EXTENDING AN OBJECT-ORIENTED DESIGN METHOD:
A C++EXTENSION FOR IDEF4

A Thesis
by
LI-TSUNG HSIEH

Submitted to Texas A&M University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

R R L A S TR
Richard J. Mayer
(Chair of Committee)

o F s
i g 4
/ »/ L s
/ FeowaTr s

Chuan-Jun Su '

(Mcmber) ' { s
[’C’/J 'Cg /(_/ _/:;;? /t__,,—-—“ -
WllhamM Lively /) AS Way Kuo
(Member) e (Head of Depamncnt)

May 1994

Major Subject: Industrial Engineering

ABSTRACT

Extending an Object-oriented Design Method:
a C++ Extension for IDEF4. (May 1994)
Li-Tsung Hsieh, B.S., Tunghai University
Chair of Advisory Comminee: Dr. Richard J. Mayer

This research introduces an object-oriented implementation design method -
IDEF4/C++. IDEF4/C++ is an extension of the IDEF4 object-oriented design method
that incorporates C++ language considerations and practice to provide guidance and
structure to ease the transition from an IDEF4 conceptual design to its implementation in
C++.

To guide the development of IDEF4/C++, three IDEFS5 ontological models are built:
(1) an ontology of general object-oriented concepts; (2) an ontology of the IDEF4 method
concepts; and (3) an ontology of the C++ programming language. Together these
ontologies form the conceptual foundation of this research effort. They also provide a
formal platform for understanding the mappings between the terminology and primitive
concepts in these domains.

Extensions included in the IDEF4/C++ are: (1) an extended method syntax; (2) a
transformation heuristic for transforming an IDEF4 conceptual design to an IDEF4/C++
implementation specification; (3) an IDEF3 model of the IDEF4/C++ design process with
design evolution configuration management; and (4) best practice)guidelincs for the
application of IDEF4/C++, especially focusing on design reuse.

The thesis concludes with a discussion of an integrated framework for object-oriented
system development. Without increasing the complexity of the IDEF4 method,

IDEF4/C++ takes advantage of C++ language features and best practice experience to

bridge the gap between the conceptual design phase and the implementation phase in a
- software development project.

RUGBRINEHS - ARF Lt
To my Mom, Mrs. Su-Xue Hsich.

ACKNOWLEDGMENTS

Sincere thanks goes to Dr. Richard J. Mayer, my advisor. Without whose intensive
guidance and limitless patience, this research would not be possible. I thank him for
bringing me into the wonderful world of system engineering and, he if anyone, is the
IDEF4/C++ method's godfather. I also wish to express my appreciation to Dr. Chuan-
Jun Su for his valuable suggestions on my work in the Knowledge Based Systems
Laboratory. I also wish to thank Dr. Jeffrey S. Smith and Dr. William M. Lively, the
other members of my committee, for their suggested clarifications and constructive
comments which make this thesis a more complete document.

This thesis also owes much to many friends. Much credit goes to the other members
of the IDEF4/C++ development team, David Browne, Sue Wells, and Jim. Together we
conquered tilis challenge and I am deeply grateful for their conl:ril;utions. Special thanks
goes to David for his intelligent ideas and incredible knowledge in C++. 1 also would
like to express my appreciation to Dr. Paula S. deWitte at the Knowledge Based Systems,
Inc. for her moral and financial support of this research.

I am also grateful to my friends in the KBS lab. Thanks goes to Sun, Wu, CFD, Su,
Eddie, Joe, and Mark. Those "day and night" discussions with them have been
invaluable in my study. Special thanks to Jyh and Jack for whose precious time and
generous input to both my academic study and personal growth.

Finally, I would like to express gratitude to Jake Stockton. I am indebted to Jake for
his patient navigation through the English language and constant encouragement during

my study-life overseas.

TABLE OF CONTENTS

Page

ABSTRACT.......cccrvnnmminnnssmisinssesssssssssssssssssase i

ACKNOWLEDGMENTSoiiiiinsiiissisimassesssstisseissasssssst et ssssas ssassossssssssssas s vi

TABLE QF CONTENTS.... ccovcrverisrecsmsaesssesmsossorssnsssassmssassassasarsnsssassrassasersasssassnsrasas vii

LIST OF TABLES.cccvvtt setseconsserssaassasssassneessessseasseessassasssassrtsssessassrassnsssnessmssnnssonte b

LIST OF FIGURESecvvver ceensnesssmsassssssssonssssnssensasnsssnsassssassenesessssssarssnststmssssassssins ass xi
CHAPTER

I INTRODUCTION ...oicciecicricecniserisenienmesassanesssssssssssssssssensssnsassnsans 1

1.1 INTOAUCTON. ..ottt itinsrrsisss s sassssesssnnssiessessersrssssesansssans sons 1

1.2 MO VALON. ..ceeeeierreneesesnieassaassmasesssaasansemasansseanssanssnnssnassmssaammseasnasrass 2

1.3 Research Goal and Objectives ..o iveericeerccesenes e e seeesientesenneenns 7

1.4 Organization of the ThesiS.......cuuiimvnimcsoenisnesenisnss 7

I BACKGROUNDcoerirerctrcrticaestaestesamnssnssantesseessesmessasssssss bessasssmesanss 9

2.1 Literatiire REVIEW.......cccieiieciiciccnncniesresneesesssessnssssessssssessssensassssans 0

22 Domain OntolOgIescvevieeiirereerrrre e rrcerse s e s e a e s e nmeesmnas 11

2.2.1 Ontology of General Object-oriented Conceptsccreeeervenes 12

2,22 Ontology of the IDEF4 Method Concepts........ccoccnveemrnnneerans 16

223 Ontology of the C++ Programming Languageccccevurennne 19

I METHOD CONCEPTS ... eeeereecremtreee e eseeassassse e s sesmae e sennsnensen 23

3.1 INEOAUCHOM ... ueeveeeescntieatenereeeneas e eesmeesseaste st esmessmesssssssessessnnensesse 23

3.2 ClASSBES....c.vvemeceerrenerrserirasssassrnssrassesssnessasssnsssasssssssesnassanssnssssassassnass 24

3.2.1 ClasSes VS, TYPES ...uerirreiercmereenteernsmrresmaranssensssnne e sammeeammeaesans 24

322 Classes V5. ODbJECES.....cciieiieiireriercenscesncesnesassaemenensossassassssasss 25

323 Class BOX ceiiininieiineiceniniretssesasesestassntsenresaessasesassssessessisase 26

3.24 Class INhETIANCEcccceiverineniienacceinesesnisersesesssessasesesesessnnns 27

3.3 FOATUTES ..o vtenieceeeceeeneseaesenseenesaneesmeesasssanessas e enseansecaseanssensasntassass 31

3.3.1 Taxonomy Of FEaturescccuvveverecreericcirreseessreee e e aesssanesnans 32

3.3.2 Inhertance of FEAUIES. ...ccveecreeireeriecreceereenreeseenseeaseeeseesssraaes 33

333 Presence of Featureso ecciie e ar s e aesmaesenes 34

334 Type of FEAtUIES iiooiiiiriviicerrieeireee e reesisene e sreesremneeermeressensensnns 36

3.4 MELROAS. ... e e ee e raerrensess e srene st s s ssasanbe serbassbensesssessnasasan 37

3.4.1 Methods, Contracts, and Method Setsccoccevveeeeevccerrccnennaas 38

342 Taxonomy of Method Sets......ccrueeerieeiecireniecrienreenceereerensenns 39

3.5 CONSITANLS ...c.eeeeieieeseeeceneser e sssnssssssossassans RPOTORUR 42

Iv METHOD SYNTAX ..iiiiietimrerieeiertiieeiesrsaesesssseseestssssssssssssssssnsssensassens 44

4.1 Organization of IDEF4/C++ Diagrams..........cccveveeennerassernsesennea 44
42 Class Lattice DIAEIAIMS ..cvevvvierreerieeeeeeeseenreeiresresseessessnenssansessnas 47

TABLE OF CONTENTS (CONTINUED)

CHAPTER , Page
43 Class Inheritance DIagramscconinincsnsssesamasssssssssssssssssssnsassnses 50
4.3.1 Extended Class BoOX SYDLAX.........coceorvncersenssrsnssressssssssasssonsones 50
432 Public, Protected, and Private Inheritance Links.................... 52
433 Virual Inheritanceccouercecncsssacans srsesenassnssressnsstonsases 53
434 Feature Symbols and Their Extensions......cccoccocincnsiernneinancnne 55
435 Inheritance Diagrams.........cccciireeresssessasssensesssnnesnsernsersasnrase 60
4.3.6 Class Invariant Data Sheetscoemeerrsarsensssssnassessssassiases 63
4.4 Method Taxonomy Diagramscuresiesessesssssasasessesnsasssasssasnss 67
4.5 Type Diagrams......cecesssecsmmssmsssssssessessnssnsesarsesssntossnssasessessnasasen 71
4.6 Friend Diagrams.................. Eeteeeeeshete ettt ene et anae s b ReSeSaRYe S as Hesebses tbe 78
4.7 Template Di2grams........cceesevssenssresssesasesssssssssssossessesssassasssssssassas 80
4.8 Client DIETAMIScenvvsvnssrissssiscssiosssssessssssssssssase sissssasmessnsssnses 81
49 Instantiation Diagramsceececeveereeeecerrierensseesessussessensssssssnaesesns 84
4.10 Dispatch MappPing......ccereereriersirsscsseriasrsmssmssensesassscssnsssnsssnsssnanses 86
METHOD PROCEDURE.........ccortercetrenienernsrenssenssssssssssassassssssasnnsneen 88
5.1 INTOAUCHONcev ettt entiseetere s sreaesanssesras s erssessesneessans e e sanenasaas 88
5.2 Transformation from Generic IDEF4 1o IDEF4/CH++.................... 89
53 IDEF4/C++ Design Development ACHVItIES.......oceveenreraecaerieneens 92
5.4 IDEF4/C++ Design Development Process with Multiple
DIEVEIOPETS «utiiei it rae st s i erarssasae s s e s e e s s 95
METHOD USES.....ceeecetrae s stasstaseerasssaesaassasssnsessesssessanassessenns 104
6.1 INtrOAUCHON .. ve ittt st s e e an s 104
6.1.1 Inheritance vs. AgETegation.ccuivumnriversraesssermsmesrssecseeraes 104
6.1.2 Broadening the Design SCOPE.....coiereeieenieenarcrcnmsacsasensscssnnons 106
6.2 Inheritance and Feature Access CONtrolovvveeeeerscesceneessenan. 107
6.2.1 Protected Feature Access Control.......cooeevvvvvnnnioninncnsninnnn. 108
6.2.2 Private Inheritance and Access Specifier.......c.cccueecsecnaceenn. 109
6.2.3 Public Inheritance and Feature Access Control...........c....... 112
6.3 Constructors and DesStrUCIOTSevseeerrenerseesenseseesssssnsseomramseseeas 113
6.3.1 Protected CONSIIUCIOTSccceereenresrrceresirecnssrtesessssesessnssnssanes 114
6.3.2 Passing Parameters to Base Constructors.......cccecveeceeesnsnnne, 115
0.3.3 Vinual DestrUCIOTS. ..cuucoeeeerececeieerceereeteseesssssesvaresesnssssssnssasans 116
6.4 Pure Virtal Functions and Abstract Base Classes......ccocceeeennne. 117
6.5 Designing Dynamic Polymorphism in IDEF4/CH+.................... 118
6.6 Implementation for Conflicting and Non-conflicting Features ...124
6.7 Features with Multiple Return TYPESc.ceciericerecncercmrasreansaanenee 126
6.8 Avoiding Redundancy in Multiple Inheritance......c...cc.cceuveuuneen. 129
6.9 Design with REUSE ..vvveccveeeeiveire et cere s sse s aennas 134
6.9.1 Abstract Base Class and Pure Virtual Functions 135
6.9.2 Private Inheritance and Forwarding...........ccoeececeaeecesnacreacene 136
6.9.3 Aggregation with Forwarding................cccouverrereeeenernesnnennnne. 138
6.9.4 Delegation.......ciuieriierierenscraseeeseeesceeeesesesssessroseessessssssasessans 140
6.9.5 Rules of Thumb for Design with Reuse.......cccccccoevnrivennvennn. 145

TABLE OF CONTENTS (CONTINUED)
Page

7.1 CONCIUSION vuoviiirinnriesisirseesssressssssssnsssssssnsssssssnssssssssnnsssssarassssessens 147
7.2 FUtUTe EXIENSIONS.ucirrviserieserinnrssrrnsssnssrmeseansasnssasesssssmmanmmnssnssss 148

REFERENCES ...t ccirvvisticesieessssssessessissssssrssssssssnsnssssassasssnnns trsesrsssresaranassssssnassnnssran 152
APPENDIX A.....cooovievincinennees ceeranenans eteeretenteeerbte bttt et itrasaresesntstissrrasarsssararre 1D
VITA ..oiorieervenrrrnnnnrenes ievesseesresesiessosrseteantine eresraerens etrrasesrarssaeenbrrsensntenrsasnresnnannnan 161

LIST OF TABLES

Table 3-1. Presence of the Feature Pay in the Employee Class Hierarchy.........c.... 36
Table 5-1. Transformation from IDEF4 to IDEF4/C+. ..cccunviuevmsenssessnssssscsssssnens 90

LIST OF FIGURES

Page
Figure 1-1, CLOS and C++ Code Examples of Name Conflicts..........cceeierincnnene. 3
Figure 1-2. Different Name Conflict Resolutions of CLOS and CH++............oceureneae 5
Figure 2-1. Design Refinement and Implementation Refinement: P-Correct and
SCOTTECL. ...ccucecrreirnerversnessuensisssissesssessnsessssmssnsassnsnsnsssasss nssenssansnsnsenssnnan 10
Figure 3-1. Class Box in IDEF4. ... sssseinesisssnsssnssssssassinse 27
Figure 3-2. Representation for Class Inheritance in IDEF4. ..., 28
Figure 3-3. Partial Inheritance Diagram for an Employee Class.ccoverrveerenene. 30
Figure 3-4. Feature Taxonomy Hierarchy.ccouinirniniimnncnncnnnsee e 32
Figure 3-5. Inheritance of FEAtUres.ccoviriiinriininicnrisis st sias s scsaaes 33
Figure 3-6. Redefining Inherited Features in Class Inheritance. ... 34
Figure 3-7. Classification of the Presence of Features.ccovvvcviviiniiniecnninniinan. 35
Figure 3-8. A Partial Type Diagram Defining Types of Features. 37
Figure 3-9. Print Method Taxonomy and Associated Routines............c..ae. 41
Figure 4-1. Organization of IDEF4/C++ Diagrams.cccccecvemreeiiiinniinsieniinnnesencs 46
Figure 4-2, Example Class Lattice Diagram for an Employee Management
=1 1 T OO ORP PP OURTTOUTOI I 48
Figure 4-3. Example C++ Code for the Class Project.ccocevvmninnniniinnincninn. 49
Figure 4-4. Extended Class BOX SYNtaX.coovveiiinninniinnsn e 51
Figure 4-5. Inheritance of a Base Class and a Derived Class. ... 51
Figure 4-6. Comparison of Public, Protected, and Private Inheritances.................. 53
Figure 4-7. Virtual Inheritance in IDEF4/CH+. ...cccoovniiiennciesin e 55
Figure 4-8. Example of Feature Symbols. ..o s 56
Figure 4-9. Example of a Redefined Feature with New Contract.............. 57
Figure 4-10. Example of Extended Feature Symbols.cc.ccociiniciinniiniininvinniens 60
Figure 4-11. A Partial Inheritance Diagram of Employee Management System. .. 62
Figure 4-12. The Programmer Class. ..o nncnie e 64
Figure 4-13. Class-invariant Data Sheet for Class Programmer............ccocovecninnee. 66
Figure 4-14. Contract Data Sheet.......civmiviiiiniiiiii e 68
Figure 4-15. Work_pay Method Taxonomy Diagram with Dispatching
IMADPINE. 1eeriiirrririrresieserenteersesesssressressaesssesamaresesnss e ssn esa s bssans saaesarbsrnnsbes 69
Figure 4-16. Employee Inheritance Diagram with Dispatch Mapping.................... 70

Figure 4-17. Single-valued Type Link.......coccoiniinienimmiinmn s seesenas 72

LIST OF FIGURES (CONTINUED)

Page
Figure 4-18. Multi-valued Type Link. tessasssustusa s st b s 72
Figure 4-19. Single-valued Inverse Type Link. sreesereattst bt st et annsmemnas s s 73
Figure 4-20. Partial Inverse Type Link........ eeseetesanreenstenraanennns 74

Figure 4-21. Textual Notation for Feature Retumn Types. ...« wsissaenemmermenes 16
Figure 4-22. An Example Type Diagram for the Employee Management

_ SFSEIM ceiruisanerresnirnssesansessassasssessassnssesssasssassossonssasesbtns sisssnssas sonesnsesnessassansnnn 77
Figure 4-23. A Friend Diagram and C++ Codc Example for Class Worker. 79
Figure 4-24. A Template Diagram and C++ Code Example for Class Template
ATTRY. <o eteicere st ecsaae s ems e st ss st om s sac s s sa bbb A RS a s sb s be e ban b rananes 81
Figure 4-25. Client Diagram for Show-project-information of Class Project- '
MANAGET. .ooneiiaceeeireesrneenssesssasstassanassassssasssssessnnanssas s brabtt raassesstessensseasssnss sas 82
Figure 4-26. C++ Code Example for Show-projcct—mformanon 83
Figure 4-27. An Instance Box - JOhN. ..co.vviceieiiescci st e 84
Figure 4-28. Example Instantiation DIiagrams.ccccereesemaeeseescereeeseeaesssasesnsaneane 85
Figure 4-29. Dispatch Mapping of Work_pay Behavior.c.ccocvviiiniinncecn. 87
Figure 5-1. IDEF3 Dynamic Model of IDEF4/C++ System Development
Process with Configuration Management,ueeeeseeresseersseseesssessaesenes 96
Figure 5-2. Configuration Items defined in IDEF4/CH+.ococoomernerecerreerconsenesnens 99
Figure 5-3. Flow of Control of Configuration Management in IDEF4/C++. 103
Figure 6-1. Inheritance vs. AEregation. ...c...cresrerrcrscorsersaoarssessosssssssaseasenasscsrnases 106
Figure 6-2. Protected Feature Access CONIoLucciiiiiiiicrnineceoismmessssscissssesains 109
Figure 6-3. Private Inheritance and Feature Access Control.cveeiiecoienennn 111
Figure 6-4. Public Inheritance and Feature Access Control.covvmicrivenieenecencns 113
Figure 6-5. Calling Base CONSmUCIOTS.cc.coviiiesiiiici i scsescse st siscsnesrnessossserses 116
Figure 6-6. Inheritance Diagram for Class Shape........c.ccormeeseerorironceseenseersnenens 119
Figure 6-7. IDEF/C++ Design for Run-time Binding.......cccccocinniininiininninnnnns 122
Figure 6-8. Adding a New Class - Triangle.ccccouuieremmncemmnnncinsccnsscn e 123
Figure 6-9. Conflicting and Non-conflicting Constrainis.c.cccoveceersrneneseenee 126
Figure 6-10. Example of Not Allowable Type Diagrams........c.ccoceicimniicniiiisnnne 126
Figure 6-11. Designing Multiple Return Types for Feature team-members. 128
Figure 6-12. Multiple Inheritance of the Class Project-Leader.o.couvvcveienanene 130

Figure 6-13. Client Diagram of Project-Leader’s Perform-task.cccccoccevunnnnnne. 131

Figure 6-14.
- Figure 6-15.

Figure 6-16.

Figure 6-17.

Figure 6-18.
Figure 6-19.
Figure 6-20.

Figure 6-21.
Figure 6-22.

Figure 6-23.

LIST OF FIGURES (CONTINUED)

Page
Separating Perform-tasks in Manager and Designer...........cc..cu.u.... 133
Avoiding Redundancy in Project-Leader’s Perform-task. 134
An Abstract Base Class - Drill-Machine.........ccocuieninsinsnniennnn 136
Using Forwarding in Private Inheritance.c.crsiesmsesearcessossosassensens 137
Reuse List by Aggregation................i ... 139
Forwarding the Count Behavior.. teeeresassstertsstestest st arsestotsarseanss 139
Forwarding the Has-item Behavior. ..., 139
Multiple Inheritance of Class Research-Assistant.cccceveeneenes 141
Design Class Research-Assistant by Delegation.........veeieecnnnee 141
Design Delegation for Class Research-Assistant.oceceeessenne 142

Figure 7-1. An Integrated Framework of Object-oriented System Development. 149

" CHAPTER 1

INTRODUCTION

1.1 Introduction

In software engineering, the traditional software developmént process is usually
referred to in terms of the “waterfall” model (Boehm 76). Though further refining
works on the model have related to different levels of detailing, the three most
generally identified phases are analysis, design and implementation. Each of these
phases possesses discrete activities, has its own objectives, and is governed by
distinct philosophy. However, in recent years, the introduction of object-oriented
technology has blurred the distinct boundaries between them (Meyer 87)(Korson &
McGregor 90). The object-oriented technique combines the principles of
encapsulation, polymorphism, and inheritance to promote software reuse and to
reduce downstream errors and maintenance efforts.

The object-oriented technology blurs the boundaries between these phases for
several reasons. First, the elements (objects and their relationships) focused in each
phase become more tightly connected. The objects and their relationships identified
in the analysis phase cast a basic understanding of the problem domain. The design
and implementation phases consequently follow this understanding and are based on
these objects and relationships to conduct their own activities. Second, the system
development activities are conducted as “modes of thought” rather than as
sequential phases or iterations. The development team usually goes back and forth
between modes of thought, performing tasks to refine the dcsigh, analysis and

implementation, on the fly. The blur is especially obvious along the boundary

This thesis follows the style and format of International Journal of Production Research.

2

between the design and implementation phases (Meyer _8'7).‘ An effective method
must support the process of filling in the details from the analysis th.rbugh the
design specification and all the way to the working program. The promised benefits
of object-orientation can only be obtained by integrating these activities into a
seamless framework. This inte'gfation can also provide a paradigm for one of the
goals of Computer Aided Software Engineering (CASE) - code generation from

solution specification.

