-time. However, the CDS for the generic draw 

should document all the intent. 

This run-time type resolution encapsulates the implementation details in 

inheritance hierarchy I'rom the program. In turn, it simplifies the extension of class 

hierarchy. Adding a new derived class, 'Triangle", is straight-forward and will not 

involve any modification of existing code about the generic draw. 

Triangle triangle; 

s = triangle; // s is a reference to Triangle. 

draw (s); // draw a uiangle. 

In IDEF4/C++, in order to add the Triangle class into the system, we only need 

to modify the inheritance diagram and the method taxonomy diagram (Figure 6-8(a) 

and (b)). No further change is required for the client diagram of the generic draw 

(same as Figure 6-7(c)). Easier extension of the design and the reusability of the 

software component is therefore gained. 

Note that, the inheritance links between all the derived classes and their base 

class have to be public to support the run-time type resolution. Protected and 

private inheritance links do not have the provision for this implicit type conversion. 
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(a) 

(VP) (P) draw 
draw 

(! P) draw 

[drawee] 

Circle 

(i P] draw 

[draw-recumgle] 

Recttmgle 

Shape Inheritance Diagram 

The generic draw is an independent 
funcdon; it does not belong to any 
class, therefore, it doesn't have a 
dispatch mapping. 

(b) 

draw 
draw-shape 

draw-circle 
[draw:Cirde] 

[draw: Shape] 

draw-rectangle 
[dtawtgecumgle] 

Draw Method Taxonomy Diagram 

(c) 

Shapet 
draw 

The draw method in class Shape is 
a virtual function, the actual draw 

function that is called depends on 
the result of the run-time type 
resolution. 

Draw Client Diagram 

Figure 6-7. ]DEF/C++ Design for Run-time Binding. 
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(a] 
Shape Inheritance Diagram 

(VF) (P) draw 

[draw-shape] 

Shape 

(! P) draw 
[draw-circ]e] 

(! P) draw 

[diaw-rectangle] 

Rectaagle 

[! P) draw 

[draw-triangle] 

Triangle 

draweircte 
[draw: Circle] 

draw-shape 
[draw: Shape] 

draw-rectangle 
[draw:Rectangle] 

draw-triangle 
[draw: Triangle] 

Draw Method Taxonomy Diagram 

Figure 6-8. Adding a New Class - Triangle. 

In summary, the design discussed in this subsection provides a simple approach 

for implementing dynamic polymorphism in IDEF4/C++. It simplifies the software 

maintenance process because the modification of class hierarchy has the least 

impact on existing code, providing a means for software reuse. 



6. 6 Implementation for Conflicting and Non-conflicting Features 

In an IDEF/C++ model, generalization / specialization relationships between 

classes are specified in inheritance diagrams; whereas between behaviors, it is 

specified in method taxonomy diagrams. Specializer(on between a base class and a 

derived class is actually implied by the set of specialized features inherited &om the 

base class but redefined in the derived class. These redefined features are mapped 

to their associated method sets which carry the same semantics. In IDEF4/C++, the 

semantics of "specialization" can be categorized into two different types of 

additional constraints: conflicting and non-conflicting, represented by symbols "!" 

and "+", respectively. Conflicting constraints are those that specialize or redefine 

the inherited constraints. As a result, the redefined feature overrides / shadows the 

inherited one. Non-conflicting constraints, on the other hand, merely represent the 

addition of constraints that are new and independent to the inherited constraints. 

This indicates that the implementation of the redefined feature will also execute the 

implementation of its inherited feature in order to fulfill the unchanged constraints. 

For example, consider the following two different C++ implementations of the 

redefined feature — mer/rod-l, 

class Base ( 

public: 

void method-1 (parameter-1); 

class Derived: public Base ( 

public: 

void method-1 (parameter-1); 
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(1) 

void Derivadcmathod-1 (parameter-1 p1) 

( ----- ); 

(2) 

void Derived::method-1 (parameter-1 p1) 

( 

Basesmethod1 (p1); rr call Base's method1. 

In the first implementation, the feature merhod-I redefined in Derived has its 

own (new) implementation (it does not call Base's method-I), indicating that the 

redefined constraints held by this copy of merhod-I are conflicting to the inherited 

constraints of the method-I in Base and that the merhod-I in the Derived class 

shadows the merhod-I in the Bose class. In the second implementation, the method- 

I in Derived calls the one defined in Base, indicating that the constraints are non- 

conflicting and that Derived's method-1 has to execute Base's method-I to fulfill 

those inherited constraints. Figure 6-9 illustrates the intended IDEF4/C++ design 

for each implementation, where symbol "!" clearly specifies the conflicting situation 

and symbol "+" specifies the non-conflicting additional constraints. 
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(P) medtod-t (P) method-1 

method-1 hoMs 
nmscrmnicting 
sddthnnd comnrsinls. 

(! P) method-1 (+ P) method-1 

Figure 6-9. Conflicting and Non-conflicting Constraints. 