1.2 Motivation

Unfortunately, object-orientedness means different things to different people
(Nelson 90). There is still no general and widespread agreement on the object-
oriented model; different object-oriented programming languages support different
notions of objects, such as those graphic-based object-oriented design methods and
tools (Booch 91, Rumbaugh 91). A method or a programming language's object
model is important because it determines the built-in semantics the method or the
language understands and is able to enforce. This variety between methods and
languages' object models brings out a problem while making the transition into the
implementatic;n phase from the design phase in the software development process
{where the boundary blurs most). The object model that a design is based on may
be different from the one that the implementing language supports. More
specifically, the "objcct-orieﬁted" features provided by a design environment may
not be supported by the targcf implementing language or vice versa. Different
languages might give different interpretations (implementation) to the same feature.
The designer may not be aware of this "Tower of Babel"” in object-orientedness until

the implementation process begins. When encountering this problem, occasionally

the designers are forced to either change their original designs to suit the intended
implementing language or switch to a proper target langnage. As a result, this
dilemma increases the software development time and cost, and decreases

application’s performance as well.

(a) (defclass UniversityEmployee O (defclass Student O
((.
{(name : accessor name) (name : accessor name)
(department : accessor department) (department : accessor department)
(ssn : reader ssn))) (student-ID : accessor st-id)))
(b) class UniversityEmployee { class Student {
protected: _ protected:
char *name; char *name;
char *department; char *department;
int ssn; int student-ID;
public: public:
char *get_name(); char *get_name(};
void put_name(char *}; void put_name(char *);
char *get_department(); char *get_department();
void put_department(char *); void put_department{char *);
int get_ssn(); int get_student I1D();
}: void put_student_ID(int);
|

Figure 1-1. CLOS and C++ Code Examples of Name Conflicts.

For example, both the Common Lisp Object System (CLOS), an object-oriented
extension of Common Lisp, and the C++ object-oriented programming language
support multiple inheritance but implement it in somehow different way. Multiple
inheritance, which allows a subclass to inherit features from more than one
superclass, is straight-forward if no inherited features are multiply defined in the
superclasses. But if more than one superclass has defined (or inherited) the same
features, the language has to provide a strategy for resolving the name conflict
occurred in the subclass. The strategy reflects the approach the language constructs

and supports multiple inheritance, and conducts the method selection process as

4

well. CLOS and C++ adopt different approaches of ~implem§nting this conflict
resolving sn'aicgy. Basically, CLOS uses a class precedence list as a means for
resolving the conflicts, which is in the order from most specific to least specific. On
the other hand, C++ provides both "single-copy" and “multiple-copy" appm#chesl.
For instance, consider that we have two classes: class UniversityEmployee and class
Student, their declarations in CLOS and C+-l; are displayed in Figure 1-1(a) and (b)
respectively. If we define a class ResearchAssistant as a subclass of both
UniversityEmployee and Student as shown in Figure 1-2(a)2, there will be a name
conflict of the department slot because it is defined in both UniversityEmployee and
Student (Figure 1-2(b)). CLOS uses a class precedence list to resolve the conflict
and it will keep only one copy of deparnment in ResearchAssistant (Figure 1-2(c)),
whereas C++ keeps both copies of department implicitly (if the multiple-copy
approach is applied). Both copies can be explicitly accessed by using class
identifiers (Figure 1-2(d)). Because CLOS only keep one copy of department, the
designer needs to determine which superclass is the department inherited from; does
it refer to the research assistant's academic department or the department that hires
him or her? Furthermore, the access to each of the department methods might be
different and there might be conflicts in their contracts. Thus, it is necessary for the

designer to decide which methods to be shadowed to hold the consistency.

1 If the inheritance link is declared as virtual, then single-copy approach is adopted. Otherwise,
multiple-copy is the default approach. See Section 6.8 for more details.

2 The Figures are presented in terms of IDEF4/C++ notation. Where boxes represent classes and "S"
symbol represents a slot feature. See Chapier 4 for more details about the IDEF4/C++ syntax.

@

Urﬁvasityﬁmplnyeel) Student

ResearchAssistant

CLOS: (4efctass ResearchAssistant (UnivessityEmployee Student) 0)

C++:
* class ResearchAssistant : public UniversityEmployee, public Student (};

(b) K‘- (S) department
UniversityEmpioyee \Smdmt
ResearchAssistant
(c)
{S) department {S} department
UniversityEmployee Student
(5) department*” CLOS only keeps one
ResearchAssistant copy of inherited feature
(d) (S} department {S) department
UniversityEmployee Smdent C++ implicitly keeps two

copies. They cam be accessed
\ / through class identifiers:

(S) dep T - UniversityEmployce::depamném
[S] department ~ _| -
—carchAssistart ~ M. Stdent::department

Figure 1-2. Different Name Conflict Resolutions of CLOS and C++.

'It is not our intent to judge which language. is better and which is not, as
différent languages are designed for different intents. For example, one of the
primary goals of CLOS is to gain flexibility and extensibility for the language,
whereas C++ is more focusing on run-time efficiency and implementational
simplicity. Pﬁr the example ‘illusn'ated above, more design effoﬁ should be taken if
CLOS is considered as the target implementing language3

The variety in interpretation (implementation) within the object-oriented
paradigm therefore shadows the promise that the technique has proclaimed.
Intuitively, the best solution is establishing a standard object model which every
vendor of the implementing languages and the developer community would agree
upon. Since object technology is still evolving, it is understandable that such a
paradise will not appear soon. The need of extensibility for the design environment
to support different implementing languages is therefore eminent.

One approach to solving the problem is to provide language-dependent
extensions for a language-independent design method. The idea is straight-forward.
Before the designer goes into the detailing mode (which is very related to the
implementation language selected), the generic design environment should be abie
to be extended seamless in order to conduct this process efficiently.

More specifically, the design environment should be able to support the
evolutionary change from the conceptual design all the way down to the
implementation, smoothly and elegantly. Our intent is to construct an extensible
environment for designers to be able to move through the process seamlessly. In
addition, if an intended implementation language is found not to be expressive

enough for the specific design, by using a certain mechanism provided in the design

3 Here we only give a simpiified example. However, for a more complicate design, there might be
some compromise 1o the reality and tradeoffs between picking up different approaches.

environment, the designer can backtrack to the generic design and evolve and‘

extend the design towards another target language.

1.3 Research Goal and Objectives

The specific goal of this research is to construct a C++ extension for IDEF4, an
object-oriented design method, as a specialized design environment for the C++
implementation of a system. To achieve this goal, several objectives are identified.

We group these objectives into the following:

1. Analyze and understand the domain:
« To capture the ontology of object-orientation.

« To capture the ontology of the implementation independent IDEF4 object-

oriented design method.

« To capture the ontology of the C++ object-oriented programming

language.

2. Design and develop the extended IDEF4/C++ method:
« To develop a C++ extension of IDEF4 method.

1.4 Organization of the Thesis
The results of this research are presented and organized as follows:

Chapter I introduces the object-oriented software development process, and

identifies the evidence of various dialects among the object-oriented

society, which motivates the activity of this research work. The
research objectives is stated in the chapter as well.

Chapter II reviews related literature and presents the ontologies of the domain,
which include core concepts and terminology used to conduct the
research. .

Chapter III discusses the basic concepts of the IDEF4 object-oriented design

| method family (IDEF4 and IDEF4/C+-|;). The discussion is
intended to lay out a foundation for the succeeding chapters.

Chapter IV presents the syntax of the extended method - IDEF4/C++. A
nﬁmber of examples and C++ code are given along with the
introduction of the notations.

Chapter V specifies the IDEF4/C++ design development procedure. An IDEF3
dynamic model describing the design process with multiple
developers / development teams is also presented.

Chapter VI discusses the principles and techniques of the use of the method.
The discussion focuses on issues of design with reuse in
IDEF4/C++. We conclude the chapter by summarizing rules of
thumb for reuse.

- Chapter VII gives the conclusion drawn from this thesis. Future extensions of

the research are also discussed.

CHAPTER I

BACKGROUND

2.1 Literature Review

Both (Meyer 87) and (Korson & McGregor 90) mentioned the blurring between
design and implementation phases in the object-oriented software development.
Korson and McGregor suggest that the transition from design to implementation
should be smooth and this transformation should be part of the design process.
Meyer suggests that this is basically a technical problem (Meyer 88) and goes on to
present a tool named Eiffel, claiming that Eiffel is a language for both design and
implementation.

However, there is a major distinction between the philosophy and design
intention of IDEF4 and those of Meyer's that we would like to address in the first
place. We consider design and implementation4 as different activities, whereas
Meyer places the design process only at a higher level of abstraction than
implementation (Meyer 88). Design and implementation are different in terms of
the notion of correctness (Mayer 90). More specifically, the aim of the
implementation activity (the programming activity) is to produce a specific single
executable implementation which will run correctly and ultimately bug-free. This is
referred as P-Correct. On the other hand, the aim of the design activity is to narrow
the range of available choices so as to expedite the eventual acquisition of a correct
solution for the problem. This is referred as S-Correct. Figure 2-1 (Mayer 90)
describes the difference in the refinement process in these two activities. This

figure shows that the objective of design evolution is to gain a larger probability for

4 The term implementation used here mainly refers to the activity of programming.

10

correct implementationS. Based on this philosophy, unlike Meyer's approach
(Eiffel), we choose to extend an existing logical design method into a language
dependent implementation design method. That is, we propose extending the
generic 1DEF4 to IDEF4/C++, rather than turning a programming language into a

design tool.
Program Design
Refinement Refinement
P-Comrect but not
executable Correct but not
consistent with design
P-Correct and
before closer to
reflpement executable

Consistent with design
but not correct

P-Correct but not
executable

Correct but not
consisient with design

4_-----

Correct and

, after consistent with
refinement
Nonsistent with desigy
Figure 2-1.
Design Refinement and Implementation Refinement: P-Correct and S-Correct.
Reprinted from (Mayer 90).

5 The larger the S-Correct proportion of the design means the more chances to derive a correct
implementation from the design model.

11

(Nelson 90) discusses the Subje.ct of variations in object-orientedness. He urges
an agreement on thifs area, at least in the basic terminology. Alan Snyder has
devéloped a common framework for general object-oriented terminology. He
proposes an abstract ob_];ect model (Snydcr- 90 and 93) which has a good
organization on the basic concepts and terminology. Relating to this work is the
specification (OMG 91) prepared by the Object Management Group, which makes a
promise to become the standardization in this field.

Several object-oriented design methods including (Booch 91, Coad & Yourdon
91, and Rumbaugh 91) all have comprehensive discussions of the field. We include
the survey on these methods to gain a broader understanding of object-oriented
design models. (Stroustrup 90), (Lippman 91), and (Coplien 92) give a thorough
overview on the C++ language, where issues such as type system, multiple
inheritance, dynamic binding, function overloading / overriding, class template etc.,
are addressed and discussed in these sources. (DeMichiel 93) compares the
distinction between Common Lisp Object System (CLOS) and C++, which provides

some basic notions for understanding the design philosophy behind C++.

2.2 Domain Ontologies

Every method or language has an object model, which plays the role as the
foundation for its notions of objects. The object model behind a method or a
language is important because: it provides the underlying constructs for specifying
the built-in semantics that the method or the language understands and is able to
enforce. Therefore, before extending the generic IDEF4 object-oriented design
method to a specification for the C++ implementation purpose, the understanding

(analysis) of the object models in the domain (IDEF4 and C++) is essential and

12

necessary. This section presents the results of using IDEFS ontological schemﬁtics
for capturing the ontology models of the IDEF4 method and the C++ language, as
well as the general concepts of object-orientedness. The concepts and syntax of
IDEF5 method will not be discussed in the report, details of the method can be
referenced in (Mayer 92¢). However, major efforts lay in the process of “name-
coirﬁng”, which results in a set of core concepts for building up the target semantic
models, and establishing the terminology to be used in descriptions of the domain.
Sccﬁon 2.2.1 presents the model of general object concepts. Section 2.2.2
presents the IDEF4 object model and Section 2.2.3 presents the C++ object model.
In these sections, only the summaries of the core concepts and key terms are

presented.

2.2.1 Ontology of General Object-oriented Concepts

Establishing the common concepts and perceptions of an object-oriented model
can greatly enhance the communication among object-oriented system developers,
users, and researchers. In this section, we identify a general object model for such
purpose, which is intended to pmvi&e an organized presentation of terminology and
primitive concepts for the research work. IDEF4 (Mayer 92a), Booch's method
(Booch 91), Rumbaugh's Object Modeling Technique (OMT) (Rumbaugh 91}, and
C++ (Stroustrup 90, Lippman 91 and Coplien 92) are all the sources for this
ontology research. In addition, the ontology is also elaborated from the abstract
object model used in the Object Management Group’s (OMG) Common Object
Request Broker Architecture (CORBA) (OMG 91). The following sumrmarizes the

core concepts and the key terms identified from the above sources.

An object is an identifiable, encapsulated entity that is capable of
requesting and/or providing one or more services. It has szate, is
capable of performing some well-defined behavior and has an

unique identity .

“The identity of an object is denoted by the term handle, which is
a value that unambiguously identifies an object. The name of an

object can be a handle to that object.

The state of an object is captured in terms of a set of attribute-

value pairs .

The behavior of an object is captured in terms of a set of

operations that the object can perform.

A feature is a generic term for presenting a particular

characteristic of the state or the behavior of an object.
A feature can be an attribute or an operation.

Packing related attributes and methods together is called
encapsulation. Encapsulation protects data from corruption by
other objects and hides low-level implementation details from the

rest of the system.
The mechanism for encapsulation is the object.
Objects interact with each other in terms of issuing requests.

An object that requests services is called a client object. An

object that provides services is called a server object.

13

A client object requests a service from a server object by issuing

the request to the server object.
A request is an event.

A service is a computation that may be performed to respond to a
Tequest.
The information associated with a request consists of an

operation, a target server object, and zero or more parameters

required to provide the service.

An operation is specified to denote a service that can be
requested. It has an associated signature which describes the

types of the request parameters and return values.

A method is an implementation of an operation. It is the code

that may be executed / invoked to perform a requested service.
A service is provided by means of performing an operation.

An operation can be generic. A generic operation can be
performed differently by different target objects by invoking
different methods.

A binding is a computation that results in the selection of the
methods to perform a requested service. Binding can be dynamic
binding or static binding according to the time that the decision

1s made.

14

A rype is a specified predicate defined over expressions to serve
the purpose of membership checking or binding validation.
Therefore, the type of an operation can be considered as the

signature of the operation.

A class is a specified template for defining attributes and
operations for a particular type of objects. Objects of the same
class have the similar sets of attributes and operations. Class can

be instantiated to create objects.

An interface of a class is a description of operations and
attributes defined in that class. It includes the signatures of the

operations, and the types of the attributes.

Every class is a type, but not every type is a class. Type
classifies objects according to a common interface they share.
Therefore, the type of an object can be considered as the interface

of the class of that object.

Class inheritance is a specification of class definitions based
upon the generalization / specialization relations between classes.

Inheritance can be multdple inheritance or single inheritance.

Object aggregation is a relationship in which one object is

composed of other objects.

15

16

222 Ontology of the IDEF4 Method Concepts

In this section, we summarize the ontology of the object model of the generic
" IDEF4. The ontology is presented in terms of a set of thé key coﬂcepts and coined

terminology described as follows.

+ An IDEF4 model consists of two submodels: a Class submodel
and a Method submodel. These submodels are connected by

means of a mechanism called Dispatch Mapping.

e The IDEF4 class submodel is composed of Class Laitice
Diagrams, Inheritance Diagrams, Type Diagrams, and

Instantiation Diagrams.

« The IDEF4 method submodel is composed of Method Taxonomy

Diagrams and Client Diagrams.

» Each class in IDEF4 is associated with a Class Invariant Data
Sheet (CIDS), which specifies the constraints for the instances of
this class. Information such as direct present features,
superclasses and subclasses are also documented here. The
corresponding inheritance diagrams and type diagram of a class

are referenced on its CIDS.

» In IDEF4 the term feature is used as a generic term to refer to
both artributes and routines. Attributes denote value-returning

features. Routines denote computation-initiating fearures.

A routine can be refined as a procedure or a function in the late

(detailing) stages of a design. An astribute can be refined as a |

function or a slot.

Rouﬁnes (functions and procedures)‘are behavioral features; they
denote the behaviors of the instances of a class. Behavioral
features are listed in a class invariant data sheet (CIDS) according
to the generic behaviors they identify.

Inheritance relationship between classes are described in

inheritance diagrams.

Access of the features presented in a class can be public or
private; public features are accessible to other classes, private
features are accessible only to the owner class and all its

subclasses.
A method taxonomy diagram describes a generic behavior.

A method taxonomy diagram classifies a generic behavior into
several method sets according to the similarity of the constraints
on them. Method sets in a method taxonomy diagram are
arranged in a more specific order from left to right or from top to

bottom.

Each method set in method taxonomy diagrams is associated with
a Contract Data Sheet (CDS), which specifies the constraints that

the implemented methods in this method set should satisfy.

A contract is a set of constraints for the associated method set.

17

Methods in a method set must be implemented accordlng to the

contract associated with thc method set.

Behavioral features defined in the class submodel and method
sets in the method submodel are mapped with each other through

dispatch mapping.

Conflicting constraints are those constraints that redefine or
shadow the constraints from previous method sets. Non-
conflicting constraints are sets of pre- or post-conditions that

should be applied with the inherited constraints.

Type diagrams describe the aggregation relationship between

classes. Type links are used to represent the relationship.

The type of a feature in a class is specified as the class that is
connected by a type link. Predefined types are collected in the
Usef Predefined Data Type List associated with the method
submodel.

Only value-returning features, such as functions and slots can be

shown in type diagrams.

Type links have different kinds. Type links can be no inverse,

with inverse, or with partial inverse.

A client diagram describes the internal algorithmic structure (i.e.,
subroutine calls) of a behavioral feature. In a client diagram, a

supplier routine is called by a client routine.

18

19

« Routines in client diagrams usually are shown with their defining
classes. If a class associated with the routine is not specified,
then a dynamic (run time) binding will occur in the

implementation.

+ Class lattice diagrams provide a broad view for the lattice of
cither the whole class submodel or the focused part of the

submodel.

» Instantiation diagrams are associated with type diagrams in the
class submodel. Instantation diagrams describe the anticipated
situations of composite links between instantiated objects that are

used to validate the design.

2.2.3 Ontology of the C++ Programming Language

This section presents a set of key terms and the core concepts for the ontology of
C++. We want to emphasize that the ontology is discovered and documented with
the intent of only mapping significant characteristics of the language to the

primitive object-oriented concepts; rather than focusing on the language syntax or

structure.

* C++ derived class is a synonym of “subclass” in general object

terminology.

+ C++ base class is a synonym of “superclass” in general object

terminology.

C++ provides three feature accesses: phbh‘c, priﬁare, and
protected. Public features can be accessed by the whole system.
Private features can be accessed only by the owner class.
Protected features can be accessed by the owner class and its

derived classes.

A derived class inherits those non-private features defined in the
base class.

Private features in base classes can not be inherited by the
derived classes. Private feature access control provides a means

for implementing encapsulation.

Derivation in C++ means inheritance. C++ provides three types

of derivations: public, private, and protected.

Non-private features of the base class become protected features

of the derived class in a protected derivation.

Non-private features of the base class become private features of

the derived class in a private derivation.

In a public derivation, a derived class inherits a base class’s non-

private features without changing their feature access.

A virtual derivation in a multiple inheritance is used to prevent

the name confl.icts of the inherited features.

Features of a class are called class members in C++. Members in

C++ classes are data members or member functions.

20

C++ data members implement the slots defined in a class.

C++ member functions implement the functions or procedures in

a class.

C++ virtual function overriding is an example of dynamic
polymorphism, which is also called run-time polymorphism or
late binding. The invocation of a function is determined at run-

tire.

C++ function overloading is an example of static polymorphism,
which is also called compile-time polymorphism or early
binding. The invocation of a function is determined at compile-

time.

C++ class template declaration implements the concept of

parameterized class.

C++ friend declaration provides a means to break encapsulation
(information hiding). Classes or functions declared as friends to
a class can access not only the non-private features but also the

private features of that class.

C++ static class member declaration implements the use of class
variables and class operations. Class variables and operations are
the members that only kéep one copy among all the instances of a

class.

Pure virtual member functions construct abstract base classes.

Member functions declared as pure can have no function bodies

21

22

implemented, which prevents any creation of ﬁlstﬁnccs from an

abstract base class.

+ Nested classes are the classes defined in other classes’
definitions. The visibility of a nested class is limited to the scope

of its enclosing class.

Note that we use request instead of the traditional term message for several
reasons. One major reason is that message sending implies concurrent execution by
the client and server objects (between the sender and the receiver). However, The
intent is not to present an unified object i:nodel nor to compare and judge the various
dialects in the object society (by saying who’s right and who’s wrong). Instead, we
carry out these ontological models to form the boundary for our research domain.
In other words, these models together intend to provide and define the primitive
object concepts and terminology that can be used in this research work; especially, a
set of terms that we can use for communication. A glossary of the terminology

identified is given in Appendix A.

23

CHAPTER II

METHOD CONCEPTS

3.1 Introduction

IDEF4 family are method& for object-oriented design; they are not object-
oriented programming languages (OOPL). However, basic object concepts
supported by either a design method or a programming language are similar, The
major elements for constructing an object-oriented system are commonly identified
as classes, features, and methods. These basic elements are incorporated into the
IDEF4 method family and form the foundation of IDEF4 and IDEF4/C++. In this
chapter, we will discuss these basic method elements and their representation in the
methods as well. Basic concepts such as class and type, class and object, class
inheritance, feature taxonomy, feature type, method taxonomy, contract, and
method set are included in the discussion.

A good way of thinking of an object-oriented system is of a space which
consists of a set of independent but cooperating objects. Each object has state and
behaviors. The state of an object is captured by a set of attributes with values
assigned, whereas the behaviors are actually implemented by a set of methods. In
the system development process, these objects are to be classified into a set of
“packages” according to the common state and behaviors that they possess. Both
the state and behaviors are characterized by a set of features in the design
evolution, and these “packages”, in the common object-oriented términology, are
called classes. Object-oriented design and programming activities tend to define
these features and methods for classes. However, a novice in object-orientedness

will often confuse the term type, class, and object.