System-Designer 

(S) team-members: 

Project Manager Programmer 

Figure 6-10. Example of Not Allowable Type Diagrams. 

6. 7 Features with Multiple Return Types 

Design of multiple return types is not explicitly supported in the IDEF4/C++ 

type diagrams; that is, every feature described in a type diagram can have one and 

only one type link fanning out from its defining class box to its return type. A 

design such as the one described in Figure 6-10 is not allowed. However, in reality, 

for those collection-type features such as array, list, or queue etc. , elements in the 

collection might have different return types (but similar in some sense). An 

approach to solve this problem is to define a general base class for all these similar 

but specialized types and have the type link of the feature point to the general type. 
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This is especially important in IDEF4/C++, due to the reason that C++ is a strong- 

typed language. Consider the example described in Figure 6-10 where class 

Project-Manager has a collection-type feature, team-members, which collects thc 

team members of a project. A pmject development team will consist of members 

such as system analysts, system designers, and progrannners as welL To model this 

situation, a base class, Employee, is introduced as the general base class for the 

classes System-Analyst, System-Designer, and Programmer . Figurc 6-11(a) 

presents the inheritance diagram. The type diagram for this approach is illustrated 

in Figure 6-11(b), showing that the type link for team-members points to the general 

type Employee. The C++ code implementation for the design will look like: 

class Project-Manager [ 
public: 

Employee team-members[10); 

) John; 

class Programmer:public Employee { . . . . ) Tirn; 

class System-Analyst: public Employee [ . . . . . . ) Martha; 

class System-Designer: public Employee { . . . . . . ) Ted; 

John. team-members[0) = &Tim; 

John. team-members[1) = &Martha; 

John. team-members[2) = &Ted; 

This Employee type collection feature, team-member, therefore can collect 

different types of instances, such as programmer Tim, system analyst Manha, and 

system designer Ted (as shown above). Through C++ type conversion, the multiple 

return types for such a collection feature is therefore feasible. However, implicit 
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type conversion (as in the example) is only supported through public inheritance. 

For non-public inheritance links such as protected or private, an exphcit type casting 

must be provided in the code. 

class System-Analyst: protected Employee ( . . . . . . ) Martha; 

class System-Designer: private Errgytoyee (. . . . . . ) Ted; 

John. team-members(t] (Employee ') &Martha; 

John. team-members(2] (Employee *) &Ted; 

Again, all these intents and constraints for implementing the design must be 

explicitly documented in the CIDS for the class Project-Manager. 

(a) Employee Inheritance Dbtgram 

Employee 

System-Analyst System-Designer 

Project-Manager Type Diagram 

(S l team-members 

Project-Maaeger 
Employee 

Figure 6-11. Designing Multiple Return Types for Feature Team-members. 
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6. 8 Avoiding Redundancy in Multiple Inheritance 

One of the significant problems that might occur in a multiple inheritance 

structure occurs with name conflicts between inherited features. In Section 4. 3. 3, 

we have discussed this problem and introduced the virtual inheritance declaration 

for resolving the conflict (Figure 4-7). However, resolving name conflicts is 

considered an important design issue and designers of object-oriented systems 

should avoid any name conflicts in their designs. In the following section, we will 

discuss more details of this issue, as well as how to avoid the redundancy 

accompanying the resolution process of conflicts. 

Name conflicts can be categorized into two types: ambiguities (conflicts) 

between data type features and behavior type features. Recall that the example 

shown in Figure 4-7, where ambiguity between two copies of the inherited data type 

feature name in the derived class Manager can be avoided by declaring virtual 

inheritance. For the ambiguities between inherited behaviors, consider the example 

described in Figure 6-12, where the class Project-Leader inherits the features from 

both Manager and Designer; indicating that a project leader is also responsible for 

the system design work. 



(P) perform-task 

(I P) perform-mrk ( l P) pedonn-task 

Manager 

(! P) perform-task 

Project-Leader 

Figure 6-12. Multiple Inheritance of the Class Project-Leader. 

Manager and Designer both redefine their own behavioral feature - perforrn- 

task, indicating that they possess different tasks (responsibi)ities) in the 

development of a project. The ambiguity occurs because Project-Leader inherits 

both behaviors. The resolution of this conflict is described in the client diagram of 

the perform-task behavior redefined in Project-Leader and illustrated in Figure 6- 

13; where the Project-Leader's perform- task calls both Manag er's perform- task and 

Designer's perform- task. 

class Employee ( 

public: 

void perform-task (void); 

)' 
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class Manager: public Employee ( 

pubic: 

void perform-task (void); II overriding Employee:qmrlorm-task. 

)l 

class Designer: public Employee ( 

pubic: 

void perform-task (void) 

)' 

// overriding Employee::perform-task 

class Project-Leader: public Manager, public Designer ( 

public: 

void perform-task (void) II redefined for its own behavior. 

II The behavior of a project leader to perform his/her tasks can be 

// thought of as a combination of the managing and designing work. 

void Project-Leader::perform-task(void) ( 

// work particular to a project leader 

Manager::perform-task(); 

Designer:: perform-task(); 

Manager: 
perform-teak 

Designer: 
perform-teak 

Project-Leader: 
perform-task 

Figure 6-13. Client Diagram of Project-Leader's Perform-task. 
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The order of performing a manager's tasks and a designer's tasks depends on the 

domain requirements. However, since both Manager and Designer inherit this 

behavior fmm Efnpioyee, it is not surprising to see that these traits possess common 

behavior. Redundancy might occur, but avoided with careful design. First, we 

separate that common behavior (most likely, it comes from Emp/oyee) from each of 

the feature perforrrf-tasks possessed in Manager and Designer and then "re-arrange" 

the design; 

class Manager: public Employee ( 

public: 

void perform-task (void) ( 

perform-managing-tasko; // pertorm its own behavior 

Employee::perform-tasks; // perform the common behavior 

); 

protected: 

void perform-managing-task (void); 

)' 

class Designer: public Employee ( 

public: 

void perform-task (void) ( 

perform-designing-tasks; // perform its own behavior 

Employee::perform-task(); // perform the common behavior 

protected: 

void perform-designing-task (void); 

); 
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Rmptoyeer 
pediotln-task 

Manager's perform-task Cgent Diagram 

Deslgser. 
perfmm~ignins-task 

Employee: 
perform-task 

Designer: 
perform-task 

Designer's perform-task Client Diagram 

Figure 6-14. Separating Perform-tasks in Manager and Designer. 

Figure 6-14 shows the client diagrams. Both the managing and designing tasks 

are separated and declared as protected behaviors. The same design is applied to the 

derived class Project-Leader. The redundancy in perform-frisk behavior therefore 

can be avoided and it can also be more selective on ordering these separated 

activities: 

class Project-Leader: public Manager, public Designer ( 

public: 

void perform-task (void) ( 

Manager::perform-managing-tasko; 

Designer::perform-designing-tasks: 



perform-project-leading-task 0; 
Employee zperfonn-tasko; 

)' 

protected: 

void perform~)act-leading-task (void); 

)' 

perfonll- 
'n -task 

Desigaeri 
perfann4esigning- 

iask 

Project-Leader t 
perform-pNJect- 

leadia -task 

Employee: 
perform-task 

Project-Leader: 
perform-task 

Project-Leader's perform-task Client Diagram 

Figure 6-15. Avoiding Redundancy in Project-Leader's Perform-task. 

Figure 6-15 illustrates the client diagram of Project-Leader's perform-task 

behavior, the redundancy of the common behaviors is eliminated. 

6. 9 Design with Reuse 

In this section, we will address techniques of design with reuse in IDEF4/C++ 

first. We will then summarize the chapter by giving a set of rules of thumb of this 

issue. 

The techniques that object-oriented design provides: encapsulation, inheritance, 

and abstraction etc. , are sometimes confused with the approaches to design with 
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reuse. One might think a design that makes the most effective use of inheritance 

promises reuse or a design that follows the direct mapping from the problem domain 

provides more chances for reuse. This is not necessarily true. An optimized class 

inhnitance structure or a nature object structure do not really promise reusability. 

Design with reuse is a process that needs careful observation and deep 

understanding of the problem domain, patience in the process of prototyping and 

refining, and intelligent application of the techniques for reuse. 

In general, reusability can be achieved through two major mechanisms, 

inheritance and aggregation. However, the techniques discussed in the following 

section utilize these mechanisms in different flavors. 

6. 9. 1 Abstract Base Class and Pure Virtual Functions 

The first technique of reuse is using abstract base classes and pure virtual 

functions. Base classes possess virtual functions defined to be "pure" (at least one 

virtual function), indicating that no instances can be created from the class. 

Therefore the base class is abstract (if such instances exist, the system would not 

know how to deal with the behavior specified by a pure virtual function since no 

function body is defined for that function). This is a quite intuitive approach for 

reuse purpose. Recall that, in the discussion of broadening the design scope for 

reuse, abstract base classes are usually one of the extreme results that we will get. 

An abstract base class which is designed for reuse often possesses a "fat" (enlarged) 

interface due to the reason that we tend to provide a complete set of (pure) virtual 

functions in order to sufficiently describe all the behaviors. An example of an 

abstract base class with virtual functions is illustrated in Figure 6-16, showing that 

the class Drill-Machine is designed as an abstract base class for specializing 
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different types of drilling machines. Spcializations such as Gang-Dril!-Mactune, 

Radial-Drill-Mactune, and Turret-Drill-Machine, can be defined through a pubhc 

inheritance from Drill-Machine. Each specialization has to redefine its own 

behaviors by filling out the bodies of those pure virtual functions. For example, 

drill is defined as a pure virtual function in Drill-Machine to represent the drilling 

behavior. However, this drilling behavior is only a generic behavior; different types 

of drilling machines have different ways for drilling. Specializations have to 

override drill in order to make their own instances. This enforces the intent of 

reuse, which is the purpose that we design the class Drill-Machine. 