3.2 Classes

3.2.1 Classes vs. Types

Each class is a type, but not every type is a class.- A class is'spcciﬁcd by the
definition of a set of local, state-deﬁning attributes and of a set of methods that
define the behaviors of the instances of that class and their relationship to the
instances of other classes that make up the system. In other words, a class is a data
structure that includes a set of state-defining attributes and a set of methods that
apply to the instances of that class. A type, on the other hand, is specified by a
prcdicatc defined over a set of expressions to serve ihe purpose of type checking or
operation binding. Many object-oriented languages have used run-time type '
checking to ensure that the requests that are sent to an object are understood by that
object. The type of an operation is referred to as the signature of that operaton
(signature type). Generally, a class can be instantiated to create objects in the
system, whereas type classifies objects in terms of the common interface of their
defining classesé. In other words, the type of an object can be considered as the
interface of the class which that object belongs to. In this context, one of the
important properties of objects is the property of substitution (Atkins and Brown
91), which states that objects providing similar operations can be used exchangeably
if only the common behavior is required. In this sense, inheritance - a mechanism in
which subclasses possess common behaviors defined in superclasses, therefore
suggests that the type of an object should be associated with its class, and thart the
instances of a subclass should be able to used in all the places where instances of the
superclass are expected. In other words, this formalizes the concept that instances

of a subclass are also instances of its superclass. Such a concept has formed the

6 Recall that an interface of a class is a description of the operations and attributes defined in that
class. It includes the signatures of operations and the types of atributes (Section 2.2.1),

25

basis of those strong-typed object-oriented languages, such as C++. C++
implements this concept in terms of type conversion, which enforces an efficient

request dispatch scheme and implements dynamic polymorphism (see Section 6.5).

3.2.2 (Classes vs. Objects

The self-referential definition of classes ‘and objects, in which an object is
defined to be an instance of a class and a class is defined to be a description of
similar objects, is often confusing. The terms class and object are usually heavily
overloaded in the object-oriented literature. In (Mayer 92a), the meanings that the

term c¢lass may refer to are summarized into the following:

. categories, or types, of objects in the real world (real-
world perspective);

. data types representing categories of objects (data-item
perspective); and

. modules of associated operations that define data types

(module perspective).
The meanings that the term object may refer to are summarized as:
. real-world objects (real-world perspective), and

. data items belonging to one class or another (data-item

perspective).

26

Consequently, class and object are defined by each other. We clarify this
confusion from the perspective of the system analysis and design procesSes. In the
sﬁstem analysis process, one of the objectives is to identify the real-world objects
from the problem domain (real-world perspective for objeci). These real-world
objects are then classified into classes (real-world perspective for class) in 'thc
design process. Extra characteristics (features or classes) may be added for
constructing an object model which provides a solution to the problem (data-item
and module perspectives for class). Applying the solution to the problem is
therefore the process of msﬁnﬁaﬁng and activating the instances from those model
classes. Thé object instances existing in a computer that forms the solution domain
are therefore referred to as model objects (data-item perspective for objec?).

In class-based systems, the analysis focuses on real-world objects, the design
focuses on classes of model objects. The classes are fabricated, rearranged, or
synthesized in the design process to form the solution model. Each class contains a
set of feature definitions that characterize the state and behavior of the instances of
that class. The set of feature definitions consists of attributes and methods. The
attribute definitions are used by the instances of the class to store their state. The

methods characterize the behavior of instances of the class.

3.2.3 (Class Box

Classes are the major syntactic construct in the IDEF4 method family, as in all
class-based object-oriented formalisms. In IDEF4 and IDEF4/C++, a class is
represented by a square-cornered box (see Figure 3-1) with the name of the class
listed below the double line at the bottom of the box. IDEF4 requires that the first

letter of the class name be capitalized. The features of the class are also displayed

27

in the Class Box with private features displayed below the export line and with
public features displayed above the export line’. Various feature symbols, prefixed
to the feature name displayed in the class box, may also be used to provide
additional information about the role that the feature plays. For each class defined,
IDEF4 method family allows the attachment of class-invariant constraints lising
class-invariant data sheet (CIDS). These class-invariant constraints represent
addiﬁonai information about the definition of a class that is true for all instances
created by the class at all times. The class-invariants described in a design provide

‘constraints on the implementation of the design and serve as part of the

specifications for a class.®
Public Features ==————.l__ name
address
employee_id
Private Features === | salary
vale Teafures work_schedule
Class Name — Employee

Figure 3-1. Class Box in IDEF4.

3.2.4 (lass Inheritance

One of the most distinguishing characteristics of object technology is
inheritance, especially multiple inheritance. Multiple inheritance allows a subclass

to inherit features from more than one superclasses. The concept of inheritance

7 IDEF4/C-++ extends this representation with the addition of ihe display of protected feamres. See
Chapter I'V for more details.

8 In an IDEF4/C++ implementation design, these CIDSs are the major sources for coding C++ class
definitions. Section 4.3.6 gives the detailed discussion.

28

provides a means of organizing related classes into an inheritance hierarchy and
supports for the reuse of methods and features in terms of subtyping (refer to
Chapter VI for reuse by inheritance). The inheritance mechanism operates and
follows the specialization/generaliiaﬁon relation. That is, the inheriting class
(subclass) is a specialization of the class from which it inherits (superclass), and the
inherited class (superclass) is a generalization of the class (suBclass) that inherits it.

Project_Manager
inherits the definition of
compute_pay from

Person

hour_rate

Wage Mixin

soso moTTRS:

Wage_Employee

Manager ‘ Employee | inherits the definition of

hour_rate from
Wage_Mixin and

redefines the inherited
compute_pay

\
| Wage_Employee
Project_Manager l

e

SR e
Wage_Programmer

intherits the redefined
compule_pay

Wage - Programmer

Figure 3-2. Representation for Class Inheritance in IDEFA4.

Figure 3-2 illustrates the representation in IDEF4 family for modeling a class-
inheritance hierarchy. The arrows, in the illustratdon, point from superclasses to

subclasses. In the figure, Manager is a subclass of the class Person; indicating that

29

any instance of Manager is also a speciaﬁzaﬁon of an instance of Person.
Furthermore, any behavior exhibited by a person will also be exhibited by an
instance of Manager unless the behavior is specialized or redeﬁned in the definition
of the Manager class. In the example, the class Empfoyee is a direct subclass of
Person and the class Wage_Employee is an indirect subclass of class Person. Each
subclass inherits the characteristics (features) associated with its direct and indirect
superclass(es). For example, the class Wage Employee inherits the features from
both the Wage Mixin and Employee classes and redefines the feature compute_pay.

In the inheritance hierarchy, features reappearing in the subclasses indicate that
those features are redefined (additional constraints or a new definidon) in the
subclasses. The compute_pay feature is first presented in class Person, but
redefined in class Wage Employee.

From the module point of view, inheritance is a macro-like “virtual copy”
operation: all features associated with a superclass are automatically inherited by its
subclasses, with the ¢xception of those features that are redefined in the subclass.
For example, in Figure 3-2, the Person class defines a feature named compute pay.
This feature will be inherited in all of its subclasses: Manager, Project Manager,
Employee, Wage Employee, and Wage Programmer. The definition for
‘compute_pay in Manager, Project_Manager, and Employee is identical to that in
Person. However, because compute_pay reappears in Wage_Employee, it is said to
be “redefined” for that class and its subclasses. Since Wage Programmer is a
subclass of Wage Employee, the definition applied to the compute pay in
Wage_Employee-will be the definition for the compure pay in Wage_Programmer.

A subclass is able to inherit (copy and use) any feature of its superclasses, but
not vice versa. The notion of inheritance conflicts with the traditional notion of
encapsulation (information-hiding) (Snyder 86). This violation, because it is

allowed in a controlled way (and in one direction only), is one of the keys to the

30

power of the object-oriented paradigm. A properly structured QOD uses inheritance
facilities to minimize duplication of modules. The IDEF4 method is focused on

structuring both classes and methods into two inheritance hierarchies - class

inheritances and method taxonomies to ensure that the resulting designs have no

duplication.

{8] project

{S) project_team

{A) schedule

{S} howx_rate

Consultant

{IR} pny

Hourly _pald__Consultant

s

{1R] pay

Hourly_pald_Programmer

Figure 3-3. Partial Inheritance Diagram for an Employee Class.

In the IDEF4 method family, the class inheritance relationships are represented

in the inheritance diagram as shown in Figure 3-3. An inheritance diagram provides

information that describes the classes, their features, and any redefinition of

features. For example, the reader familiar with IDEF4 syntax can determine that an

instance of Hourly paid_Programmer inherits all features of the classes Employee,

31

Programmer, and Wage_Mixin. Furthermore, it can be seen that the feature pay is a
routine that has been redefined in both Hourly_paid_Programmer and
Hourly_paid_Consultant. The details of inheritance diagrams will be discussed in

Section 4.3.

33 Features

“Feature” is a generic term used to capture either the state or behavior of
instances of a class. In the IDEF4 method concept, a feature may be value-returning
or side-effecting. For example, the class Employee has a feature salary that returns
(value-retufning) the salary of an employee, and a feature print_paycheck that prints
out the employee’s paycheck (side-effecting). However, whether a given value-
returning feature is implemented by storage or by computation is functionally
irrelevant in the initial design, That is, whether salary is implemented as a storage
(a variable) or whether the value is computed from other features of the employee (a
function) is not necessarily of concem in the initial design stages. This capability of
the delay of decision-making is supported in IDEF4 methods by the hierarchy of
feature taxonomy shown in Figure 3-4, which is presented by using the class

diagram syntax.

32

Slot Function Procedure

Figure 3-4. Feature Taxonomy Hierarchy.
Reprinted from (Mayer 92a).

3.3.1 Taxonomy of Features

The feature taxonomy allows features to be characterized in more general
representation initially; then, gradually, to be defined more specifically as the design
evolves. For example, a designer might first specify a characteristic of aclass as a
feature. Then, as the design evolves, the designer can specialize the definition of
that feature to an attribute, a routine, a slot, a function, or a procedure as shown in
Figure 3-4.

Atributes represent those features that return values when queried (value-
returning), whereas routines represent the features which, when appropriately
triggered, will initiate a computational operation. Note that attributes and routines
are not mutually exclusive. Along the evolution of the design process, attributes can
be refined into slots or functions, and routines can be refined into functions or
procedures. Slots are those features that are characterized as storage-type variables.

Functions are features that are both value-returning and computation-initiating; they

33

return a value Aby computing it whenever queried. Procedures are computational

features that do not return any values; they are only executed for their side-effects.

3.3.2 Inheritance of Fcamres

All features defined in thé superclass are automatically inherited by the subclass
through the inheritance of classes. Figure 3-5, for example, shows that the class
Employee has a feature pay. Subclasses of Employee such as Wage Employee and
Salary _Empioyee inherit the pay feature from Employee.

Feanrre pay defined in
Employee

Salary_Employee

Wage Employee

Wage Employee inherits the

feanmre pay from Employee

Figure 3-5. Inheritance of Features.

If pay is implemented as a computational feature, then using the general
payment calculation of employee for a wage employee would be inefficient.
Therefore, it might be desirable to redefine the pay for Wage Employee that it will

use the more specialized calculation for those wage employees. This. specialized

- 34

 calculation would be invoked instead of the more general pay. Thus, the more
~ specialized feature “shadows™ (redefines) the more general feature. Figure 3-6
illustrates a case in which feature pay in Wage_Employee shadows (redefines) the
~ generic pay in Employee. The Salary_Employee class continues to inherit pay from

Employee.

pay
_
‘Salary_Employee Wage Employee

s B RR
Wage_Employee rede

feature pay

feature pay from Employee

Figure 3-6. Redefining Inherited Features in Class Inheritance.

3.3.3 Presence of Features

The presence of a feature indicates the way the designer intends to associate that
feature with a class (i.e., defined in the class, redefined in the class, or an inherited
feature). Figure 3-7 shows the classification for the kinds of “feature presence”
provided by IDEF4.

Using this classification scheme, a feature that is associated in any way with a
class _is said to be present in the class. Those features whose names are displayed in

the class box of a class A are said to be directly present in A. Those features present

35

in a superclass B of A are considered to be present in A as well, and are actually
inherited features of A. Features of A that are both directly present and inherited in
A are redefined in A. They are directly present because the class A is giving
additional or revised mformanon (constraints) about them that is not present in the
superclasses of A. Features that are directly present but not inherited in A are said

to be defined in A; those that are inherited but not directly present are said fo be

virtual in A9,

Present

Directly Tnherited
Present

Defined Redefined Virmal

Figure 3-7. Classification of the Presence of Features.

For example, Table 3-1 categorizes the pay feature of the class hierarchy
described in Figure 3-6. Table 3-1 shows the classification for the pay feature with
respect to each class in the hierarchy as 1) present, directly present, and defined in
the Employee class; 2) present, inherited, and virtual in the Salary_Employee class;
and 3) present, directly present, inherited, and redefined in the Wage _Employee

class.

9 The term *virtual® addressed here is different from the ones used in C++. In Ci+, *virtual function’
is used to enforce the run-time binding mechanism, and ‘virtual® inheritance is used to resolve the
name conflicts occurred in a multiple inheritance.

36

Class | Present | Directly { Inherited | Defined Redefined | Virtual

Salary | X X

Employee
Wage_ X X X X
Employee

Table 3-1. Presence of the Feature Pay in the Employee Class Hierarchy.

3.3.4 Type of Features

In the IDEF4 method family, value-returning features have a return type
defining the type of their return value. The return type can be a primitive type such
as integer or character supported by an implementation language; a class that
defined elsewhere in the design; or a collection of other classes. From the design
management point of view, the return type of a feature provides a means of
expressing other associations between classes. These associations between classes
are not visible in the class inheritance lattice presented in the inheritance diagrams.
In the IDEF4 method family, they are captured in the type diagrams. Experience
has shown that these associations are as important as inheritance relationships
among classes. The management of these associations is critical to the development
of large object-oriented systems. Only through the careful study and design of types
of features, can the development team capture the intended domain relations and

evolve the design in an orderly fashion.

37

Project

project

~—@| Programmer

Figure 3-8. A Partial Type Diagram Defining Types of Features.

Figure 3-8 illustrates an example of a type diagram that defines the feature-
return-type relations. The Project Manager class defines two features (project and
project_team). Feature project returns an object of class Project, specifying the
current project that the project manager is conducting. Feature project_team returns
a set of objects of class Programmer, specifying the members in the project team
under that project manager. The class Programmer also defines a feature project

which specifies the current project that the programmer is working on.

3.4 Methods

As discussed previously, a class may have features that define the behaviors of
its object instances. The features that define behaviors are computation-initiating,
and by definition, they can be routines, functions, or procedures. Accordingly, the
functions and procedures are specializations of routines (see Figure 3-4). These

computation-initiating features are listed in groups according to the generic

38

behaviors they specify in CIDSs. For example, consider a Drawable_Object class
that might have a generic behavior, draw, which is specified in its CIDS. For all the
- drawing behaviors possessed by the instances of the Drawable_Object class,
draw_to_screen and draw_to_printer, they will be included under the generic draﬁ)
behavior. However, the feawre kinds (routines, functions, or procedures) of

draw _to_screen and draw_to_printer might change over the evolution of the design.

3.4.1 Methods, Contracts, and Method Sets

In OOPLs, each computation-initiating feature is implemented by a single
method That method provides the required computation for the behavior specified
by the feature. However, the notion of a method in IDEF4 is not the same as the
vsual notion of a method from an object-oriented language point of view. In object-
oriented programming, a method is an executable piece of code which
algorithmically specifies the computation to be performed by means of a set of
language statements. For exarnple, a C++. member function. In IDEF4, on the other
hand, methods are defined by the contract that they must fulfill. In fact, IDEF4
does not specify an individual method; rather, method sets. Any of the methods in
the set can fulfill a specific contract. In other words, we refer to the contract for a
method rather than the code; this is based on the notion of S-correct of design,
which was discussed in Section 2.1. The contract for the associated method set is
documented in the Contract Data Sheet (CDS) related to that method set.

Computation-initiating features specify the behaviors of the instances of the
class. In IDEF4, each feature is mapped through the dispatch mapping to a method
set in the method submodel. This method set documents the constraints (in the

associated CDS) for implementing these behaviors. Some computation-initiating

39

features may be presented in more than one class and may intend to specify different
specific behaviors depending on the class of objects upon which they perform their
computations. In other words, a generic behavior may have different method sets
mapped in different classes. 7
For example, the routine compute_raise is a computation-initiating feature
defined and redefined in class Employee and Manager respectively (where Manager
is a subclass of Employee). It is also included under the generic behavior raise
which is specified in both the CIDSs of Employee and Manager. In a programming
language, different method implementations would be defined for each of these
routines, such as get-raised-as-employee and get-raised-as-manager. In IDEF4, on
the other hand, individual methods are not represented. get-raised-as-employee and
get-raised-as-manager would refer to method sets and their related contracts, which
will be illustrated in the raise method taxonomy (to be discussed in the following
section). Therefore, the computation-initiating feature compute_raise and its class
Employee together specify a method set get-raised-as-employee. Any method in the
method set get-raised-as-employee would satisfactorily implement the feature
compute_raise for the class Employee. The idea in IDEF4 is to describe or design

the behavior, not program the behavior.

3.42 Taxonomy of Method Sets

A method set can be considered as a computational characteristic defined by a
set of constraints that will pick out a set of possible correct implementations. This
set of constraints is called the contract for the method set. In an IDEF4 design, the
concern is with the definition of the contract, rather than individual method

implementations in the set.

40

However, similar contracts can be grouped together according to the behaviofs
specified by the computation-initiating features that the method sets associate with.
In IDEF4, a Method Taxonomy Diagram classifies a generic behavior into several
method sets according to the similarity of their contracts. For example, the method
taxonomy diagram in Figure 3-9 illustrates the design of the method sets for the
generié Print behavior. Each box in the graph represents a method set, which
requires a contract constraining the implementation of the methods in the set. The
method sets in a method taxonomy diagram are arranged in a more-specific order
from left to right or from top to bottom; re-definition or additional constraints might
be added to the contracts of those more specific method sets. For instance, in the
Print method taxonomy diagram, the least-specific method would be Print-object.
However, for some classes such as Text-screen-object, additional constraints would
be required for the method set Text-screen-print which maps to the Print routine of
Text-screen-object as shown in the figure. The dispatch mapping between a method
set and a routine {a computation-initiating feature) is specified by “[1. The
additional symbol “!” on the left of the Print routine indicates that the routine has
been entirely redefined. For a redefined routine, the contract for the method set
dispatch-mapped with the routine may override or conflict with the preceding
method set contracts. More details about additional symbols are discussed in

Section 4.3.4.

41

Graphics-screen-print

Graphics-printer-print

Graphics-to-plotter

Print-object

Text-screen-printi

Text-printer-pri:%l \
A

Text-to-plotter

Print-text

Print Method Taxonomy Diagram

{R} Print [Print-object]

Displayable-object

{! R} Print [Print-graphics] {! R} Print [Print-text]

Graphics-object Text-object

y /
7/ /

/4 4

{1 R} Print [Text-printer-print] {1 R] Print [Text-screen-print]

e
Text-printer-object

Text-screen-object

Displayable-object inheritance diagram

Figure 3-9. Print Method Taxonomy and Associated Routines.

42
3.5 Constraints

In IDEF4 methods, constraints are used for specifying both class-invariant
definitions and contracts on method sets. Constraints will often be specified in
natural language statements in the design evolution. As the design progresses,
constraints will be refined and specified more formally (ie., in a formal language
such as first-order predicate logic).

For example, the class-invariant constraint on the feature Identity-number of

type integer in the class Employee may be expressed as:

“The Identity-number feature in the Employee class must be a unique

integer over all instances of the class Employee.”

More formally, this might be written as the following constraint specifying that

no two employees may have the same identity number:

For-all(x y) (employee x)*(employee y)*(not-equal x y)

A(not-equal(identity-number x)(identity-number y)).

These constraints are hold as relations among design elements (classes, features,
and methods) that must be enforced by the system (implementaton / program).
Class-invariant constraints are documented in class invariant data sheets (CIDSs)
associated with class boxes in inheritance diagrams. Method set contracts are

documented in contract data sheets (CDSs) associated with method sets in method

43

taxonomy diagrams. As the design evolves, these constraints will be refined more
specific to be implemented; in IDEF4/C++ implementation design, CIDSs will be
the major design specifications for the C++ class definitions, and CDSs will be the

specifications for function implementations.

CHAPTER IV

METHOD SYNTAX

4.1 Organization of IDEF4/C++ Diagrams

In this chapter, we present the IDEF4/C++ notations and its syntactical
elements. The organization of the extended notations will be described in the first
place. Discussion of the each diagram will contain a concise description of their
graphical elements and the examples that demonstrate the use of the diagrams.

A completed IDEF4/C++ model consisis of a class submodel and a method
submodel. Each submodel has diagrams and data sheets as model components.
The class submodel provides a system state view for the design, whereas the method
submodel provides a system behavior view. These submodels are connected
through dispatch mapping, as introduced in Figure 3-9, which is specified in both
inheritance diagrams and method taxonomy diagrams while Figure 4-1 gives an
overall picture of the organization of IDEF4/C++ diagrams. As shown in Figure 4-
1, diagrams are grouped into two submodels as follows. Each diagram type presents
a unique perspective and provides a mechanism for viewing and devising the

design.

. Class Submodel

. Class Lattice Diagrams
Class lattice diagrams provide a view for browsing the
class lattice.

. Inheritance Diagrams

Inheritance diagrams describe inheritance
relationships and those directly presented features in
the class boxes.

» Type Diagrams
Type diagrams specify return types of features or
compositional relationships among classes.

. Friend Diagrams
Friend diagrams declare the C++ friend associations
between a class and its friend functions and classes.

. Template Diagrams
Template diagrams specify C++ class template
declarations.

. Instantiation Diagrams
Instantiation diagrams validate the design by giving
existing composite relationships between instances.

Method Submodei

. Method Taxonomy Diagrams
Method taxonomy diagrams classify method sets by
their behavioral similarity.

. Client Diagrams
Client diagrams specify the calling relationships
between functions or procedures.

45

system state viewpoint
' ™
-...:-3_ ol
——r — -
=7/
Class Lattice Diagram

system behavior viewpoint

Method Taxonom;
Diagram

Type Diagrani

==

|
[]
= |
‘.5~4F |
= u
|
Template Diagram m
N
B
[|
|
a
p X |
Friend Diagram ™
[]
[|
|
\ y
Class Submodel

C++ class definitions

CDS

Instantiation Diagram

n

n

|

| |

| |

|

|

_ Client Diagram [|
Method Submodel :

C++ member function

implementations

Figure 4-1. Organization of IDEF4/C++ Diagrams.