(s) 
(s) 
(s) 
(s) 
(s) 

(vo)(p) 
(vp)(p) 
(vp)(p) 

id-numher 

capecit)l 
weight 
dimension 
feed-speed 
driu 
load 
unload 

(P) Drill-Machine 

Drill-Machine 

Figure 6-16. An Abstract Base Class - Drill-Machine. 

6. 9. 2 Private Inheritance and Forwarding 

In Section 6. 2. 2, we discussed the design technique for using a private 

inheritance with access specifiers. This technique can be applied for the reuse 

purpose as well. In general, a public inheritance captures the nature subtyping 

(specialization) relationship between a base class and a derived class, while a 

private inheritance implements the intent of reuse. Through a private inheritance, 
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the functionalities that a base class provides can be reused by the derived class. The 

base and the derived class do not really need to maintain a subtyping relationship. 

Consider the example given in Section 6. 2. 2, class Ser is not a specialization of class 

List. However, due to our intent to reuse the functionalities (a set of functions) 

pmvided by List to simplify the design of Ser, Lisr is privately inherited by Sar. To 

be able to more efficiently use these inherited functionalities, access specifiers are 

applied to switch the intended behavioral features Rom private back to public. 

Another alternative is using forwarding. Figure 6-17 shows how to use the client 

diagram to design forwarding in this sense. Features set-count and sef-has-item are 

new defined in the public area of the class Sef. Instead of changing the feature 

access type of count and luis-ifeflt (both are inherited from List), count is called by 

the public feature sef-courtr and has-iferrt is called by the public feature sef-has-item 

in the class Sef. 

coun 
Set privately inherirs 

count horn List. 

Set: 
set&olmt 

The feature set-count is 
defined as public. 

Set: 
has-Ite 

Set priv ately inherits 
has-item &om List. 

Set: . 
set-has-item 

The feanue set-has-item is 
defined as public. 

Figure 6-17. Using Forwarding in Private Inheritance. 
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class Set: private Ust ( 

public: 

void Insert(void ); 

// public feature set-count forwards to the private count. 

Int set-count (void) ( return count(); ); 

// pubsc feature set-has-item forwards to the private has-item. 

Boolean set-hasritem (void') ( return has~tom(); ); 

6. 9. 3 Aggregation with Forwarding 

As mentioned previously, aggregation is another mechanism that can be used for 

the reuse purpose. The class to be reused is declared as a type of a private feature 

defined in the new class. The new class, therefore, can reuse the functionalities 

provided by that reusable class through forwarding. Reconsider the List and Ser 

example again. One might feel that inheriting Ser from List confuses the nature 

semantics between them. It just does not seem right. Figure 6-18 presents the other 

appmach that uses aggregation. The class List is contained in the class Ser and is 

handled by the feature alisr. The functionalities of List can therefore be reused by 

forwarding those behavioral features, such as counr and /ras-item, from Ser to List 

through the handle alist. This forwarding is described by the client diagrams of 

counr and /ras-item, which are shown in Figure 6-19 and 6-20. 

class Set ( 

public: 

int count (void) ( return alist. count0; ); 

Boolean has-item (void 'item) ( return alist. has-item(item); ); 

void insert (void *item) ( if (Ihas-item (item)) alist. insert(item); ); 

private: 
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List aiist; 

)i 

Set Type Diagram 

(Si alist 

Figure 6-18. Reuse List by Aggregation. 

Set's couat Client Diagram 

Set's count behavior is forwarded 

to List's count behavior in terms 

that Setucount calls Listucount by 
usmg the feature ahst. 

Set: 
coullt 

Figure 6-19. Forwarding the Count Behavior. 

Set's has-item Client Diagram 

Llstt 
has-irem 

Set's hss-item behavior is forwarded 

to Liars hss-item behavior in tenne 
that Setuhas-item cells List::has-item 

by using the feamre slist. 

SeL 
hss-item 

Figure 6-20. Forwarding the Has-item Behavior. 



By using aggregadon with the forwarding technique, we are able to reuse the 

functionalities of Lisr while the semantics of class Set can be preserved. Note that 

reuse by aggregation indicates that no signiticant relationships exist between two 

classes. Ser associates with List purely for the purpose of reuse. Reuse by 

ce suggests a chance for violating the encapsulation of the reused base class 

(its protected features); whereas reuse by aggregation avoids this drawback in a 

nature way. 

6. 9. 4 Delegation 

Another technique of reuse is delegation. Delegation is to object instances what 

inheritance is to object classes. In delegation, a behavioral feature of an object can 

be forwarded to another object, invoking the delegated behavior of the second 

object in the context of the first one. Delegation provides mechanism for two or 

more separate objects to appear as one. This is particularly helpful in simulating 

multiple inheritance as the example presented in the following. With language such 

as Actors and Self support delegation; in the IDEF4/C++, we use forwarding to 

simulate delegationtS. Consider a class inheritance hierarchy as illustrated in Figure 

6-21. Class Research-Assismnr inherits both class Employee and Student so that 

Employee has a behavioral feature - work and Sntdenr has a behavior feature — study. 

Instead of modeling these class relationships as shown in Figure 6-21, in delegation, 

we construct these classes in the hierarchy as presented in Figure 6-22. 

Delegation can be more precisely slmuhted by overloading the pointing "-&" operator. Sce C++ 
language reference for morc details. 



fp) work (P) smdy 

Research-Assistant 

Figure 6-21. Multiple Inheritance of Class Research-Assistant. 

Person 

(P) work 
(P) work 

(P) study (P) study 

Rtu ployee Research-Assistant Student 

Figure 6-22. Design Class Research-Assistant by Delegation. 

Class Research-Assistant is no longer a derived class of Employee and Student, 

instead, it is also directly derived from the base class - Person. Behaviors work of 

Employee and study of Student can therefore be reused in Research-Assistant by 

forwarding. This is presented in Figure 6-23(a), (b), and (c); where (a) shows the 

type diagram of Research-Assistant. The class Research-Assistant defines two 
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features; as-an-employee and as-a-sntdent. Both of these are used for forwarding 

(see the code example) and ate typed as Person-Pointer. The type Person-Pointer, 

which is defined in thc Prcdcfined Data Type List, denotes a pointer to the type 

(class) Person. 

Research-Asslstaat Type Diagram 

ss-un~ployee: Person-Pointer 
as-s-student: Person-Pointer 

Research-Assistant 

(h) 
Client Diagram oF Research-Assistant's Constructor 

Student: 
Student 

Employee: 
Employee 

Research-Assistant: 
Research-Assistant 

Figure 6-23. Design Delegation for Class Research-Assistant. 
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Client Diagrams of Research-Assistaat's work and study 

Student; 
study 

Research-Assistaat: 
work 

Research-Assistant: 
study 

Figure 6-23. (continued) 

Since instances of a derived class are also instances of its base class, we use 

these two features to store an instance of Employee and an instance of Student 

respectively in the Research-Assistant's constructor. Figure 6-23(b) illustrates this; 

where Research-Assistant's constructor calls Employee's constructor and Student' s 

constructor. Therefore, the feature as-an-employee holds a pointer to an instance of 

class Employee and the feature as-a-student holds a pointer to an instance of class 

Student, Figure 6-23(c) illustrates the client diagrams for Research-Assistant's work 

and snuty. Both of these are executed by forwarding to the work in Employee and 

the study in Student. The C++ code for this approach is shown as follows: 

class Person ( 

class Employee: public Person ( 

public: 

void work (void); 



class Student: public Person { 
public: 

void study (void); 

class Research-Assistant { 
public: 

Research-Assistant(void) { 
as-an-employee - new Employee; 

as-a-student - new Student; 

II as designed in Figure 6-23(b). 

): 
void work (void) ( as-an-employee-&work; }; II as designed in Figure 6-23(c). 

void study (void) ( as-a-student-&study; ); 

private: 

Person 'as-an-employee, 'as-a-student; 

); 

// as designed in Figure 6-23(a). 

Reuse by delegation has more run-time flexibility than reuse by inheritance. As 

shown in the example, we enforce delegation by using forwarding: 

voidwork (void) ( as-an-employee-&work; ); 
void study (void) ( as-a-student-&study; ); 

An instance of Research-Assistant performs its work behavior by forwarding the 

operation to the behavior work of an instance of Employee and that instance of 

Employee is pointed by as-an-employee. However, unlike inheritance, delegation 
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by reuse works well in simple cases and most importantly, it can be used without 

violating any abstractions, 

6. 9. 5 Rules of 'Ihumb for Design with Reuse 

In summary, the following summarizes the rules of thumb for reuse: 

~ In general, behavioral features in the classes which are to be put into a class 

library should be defined as virtual even though they do not have any 

derived classes in the initial design. This allows the extension of the reuse 

for these behaviors by inheritance and the design for the dynamic 

polymorphism (Section 6. 5) in the future. 

~ A good domain analysis is crucial to the reuse intent by discovering the good 

objects and more importantly, the reusable ones. Reusability often comes 

from iteratively experimenting with prototypes. Patience and imagination 

are the keys. 

~ Cut the class with the right size. "Fat classes" and "skinny classes" are used 

to serve different reuse intents. "Fat classes" are often reused by public 

inheritance and "skinny classes" are more likely to be reused by aggregation. 

Moreover, "fat classes" may be more easily reused in the similar domains, 

whereas the "skinny classes" may have a broader reuse scope. 

~ If the intent is reuse of behaviors, one must use abstract base classes. 

Abstract base classes with virtual functions defined, provide an intuitive and 



efficient mechanism for behavior reuse. Reuse of behaviors means either 

adding or rewriting the interface constructed by those virtual functions on a 

case-by-case basis. 