47

As a language-specialized design method, H)EFd{C++ adds the extensions to the
generic IDEF4, Feature symbols are extended to be used for the C++ class member
declarations. The user predefined data type list is provided as a supplementary
device for type diagrams for collecting those user predefined types in the design.
Class invariant data sheets (CIDSs) and Contract data sheets (CDSs) are also
extended to be able to provide more specific information for coding C++ class
definitions (usually managed in the .h/ hpp files) and member functions (.cpp files),

respectively.

4.2 Class Lattice Diagrams

Class lattice diagrams are used to illustrate the class lattices, which browse the
whole class submodel or a particular part of the submodel. To provide a top
abstract view for the class submodel, only class names are shown in the diagram.
Three class relationships are also described in the lattice, they are graphically
presented in terms of arrows. Figure 4-2 illustrates an example class lattice
diagram. As a language extension of IDEF4, friend class and nested class links are
included into the presentation. Inheritance link arrows (shown as normal arrows)

point from the base classes to the derived classes.

48

Wage _min P Wage Programmer

Salary mixin Salary_Programmer
is a derived class of B

Priend class indicator:
indicating thai class Manager
is a friend class of class Project.

Nested class indicator:
indicating that class Budget
is a nested class in class Project.

Budget

Figure 4-2.

Example Class Lattice Diagram for an Employee Management System.
* Arrows with a dotted line point from a class to its friend classes.
*Arrows with a double line point from the defining classes {o their nested classes.

As shqwn in Figure 4-2, class Person is the root class of the lattice, where class
Employee and Employer are its directly derived classes. Three kinds of employees
defined are Programmer, Secretary and Administrative_Assistant. Inheritance link
arrows pointing from Empioyee to each of these classes indicates that they all are
directly derived classes of class Employee. Two classes are designed as mixins for
work pay (salary/wage) caicn]ation purposes; Wage mixin and Salary_mixin. By
using these mixins, different work pay types of employees can be derived, such as
class Wage Programmer and Salary _Programmer. Note that there is a nested class

indicator arrow pointing from class Project to class Budget, which indicates that the

49

class Budget is declared within the scope of the definition of the class Project. The
design intention here is to make the class Budger invisible from the rest of the
system, excluding the class Project. This prevents the information kept in Budget
from being accessed by other classes accidentally or on purpose. The C++ code
example for class Project is shown m Figure 4-3, We declare Budget as a private
member of Project to prevent any explicit access to the budget information!0, A
friend indicator, pointing from Project to Manager, indicates that the class Manager
is declared as a friend class of Project. By doing so, Manager is able to access any
features of Project, such as the budget information. By using a friend class
declaration (Manager) and a nested class declaration (Budger) together, we provide
a more safe mechanism for accessing the class Project and its budget information,
However, the class lattice diagram provides a means for presenting the design
intention such as the one discussed above, which is very handy and important
especially when we deal with large-scale systems that contain massive numbers of

classes.

class Project {riend class declaration
{ —

friend class Manager;

public:
char *pri_name;
private;

| nested class declaration

class 'Budget T

%

Figure 4-3. Example C++ Code for the Class Project.

10 1f the nested class Budger is declared as a public member of Project, it can be explicitly accessed
by using the class identifier - Project::Budget.

50
4.3 Class Inheritance Diagrams

As mentioned in Chapter III, inheritance diagrams are used to describe
inheritance relationships between classes. Extensions for the inheritance diagrams
include feature access control, types of inheritance links, and feature symbols. The
basic syntax consists of the class box, symbols that describe features, and arrows

presenting the inheritance links.

4.3.1 Extended Class Box Syntax

An IDEF4/C++ class box groups features into three areas: public, protected, and
private, for describing feature access. Public features are those that appear in the
top group and are visible to (accessible by) the rest of the system. Protected features
are those that appear in the second group and are accessible by the owner class and
its directly derived classes. Private features appear in the third group. They can not
be accessed by any other class except for the owner class. Recall that, in IDEF4,
there are only two types of feature access control: public and private. The private
features in IDEF4 can be accessed by their owner class as well as all its derived
classes. This is different from IDEF4/C++ and should be noted when evolving a
generic IDEF4 design into a IDEF4/C++ implementation design. Generally, the
default ranslation is to transform these generic IDEF4 private features to be the
protected features in IDEF4/C++. Figure 4-4 presents the class box syntax and an
example class box for the class Project. Where features project_-name, project_no,
project_manager, and project_team are public features; Budget is a protected

feature and internal_id is a private feature.

51

. project_name

Public Features project_no

project_manager

project_team
Protected Features .|

[

Private Features -...___\ internal_id
Class Name Project

Figure 4-4. Extended Class Box Syntax.

An inheritance relationship (link) between classes is presented by an arrow
pointing from a base class to its derived class in the class inheritance diagram. For
example, following the class lattice described in Figure 4-2, there is an inheritance
relationship between the class Person and the class Employee: Employee is derived

from Person. The inheritance relationship is illustrated in Figure 4-5.

Virtual to class

name Employee
address ey
—— |
Base Class Person

S S

Directly presented
in Employee

work_time
pay_rate

Derived Class l
Employee

Figure 4-5. Inheritance of a Base Class and a Derived Class.

52

4.3.2 Public, Protected, and Private Inheritance Links

In IDEF4, the feature access types of inherited features in a subclass are the
same as they were in the base class. In IDEF4/C++, access types of inherited
features in a derived class are determined by both the original access type and the
type of inheritance links. IDEF4/C++ supports three types of inheritance links:
public, protected, and private. Different types of inheritance links give different
effects on determining the access types of inherited features. Non-private features
(public/protected) of a base class become private features of its derived class ina
private inheritance link. Non-private features of a base class become protected
features of its derived class in a protected inheritance link. Non-private features of a
- base class will keep their original access in the derived class in a public inheritance
link . Figure 4-6 compares three different types of inheritance links between class
Person and class Employee, where Person has a public feature name, a protected
feature SSN and a private feature internal_id. The feature internal_id will not be
presented in Employee since it is private to Person. As shown in the figure, name
will remain public and SSN will remain protected in Employee, if there is a public
inheritance between Person and Employee. For a protected inheritance, both name
and SSN will become protected features of Employee, but for a private inheritance,
both name and SSN will become private.

IDEF4 has no provision for different types of inheritance links. Yet, in IDEF4,
since all inherited features will keep the same access (public to public, private to
private) in a subclass, the type of inheritance is considered as public. Therefore,

while evolving a generic IDEF4 design towards IDEF4/C++, if the type of an

53

inheritance link has not been further specified, the inheritance type is public by

default.
name name name
88N SSN SSN
internal id internal_id internal_id
Person Person Person
public protected private
inheritance inheritance Inheritance
name
SSN name
SSN
name
SSN
Employee Employee Employee

Figure 4-6. Comparison of Public, Protected, and Private Inheritances.

4.3.3 Virtual Inheritance

In the previous chapter, we discussed the inheritance of features finding that a

derived class will inherit all the characteristics/constraints from a base class unless

they have been redefined. However, the base classes, if there is more than one,

must agree on the common characteristics/constraints among them. This is usually

referred to as the name conflict problem in multiple inheritance as described in

Section 1.2. In IDEF4/C++, name conflict is resolved by specifying the inheritance

as virtual.

54

For example, consider the Manager class illustrated in Figure 4-2. Managerisa
derived class from both Empioyee and Employer, which are all derived from the
class Person. If Person has a non-private feature name, both Employee and
Employer will inherit the name féature. If the inheritance links between Manager
and Employee, Manager and Employer are not specified as virtual, the class
Manager will keep both copies of name: one from Employee and the one from
Employer. To access the name features in every instances of Manager, one has to

explicitly specify the class identifiers:

John.Employee::name

John.Employer::name

This is certainly awkward. To be more elegant, one would like to specify both
inheritance links between Employee and Manager, Employer and Manager to be
"virtual”. The inheritance diagram and its associated C++ code are illustrated in
Figure 4-7. Thus, the access to the feature name in each instance of Manager can

be quite straight-forward by using the following statement:

John.name

In summary, IDEF4/C++ provides a virtual inheritance declaration for resolving
name conflict in multiple inheritance and public, protected, and private inheritance
link types for managing access control of inherited features. Note that all these
extensions are to be spcciﬁcd in the CIDS associated with the focused class. Refer

to Section 4.3.6 for the format of CIDSs.

55

class Person {
puhblic:

char *name;

|5

class Employwee:
pubiic virtual Person { };
Emplo
Eopye i i class Employer:
public virtual Person { };
class Manager:
public Employes, Employer {

} John;

Manager

Figure 4-7. Virtual Inheritance in IDEF4/C++-.

4.3.4 Feature Symbols and Their Extensions

Recall that we have presented the IDEF4 feature taxonomy in Figure 3-4, which
demonstrates that features may be specified as routines, attributes, slots, functions,
or procedures as the design evolves. This delayed-decision practice in the design
process is perfectly acceptable and is likely to be the case in the early definition of
the features in a generic design. As the development of the design continues, the
designer will classify these features. Feature symbols are used to represent the
classification of features. For example, ‘A’ represents attributes. ‘R’ represents
routines. ‘S’ represents slots. ‘F’ represents functions and ‘P’ represents
procedures. When a designer wishes to commit to the classification of a feature, the
proper symbol may be added to the left of the feature name in the class box within

braces ‘{ }’. Figure 4-8 shows an example of using these feature symbols;

56

indicating the name , department and internal_id features to be implemented as

slots, work_schedule as an attribute, and compute_pay as a routine.

{5} name
{S} department
{A} work_schedule

{R} compuic_pay

(S) internal_jd

Employee

Figure 4-8. Example of Feature Symbols.

As discussed in Section 3.3.3, inherited features may be redefined in the derived
class. Additional constraints or even a whole new contract may be given to redefine
the feature. Two symbols are used to represent the redefinitions: ‘+’ indicates that
additional constraints are added to the contract associated with the named feature,
‘t’ indicates that the named feature represents a new contract and has a same name
as the inherited feature. Conceptually, a redefined feature with new contract (‘!’)
conflicts and shadows the inherited one, whereas the feature with additional
constraints (‘+’) just specializes the inherited feature. In Section 5.6, issues of
conflicting and non-conflicting features will be discussed.

For example, consider that the Programmer class (Figure 4-9) is a subclass of
the Employee class, but the algorithm for calculating the work pay (feature
compute_pay) for an employee might be too general for a programmer (the
programmer might be paid by project). For this reason, the designer must specify a

redefinition for the compute_pay of Programmer.

57

{S} name
(8] department
{A] work_schedule

{R} compute_psy

(S} intemal_id

Employes

Y

[A) current_project
[S) project_manager

™ (1 R} compute_pay

Programmer

Figure 4-9. Example of a Redefined Feature with New Contract.

Generally, attributes and routines can be refined further into either slots,
functions, or procedures. However, to devise an implementation design for C++
requires additional feature classification. In a C++ class definition, features are
called class members. The data members are used to store the state of each object
instance and the function members are used to implement the behaviors. Evolving
features in an IDEF4 generic design towards IDEF4/C++ is quite straight-forward.
Slots generally map to data members that are accompanied with their read/write
functions. Functions map to member functions and procedures map to the member
functions with void return types. However, there is more to be accomplished; C++
class members can be virtual, static, const etc. To be able to implement the design
in C++, slots, functions, and procedures have to be further specified. IDEF4/C++
provides an additional set_ of symbols for this purpose. They are used along with the

general symbols discussed previously and presented within the braces as well.

These additional symbols are described as follows:

VF

Virtual function - The ‘VF’ symbol indicates that the named
feature is a C++ virtual member function. A member function
declared as virtual in the base class can be overridden by the
member function in the derived class that possesses the same

name and signature but with different implementation.

Pure virtual function - The V0’ symbol indicates that the
named member function is a C++ pure virual function. A pure
virtual function is declared only for inheritance purpose and
since it serves as a placeholder, no implementation needs to be
given. In other words, a C++ pure function is “pure” in the

sense that it does not have a function body, only the function's

signature is specified.

Const member function - The ‘C’ symbol indicates that the
named member function is a const member function. A
member function declared with const prevents any modification

to the data members that the function accesses.

Static member - The ‘S’ symbol indicates that the named
feature has only one copy among all the instances of the owner
class. Data members declared to be static are therefore global
in the owner class scope and do not need be replicated from one
instance to another, thereby saving memory space and
maintaining consistency. Similarly, static member functions

are like global functions whose scope is within the owner class.

58

59

Usually, they are the member functions which access those
static data members.

NC Nested class - The ‘NC’ symbol indicates that the named class
is declared in the definition of the owner class as a data
member. Without explicitly specifying the owner class’s

identifier, one can not access to the nested class.

Figure 4-10 in the following page gives an example of the presentation of these
extended feature symbols and the related C++ code. Where Project has a nested
class Budget and a static data member total_number_of projects. Project also
contains three static member functions; (1) add_projects ; (2) remove_projects for
incrementing and decreasing the total number of, projects; and (3)
how_many_projects for querying the value. A const member function
get_contract_id which guarantees access to the data without making any changes is

also defined in Project.

{S] name
{8} (F} how_many_projects
(C} (F} get_project_id

{NC} S} Budget

[S) {P} add_projects
{8) {P]} remove_projects

{S) (S) total_number_of projects
(S} project_id

Project

class Project
{
public :
char ‘name;
static int how_many_projects {(void)
{ retumn total_number_of projects; };
int get_project_id (void) const { return project_id; };

protectad :
class Budget

{ public:
int budget_number;

ki

static void add_projects {void)

{ total_number_of_projects++;};
static void remove_projects (void)

{ total_number_of_projects—;};
private :
static int total_number_of_projects;
int project_id;

b

Figure 4-10. Example of Extended Feature Symbols.

4.3.5 Inheritance Diagrams

The inheritance graph of a particular IDEF4/C++ model will be simply a single,

maximal inheritance diagram that shows all the classes and their direct inheritance

61

relationships. An inheritance diagram of this size would have little practical use if
actually drawn, but it is useful to keep in mind as a way of imagining the full scope
of inheritance diagrams. In fact, this information is generally presented by the class
lattice diagram of the class submodel. Nevertheless, inheritance diagrams describe
more detailed information (features presented, access of features, inheritance links
etc.) related to the focused classes.

This graphical approach for describing the class inheritance hierarchy structure
was designed to maximize the amount of key information displayed in a minimum
amount of space. Figure 4-11 shows a partial inheritance diagram for the example
Employee Management described in Figure 4-2. The arrow from Employee to
Programmer indicates that Programmer is a derived class of Employee.
Inheritance is also transitive. If Wage Programmer is a derived class of
Programmer and Programmer is a derived class of Employee, then
Wage Programmer is a derived class of Employee (indirectly). Employee is
therefore a direct base class of Programmer and Programmer is a direct derived
class of Employee.

Inheritance diagrams identify the features of the base classes and derived classes
that are displayed. They reveal; (1) details about the implementation (by feature
symbols); (2) inheritance of the features; and (3) their visibility within the system as
well. Progfammer, which is a direct derived class of Employee and an indirect
derived class of Person, inherits Employee’s features in conjunction with the
features name , address, and SSN defined in Person. Investor has inherited features
from both the class Employer and Person. Since none of these inherited features are

redefined, they do not appear in the /nvestor class box.

{8) name
(5) xidress

(S) SSN

p

> {8} department
{g} 1&':: {8} work_schedule
{V0} (F) compute_worktime
{V0) (F) compute_pay
Employer {S} work_time
{S) pay
I Empoloyee |
{5} project
(S} assistant
Investor
Manager
(S} current_project
[S] supervisor
(5} manager (VF) (+F} compute_worktime | | {S) manager
{VF) [+F} compule_pay
Administive_Assistant mmer Secretary
{VF} {F) fill_in_work_hours
(S} Salary {8} work_rate
(VF} (F} compute_monthly_pay {VF} {F) adjust_work_rate
{S] budget # '
(S} amount Snlnry Mixin Wage_Mixin
(8} period
Budget
{§) name
{8) manager
[NC} {S} budget {1F) compute pay {'F} compute_pay
[3) project_id
Project Salary_Programmer I Wage Programmer

Figure 4-11. A Partial Inheritance Diagram of Employee Management System.

63

The symbol ‘V(’ is added to fanctions compute_worktime and compute_pay in
class Employee, indicating that these functions are to be implemented as C4++ pure
virtual functions. Both features are further entitled as virtual functions with the
symbol ‘VF’ in the class Programmer. Compute_pay, which is refined as general
member functions (‘F’) in both Salary_Programmer and Wage_Programmer,
reveals where the actual implementation takes place. In Programmer, the plus sign
(+) preceding compute_worktime and compute_pay indicates that these features
have additional constraints that specify the contracts inherited from the base class.
The symbol ‘!’ prefixing compute_pay presented in Salary_Programmer and
Wage programmer indicates that the constraints hold shadow the contracts
inherited from Programmer.

Wage Mixin is implemented as an abstract base class for any wage-paid
employees. The member functions in this class, such as adjust_work_rate and

Aill_in_work_hours, are declared as virtual functions for possible further refinement
in its derived classes (More details of abstract base class are discussed in Section
6.4).

The class box for describing a nested class is different from general classes in

that it uses a double class box, as the class Budger illustrated in the figure.

4.3.6 Class Invariant Data Sheets

In IDEF4/C++, each class has an associated specification for its class definition.
This spéciﬁcau'on is documented in the associated class invariant data sheet (CIDS).
CIDSs describe; (1) the definitions of features and behaviors that individual
instances of the class must possess; (2) the types of the direct inheritance links; and

(3) the class invariant constraints which must always be maintained as true.

64

One purpose of CIDSs is to provide documentation for those who will maintain
the installed system and for those who will implement the design. As shown in
Figure 4-1, IDEF4/C++ diagrams are centered on the classes defined for the system.
A CIDS includes numerical identifiers for referencing the diagrams associated with
the named class. The names of directly present feamres of a class are also included
to allow reference to the other design components such as method taxonomy
diagrams via dispatch mapping.

Generally, computation-initiating features are grouped and presented in CIDSs
according to their behaviors. The description of each feature, including the name of
the feature, the kind of the feature (generic feature, attribute, routine, slot, function,
and procedure), and the feature access (public, protected, and private), is also
captured in CIDSs. Virtual features can be accessed via the listing of the
inheritance links to the direct base classes. Constructors and destructors are also
documented in CIDSs. In addition, check boxes are used to indicate whether the

class is to be implemented as a struct, a union, a class template, or a class.

[S} current _project
{8} supervisor
(P] schedule_work

{VF} {!F) compute_pay
{8) work_time

{8) pay
{§) work_schedule

Programmer

Figure 4-12. The Programmer Class.

Figure 4-12 describes a Programmer class. Figure 4-13 presents an example
CIDS for the class Programmer. The name of the class and other relevant

bookkeeping information is identified at the top of the data sheet. IDs and captions

65

of the associated inheritance diagrams and type diagrams are specified for reference
purpose. Constraints on the implementation of the class can be described in plain
English (as shown in the example), first order logic, or other languages suitable for
expression. By providing the list of direct base classes, the implementor can locate
those inherited features. If the class Programmer were to be deleted or modified,
the direct base and derived class lists would provide those modifications to the
design with the means to quickly trace which classes in the system would be
affected by the change.

The list of directly present features is also presented in the CIDS. For each
directly present feature of Programmer, the CIDS will contain the name, feature
type, feature access etc., that can be found in the Programmer inheritance diagram.
Behavior specifying features (routines/functions/procedures) are grouped according
to their behavior types. For example, compute_pay is grouped under the work_pay
behavior. CIDSs are the only place in the design in which the textual definition of

features is provided.

Class Invariant Data Sheet [_Frogammer |
' Name> '

Class Inheritance Diagramq(s): | I1 - Employee Management System |

<ID and Caption>

Type Diagram(s): | T1- Programmer Employees |

<ID and Caption>
Ovmer: L Jake H. Designer |
<Name MIL Surname>
Data Approved: [10/1093 |

Programmer is the basic programmer_employee type.
It is used as a base class for all different types of programmers in the company.

Congtrainis: .
No instances for this class. The Programmer class is used as a virtual base class for

subclassing.
Each programmer (instance of the derived class of Programmer) has at least a project
working on, (The value of feamre current_project can’t be NULL)

class [[] struct [[] union [[] templae

Direct Base Classes Type of Link || Direct Derived Classes Type of Link
Employee Public Wage_Programmer Public
Salary_Programmer Public
Constructors Destructors
Programmer() ~Programmer(}
Friend Function(s) Friend Class(es) Nested Class(es)
(None) Project_Manager (None)

Features (Name, Kind, Access, defined / redefined, description):

current_project (slot, public, defined); This slot holds the name(s} of project(s)

currently working on. -

supervisor (slot, public, defined) : This slot holds the name of the supervisor.

work_time (slot, protected, defiend) : This slot holds the number of total working time.

scheduling:
schedule_work (procedure, protected, defined) : This procedure is used for scheduling
the works of an empioyee. It is redefined in this class.

work_pay:
compute_pay (function, protected, redefine) : This function computes the pay for the

Programmer.

Figure 4-13. Class-invariant Data Sheet for Class Programmer.

67
44 Method Taxonomy Diagrams

As inheritance diagrams arrange classes in a generalization (specialization)
hierarchy, method taxonomy diagrams arrange method sets in the same way
according to their contracts.

In IDEF4/C++, a method is ‘any implementation (i.e., a C++ member function)
that satisfies the contract for the method set. A method set is completely determined
by its contract and logically equivalent contracts pick out identical method sets.
Just as the class-invariant constraints hold for all instances of a class, the contract
for a method set is invariant for all the methods in the set.

Contract of a method set is documented in the associated Contract Data Sheet
(CDS) as shown in Figure 4-14. One aim of using CDs is to facilitate
communication and coordination between designers and programmers in a large
software project since documenting method contracts confirms the same expected
system behavior as designed and implemented.

With a CDS, one can easily locate associated diagrams by using the feature
name and its defining class name. The class name refers to the CIDS of the class
and the CIDS can be used to locate the associated type diagram and inheritance
diagram. The generic behavior that groups the feature refers to the method
taxonomy diagram that classifies all the similarly-behaved features in the system,
such as the work_pay behavior documented in the class Programmer ‘s C]DS as
shown in Figure 4-13. However, for quick reference, the name of this method
taxonomy diagram is also documented in the CDS (see Figure 4-14). The
combination of the feature and class name allows one to reference the client
diagram that applies to the method set. Moreover, the signature of the feature is

also documented in the CDS, which includes the return type and the types of the

68

parameters of the feature. This information is critical for implementing the method

set.