~ If the intent is solely for reuse and no subtyping (generalization / 

specialization) relationship exists between classes, use aggregation instead 

of inheritance. Aggregation states the reuse intent more clearly than 

inheritance in this sense. 

~ If there does exist a subtyping relationship between classes, but the intent is 

solely for reuse, use private inheritance instead of public inheritance. Public 

inheritance is used for reflecting class generalization / specialization 

relationship. 



147 

CONCLUSION AND FUTURE EXTENSIONS 

In this chapter, we sumnutrize the research c~ for this thesis and present 

conclusions drawn from the work. We conclude with a discussion of an integrated 

framework that provides direction for future extensions. 

7. 1 Conclusion 

By discovering and organizing the ontologies of IDEF4 and C++ object models 

and extending related method concepts, syntax, procedure, and the practice of the 

method, this research contributes to the construction of a complete implementation 

design method. The proposed IDEF4/C++ with the addressed techniques is 

intended to provide an efficient and comprehensive implementation design method 

for the development of object-oriented software systems in C++. 

Three ontological models identified the semantics and terminology of (1) 

general object model; (2) IDEF4; and (3) C++. These ontologies together specified 

the boundary of the research domain and defined the primitive concepts and 

terminology for conducting the research work. 

Method concepts were introduced in the discussion of classes, features, and 

methods, which are identified as the primitive constructs for laying out an 

IDEF4/C++ design. The notion of classes was introduced through the comparison 

with the notions of types and objects. The self-referential definition of classes and 

objects was also clarified. Features - the design constructs used for capturing the 

characteristics of instances of classes, were introduced in terms of the discussions of 

feature inheritance, feature presence, feature type, and feature taxonomy. This in 
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turn supported the IDEF4 "least commitment" philosophy. Additionally, the 

concepts of method sets, contracts, and methods were also introduced. 

We extended IDEF4 notations and developed mote specific method syntax for 

IDEF4/C++. A transformation heuristic from IDEF4 to IDEF4/C++ is given, which 

summarizes the design foci for the transformation. The activities involved in the 

IDEF4/C++ design ptocedure are also discussetL In general, each activity employs 

the processes of partitioning, classifying / specifying, merging / eliminating, and 

rearranging design artifacts. Moreover, the design steps in each activity are also 

specified and outlined for conducting an IDEF4/C++ design. We proposed a 

dynamic model of the configuration management in IDEF4/C++. The development 

process described in the model starts at an initial design, iterating through the design 

and implementation processes until the final design and program are released. 

We also provided a set of techniques which target the reuse intent in 

IDEF4/C++. Reusability can be gained through public inheritance (abstract base 

classes), private inheritance with forwarding, aggregation with forwarding, and 

delegation. However, if no subtyping relationship between two classes exists, reuse 

by aggregation is recommended since it states the reuse intent more clear than 

inheritance. 

Without increasing the complexity of the IDEF4 method, IDEF4/C++ takes 

advantage of C++ language features and best practice experience to bridge the gap 

between the conceptual design phase and the implementation phase in a software 

development project. 

7. 2 Future Extensions 
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Figure 7-1 in the following page illustrates an integrated framework for object- 

oriented software system development which pmvides research directions of the 

future extensions. The following section discusses thoughts that fabricated this 

framework and the future extensions that can be derived from the hnework: 

r 
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Figure 7-1. An Integrated Framework of Object-oriented System Development. 
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~ The concept of Computer Aided Software Engineering (CASE) has occasionally 

been associated with two different development cultures: Environments culture 

(programming support environment) and Diagramming Tools culture 

(Schefstmm 93). The former culture, also called "Back-End CASE", 

emphasizes the later stages in the software life cycle (implementation, test dt 

veriflcation). Whereas the later culture, such as IDEF4 and IDEF4/C++, has 

more of an industrial and administrative flavor and emphasizes the earlier 

software development stages (analysis, design, and implementation). This, of 

course, is based on the philosophy that a good design makes the coding trivial. 

However, evidence has shown that the difference between these two cultures 

decreases as both cultures are gradually integrated (Schefstrom 93). The CASE 

tools have widened their scope, often by attempting integration with code 

generation or programming support toolsets (i. e. , reusable class libraries). We 

follow this understanding, and construct the integrated framework. 

~ An object model (IDEF4 or IDEF4/C++) only provides a static object structure 

viewpoint towards the solution design. However, to accomplish a complete 

design of the solution model, other perspectives, such as the system's dynamic 

behavior (IDEF3) and functional decomposition / architecture (IDEF8), also 

have to be provided. One of the future research directions, therefore, is to 

provide a platform for the integration of these IDEF methods. The platform 

should provide an automate transforming mechanism between the artifacts 

specified in each perspective (model). 

~ The primitive software constructs for an object-oriented system are classes and 

methods. These constructs are the nature reuse modules. Generallv, methods 

are reused in terms of incorporating their defining classes into the design. An 



efficient class library management system is therefore crucial. Such a system is 

more than a class browser. The abiTity for controlling changes and the support 

for the evolution of reusable constructs should be provided. A dynamic modeL 

which includes the reuse concerns into the development process, should be 

developed for constructing such a system 

~ As shown in Figure 7-1, a complete configuration management system is more 

than a source code version control device in the integrated framework. The 

control levels should be multiple and flexible. The configuration item (as 

defined in Section 5. 4) can be the system, its subsystems, components, a class, 

or even a method. 

~ To integrate two different CASE cultures, one effort is to construct an efficient 

and seamless transforming mechanism between the method support environment 

and those programming support toolsets. The mechanism extends the method 

culture and is especially beneficial to an implementation design method (such as 

IDEF4/C++) to attain code generation ability. Language supports should be 

developed as modules in the mechanism to gain extensibility and malleability 

for the integrated framework. 
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Iect: An yst: 
Ontology How std 
of Object- 
oriented 
technology 
Version: 2 Date: 

6/30/93 

Term Glossary 
eviewer: ocument 

Number. 

Date: 

A stract class 

A stracnon 

Actor o lect 

Agent object 

Association 

Attribute 

Base c ass 

Behavior 

Class 

lass hierarchy 

Ac ass tiscrea o y or e 
purpose of inheritance or for defining 
methods and attributes that will be 
inherited b lower-level classes. 

eprocesso o y ocusmgon the 
essential characteristics of an object that 
distinguish it from other objects in a 
s cified domain. 
An object that can send message to other 
objects. It is a synonym of "sender 
ob'ect". 
An agent o lect sen s messages to other 
objects and receives messages from other 
ob'ects as well. 
Association is a relationstup between two 
or more classes describing the semantics 
hold b them. 
An atmbute is a data variable held by the 
objects in a class. Each attribute has a 
value for each object instance. In IDEF4, 
the term "attribute" has different 
meaning. An attribute is a value- 
retuming feature, and it can be further 
cate orized into a slot or a function. 
In ++, a "base class" re ers to a 
su erclass. 
ObIect behavior specifies how an ob]ect 
acts and reacts, and how the state 
chan csin terms ofmessa e- assin . 
A template for defimng meth s and 
attributes for a particular type of objects. 
All objects of a given class are identical 
in data structure and behavior but contain 
different values for their attributes. 
A tree structure representing the 
inheritance relationship among a set of 
classes. 
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ossary 

ass operation 

ass v e 

omposite object 

Constructor 

Data member 

Derived class 

Destructor 

Dynamic 
polymorphism 

Encapsulauon 

Feature 

An operauon can operated on and by 
the class itself. Methods like 
constructors can only be applied by and 
on the class ~ the objects being ~ on haven't been created yet. 
Examples such as a query for the 
summary information of the class (how 
many instances in this classY), or a 
browsing function for a list of attributes 
and methods of a class. 

c ass vartab e is an attn ute espec y 
used to describe the class structure. It is 
shared by all the instances of the class. It 
is implemented in C++ in terms of "static 
member" declaration. 
An o )ect at contains one or more other 
objects, typically by storing references to 
the objects as the return values of its 
features. 
A constructor is a method that creates 
instances (objects) of the class and/or 
initializes their states (by giving 
attributes values). Constructors use the 
class name as the function name. In 
C++, constructors can be overloaded. 
The imp ementauon of the attributes 
defined in a C++ class definition. 
In ++, a eiiv c ass" refers to a 
subclass. 
A destructor is a method that deletes 
objects and free the memory they use. 
Destructors can be overloaded in C++. 
Destructors use the class name as the 
function name. 
The invocation o a method is not 
determined until the run time. Example 
such as C++ function overridin . 
A mechanism in which data (attributes) 
is packaged together with its 
corresponding procedures (methods). In 
object-oriented technology, the 
mechanism for encapsulation is the 
ob'ect. 
In IDEF4, the term feature is a generic 
term represents either an attribute or a 
method. 
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Friend 

enertc uncnon 

ormanon g 

Inheritance 

Instance 

Instaniianon 

Iterator 

Member function 

Function or c s that is dec as 
friend to a class can access private 
definition of the class. This mechanism 
is defined in C++ to pve a flexibility on 
sometimes over-restricted information- 
hidin rules. 

e term generic ctton is a 
synonym used in CLOS to refer to 
"message". In CLOS, user can define a 
"message" (a generic function) by using 
the function "defgeneric". Note that the 
methods that can be invoked by a generic 
function use the same name as the 

eneric function. 
e tec ue o makmg the mternal 

details of a module inaccessible to other 
modules, protecting the module Irom 
outside interference, and preveniing other 
modules from relying on details that 
mi ht chan cover time. 
A mechamsm w ereby c asses can m e 
use of the methods and attributes defined 
in all classes which are their ancestors in 
the structure of the class hierarchy. 
Inheritance refers to the mechanism of 
sharing attributes and methods using the 
generalization relationship. In C++, 
"inheritance" is also referred to as 
"derivation". 
A term used to refer to an o ject that 
belon s to a articular class. 
Instannanon is e process that creates 
instances from a class (metaclass as 
well . 
An operation that contro s iteration over 
a range of values or a collection of 
objects. For example, sort operation of a 

ueue. 
A link is an instance o an association. It 
is a "physical or conceptual connection 
between ob'ects" Rumbau h). 
The implementation of a method defined 
in a class is referred to as a member 
function in C++. 