Contract Data Sheet: { !
(Feature-Class Pair)

Method Set Name:

(Name)
Method Taxonomy Diagram: [|
{Behavior Name)

Owmer:

Name ML S
Date Approved: |

Description / Definition

Signature:

Return Type Parameter Types

Constraints

Figure 4-14. Contract Data Sheet.

As mentioned previously, method sets in a design are grouped together by
related contracts (similar behaviors) to form a method taxonomy for a particular
type of system‘ behavior. In other words, each method taxonomy diagram identifies

a generic system behavior. Therefore, by convention, the name of a method

69

taxonomy diagram is the generic behavior that is beinng descnbed. Fﬁﬁowing the
previous Employee example, we describe the work_pay generic behavior in terms of
a method taxonomy diagram illustrated in Figure 4-15. The boxes represent method
sets and arrows specify additional cons'traints (+) or redefinitions (!). The arrows
point from the less-specific to more-specific method sets. A method taxonomy
diagram may be arranged either from left to right or top to bottom for the most-
general to the most-specific method set. In the diagram, the constraints on the
method set workpay indicate that the methods in the set will calculate the workpay
of any person who is classified as an employee. The other.method sets in the
diagram represent specializations of the constraints placed on the first method set.
Pay-by-hour-default-rate and pay-by-hour-special-rate will calculate the workpay
only for the employees who are wage-paid. Method set pay-by-month specifies the
methods that will calculate the workpay only for the employees who are monthly-
paid. In both cases, the new or additional constraint supersedes or specializes the

contract on the method set workpay, requiring a more restrictive or specialized type

of behavior.
workpay
[compute-workpay : Employee]
pay-by-month pay-by-hour-default-rate
compute-workpay : Salary_Employee] [compute-workpay : Wage_Employee]

l

pay-by-hour-special-rate
[compute-workpay : Wage Employee]

Figure 4-15. Work_pay Method Taxonomy Diagram with Dispatching Mapping.-

70

Figures 4-15 and 4-16 together illustrate how method taxonomy diagrams are
referred to from other components of the design using explicit dispatch mappings.
Dispatch mappings must be explicitly defined when more than one feature with

same name is defined in a class.

{R) compute-workpay [workpay]

Employee
IR -
! {R} compute-workpay [pay-by-month] {]Eﬁ:;h:‘:rﬁgault-rm]
(1R} compute-workpay
Salary_Employee [pay-by-hour-special-rate]
Wage_Employee

Figure 4-16. Employee Inheritance Diagram with Dispatch Mapping.

Figure 4-16 illustrates that in the class Salary Employee, the routine compute-
workpay is redefined and will be dispatched to the method set pay-by-month
described in Figure 4-15. This dispatch matching is specified by using ‘[]’ in both
diagrams. The term “dispatched” refers to the way of indicating which method-set
contract is associated with the computation-initiating feature and its class. Two
compute-workpay routines are redefined in Wage Employee: one is dispatched to
the method set pay-by-hour-default-rate , the other is dispatched to pay-by-hour-
special-rate. In fact, these two compute-workpay routines specify the use of
overloaded functions in C++ as both are dispatched to different method sets in the
same method taxonomy diagram. This example shows that the method taxonomy

diagram does not necessarily group method sets in the same hierarchy that an

71

inheritance diagram presents behavioral features. Withbut being dispatched to their
related contracts, one can hardly specify the intent of overloaded functions.

Method taxonomy diagrams are important for designers as a means of
classifying and organizing method sets in that they specify the common behaviors
across a wide variety of systems as well as providing a catalog of previously coded
methods for reuse. If a particular contract is very widely used and studied (e.g.,
sorting), the corresponding method set and its subsets may form quite a complex

taxonomy. Such a taxonomy may seTve as a reusable resource for designers.

4.5 Type Diagrams

Inheritance is generally considered as the primary relation between classes in
object-oriented modeling. Yet many other interesting relations are established
implicitly through the values of the attribute features in the classes as well. These
relations are gcneré]ly structured around the roles of particular objects in relation to
other classes. These roles in IDEF4/C++ are specified by the attributes in the
classes. Therefore, the related object type is often a key constraint for capturing the
particular role that an object play in a particular relation. In IDEF4/C++, the
management of these role-definition processes is accomplished through type
diagrams. In the IDEF4/C++ discipline, each atiribute has a return type which
defines the type of return value. Type diagrams, as a part of class submodel,
provide graphical and textual notations for displaying the return types of attributes
of the classes.

Type diagrams are syntactically composed of class boxes and type links. Only
features that have return values, such as attributes, functions, or slots, will be shown

in the diagrams. There are four kinds of type links:

72

(A) £ o
A B
Figure 4-17. Single-valued Type Link.

Single-.va]ued type link

Figure 4-17 illustrates the notation for a single-valued type
link. A single-valued type link describes that the return
value for an attribute is an instance of a class. In the figure,
the return value of the attribute f is an instance of class B.

The type of fis B.

(A} f> b o
A B
Figure 4-18. Multi-valued Type Link.

Multi-valued type link

A mnlti-valued type link describes that the return value for
an attribute is composed of a structured collection of
instances of a class. As illustrated in Figure 4-18, the
values in the attribute f are a collection (i.e., a list) of

instances of type B.

(a)
{A) f -0 (Al g
A B
B a
\ Insta .\ Instb
(c)
class A class B
{ " { a
BY; Ag:
]ai: }5;
af=b; b.g = a;

Figure 4-19. Single-valued Inverse Type Link.

Single-valued inverse type link

Consider the example described in Figure 4-17. If an
instance b of class B has a feature g and the return value of
g is an instance of class A; and it is, in fact, just that
instance which has & as the return value of its feature f, then
we say the type link between A and B is single-valued
inverse. Figure 4-19(a) illustrates the notation of this type

of link. Figure 4-19(b) shows an instantiation diagram of

73

the example described above.

We can think of the

instances of class B as having “where used” pointers to the

instances of class A. The C++ code example for these

diagrams is illustrated in Figure 4-19(c).

(a)

(b}

{A) f >—p

A

{Al g

(c)

\ <Inst a>

-
g g
~‘:EInst b[l]a <Inst b[2]>
class A class B
{ . { .
B]; Ag;
ba; } bin;
af[i] = bfi]; blil.g = a;

r_\

g

<Inst b(n]>

Partial inverse type link

Figure 4-20. Pardal Inverse Type Link.

Partial inverses are the inverse relations other than one-to-

one between classes. Figure 4-20(a) illustrates the notation

75

for a partial inverse type link. Instance a of class A has a
feature f which holds a collection of instances of class B,
and each instances in this collection has a feature g which
holds exactly that instance g as the return value. This is
also described in Figure 4-20(b), which shows that each
instance of B points back to a. Figure 4-20(c) presents the
C++ code example.

In a type diagram, feature return types can also be specified by concatenating the
attribute's name with the return type. This alternative syntax is used in larger
diagrams to reduce the unnecessary clutter of the diagram by eliminating a number
of links. It can also be used by the designer to de-emphasize certain relations and
focus the attention of the design reviewers on specific relations (i.e., those shown
with links). This approach is typically used for common data types such as integer
and Boolean. In IDEF4/C++, these common or user predefined types can be
defined and collected in the Predefined Data Type List, as well as classes in third-
party class libraries which are included in the design. For example, consider a user

predefined type such as String, which is defined as the char pointer in C++:

typedef String char*;

The predefined type Siring will be collected in the Predefined Data Type List
with its zypedef definition, allowing for the use of type diagrams. These predefined
types are placed behind a colon ‘:* after the named feature as shown in Figure 4-
21(a). Another c:;amplc shown in Figure 4-21(b) illustrates the use of the
predefined type from third-party class libraries. Consider a design of the Employee-

data-entry-form class as a part of the interface for the Employee Management

76

System. The class consists of two features with predefined types from the Borland
ObjectWindows class library: RTMessage and TCheckBox. The predefined type
RTMessage is defined as a pointer to the type TMessage which is a Borland
message data structure. TCheckBox is a predefined class used for displaying and
managing a check box as an input item of the data entry form. Again, both of them
must be specified in the Predefined Data Type List prior to use, as illustrated in the
example. Moreover, the CIDS for the TCheckBox and the CDSs for its member
functions have to be documented properly in the design, although ﬂ;ese CDSs would
likely have only their signatures specified.

(®)

(S) name : String

Employes

(b)

(8} IO-Message : RTMessage
(S} gender-checkbox : TCheckBox

_—
Employee-data-entry-form

Figure 4-21. Textual Notation for Feature Return Types.

An example type diagram for the Employee Management System is illustrated
in Figure 4-22. In the diagram, type links specify the intended relations between
classes in the system, such that a vice president has an executive assistant, or both
the compute-workpay functions of Project-Manager and Programmer will return a
type of Workpay. A multi-valued link placed between class Programmer and class
Project indicates that the slot current-project of Programmer will return a

collection of instances of Project. This is done in a similar fashion as the feature

77

team-members defined in the class Project-Manager, whose return type is specified

by a link pointing to class Programmer.

Secretary

{8} secretary
{S) project

[S} department

{§} team-members
{F} compute-workpay

_Project-Manager

4 Executive-Assistant

{§] current-project
{5} language-specialized
{F) compute-workpay

Programmer

Workpay ;

{S) equipments

Department

{S) Budget

{S} installed-machine >—P—

Programming-Language P

Computer

(S} Budget-amount : Money

Budget

Figure 4-22. An Example Type Diagram for the Employee Management System.

78

4.6 Friend Diagrams

Friend diagrams, as extension to IDEF4, are used to show the C++ friend
declaration relationships between the focused classes and their friend classes /
functions.

Each friend diagram focuses on one class at a time, describing all the friend
declarations within its definition. A friend diagram employs three diagram
symbols: class boxes, friend function boxes, and arrows. The class boxes are the
general class boxes as used in the IDEF4/C++ notations, which present both the
focused class and its friend classes. However, only the class name will be shown on
the class box; features and other unrelated class details won’t be given in friend
diagrams. Friend functions are presented in terms of the whole function definition
by using the friend function boxes. A function definition includes: (1) the return
type of the function (if none, use void); (2) the function’s name; and (3) the list of
the types of parameters. The arrows specify the friend declaration links, pointing
from the focused class to its friend classes and functions. Friend functions are listed
at the top of a diagram, where the friend classes are listed on the bottom.

Figure 4-23 gives an example of a friend diagram along with the C++ code,
which describes the friend declarations defined in the definition of class Worker.
The presentation is very straight-forward. In the figure, the friend class Supervisor
and Accounting_Manager are displayed on the bottom of the diagram, where the
friend function compute_tax is placed at the top. Friend declaration, as specialized
in C++, is used to break the default encapsulation mechanism supported by the
language. For example, both the friend function compure_tax and the instances of
Supervisor and Accounting_Manager, are able to access to the protected or private

features of Worker, such as salary through the friend declarations However, the use

19

of friend diagrams really depends on the design intent with respect to other class

relations in the system. One should be cautious in applying such declarations.

Return Type + Function Name + Parameters’ Types
" | .

A

Tax compute_tax (Pay)

The focused Class /

Worker

Accounting_Manager

class Worker
friend class Suparvisor;
friend class Accounting_Manager;
triend Tax compute_tax (Pay);

public:

protacted:
Pay salary;

h

Figure 4-23. A Friend Diagram and C++ Code Example for Class Worker.

80

47 Template Diagrams

Template diagrams are used to specify the class template declaration in C++. A
C++ template class is a parameterized class and consequently different types of
parameters will allow different classes to be instantiated.

Template diagrams employ three diagram symbols: template class boxes,
parameter type list boxes, and arrows. A template diagram focuses on one class
template at a time, which is displayed in the center of the diagram. Template class
boxes, as illustrated in terms of dotted class boxes, are used to present the focused
class templates. Similar to the general IDEF4/C++ class box, features defined in the
template would be shown in public, protected, and private groups. The template
name and its parameter list are placed where the class name would usually be shown
in the class box. The parameter type lists are presented by using single boxes.
Arrows pointing from the template to the parameter type list boxes indicate the
connection between the parameterized classes and their template.

For example, consider a C++ class template Array to be used as a template for
different types of arrays, such as integer, string, and complex. The template
diagram is illustrated in Figure 4-24 with the C++ code presented. In the diagram,
the template Array has only one parameter, fype, which is used to indicate the type
of array to be instantiated. To instantiate an array class (inf-array), one needs to
“parameterize” the parameter type with the intended type provided (/nteger). There
are three different types of arrays illustrated in the diagram: Integer, String, and
Complex. These types should be documented in the Predefined Data Type List and
the detailed definition of the template Array should be documented in its CIDS.

81

(Integer)

| |
l }
i ¢ l
LR 1
(Siring) (Complex)
template <class type>
class Array {
Array (type);

// constructor for instantiating differant types of array.

g
different types of array class can be instantiated by this template:
Array <Intager> int-array;

Array <Complex> complex-array;
Array <String> string-array;

Figure 4-24,
A Template Diagram and C++ Code Example for Class Template Array.

4.8 Client Diagrams

Client diagrams, as part of the method submodel, are used for algorithmic
decomposition. They are the only IDEF4/C++ diagrams that specify, however

abstractly, the internal structure of routines (computation-initiating features).

82

Figure 4-254 svh;)'aﬂrs‘ a sample cluielﬁnt:' dJagram for the routine show-ﬁraject-
information as defined in the class Project-Manager. Routines are shown along
with their directly-defining class names, such as Project-Manager:show-projeci-
information.. The links between boxes represent control references or “subroutine
calls” from one routine (as the client) to another (as the supplier). For example, the
link between show-project-information and print-project specifies that the
implementation for show-project-information (the client) calls the feature prin:-

project defined in the class Project (the supplier).

Supplier:
Routine that is called
Projeclt: h. Project-Manager: ™ Employee:
print-project get-team-member . print-employee

Client:
Routine that calls

Project-Manager:
show-project-information

Figure 4-25.
Client Diagram for Show-project-information of Class Project-Manager.

Figure 4-26(a) displays the C++ code for Project, Project-Manager, and
Employee. Each class defines the member functions to be called by show-project-
information, as indicated in Figure 4-25. Figure 4-26(b) presents the code for these
calling algorithm. To show project information, the client calls print-project
defined in Projecr first and then calls the get-ream-member defined in Project-

Manager to get the members in the project team. Next, for each member (which is

a3

an instance of Employee), the function print-employee is called. In fact, the diagram

specifies that the imiplementation for the client (show-project-information) will call

each supplier directly, not some generic functions. If the class associated with the

client function has not been specified in the diagram!!, dispatching will occur at run

time for any implementation. For an implementation in C++, this would indicate

the need for a dynamic binding for print-project . This design issue is discussed in

Section 6.5.

(a)

)

class Project (class Empioyee {
friend Project-Manager; frisnd Project-Manager;
public: public:
pmtmad prc;i.e.;t ed

Budget prj-budget; Pay salary;

void print-project({void); void print-employea (void);
ki b

class Project-Manager {
public:
Project “get-project{void);

protected:
void show-praoject-Information (Project *);
Employee *get-taam-member (Project *);

............................

void Project-Manager::show-project-Information {Project “prj)
Employse *parson;

pri->print-project();
while (person = get-team-member (prj);)

{
person->print-employea();

Figure 4-26. C++ Code Example for Show-project-information.

11 For instance, no class name shown before print-project.

84

49 Instantiation Diagratds

The purpose of instantiation diagrams is to facilitate the development of test case
scenarios. Test case scenarios, in turn, are used to validate the design and document
examples of the intended design. Ultimately, this validation process aids
programmers in implementing the design. An instantiation diagram looks much like
a type diagram. It uses a round-cornered box to represent instances of a class,
analogous to the IDEF4/C++ class box. For example, the instantiation of an
employee named John from the class Employee (see the following code) has
"<Employee John>" as its unique identifier. The representation of instance John is

illustrated in Figure 4-27.

Employee John;
,OT

Employee *John = new Employee();

Name
Address
Pay-rate

<Employee John>

Figure 4-27. An Instance Box - John.

The instance attributes are listed in the upper region of the instance box.
Instantiation diagrams provide two ways to indicate the value assigned to or
returned by the attributes: directly displaying the value to the right of the attribute
(Figure 4-28(a)) or using value links (Figure 4-28(b)). In the case of attributes of

numeric type, it is acceptable to directly present the value in the box. The value

85

links used in instantiation diagrams are presented in terms of arrows, pointing from
an attribute to the class that is used as the retun type. They start inside the instance
box, next to the attribute whose value is being annotated, and end in an arrow

pointing to the boundary of an instance box as shown in the figure.

€))
class Employee {
public:
Employee () { payrate = 20; }; /# initial value for payrata.
Employeae (int rate) { payrate = rate; }; // user dafined payrate.
Employee protectad:
int payrate;
5
~
(name N (name
address address
payrate 20 payrate 40
;CEmployee John> Y, \<Employee Tim>)
Employes John; Employes Tim (40);
b)
department L
Employee Department
4 N D
department -
\-:Employee John> Y. <Department Sale> /

Figure 4-28. Example Instantiation Diagrams.

86

4,10 Dispatch Mapping

In an IDEF4/C++ design, it is possible for a generic behavior to have more than
one computation-initiating feature specialized for that generic behavior in the same
class (i.e., features of the same generic behavior group in a CIDS) or in different
classes (i.e., features of the same generic behavior group but in different CIDSs). In
other words, in a method taxonomy diagram, more than one method set will be
associated with the generic behavior described by the diagram and different features
in different classes may be implemented by them. Dispatch mapping, a connecting
mechanism between the class submodel and the method submodel, is used to refer
to the association between the computation-initiating feature and their related
method sets.

In Section 4.4, we have described a work_pay method taxonomy diagram and an
Employee inheritance diagram. We continue the discussion by using these diagrams
to show the mapping between those behavioral features and method sets. Figure 4-
29 depicts the dispatch mapping. Note that in the inheritance diagram, these
work_pay behavioral features are all named as compute-workpay. However,
contracts to be applied to their implementations are different. Employee’s compute-
workpay is mapped to the workpay ﬁlethod, which is the most general method set in
the method taxonomy diagram. Salary Employee’s compute-workpay is mapped to
pay-by-month and two compute-workpays in Wage Employee are mapped to pay-
by-hour-default-rate and pay-by-hour-special-rate separately.

In an IDEF4/C++ design, features with the same name but in different classes
indicate a design for the C++ virtual functions. Features with the same name but
defined in the same class indicate a design for the C++ function overloading.

However, detailed definitions (i.e., parameter types and the number of parameters)

87

of these overloaded functions.can only be revealed from the association of their

CDSs with the method sets that they are mapping to

workpay

[compute-workpay : Employec]

pay-by-hour-defauit-rate ~..

pay-by-month
compuie-workpay : Salary_Employee]

\

[compute-workpny Wage_Employee] ~

:x'

-

£

- o

’

i §

[

-
”,

pay-by-bour-special-rate o _
[compute-workpay : Wage Employee}
¥ i

7

"‘EJ

[
)
r s

!

!

! L
.

\

[
y .
iL work_pay method taxdgomy diagram
- A}

A

LY

A
)
{R} compute-workpay [workpay]
[

Employee

{IR} compute-workpay
[pay-by- hour-default-rate]y:

P2

! (R) compute-workpay [pay-by-month]

{'R} compute-workpay
[pay-by-hour-special-rate]

Salary_Employee

Wage_Employee

Employee class Inheritance dlagram

Figure 4-29. Dispatch Mapping of Work_pay Behavior

88

CHAPTER V

METHOD PROCEDURE

5.1 Introduction

Perhaps one of the greatest challenges of developing an object-oriented design
method is to define a development procedure. The purpose of such a procedure is
the organization of the design artifacts and activities, especially for administrative
purpose. Although the object-oriented design process is iterative, a development
procedure defines a set of ordered activities allowing multiple developers or
development teams to communicate across the design process and supports change
control in the evolution of a design.

In the general object-oriented design process, there is a tension between the use
of class decomposition (inheritance), object composition (aggregation), algorithmic
decomposition, and polymorphic decomposition (message dispaiching) (Mayer
92a). The "least commitment” philosophy employed by IDEF4 supports all four of
these design perspectives, allowing one to refine a design seamlessly over the
design evolution.

In this Chapter, we will address the issues of the transformation from generic
IDEF4 to IDEF4/C++ and present a design procedure for IDEF4/C++. We will also
provide an IDEF3 dynamic model of system development process which involves
multiple developers / development teams, with the consideration of configuration

management (change / version control).

89

5.2 Transformation from Generic IDEF4 to IDEF4/C++

IDEF4/C++, as a language dependent design method, extends several method
features from IDEF4. However, the IDEF4/C++ implementation design method is
not intended to replace IDEF4, a generic design method which creates language
independent designs. By employing an IDEF4 generic design as the initial design
for IDEF4/C++, the evolution of the design process therefore can be conducted
seamlessly since both IDEF4 and IDEF4/C++ are derived from similar method
concepts (as described in Chapter IIT). In general, the implementation design is a '
process of adding implementational details to the generic design model. The
refinement is basically based on the language dependent features supported by the
extended method. Developers therefore follow the design specification and create
“module prototypes by using the targeting language.

In this Section, we categorize the extended language dependent features
provided by IDEF4/C++. These extended features, which were presented and
discussed separately in the previous chapters, fabricate a set of transformation
guidelines for the evolution from an IDEF4 generic design to an IDEF4/C++
implementation design. Table 5-1 in the following page summarizes these
transformation features.

The table presents the basic transformation focus while evolving an IDEF4
design to an IDEF4/C++ design. Some features shown in the table such as class
feature access, inheritance type link, and class feature symbols, have their own
presentations in both methods. These transformation focuses have to be specified in
more details in the evolution from IDEF4 to IDEF4/C++. Some other focuses are
new to IDEF4 such as constructor / destructor, friend / template declarations, and
class variables / operations etc.. They are specified in the implementation design

process when needed. Routine signatures, which are necessary for coding method

sets, have to be defined in the CDSs of the IDEF4/C++ design model before any

implementation.

Transformation || Presentationin | Method Presentation in | Default
Focus IDEF4/C++ Transformation
Inheritance Link virtoal,
Type Public / Protected
/ Privale
Class Feature Public / Protecied | Public(in IDEF4)
Access Control [Private -> Public {(in
IDEF4/C++).
Private (in IDEF4)
-> Protecied (in
IDEF4/C++)
Class Feature ‘A’, 'R, ‘8, °F’, | Class Box ‘A’ °R’, ‘S’(slot), | If a feature is
Symbols ‘P’ ‘F, P, VF, specified by ‘F’ or
Yo',] ‘P’ in IDEF4, the
‘§*(static), ‘NC* | ‘VF' symbol will
be added by default
in IDEF4/C++.
Constructor / N/A Class Box, (1) procedures N/A
Destructor CIDS showing in the
class box with
class name as the
procedure name.,
(2) they are also
specified in CIDS
constructor /
destructor lists.
Implementation of §| N/A CIDS Class / Struct / Class
{lass Union / Template

Table 5-1. Transformation from IDEF4 to IDEFA/C+-+.

91

Transformation r Presentationin | Method Presentation in | Default
Focus IDEF4/C++ Transformation
Friend Function/ || N/A Class Lattice | (1) presented by
Class Diagram, ‘=>° in class
CIDS, and lattice diagrams,
Friend (2) specified in
Diagram the CIDS friend
List.
{3) A friend
diagram has to be
provided for the
class which has
friend functions /
classes defined.
Nested Class N/A Class Lattice { (1) presented by | N/A
Diagram, ‘--->‘in class
CIDS lattice diagrams.
(2) specified in
CIDS nested class
list.
Class Variables/ [| N/A Class Box Specified by ‘S” | NfA
QOperations (static) symbaol
Parameterized N/A Template Presented as N/A
Class Diagram double-lined class
box
Routing Signature ﬂi\l/A CDS Specilied in N/A
IDEF4/C++ CDS§

Table 5-1. (continued)

92

5.3 IDEF4/C++ Design Development Activities

Development of an IDEF4/C++ design involves the creation of diagrams.
Diagrams provide different perspectives for describing artifacts (classes, features,
and method sets etc.) and the relationships among them. In general, the evolution of
an IDEF4/C++ design is an iterative process of partitioning, classifying / specifying, .
merging / eliminating, and rearranging these design artifacts. These operations are
employed in most of the design activities and might involve the creation /
modification of different diagrams in each. The following steps present the design
actvities that are performed throughout the IDEF4/C++ design procedure.

« Analyze evolving system requirements.

System requirements may or may not evolve through the design process.
However, examining the user evolving requirements over time keeps the design
on “the right track”. User evolving requirements result in the occurrence of new
or additional constraints to the design. Such constraints might therefore
promote the need for creating new design artifacts or modifying the working
versions of the design artifacts. This will certainly cause another design
iteration. Moreover, if functional (such as IDEF®), informational (such as
IDEF1, IDEF1X), or process (such as IDEF3) models are available, they can be

used as inputs to this activity.

» Develop and refine class hierarchy.

93

The development / refinement of the class hierarchy involves (1) detailing /
rearranging design artifacts such as classes and features, (2) specifying the
relationships between classes, and (3) refining the class-invariant constraints.
This activity includes the following steps:

+ Develop, refine or update class lattice diagram(s).

» Develop, refine or update inheritance diagrams.

. Create, refine features defined in the updated classes.

. Refine or update CIDSs.

. Create, refine or update friend diagrams as needed.

. Create, refine or update template diagrams as needed.

Develop and refine class composition structure.

Composition relationship (aggregation) between classes is specified in type
diagrams. The type links connect the value-returning features and the classes
which are specified as the return types. For those types predefined by users
(most likely the primitive data types such as int, double etc.) or provided by
class library venders, the user predefined type list is to be used and further
refinement might be needed. Note that if the changes affect design such as class
definition or class relationship, the activities described in prior steps are
involved. This activity includes the following steps:

. Develop and refine type diagrams.

. Refine and update user predefined type list.

. Update CIDSs as needed.

. Update inheritance diagrams or lattice diagram(s) as
needed.

« Develop and refine method taxonomy.

This activity involves design artifacts such as method sets, contracts, and .
generic behaviors. Method sets are classified according to their common
functionality and gctieric system behaviors are specified with method set
groupings. Each generic system behavior will be described by a method
taxonomy diagram. The refinement of each method taxonomy requires
identifying additional constraints on the method sets / contracts as the design of
method submodel evolves. The creation of dispatch matchings also takes place
in this activity, which requires associating method sets with classes and features.
CDSs of the method sets 1o be implemented should be refined and additional
implementation details (i.e., pseudo code) should be documented as needed.
The following are the steps in this activity:

. Combine, rearrange, specialize method sets as needed.

. Develop and refine method taxonomy diagrams.

. Create and refine dispatch mappings.

. Refine, update CDSs.

Changes might result in the iteration to the preceding activities.
+ Develop and refine algorithmic decomposition.

Client diagrams should be developed for each method set specified in the
previous activity. Client diagrams, as used to illustrate the algorithmic or
functional decomposition for routines, are crucial to the implementation of the
method sets that they are associated with. For example, the designs of service

requesting (message passing) or dynamic binding (Section 6.3) are most likely

95

specified in terms of client diagrams. Again, changes might result in revisiting

the previous activities.
» Develop and validate instantiations.

Instantiation diagrams are used to validate the design. Instances specified in the
diagrams might be the obj;ects to be created in the implementation (programs).
The creation of instantiation diagrams will also aid programmers in the
implementation process. However, the validation activity might result in the
modification of type diagrams, or class definitions / CIDSs and inheritance:

diagrams, the revision to the previous activities is therefore required.

5.4 IDEF4/C++ Design Development Process with Multiple Developers

Thus far, we have presented the transformation from IDEF4 to IDEF4/C++ and
the activities in the IDEF4/C++ design procedure. However, the development of
large-scaled systems often requires multiplé developers / teams. As the design
evolves, different design versions might be created concurrently and the
communication between developers or the development teams tends to be more
complicate. This will require a broader view for the identification of the inter-
developer or inter-team activities. Consideration of configuration management for
the development process and the control for the changes of versions are also
required. In the following discussion, we will present an IDEF3 dynamic model
describing the system development process with multiple developers / development

teams from the perspective of configuration management.

Identify domain :
cbiects / classes Specify Create the zmonﬂﬂ.'.‘rm
and the & features of & X systen'’s initial . ecompose
7'. relaonships — 12 each class 1B 14 > IDEF4/C++ syslam o
between them 1 design subsystems md
Y components
l Specify]
object
behaviors
1
Transform the
IDEF4 design to
IDEF4/C++
1
Performn Create Percolate Create Prepare
& configuration| & N X | | system > X | o] new > subsystem / N IDEF4/C++
15 identification I8 I7 baseline 18 baseline component design of each
L ! T baselines | baselines
Perform : I
interface Merge variants of
identification Cls WECh exist in Creale
more than one new
l -» subsystem / - baseline |
component I
I

Figure 5-1. IDEF3 Dynamic Model of IDEF4/C++ System Development Process with Configuration Management.

96

19

ndg

Expand Goto
subsystem _ﬂ Percolate
baseline new baseling

I
Develop / refine Goo
currentlevel |y,
design o

|

Modify / update Golo /

current level |—jp 110

design

1

Provide current
level design o
the programming
team

A E—

Code new
0 classes / 0 Goto /
= | ™ mel.:'iods nad—> 1o
Modify
existing
—> code
1
Sugges[Review
L design change | o X
changes request J13
i | 1

Goto / Modify
{update
Approve] Wl orrentlevel
change design
1
Reject Notify Goto / Code
change —p| Programmingl_pl new classes /
r team methods
I

Figure 5-1. (continued)

L6

Goto / Modify

{update
current level

deéign

Goto /
IS

Publish lransien] Goto /
— current level —Jo 7 '
design
i |
Merge existing
Test Accept
subsystem / X Goto /
—» component '_ﬂ Ic'::eged —> 11 N memeed —d
code T
1
Goto / Suggest
> design changes
Discover conflicts /
|_p mismaiches of s 0
module interface L
1
Release
Merge Test
X Accept completed
final L System _,I .P
code code 115 —P design &
L I I °°d'|"
Goto / Suggest
— design changes
Goto / Modify,
Discover conflicts / { update
|| mismatches of _— 0 current level
module interface nz design
1
Goto /
I5

Figure 5-1. (continued)

86

99

Figure 5-1 illustrates the IDEF3 model. The following are the definitions of the

terminology used in the model.

System module

f
y Snbsyitem part-o0

System

A

part-of

part-of

Component

A collection of associated
classes and method sets to
provide the required
functionarity.

Figure 5-2. Configuration Items defined in IDEF4/C++.

« Configuration item (CI): System, subsystem, component, class, or method

sct.

CI is any design element whose state is to be recorded and whose changes

are to be processed (controlled). A CI can be the system, a subsystem, a

component, a class, or a method set. Figure 5-2 illustrates the relationships

between these CIs. A system can be functionally decomposed into several

subsystems and components. Both subsystems and components are system

modules. Subsystems can also be decomposed further into subsystems and

components, or only components. Components, on the other hand, represent

the software modules which require no further decomposition to purchase or

100 -

build. Any component can be considered as a collection of associated.
classes and method sets in the context of an IDEF4/C++ design.

+ Configuration identification: Identifying each CI and its interface.

» Interface identification: Idcnnfymg all functional characteristics relevant to
the interfacing of two or more Cls.

« Version: A version is a recorded state of a CI at some point of time.

» Version tree: The hierarchy formed by the versions of a CI created over its
design evolution.

» Variant: A branch of a version tree. Note that the occurrence of variants of
a CI indicates that the CI is included in more than one component and the
changes to different copies of the CI are made concurrently.

+ Merge: The process of resolving conflicts between two or more than two
variants of a CI and creating a single version for it.

* Baseline: A version of a CI serves as a baseline. A baseline represents a
well-specified state of a Cl in its design evolution. Baselining a CI is the
process of assembling the baselines of its element CIs. If the element Cls
have variants, baselining a CI will involve the process of merging.

» Percolate: The process of decomposing the current baseline of a Cl into the
baselines of its element Cls.

» Publish: The process of preparing the current baseline of a CI to be
assembled with other CI baselines at the same level. Publishing a CI results

in the re-baselining of the composed CI (the CI at upper level).

The process starts at the creation of an initial design. An IDEF4/C++ inital
design can be derived from either (1) specifying / discovering domain objects /
classes and the features / behaviors of these objects, or (2) transforming an existing

IDEF4 generic design (Section 5.2). Since the design process involves multiple

101

developers / development teams, a functional decomposition for the initial design
system, followed up by the activities of configuration identification and interface
identificétion, is therefore necessary. Each decomposed subsystem / component
will be assigned to the responsible developers / development teams and the major
focus of the design process will be on these systcin modules.

Before the module design process begins, the system baseline has to be specified
and percolated to create the baselines for each modules at subsequent levels. This
process will repeat until the percolation reaches the bottom level of the system
configuration - where all the modules are components. The developers /
development teams therefore base on their own module baselines, carrying out the
design activities concurrently. This stage includes activities such as (1) developing
and refining the current module, which involves the design activities as described m
Section 5.3, or (2) expanding current module, which iterates the process of
percolation and creates another level of baselines.

As the design evolves, the working design version might be provided for
prototyping or a matured design version might be provided for coding. These
activities will revolve around the interactions between design and programming
teams if there is a change to the design version which is requested or suggested by
the implementors. The approved change request will invoke the process of
modifying the existing design version and allow an opportunity for another iteration
of teamn interactions. The working version can also be published to the upper level
as needed. However, the decision of publishing a working version will call up the
process of re-baselining the upper level module.

If variant versions are created across those components / classes / methods
which exist in more than one subsystem / component, the process of merging
variants is therefore required before creating the new baseline. The code merging

might also reveal some interface conflicts / mismatches between system modules.

102

The modification at the merged module level or even the process of re-performing
interface identification is therefore needed. This brings out another development
iteration until the final system reaches its release version. Figure 5-3 presents the

basic flow of control of the configuration management in IDEF4/C++.

103

START | Baseline the module [
Perform merge YES / Any
operation variants
T
NO

| Create new baseline

v

Percolate the new baseline

y

Create new baselines of
component modules

b T

>

<

OR
Y

modify the
module design

Develop [refine
the module design

3
7

merging
code ?

Ready for
coding ?

e

Publish the current
module design 1o the
upper level baseline

Code the module
as designed

Modify

existing code

> Merge
existing code

Release the complete

design & code

Figure 5-3. Flow of Control of Configuration Management in IDEF4/C-++.

104

CHAPTER VI

METHOD USES

6.1 Introduction

In a sense, object-oriented design is a type of design fashion using the technique
of indirection (i.e., abstraction, inheritance, encapsulﬁﬁon, or polymorphism etc.).
" A good object-oriented designer should be able to practice these techniques
competently. Two points are worth emphasizing: the importance of language
support for these techniques and the design principles behind them. This chapter
focuses on the discussion of these techniques by targeting on the practice of
designing with reuse using IDEF4/C++. Several language-dependent design issues
such as inheritance and feature access control, constructors and destructors, the
design of dynamic polymorphism in IDEF4/C++, and abstract base classes etc., will
be addressed prior to the introduction of the techniques for design with reuse. A
general set of "rules of thumb"”, which facilitates the application of reuse issues

examined in this chapter, will also be presented.

6.1.1 Inheritance vs. Aggregation

The solution model is not only constructed by the individual objects (classes)
distilled from the problem domain, but also those relationships among them as well.
Two of the most common relationships captured in the object model are subtyping
(IS-A relationship) and containment (HAS-A relationship). Subtyping is

implemented by inheritance and containment is implemented by aggregation.

105

4Typica.lly, softwafe cﬁmﬁonents (classes) are reused through the mechanisms of
inheritance and aggregation. A new class can be constructed by specializing
existing (reusable) base classes or containing the reusable classes as return types of
the new class's attributes in order to reuse their functionalities. However, due to the
reuse intent, it is possible to apply either of these different mechanisms in the same
context (Semantics)!2. Consider the example illustrated in Figure 6-1, which shows
two design alternatives for constructing the Salary-Employee class. Salary-
Empiloyee is defined by combining the functionalities of Employee and Salary. This
can be done by 1) defining Salary-Employee as a specialization of both Employee
and Salary in the fashion of multiple inheritance, or 2) subclassing Salary-Employee
from Employee, while aggregating Salary into Salary-Employee class definition. In
the first approach, class Employee and Salary are reused as mixins for providing
functionalities by inheritance. Whereas in the second approach, Salary is
incorporated into Salary-Employee as its attribute and functionality is provided
through forwarding. The tradeoffs that need to be taken into account between these
two alternatives in the same semantics are sometimes subtle and difficult. Final
decision usually accompany comprises. However, unless the relationship is exactly
a subtyping (generalization / specialization) relationship, aggregation combined
with forwarding is preferable for serving the reuse purpose. Section 6.9 will discuss

this issue in more details.

121f we only focus on directly mapping those nature relatonships into our medel in the design
process, life will be much easier.

106

Employee Salary

Salary-Employee

e

Empioyee
Reuse Salary
through aggregation
(S) Salary
Salary
Salary-Employee

Figure 6-1. Inheritance vs. Aggregation.

6.1.2 Broadening the Design Scope

Typically, the orientation of a design process tends to create classes suitable for
use in a particular problem, but are not general enough for broad reuse. The intent
of design reuse is the main reason we want to broaden the design scope. It is
important to leverage our perspective beyond the current design scope while we are
conducting a design process. A broader scope (purpose) for constructing the
abstractions (classes/method sets) leads to improved chances for reusing these

abstractions in the future. More specifically, broadening our design scope prepares

107

us to deal with new abstractions which are similar to those in the current problem

domain., Broadening the design scope also helps to smooth the evolutionary process |
when the inheritance mechanism is adopted as a means of reuse. A broad design
can better accommodate the variety of the intended behaviors than a design from a
single perspective can. Generally, the process of broadening the design scope leads
to two extremes in terms of the size of abstractions (classes); fat base class and
skinny base class. The “fat class” is a consequence of the intent that we want the
interface of a base class to be able to provide all possible behaviors for further
inheritance purposes. Abstract base classes (mixins) are the examples. On the other
hand, the “skinny class” promises that it is generally easily specialized from while
specific behaviors can be easily added into the derived classes. However, there are
always some trade-offs. The question that we must ask ourselves is: "When
broadening our design scope, what is the proper granularity for the size of those

classes to be reused?”

6.2 Inheritance and Feature Access Control

As a general rule, classes should avoid exporting their internal structure, even to
their derived classes; inheritance is not a license to violate encapsulation. However,
when we are concerned about the issue of encapsulation (information hiding), we
must also examine the effects of inheritance on the access of features.

In this subsection, we will discuss the language-dependent design issues
concemning different types of inheritance and feature access contrel. In IDEF4/C++,
feature access types can be public, protected, or private. Public features are visible
to the whole system. Protected features can only be accessed by the owner class and

all its directed and undirected derived classes. Private access prevents the features

108

from being accessed by other classés, thc':.reby prov:dmg a means of eﬁcapsulation.
Types of inheritance can be public, protected, or private. In general, a public
inheritance provides a means for specifying a subtyping relationship between a base
class and its derived class, whereas the private inheritance éupports reuse (see
Section 6.2.2 and Section 6.9.2). In the following, we will revise the issues of the
protected feature access type, private inheritance with access specifier, as well as

changing feature access type in the public inheritance.

6.2.1 Protected Feature Access Control

Protected feature access conirol in IDEF4/C++ is the same as the private access
in IDEF4. All the derived classes have the access to those features that are declared
as protected in the base class. Figure 6-2 illustrates this notion; so that both derived
classes B and C have access to the protected feature f declared in the base class A.
Note that the private feature g in class A still can not be accessed by either B or C:
consequently even the derived classes have no more right to violate the base class
encapsulation than any other class. However, declaring a base class feature
"protected”, is similar to declaring all the derived classes friends to the base class,
which provides an alternative avenue to break the base class’s encapsulation. The
protected feature access control can be very useful to the design of mixins (abstract
classes) so it can be used to prevent these abstract classes from creating instances of

their own, This is discussed in Section 6.3.1.

109

C

Figure 6-2. Protected Featre Access Control.

6.2.2 Private Inheritance and Access Specifier

As described in Section 4.3.2, private inheritance collects all the non-private
features (public and protected) defined in a base class and redefines their feature
access types as private in the derived class. However, by specifying an access
specifier (Coplien 92) for each inherited feature separately, the access of the
inherited feature can be re-specified back to public or protected as needed.
Generally, the intent of using a private inheritance is for reuse without breaking any
natural relationship between two classes. By redefining the non-private features of
a base class as private to a derived class, the functionality that the base class
provides can thus be reused by the derived class. Note that the intent of using a
private inheritance is different from the pﬁblic inheritance, which is used mainly to

denote a subtyping relationship. However, for some inherited features which are

110

| ﬂso suitablé for coﬁstructing the interface of the dérivcd class in a private
inheritance, it is necessary to redefine these features (back) to public. For example,
consider a List class and a Set class both illustrated in Figure 6-3. We construct the
Ser class by reusing the class Lisz in the fashion of a private inheritance since their
functionalities are similar, however, they do not possess a subtyping relationship
(Set is not a subtype of Lisf). As illustréted in Figure 6-3, class Lisz has five
features; head, tail, count, has-item, and inser:. Features head and tail have no
meaning to a set and are hidden within the private area of class Ser . Inserr and has-
item providing functionalities that are appropriate to the interface of class Set, are
also re-shown in the public area of Set class box, indicating that their access type is
redefined (back) to public. Note that since there is no change to their contracts
(implementation constraints), neither symbol “+” nor “!”* need to be added to their
definitions. Feature insert follows the same intent, except that its contracts need io
be redefined since no duplicate items are allowed to exist in a set. However, the
CIDS of class Set should document all the design intents, The C++ implementation

is shown as follows13:

class List {
public:
void *head();
void *tail();
int count();
Boolean has-item({void"};
void insert{void*);

ki

class Set : private List {
public:

13 This example is extended from James O. Coplien, ‘Advanced C++'(p 100).

111

void insart{void *m); // redefine its contracts
List::count; /I access specifier
List::has-item /f access specifier

|5

Where members count and has-item only have their names shown in the Set

class definition, prefixed by the List class specifier “List::™;

List::count;
List::has-item;

They are called access specifiers. Note that one can not do the opposite. That
is, using access specifiers in a public inheritance to change feature access will cause

a compiling error in C++. The following section discusses public inheritance.

{P} head
(P} tail

(F} count
(F} has-item
(P} insert

No | or + symbols indicates
count and has-item only change

a private inheritance

which is documented in ;

the Set's CIDS. their feature access.
[F) comt .~
[F) has-itern
{I P} insert ~

Symbol ! indicates
Set insert is redefined.

Figure 6-3. Private Inheritance and Feature Access Control.

112

6.2.3 Public Inheritance and Feature Access Control

Changing feature access type in a public inheritance is straight-forward.
Inherited features which change their feature access in a derived class are only
needed to re-display in the intended access control area of the class box. For
example, consider a design illustrated in Figure 6-4 where two features are deﬁﬁed
in the Base class: method-1 and method-2. Method-2 is virtual to Derived,
indicating that Derived follows all the contracts the inherited feature carries from
Base and has no intent to redefine it. Two copies of method-1 are re-displayed in
Derived; one being public and the other being protected. The public redefined
method-1 in Derived is prefixed by a redefining symbol “!”, indicating that it has
new conmacts different from those inherited (for exarnple, adding an irr parameter).
The new contracts can be referred to in the CDS of this copy of method-I. The
protected redefined method-1, on the other hand, has no prefixing redefining

symbols. It is re-displayed only for the purpose of showing the change of its access

type.

class Base {

public:

void method-1(void);
void method-2{void);

b

class Derived : public Base {

public:

void method-1(int);

protected:

void method-1(void); // change in access type.

b

113

{R} method-1

(1R} method-1]

{R} method-1 __ |

I Derived

Figure 6-4. Public Inheritance and Feature Access Control.

In IDEF4/C++, a derived class may redefine a feature inherited from a base
class. If the intent is to add some new contracts (adding an inz parameter as in the
example), symbols “!” or “+" have to be presented. If the intent is only to change
the feature’s access, only the name needs to be displayed in the intended access

control area.

6.3 Constructors and Destructors

Constuctors and Destructors in IDEF4/C++ are used for the instantiation and
termination of instances of a class. In this section, we will discuss constructors and

destructors in the context of inheritance.

114

6.3.1 Protected Constructors

Some base classes (such as mixins) are created only for the inheritance purpose.
No instances of the mixin classes will be created. One of the design techniques to
serve this purpose utilizes protected constructors. For example, consider the design
of an employee system; Employee class is defined as an abstract base class for the
derived classes: Programmer, Analyst, and Designer. Instances exist in the system
which are either programmers, analysts, or designers; no instance of a generic
employee is allowed. To prevent the creation (incident or on purpose) of instances
of Employee, we hide the constructors of Employee in the protected area. This is

demonstrated in the following code:

class Employee {

public:

protected:
Employee();

private:

.................

class Programmer : public Employee { L
class Analyst : public Employee { h
class Deasigner : public Employee { L

This guarantees that no generic employees will exist in the system since no
classes have the access to the Employee’s constructor, except for its derived classes.