158 

ossary 

Message 

Metao )ect 

Method 

Mulnple inheritance 

Mu tip e polymorphism 

Object 

Operation 

sl one o ]ect to ano er that 
requests the receiving object to carry out 
one of its methods. A message consists 
of three parts: the name of the receiver 
object, the method it is to carry out, and 
the ters the method ma uire. 

etac ass isac s or scn g e 
structure and behavior of other classes, 
Its instances are themselves classes. 

stances o metac ses are ves 
classes, but they can also be considered 
as objects. These classes are called 
metaobjects. Metaobjects contain class 
attributes and class operations (methods) 
that can help to manipulate and query the 
structure and behavior of the class that is 
intended to describe. 
A procedure attac to an o )ect that is 
made available to other objects for ihe 
purpose of requesting services of the 
owner object. Most communication 
between objects takes place through 
invokin methods. 
A scheme for structuring inheritance 
relationship among classes where each 
class can have any number of 
su erclasses. 
The mvocation of a method is based on 
more than one parameters. Examples 
such as C++ function overloading or 
CLOS multi-methods. 
A software packet containing a collection 
of related amibutes (variables) and 
methods (functions / procedures). The 
term is used inconsistently in the 
literature, sometimes referring to 
instances and other times to classes. The 
term object refers to a specific instance 
of a class and possesses the 
characteristics of that class. 
An operation simply refers to a request 
(message) that may be applied to or by 
objects in a class. Itis a synonym of 
"messa e". 
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ossaty 

0 g 

Parameterized class 

Po ymorp ism 

Private 

Private derivation 

Property 

Protect 

The assignment o m nple meanmgs to 
the same method, allowing a single 
message to invoke different methods 
depending on the number and types of 

arainetefs all it 
caseo ov gmw ch 

the same name is given to a method or 
variable at two or more levels on the 
same branch of a class hierarchy. The 
name of the method which is the lowest 
in the hierarchy takes precedence, 
overriding the more general definitions 
(methods) further u in he hierarch . 
Parame class provides a template 
for creating other classes. Similar classes 
(array of integer, array of string) can be 
created from same template by filling in 
different values for the parameters that 
the template carries. The term "generic 
class" is a synonym of "parameterized 
class". 
The mechaiusm to hide different 
implementations behind a common 
interface, simplifying the 
communications among objects. 
Polymorphism means that the same 
operation may behave differently on 
different classes (ob'ects). 
A declaration specifies that e ec ared 
features are accessed only by their owner 
class. Note that IDEF4 has a different 
scope for general "private" definition. In 
IDEF4, private features can be accessed 
by their owner class and also aII the 
derived classes. 
In a private derivation, the inherited 
nonprivate features of the base class 
become private features of the derived 
class. 
Piopernes of an object is a synonym of 
"attributes". Both are defined for 
associatin values. 
A declaration that lets the declared 
features can be accessed only by their 
owner class and the direct subclasses. 
(C++) 



Protec vanon 

Pu c ertvanon 

Return v ue 

Routine 

Single inherttance 

ingle polymorphism 

Static polymorphism 

Virtual function 

A protected vanon ets e ert 
nonprivate features fiom the base class 
become protected features of the derived 
class. C++ 

ec on s ies that e dec 
features are accessed by every class in 
the 

a pu c rtvanon, e crit 
nonprivate features of the base class 
become public features of the derived 
class. 

o ]cot or a ta type at a receiver 
object passes to a sender object to 
res nd to that messa e. 
In IDEF, rounne is u to re er to a 
feature which is computational-initiating. 
The term "routine" is a synonym of 
"method", which is used to implement 
object behavior. In the late design phase, 
a routine can be further specified as a 
function or a rocedure. 
A scheme or structuring inheritance 
relationship among classes so that each 
class has only one superclass. Single 
inheritance assures that all class 
hierarchies will conform to a simple tree 
structure. 
The mvocanon of a method is based only 
on the name of the receiver object. 
Example such as C++ function 
ovemdin . 
The invocanon o a me od is 
determined at compile-time. Example 
such as C++ function overloadin . 
In ++, only the class member funcnons 
can be declared as virtuaL Virtual 
functions, which are bound dynamically 
at run-time, provide a way of hiding 
(encapsulating) the implementation 
details of a class inheritance hierarchy 
from programs that make use of the class 
hierarchy. Note that, only the member 
functions that are declared as virtual can 
be overridden b subclass. 
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