Moreover, by using protected constructors, the base class constructors can still be

115

implicitly called when an instance of the derived class is instantiated. In

IDEF4/C++, this intent is to be documented in the CIDS of the base class.

6.3.2 Passing Parameters to Base Constructors

When instantiating an instance of a derived class, the base class constructors
will automatically be invoked in the execution of the derived class constructors.
However, they (base constructors) can also be invoked explicitly. Consider a shape
system, where the class Square is a specialization of the class Rectaﬁg!e. The major
distinction between them is that the creation of a square needs only one parameter,
the length of a side, whereas the rectangle needs two; both length and width. To
reduce unnecessary efforts, one may let the constructor of the class Square call the
constructor of the class Rectangle, instead of re-implementing the whole initiating

algorithm. This is shown as follows:

class Square : public Rectangle {
public:

Square (Point center, int side) : Rectangle {center, side, side) { };
b

To fulfill this design intent, the designer needs to document this constraint into

the CDS of Square’s constructor, and construct a client diagram as illustrated in

Figure 6-5 for it.

116

Figure 6-5. Calling Base Constructors.

6.3.3 Virual Destructors

Unlike constructors, base destructors cannot be invoked implicitly

(automatically) during a cleanup process. Consider the following code example:

class Employee {

public:
~Empicyee();

5

Employee *Joe = new Programmer,;

delete Joe;

The delete process will have no idea that Joe is a programmer since it is typed as
Employee. Instead of calling the right destructor, Programmer’s destructor, the
destructor of Empioyee will be invoked. The consequence is that some additional

resources allocated for the specialization, Programmer, will not be freed by the

117

Employee’s destructor; resulting as garbage in the system. To avoid this, one can

declare Employee’s destructor virtual:

class Employee {
public:

virtual ~Employee(};
b

If the destructor of a base class is declared virtual, the system will then
automatically invoke the proper destructor for its derived types (i.e., Programmer)
and call the base destructors afterwards. This design intent is to be documented in

the CIDS of the base class.

6.4 Pure Virtual Functions and Abstract Base Classes

Recall that, in Section 6.3.1, in order to prevent any incidental creation for the
instances of a generic base class (i.e., Employee), we declare the base constructors
as protected. Another design alternative is to use pure virtual functions. In
IDEF4/C++, pure virtual function declaration is specified by using the feature
symbol “V0”, indicating the feature {a computation-initiating feature) is not
intended to have its function body. This enforces an obligation on the derived class
to redefine / override the pure virtual functions and prevents any instantiation of the
base class. Note that an abstract base class is a specialization of an abstract data
type (ADT), if all its member functions are pure virtual. This is one of the
techniques of design with reuse which will be addressed more specifically in

Section 6.9.1.

118

6.5 Designing Dynamic Polymorphism in IDEF4/C++

In general, the object-oriented technique is characterized by inheritance and run-
time binding (dynamic polymorphism). Inheritance provides a hierarchical structure
for defining generalization / specialization relationships between classes. Auributes
common to several classes clan be moved up to their base classes (generalization)
and derived classes can specify their own behaviors by redefining those more
general behaviors in the base classes (specialization). Run-time binding
encapsulates these behavioral details in the inheritance hierarchy and simplifies the
implementation of the use of them in the program. Inheritance together with run-
time binding organize a design in a way of supporting software reuse. For example,
consider a class hierarchy with a base class Shape and its two direct derived classes,
Circle and Rectangle, and each class has a behavioral feature, draw. Draw features
in Circle and Rectangle are redefined from the more general draw in the base class
Shape through the inheritance mechanism. To draw a shape object in the system, a
generic draw function is called which is augmented with the intended object (it
might be known or not at compile-time). A good design (in terms of reunsability)
indicates that Adding a new class, for instance a Triangle class, as a derived class in
the system requires no modification to be done for the implementation of the
generic draw function. In other words, extension or modification for the system
should have as minimal an impact on the existing design / code as possible. We
address how to achieve this intent in IDEF4/C++ as follows.

In IDEF4/C++, inheritance relationship is specified in the inheritance diagrams,
whereas run-time binding is supported in terms of defining those behavioral features
as virtual and invoking them through a public base class reference or pointer.

Consider the example described previously. The class inheritance hierarchy is

119

illustrated in Figure 6-6 and the C++ class definitions for these classes would look

like:

class Shape {
public:
virtual void draw (void); /! detined as a virtual function.

class Circle : public Shape
public:
void draw (void); {f redefined draw.

class Rectangle : pubiic Shape {

public:
void draw (void); / redefined draw.
b
{VF] (P} draw
Shape
{1 P} draw {! P} draw
Circle] Rectangle

Figure 6-6. Inheritance Diagram for Class Shape.

120

As shown in both the inheritance diagram and the code example, draw of Shape
is defined as a virtual function. To construct a run-time binding mechanism for the
draw behavior, an independent draw function is defined and it is augmented with
the type Shape. It looks like:

void draw {Shape &obj)

{
obj.draw();

}

The trick is that instances of the derived classes Circle or Rectangle are also
instances of the base class Shape!4. The type of the instance that the parameter obj
references (might be Circle or Rectangle) will be resolved at run time to invoke the

“right” draw method.

Circle circle;

Rectangle rectangle;

Shape &s = circle; //s is a circle.
draw (s); {f draw a circle.

s = rectangie; / s is a rectangle.
draw (s); /f draw a rectangle.

The independent draw function need not know about any future evolution of
Shape hierarchy (for example, a new Triangle class), as long as the intended object
holds a redefined draw inherited from the Shape class. The inheritance diagram and
method taxonomy diagram with dispatch mappings of the example are illustrated in
Figure 6-7(a) and (b). Where the generic draw function does not have a dispatch

mapping to any class in the design, one should indicate that it is independent and

14 The substitution property of objects was discussed in Section 3.2.1.

121

does not belong to any class. Figure 6-7(c) illustrates the client diagram for this
generic draw, showing that the generic draw function calls the draw function
defined in class Shape. Since Shape defines its draw as a virtual function, the actual
supplier will not be invoked until run-time. However, the CDS for the generic draw
should document all the intent.

This run-time type resolution encapsulates the implementation details in
inheritance hierarchy from the program. In turn, it simplifies the extension of class
hierarchy. Adding a new derived class, "Triangle”, is straight-forward and will not

involve any modification of existing code about the generic draw.

Triangle triangle;
s = triangle; // s is a reference to Triangle.
draw (s); // draw a triangle.

In IDEF4/C++, in order to add the Triangle class into the system, we only need
to modify the inheritance diagram and the method taxonomy diagram (Figure 6-8(a)
and (b)). No further change is required for the client diagram of the generic draw
(same as Figure 6-7(c)). Easier extension of the design and the reusability of the
software component is therefore gained.

Note that, the inheritance links between all the derived classes and their base
class have to be public to support the run-time type resolution. Protected and

private inheritance links do not have the provision for this implicit type conversion.

122

@)
(VF] {P) draw
draw-
Shape
{t P) draw
[draw-rectangle)
Shape Inheritance Diagram
The generic draw is an independent
function; it does not belong to any
class, therefore, it doesn't have a
dispaich mapping.
draw-circle
[draw:Circle]
draw-shape
draw —® [draw:Shape]
\ draw-rectangle
[draw:Rectangle]
Draw Method Taxonomy Diagram
(©
Shape:
draw =]
The draw method in class Shape is
XYy a virtual function, the actual draw
function that is called depends on
the result of the ran-time type
Y- resolution.
draw
Draw Client Diagram

Figure 6-7. IDEF/C++ Design for Run-time Binding.

123

Draw Method Taxonomy Diagram

@ Shape Inheritance Diagram
(VF} (P} draw
[draw-shape]
Shape
(! P} draw (! P) draw (! P} draw
[draw-circle] [draw-rectangle] [draw-triangle]
Rectangle Triangle
L))
draw-circle
[draw:Circle]
i
draw-shape draw-rectangle
draw —®1 [draw:Shape] [draw-Rectangle]
I
draw-triangle
[draw:Triangle]

Figure 6-8. Adding a New Class - Triangle.

In summary, the design discussed in this subsection provides a simple approach

for implementing dynamic polymorphism in IDEF4/C++. It simplifies the software

maintenance process because the modification of class hierarchy has the least

impact on existing code, providing a means for software reuse.

124

' 66 Implementation for Conflicting and Non-conflicting Features

In an IDEF/C++ model, generalization / specializaﬁou relationships between
classes are specified in inheritance diagrams; whereas between behaviors, it is
specified in method taxonomy diagrams. Specialization between a base class and a
derived class is actually implied by the set of specialized features inherited from the
base class but redefined in the derived class. These redefined features are mapped
to their associated method sets which carry the same semantics. In IDEF4/C++, the
semantics of “spccializatioﬁ“ can be categorized into two different types of
additional constraints: conflicting and non-conflicting, represented by symbols “!”
and “+", respectively. Conflicting constraints are those that specialize or redefine
the inherited constraints. As a result, the redefined feature overrides / shadows the
inherited one. Non-conflicting constraints, on the other hand, merely represent the
addition of constraints that are new and independent to the inherited constraints.
This indicates that the implementation of the redefined feature will also execute the
implementation of its inherited feature in order to fulfill the unchanged constraints.

For example, consider the following two different C++ implementations of the

redefined feature - method-1,

class Base {
public:
void method-1 (parameter-1);

class Derived : public Base {
public:
void method-1 (parameter-1);

125

(N
void Derived::method-1 (parameter-1 p1)

{ cceevemes b

{2)
void Derived::method-1 (parameter-1 p1)

..................

In the first implementation, the feature method-1 redefined in Derived has its
own (new) implementation (it does not call Base’s method- 1), indicating that the
redefined constraints held by this copy of method-1 are conflicting to the inherited
constraints of the method-! in Base and that the method-! in the Derived class
shadows the method-1 in the Base class. In the second implementation, the method-
1 in Derived calls the one defined in Base, indicating that the constraints are non-
conflicting and that Derived’s method-1 has to execute Base’s method-1 to fulfill
those inherited constraints. Figure 6-9 illustrates the intended IDEF4/C++ design
for each implementation, where symbol “!” clearly specifies the conflicting situation

and symbol “+” specifies the non-conflicting additional constraints.

{! P} method-1

Derived

(P} method-1

{+P} method-1

/

Derived

Figure 6-9. Conflicting and Non-conflicting Constraints.

(S} team-membegs:

Project_Manager

System-Designer

Programmer

Figure 6-10. Example of Not Allowable Type Diagrams.

6.7 Features with Multiple Return Types

126

Design of multiple return types is not explicitly supported in the IDEF4/C++

type diagrams, that is, every feature described in a type diagram can have one and

only one type link fanning out from its defining class box to its return type. A

design such as the one described in Figure 6-10 is not allowed. However, in reality,

for those collection-type features such as array, list, or queue etc., elements in the

collection might have different return types (but similar in some sense). An

approach to solve this problem is to define a general base class for all these similar

but specialized types and have the type link of the feature point to the general type.

127

“This is especially important in IDEF4/C++, due to the reason that C++ is a strong-
| typed language. Consider the example described in Figure 6-10 where class
Praject-Maﬁager has a collection-type feature, team-members, which collects the
team members of a project. A project development team will consist of members
such as system analysts, system designers, and pmgiammers as well. To model this
situation, a base class, Employee, is introduced as the general base class for the
classes System-Analyst, System-Designer, and Programmer . Figure 6-11(a)
presents the inheritance diagram. The type diagram for this approach is illustrated
in Figure 6-11(b), showing that the type link for team-members points to the general
type Employee. The C++ code implementation for the design will look like:

class Project-Manager {
public:
Employee *team-members{10];

class Pregrammer : pubiic Employee | } Tim;
class System-Analyst : public Employee { } Martha;
class System-Designer : public Employee { 1 Ted;

John.team-members[0] = &Tim;
John.team-members[1] = &Martha;
John.team-members[2] = &Ted;

This Employee type collection feature, ream-member, therefore can collect
different types of instances, such as programmer Tim, system analyst Marrha, and
system designer Ted (as shown above). Through C++ type conversion, the multiple

return types for such a collection feature is therefore feasible. However, implicit

128

type conversion (as in the example) is only supported through public inheritance.
For non-public inheritance links such as protected or private, an explicit type casting

must be provided in the code.

class System-Analyst : protected Employee { } Martha;
class System-Designer : private Employee { } Ted;

John.team-members[1] = (Employes *) &Martha;
John.team-members{.?] = (Employee *) &Ted;

Again, all these intents and constraints for implementing the design must be

explicitly documented in the CIDS for the class Project-Manager.

(a) | Employee Inheritance Diagram
| ———]
Employee

Programmer System-Analyst System-Designer

{b)
Project-Manager Type Diagram
{S] team-members L
Employee
Project-Manager

Figure 6-11. Designing Multiple Return Types for Feature Team-members.

129

6.8 Avoiding Redundancy in Multiple Inheritance

One of the significant problems that might occur in a multiple inheritance
~ structure occurs with name conflicts between inherited features. In Section 4.3.3,
we have discussed this problem and introduced the virtual inheritance declaration
for resolving the conflict (Figure 4-7). Howcvér, resolving name conflicts is
considered an important design issue and designers of object-oriented systems
should avoid any name conflicts in their designs. In the following section, we will
discuss more details of this issue, as well as how to avoid the redundancy
accompanying the resolution process of conflicts.

Name conflicis can be categorized into two types: ambiguities (conflicts)
between data type features and behavior type features. Recall that the example
shown in Figure 4-7, where ambiguity between two copies of the inherited data type
feature name in the derived class Manager can be avoided by declaring virtual
inheritance. For the ambiguities between inherited behaviors, consider the example
described in Figure 6-12, where the class Project-Leader inherits the features from
both Manager and Designer; indicating that a project leader is also responsible for

the system design work.

130

(P) perform-tesk

]

' {! P} perform-task {! P} perform-task
Manager Designer

[t P} perform-task

B Project-Leader

Figure 6-12. Muliiple Inheritance of the Class Project-Leader.

Manager and Designer both redefine their own behavioral feature - perform-
task, indicating that they possess different tasks (responsibilities) in the
development of a project. The ambiguity occurs because Project-Leader inherits
both behaviors. The resolution of this conflict is described in the client diagram of
the perform-task behavior redefined in Project-Leader and illustrated in Figure 6-
13; where the Project-Leader’s perform-task calls both Manager’s perform-task and

Designer’s perform-task.

class Employee |
public:
void perform-task (void);

131

class Manager : public Employee {
public: .
void perform-task (void); /1 overriding Employee::perform-task.
......................... 1§

class Designer : public Employee {
public: ‘
void perform-task (void) {// overriding Employee::perform-task
b

class Project-Leader : public Manager, public Designer {
public:
void perform-task {void) /f redefined for its own behavior.

/f The behavior of a project leader to perform histher tasks can be
/f thought of as a combination of the managing and designing work.
void Project-Leader::perform-task (void) {

........................... {/f work particular to a project leader

Manager::perform-task();
Designer::perform-task();

Manager: Desligner:
perform-task perform-task

Project-Leader:
perform-task

Figure 6-13. Client Diagram of Project-Leader’s Perform-task.

132

The order of performing a manager’s tasks and a designer’s tasks depends on the
domain requirements. However, since both Manager and Designer inherit this
behavior from Employee, it is not surprising to see that these traits possess common
behavior. Redundancy might occur, but avoided with careful design. First, we
separate that common behavior (most likely, it comes from Employee) from each of
the feature perform-tasks possessed in Manager and Designer and then "re-arrange”

the design:

class Manager : public Employee {
public:
void perform-task (void) {
periorm-managing-task(); // perform its own behavior
Employee:perform-task(); // perform the common behavior
h
protected:
void perform-managing-task (void);

class Designer : public Empioyee {
public:
void perform-task (void) {
perform-designing-task(); // perform its own behavior
Employee::perform-task(); / perdform the common behavior
|5
protected:
void perform-designing-task {void);

Manager: Employee:
perform-managing-task perform-task
Manager:
perform-task
Manager's perform-task Cllent Dlagram
Designer: Employee:
perform-designing-task perform-task

Designer:
perform-task

Deslgner's perform-task Client Dlagram

Figure 6-14. Separating Perform-tasks in Manager and Designer.

133

Figure 6-14 shows the client diagrams. Both the managing and designing tasks

are separated and declared as protected behaviors. The same design is applied to the

derived class Project-Leader. The redundancy in perform-task behavior therefore

can be avoided and it can also be more sclective on ordering these separated

activities:

class Project-Leader : public Manager, public Designer {

public:
void perform-task (void) |

Manager::perform-managing-task();

Designer::perform-designing-task();

134

perform-project-leading-task();
Employee:perform-task();
b
protected:
void perform-project-leading-task (void);
. i

Mam\ger: Deslgner _ Project-l.ea_der: Employee:
pa-fonn-des:snms- perform-project- perform-task
managlj- leading-task

S

Project-Leader:
perform-task

Project-Leader's perform-task Client Diagram
Figure 6-15. Avoiding Redundancy in Project-Leader’s Perform-task.

Figure 6-15 illustrates the client diagram of Project-Leader’s perform-task

behavior; the redundancy of the common behaviors is eliminated.

6.9 Design with Reuse

In this section, we will address techniques of design with reuse in IDEF4/C++
first. We will then summarize the chapter by giving a set of rules of thumb of this
issue.

The techniques that object-oriented design provides: encapsulation, inheritance,

and abstraction etc., are sometimes confused with the approaches to design with

135

reuse. One might think a design that makes the most effective use of inheritance
promises reuse or a design that follows the direct mapping from the problem domain
provides more chances for reuse. This is not necessarily true. An optimized class
inheritance structure or & nature object structure do not really promise reusability.
Design with reuse is a process that needs careful observation and deep
understanding of the problem domain, patience in the process of prototyping and
refining, and intelligent application of the techniques for reuse. -

In general, reusability can be achieved through two major mechanisms,
inheritance and aggregation. However, the techniqhes discussed in the following

section utilize these mechanisms in different flavors.

6.9.1 Abstract Base Class and Pure Virtual Functions

The first technique of reuse is using abstract base classes and pure virtual
funcdons. Base classes possess virtual functions defined to be "pure” (at least one
virtual function), indicating that no instances can be created from the class.
Therefore the base class is abstract (if such instances exist, the system would not
know how to deal with the behavior specified by a pure virtual function since no
function body is defined for that function). This is a quite intuitive approach for
reuse purpose. Recall that, in the discussion of broadening the design scope for
reuse, abstract base classes are usually one of the extreme results that we will get.
An abstract base class which is designed for reuse often possesses a "fat” (enlarged)
interface due to the reason that we tend to provide a complete set of (pure) virtual
functions in order to sufficiently describe all the behaviors. An example of an
abstract base class with virtual functions is illustrated in Figure 6-16, showing that

the class Drill-Machine is designed as an abstract base class for specializing

136

_ different types of drilling machines. Specializations such as Gang-Drill-Machine,
Radial-Drill-Machine, and Turret-Drill-Machine, can be defined through a public
inheritance from Drill-Machine. Each specialization has to redefine its own
behaviors by filling out the bodies of those pure virtual functions. For example,
drill is defined as a pure virtual function in Drill-Machine to represent the drilling
behavior. However, tlﬁs drilling béhavior is only a generic behavior; different types
of drilling machines have different ways for drilling. Specializations have to
override drill in order to make their own instances. This enforces the intent of

reuse, which is the purpose that we design the class Drill-Machine.

(S} id-number
(8} capacity
(S} weight
{5} dimension
[S} feed-speed
{VO){P} drill
[VF}{P} load
{VF}{P) unlocad

{P) Drill-Machine

Drii-Machine
Figure 6-16. An Abstract Base Class - Drill-Machine.

6.9.2 Private Inheritance and Forwarding

In Section 6.2.2, we discussed the design technique for using a private
inheritance with access specifiers. This technique can be applied for the reuse
purpose as well. In general, a public inheritance captures the nature subtyping
(specialization) relationship between a base class and a derived class, while a

private inheritance implements the intent of reuse. Through a private inheritance,

137

the funcﬁonaliﬁes. that a base class provides can be reused by the derived class. The
base and the derived class do not really need to maintain a subtyping relationship.
Consider the example given in Section 6.2.2, class Ser is not a specialization of class
List. However, due to our intent to reuse the functionalities (a set of functions)
provided by List to simplify the design of Ser, List is privately inherited by Ser. To

be able to more efficiently use these inherited functionalities, access specifiers are
applied to switch the intended behavioral features from private back to public.
Another alternative is using forwarding. Figure 6-17 shows how to use the client
diagram to design forwarding in this sense. Features set-count and set-has-item are
new defined in the public area of the class Ser. Instead of changing the feature
access type of counr and has-item (both are inherited from List), count is called by

the public feature ser-counr and has-item is called by the public feature ser-has-item

in the class Set.

Set:
CoUn -]

R R R R IR

Set privately inherits
count from List.

The feamre set-count is
defined as public.

Set:
setcomnt ~ |

Set:
has-lte .|

Set privately inherits
has-item from List

The fearure set-has-item is
defined as public.

Set: .
set-has-item

Figure 6-17. Using Forwarding in Private Inheritance.

138

class Set : private List {
public: '
void Insert{void *);
/f public feature set-count forwards to the private count.
Int set-count (void) { return count(); };
// public feature set-has-item forwards to the private has-item.
Boolean set-has-item (void*) { retum has-item(); };

h

6.9.3 Aggregation with Forwarding

As mentioned previously, aggregation is another mechanism that can be used for
the reuse purpose. The class to be reused is declared as a type of a private feature
defined in the new class. The new class, therefore, can reuse the functionalities
provided by that reusable class through forwarding. Reconsider the List and Ser
example again. One might feel that inheriting Set from List confuses the nature
semantics between them. It just does not seem right. Figure 6-18 presents the other
approach that uses aggregation. The class List is contained in the class Ser and is
handled by the feature alist. The functionalities of List can therefore be reused by
forwarding those behavioral features, such as count and has-item, from Set to List
through the handle alisz. This forwarding is described by the client diagrams of

count and has-item, which are shown in Figure 6-19 and 6-20.

class Set {

public:
int count (void) { return alist.count(); };
Booiean has-item (void “item) { return alist.has-item(itemy); };
void insert (void *item) { if (!has-item (item)) alist.insert(item); };

private:

List alist;

Set Type Diagram

{5} alist

Set

Figure 6-18. Reuse List by Aggregation.

Set's count Cllent Diagram

List:
counl

o List's count behavior in terms
that Set::count calls List::count by
using the feature alist.

Set:
count

Figure 6-19. Forwarding the Count Behavior.

Set's has-item Client Diagram
List:
has-item . _
Set's has-itam behavior is forwarded
to List's has-item behavior in terms
that Set::has-item calls List:-has-item
by using the featire alist.
Set:
has-itermn

Figure 6-20. Forwarding the Has-item Behavior.

139

140

By using aggregation with the forwarding technique, we are able to reuse the
functionalities of List while the semantics of class Set can be preserved. Note that
reuse by aggregation indicates that no significant relationships exist between two
classes. Ser associates with Lisr purely for the purpose of reuse. Reuse by
inheritance suggests a chance for violating the encapsulation of the reused base class
(its protected features); whereas reuse by aggregation avoids this drawback in a

nature way.

6.9.4 Delegation

Another technique of reuse is delegation. Delegation is to object instances what
inheritance is to object classes. In delegation, a behavioral feature of an object can
be forwarded to another object, invoking the delegated behavior of the second
object in the context of the first one. Delegation provides mechanism for two or
more separate objects to appear as one. This is particularly helpful in simulating
multiple inheritance as the example presented in the following. With language such
as Actors and Self support delegation; in the IDEF4/C++, we use forwarding to
simulate delegation!3. Consider a class inheritance hierarchy as illustrated in Figure
6-21. Class Research-Assistant inherits both class Employee and Student so that
Employee has a behavioral feature - work and Student has a behavior feature - study.
Instead of modeling these class relationships as shown in Figure 6-21, in delegation,

we construct these classes in the hierarchy as presented in Figure 6-22.

15 Delegarion can be more precisely simulated by overloading the pointing “->* operator. See C++
language reference for more details,

N

{P} work

Employee

(P} swdy

Student

S

Research-Assistant

Figure 6-21. Multple Inheritance of Class Research-Assistant.

{P) work
{P}] work {(P) swudy (P} smdy
Empioyee Research-Assistant Student

Figure 6-22. Design Class Research-Assistant by Delegation.

141

Class Research-Assistant is no longer a derived class of Employee and Student,

instead, it is also directly derived from the base class - Person. Behaviors work of

Employee and study of Student can therefore be reused in Research-Assistant by

forwarding. This is presented in Figure 6-23(a), (b), and (c); where (a) shows the

type diagram of Research-Assistant. The class Research-Assistant defines two

142

fcaiﬁres; as-an-employee and as-a-sz;udent. Both of theée are used for forﬁv;&irding
(see the code example) and are typed as Person-Pointer. The type Person-Pointer,
which is defined in the Predefined Data Type List, denotes a pointer to the type
(class) Person.

(@) | Research-Assistant Type Diagram

as-an-employee : Person-Pointer
as-a-student : Person-Pointer

Research-Assistant

(b)
Client Diagram of Research-Assistant's Constructor

Student: Employee:
Student Employee

Research-Assistant:
Research-Assistant

Figure 6-23. Design Delegation for Class Research-Assistant.

Employee:
work

© Client Diagrams of Research-Assistant’s work and study

Student;
study

Research-Amist;mt:

Research-Assistant;
study

Figure 6-23. (continued)

143

Since instances of a derived class are also instances of its base class, we use

these two features to store an instance of Employee and an instance of Student

respectively in the Research-Assistant’s constructor. Figure 6-23(b) illustrates this;

where Research-Assistant’s constructor calls Employee’s constructor and Student’s

constructor. Therefore, the feature as-an-employee holds a pointer to an instance of

class Employee and the feature as-a-student holds a pointer to an instance of class

Student. Figure 6-23(c) illustrates the client diagrams for Research-Assistant’s work

and study. Both of these are executed by forwarding to the work in Employee and

the study in Student. The C++ code for this approach is shown as follows:

class Person {covvvveeveees 5

class Employee : public Person {
public:
void work (void);

144
b

class Student ; public Person {
public:
void study (void);

class Research-Assistant {
public: _
Research-Assistant{void) { . // as designad in Figure 6-23(b).
as-an-employee = new Employee;
as-a-student = ngw Student;
b '
void work {void} { as-an-employee->work; }; / as designed in Figure 6-23(c).
void study (void) { as-a-student->study; };
private:
Person *as-an-employee, “as-a-student; /f as designed in Figure 6-23{a).
ki

Reuse by delegation has more run-time flexibility than reuse by inheritance. As

shown in the example, we enforce delegation by using forwarding:

void work (void) { as-an-employee->work; };
void study (void) { as-a-student->study; };

An instance of Research-Assistant performs its work behavior by forwarding the
operation to the behavior work of an instance of Employee and that instance of

Employee is pointed by as-an-employee. However, unlike inheritance, delegation

145

by reuse works well in simple cases and most importantly, it can be used without

violating any abstractions.

6.9.5 Rules of Thumb for Design with Reuse

In summary, the following summarizes the rules of thumb for reuse:.

In general, behavioral features in the classes which are to be put into a class
library should be defined as virtual even though they do not have any
derived classes in the initial design. This allows the extension of the reuse
for these behaviors by inheritance and the design for the dynamic

polymorphism (Section 6.5) in the future.

A good domain analysis is crucial to the reuse intent by discovering the good
objects and more importantly, the reusable ones. Reusability often comes
from iteratively experimenting with prototypes. Patience and imagination

are the keys.

Cut the class with the right size. “Fat classes” and “skinny classes” are used
to serve different reuse intents. “Fat classes” are often reused by public
inheritance and “skinny classes” are more likely to be reused by aggregation.
Moreover, “fat classes” may be more easily reused in the similar domains,

whereas the “skinny classes” may have a broader reuse scope.

If the intent is reuse of behaviors, one must use abstract base classes.

Abstract base classes with virtual functions defined, provide an inmitive and

146

efficient mechanism for behavior reuse. Reuse of behaviors means either
adding or rewriting the interface constructed by those virtual functions on a

case-by-case basis.

If the intent is solely for reuse and no subtyping (generalization /
specialization) relationship exists between classes, use aggregation instead
of inheritance. Aggregation states the reuse intent more clearly than

inheritance in this sense.

If there does exist a subtyping relationship between classes, but the intent is
solely for reuse, use private inheritance instead of public inheritance. Public
inheritance is used for reflecting class generalization / specialization

relationship.

147

CHAPTER VI

CONCLUSION AND FUTURE EXTENSIONS

In this chapter, we summarize the research conducted for this thesis and present
conclusions drawn from the work. We conclude with a discussion of an integrated

framework that provides direction for future extensions.

7.1 Conclusion

By discovering and organizing the ontologies of IDEF4 and C++ object models
and extending related method concepts, syntax, procedure, and the practice of the
method, this research contributes to the construction of a complete implementation
design method. The proposed IDEF4/C++ with the addressed techniques is
intended to provide an efficient and comprehensive implementation design method
for the development of object-oriented software systems in C++.

Three ontological models identified the semantics and terminology of (1)
general object model; (2) IDEF4; and (3) C++. These ontologies together specified
the boundary of the research domain and defined the primitive concepts and
terminology for conducting the research work.

Method concepts were introduced in the discussion of classes, features, and
methods, which are identified as the primitive constructs for laying out an
IDEF4/C++ design. The notion of classes was introduced through the comparison
with the notions of types and objects. The self-referential definition of classes and
objects was also clarified. Features - the design constructs used for capturing the
characteristics of instances of classes, were introduced in terms of the discussions of

feature inheritance, feature presence, feature type, and feature taxonomy. This in

148

Mtum supported the ‘]I‘)BF4 “least vc‘(;;n'mitmelnt” philosbphy. Addiﬁor;ﬁily, the
concepts of method sets, contracts, and methods were also introduced.

We extended IDEF4 notations and developed more specific method syntax for
IDEF4/C++. A transformation heuristic from IDEF4 to IDEF4/C+ is given, which
summarizes the design foci for the transformation. The activities involved in the
IDEF4/C++ design procedure are also discussed. In general, each activity employs
the processes of partitioning, classifying / specifying, merging / eliminating, and
rearranging design artifacts. Moreover, the design steps in each activity are also
specified and outlined for conducting an IDEF4/C++ design. We proposed a
dynamic model of the configuration management in IDEF4/C++. The development
process described in the model starts at an initial design, iterating through the design
and implementation processes until the final design and program are released.

We also provided a set of techniques which target the reuse intent in
IDEF4/C++. Reusability can be gained through public inheritance (abstract base
classes), private inheritance with forwarding, aggregation with forwarding, and
delegation. However, if no subtyping relationship between two classes exists, reuse
by aggregation is recommended since it states the reuse intent more clear than
inheritance.

Without increasing the complexity of the IDEF4 method, IDEF4/C++ takes
advantage of C++ language features and best practice experience to bridge the gap
between the concéptual design phase and the implementation phase in a software

development project.

7.2 Future Extensions

149

Figure 7-1 in the following page illustrates an integrated framework for object-

oriented software system development which provides research directions of the

future extensions. The following section discusses thoughts that fabricated this

framework and the future extensions that can be derived from the framnework:

5

{ environment

 Diagramming support

gram
Code environment
....... de e)_........_..__________..

Retrieve objects &
reuse by inheritance

Solution Model /
the deslign

varification
""" Configuration
: - Management / Version
Object-oriented Control Mechanism
Programming Tools

Pro i Programming support

1 Reuse Class / Method Library |
Problem Domain: i :
I
.]
Retrieve objects & objects / classes |
reuse by eggregation for reuse by I
i 9 aggregation :
Contribute domain Generaliz4 / conlribute
dependent objects domain inflependent
for future reuse objects
|
: objects f classes
I for reuse by
1 inheritance
1
1 — 2

Figure 7-1. An Integrated Framework of Object-oriented System Development.

150

'+ The concept of Computer Aided Software Engincering (CASE) has occasionally
been associated with two different development cultures: Environments culture
(programming support environment) and Diagramming Tools culture
(Schefstrtbm 93). The former culture, also called "Back-End CASE",
emphasizes the later stages in the software life cycle (implementation, test &
verification). Whereas the later culture, such as IDEF4 and IDEF4/C++, has
more of an industrial and administrative flavor and emphasizes the earlier
software development stages (analysis, design, and implementation). This, of -
cc:mrsc, is based on the philosophy that a good design makes the coding trivial.
However, evidence has shown that the difference between these two cultures
decreases as both cultures are gradually integrated (Schefstrom 93). The CASE
tools have widened their scope, often by attempting integration with code
generation or programming support toolsets (i.e., reusable class libraries). We

follow this understanding, and construct the integrated framework.

+ An object model (IDEF4 or IDEF4/C++) only provides a static object structure
viewpoint towards the solution design. However, to accomplish a complete
design of the solution model, other perspectives, such as the system’s dynamic
behavior (IDEF3) and functional decomposition / architecture (IDEF®), also
have to be provided. One of the future research directions, therefore, is to
provide a platform for the integration of these IDEF methods. The platform
should provide an automate transforming mechanism between the artifacts

specified in each perspective (model).

= The primitive software constructs for an object-oriented system are classes and
methods. These constructs are the nature reuse modules. Generally, methods

are reused in terms of incorporating their defining classes into the design. An

151

efficient class hbrary manageméﬁf system is therefore crucial. Such a system is
more than a class browser. The ability for controlling changes and the support
for the evolution of reusable constructs should be provided. A dynamic model,
which includes the reuse concerns into the development process, should be
developed for constructing such a system.

As shown in Figure 7-1, a complete configuration management system is more
thﬁn a source code version control device in the integrated framework. The
control levels should be multiple and flexible. The configuration item (as
defined in Section 5.4) can be the system, its subsystems, components, a class,

or even a methaod.

To integrate two different CASE cultures, one effort is to construct an efficient
and seamless transforrﬁing mechanism between the method support environment
and those programming support toolsets. The mechanism extends the method
culture and is especially beneficial to an implementation design method (such as
IDEF4/C++) to attain code generation ability. Language supports should be
developed as modules in the mechanism to gain extensibility and malleability

for the integrated framework.

152

REFERENCES

Atkins, M.C., and Brown, A.W., 1991, Principles of Object-oriented Systems, In
McDermid, J.A., editor, Software Engineer’s Reference Book (Oxford,
England: Butterworth-Heinemann Ltd), Chapter 39.

Boehm, B.W., 1976, Software Engineering. IEEE Transactions on Computers, C-
25, 1226-1241.

Boehm, B.W., 1988, A Spiral Model of Software Development and Enhancement.
IEEE Computer, 21, 61-72,

Booch, G., 1991, Object Oriented Design with Applications (Redwood City, CA:
The Benjamin/Cummings Publishing Company, Inc.).

Coad, P., and Yourdon E., 1991, Object-Oriented Design (Englewood Cliffs, NJ:
Yourdon Press).

Coplien, J.0., 1992, Advanced C++ Programming Styles and Idioms (Reading MA:
Addison-Wesley Publishing Co.).

DeMichiel, L.G., 1993, CLOS and C++: A Compariscon, In Paepcke, A., editor,
Object-Oriented Programming: The CLOS Perspective (Cambridge, MA:
The MIT Press), pp. 157-180.,

Henderson-Sellers, B., and Edwards, J.M., 1990, The Object-oriented Systems Life
Cycle. Communications of the ACM, 33, 142-159.

Kim, W., Bertino, E., and Garza, J.F., 1988, MCC Technical Report: Composite
Objects Revisited (Austin, TX: Microelectronics and Computer Technology
Co.), ACA-ST-387-88, pp. 15-19.

Korson, T., and McGregor, J.D., 1990, Understanding Object-Oriented: A Unifying
Paradigm. Communications of the ACM, 33, 40-60.

Lippman, S.B., 1991, C++ Primer (Reading, MA: Addison-Wesley Publishing
Co.).

153

Mayer, R.J., and Edwards D.D., 1990, IDEF4 Technical Report (College Station,
TX: Knowledge Based Systems Laboratory).

Mayer, R.J., Keen, A., and Wells, M.S., 1992a, IDEF4 Object Oriented Design
Method Report (Dayton, OH: Integrated Information Systems Evolution
. Environment Project, United States Air Force AL/HRGA, Wright-Patterson

Air Force Base), AL-TR-1992-0056. '

Mayer, R.J., Menzel, C.P., and Mayer, P.S.D., 1992b, IDEF3 Process Description
Capture Method Report (Dayton, OH: Integrated Information Systems
Evolution Environment Project, United States Air Force AL/HRGA, Wright-
Patterson Air Force Base), AL-TR-1992-0057.

Mayer, R.J., Benjamin, P.C., Fillion, F., Fumrell, M.F., and chitfc, P.S., 1992¢,
IDEF5 Method Report (Draft) (Dayton, OH: Integrated Information Systems
Evolution Environment Project, United States Air Force AL/HRGA, Wright-
Patterson Air Force Base).

Menzel, C.P., and Mayer, R.J., 1991, IDEF5 Concept Report, Final Technical
Report (Dayton, OH: Integrated Information Systems Evolution
Environment Project, United States Air Force AL/HRGA, Wright-Patterson
Air Force Base).

Meyer, B., 1987, Reusability: The Case for Object-Oriented Design. JEEE Sofiware,
March, 50-64.

Meyer, B., 1988, Object-Oriented Software Construction (Englewood Cliffs, NJ:
Prentice Hall).

Nelson, M.L., 1990, An Object-oriented Tower of Babel (Monterey, CA: Naval
Postgraduate School), Technical Report.

Object Management Group, 1991, The Common Object Request Broker:
Architecture and Specification. OMG Document Number 91.12.1 Revision
1.1.

154

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., 1991,
Object-oriented Modeling and Design (Englewood Cliffs, NJ: Prentice
Hall).

Schefstrtom, D., and van den Broek, G., Editor, 1993, Tool Integration:
Environments and Frameworks (Chichester, England: John Wiley & Sons

Lid.).

Snyder, A., 1986, Encapsulation and Inheritance in Object-Oriented Programming
Languages. OOPSLA ‘86 Proceedings, September, pp. 38-45.

Snyder, A., 1990, An Abstract Model for Objec-Oriented Systems (Palo Alto, CA:
Software Technology Laboratory, Hewlett-Packard Laboratories), Report
STL-90-22.

Snyder, A., 1993, The Essence of Objects: Concepts and Terms, /EEE Software, 10,
31-42.

Stroustrup, B., 1990, The Annotated C++ Reference Manual (Reading, MA:
Addison-Wesley Publishing Co.).

Wirfs-Brock, R.J., and Johnson R.E., 1990, Survey on Current Object-oriented
Design. Communications of the ACM, 33, 104-124.

APPENDIX A

[Project: Analyst: Reviewer: Document
Ontology Howard Term Glossary Number:
of Object-
oriented
technology
Version: 2 Date: Date

6/30/93
Term # ~ Term Glossary

hstract class

y
purpose of mhentancc or for defining
methods and attributes that will be
inherited by lower-level classes.

Abstraction

The process of only focusing on the
essential characteristics of an object that
distinguish it from other objects in a
specified domain.

Actor object

An object that can send message to other
objects. It is a synonym of “sender
object”.

Agent object

An agent object sends messages to other -
objects and receives messages from other
objects as well.

Association

Association 1s a relationship berween two
or more classes describing the semantics
hold by them.

Attribute

An atiribute 1s a data variable held by the
objects in a class. Each attribute has a
value for each object instance. In IDEF4,
the term “attribute” has different
meaning. An attribute is a value-
returning feature, and it can be further
categorized into a slot or a function.

Base class

In C4++, a "base class' refers to a
superclass.

Behavior

Object behavior specifies how an object
acts and reacts, and how the state
changes in terms of message-passing.

Class

A template for defining methods and
attributes for a particular type of objects.
All objects of a given class are identical
in data structure and behavior but contain
different values for their attributes.

Class hierarchy

A tree structure representing the
inheritance relationship among a set of
classes.

155

Term #

Term

Glossary

operaton can be operated on and by
the class itself. Methods like
constructors can only be applied by and
on the class since the objects being
operated on haven’t been created yet.
Examples such as a query for the
summary information of the class (how
many instances in this class?), or a
browsing function for a list of attributes
and methods of a class.

Class variable

A class variable 1s an attribute especially
used to describe the class structure. Itis
shared by all the instances of the class. It
is implemented in C++ in terms of “static
member” declaration.

Composite ohject

An object that contains one or more other
objects, typically by storing references to
the objects as the return values of its
features.

Constructor

A constructor is a method that creates
instances (objects) of the class and/or
initializes their states (by giving
attributes values). Constructors use the
class name as the function name. In
C++, constructors can be overloaded.

Data member

The implementation of the attributes
defined in a C++ class definition.

Derived class

In C++, a "denived class” refers to a
subclass.

Destructor

A destructor is a method that deletes
objects and free the memory they use.
Destructors can be overloaded in C++.
Destructors use the class name as the
function name.

Dynamic
polymorphism

The invocation of a method 1s not
determined undl the run time. Example
such as C++ function overriding.

Encapsulation

A mechanism in which data (attributes)
is packaged together with its
corresponding procedures (methods). In
object-oriented technology, the
mechanism for encapsulation 1s the
object.

Feature

In IDEF4, the term feature is a generc
term represents either an attribute or a

method.

156

Term #

Term

Glossary

Friend Function or cﬁs that 1’s dscm as

friend to a class can access private
definition of the class. This mechanism
is defined in C++ 10 give a flexibility on
sometimes over-restricted information-
hiding rules.

Genenc Function

The term "generic function’ is a
synonym used in CLOS to refer to
“message”. In CLOS, user can define a
“message” (a generic function) by using
the function “detgeneric”. Note that the
methods that can be invoked by a generic
function use the same name as the

eneric function.

Information hiding

¢ technique of making the internal
details of a module inaccessible to other
modules, protecting the module from
outside interference, and preventing other
modules from relying on details that
might change over time.

Inhentance

A mechanism whereby classes can make
use of the methods and attributes defined
in all classes which are their ancestors in
the structure of the class hierarchy.
Inheritance refers to the mechanism of
sharing attributes and methods vsing the
generalization relationship. In C++,
"inheritance” is also referred to as
"derivation”.

Instance

A term used to refer to an object that
belongs to a particular class.

Instantiaton

Instantiation 1s the process that creates
instances from a class (metaclass as
well).

Iterator

An operation that controls iteration over
a range of values or a collection of
objects. For example, sort operation of a
queue.

Link

A link is an instance of an association. It
is a "physical or conceptual connection
between objects” (Rumbaugh).

Member function

The implementation of a method defined
in a class is referred to as a member
function in C++.

157

Glossary

requests the receiving object to carry out
one of its methods. A message consists
of three parts: the name of the receiver
object, the method it is to carry out, and

the parameters the method ma uire.
Metaclass 1s a class for assmg{ﬁrg Ifﬁe '
structure and behavior of other classes.
Its instances are themselves classes.

Instances of metaclasses are themselves
classes, but they can also be considered
as objects. These classes are called
metaobjects. Metaobjects contain class
attributes and class operations (methods)
that can help to manipulate and query the
structure and behavior of the class that is

A procedure attached to an object that 1s
made available to other objects for the
purpose of requesting services of the
owner object. Most communication
between objects takes place through

A scheme for structuring inheritance
relationship among classes where each

The invocation of a method 1s based on
more than one parameters. Examples
such as C++ function overloading or

A software packet containing a collection
of related attributes (variables) and
methods (functions / procedures). The

instances and other times to classes. The
term object refers to a specific instance

An operation simply refers to a request
(message) that may be applied to or by
objects in a class. Itis a synonym of

Term # Term
Message A saﬁﬁ from one oEJect t another that
Metaclass
Metaobject
intended to describe.
Method
invoking methods.
Mulaple inhentance
class can have any number of
superclasses.
Multpie polymorphism
CLOS multi-methods.
Object
term is used inconsistently in the
literature, sometimes referring to
of a class and possesses the
characteristics of that class.
Operation
“message’”’.

158

Merm # _

Term

Glossary

momg The assignment of mﬁuple meanings to

the same method, allowing a single
message to invoke different methods
depending on the number and types of
parameters aocompanying it.

Overriding

A special case of overl g in which
the same name is given to a method or
variable at two or more levels on the
same branch of a class hierarchy. The
name of the method which is the lowest
in the hierarchy takes precedence,
overriding the more general definitions
(methods) further up in he hierarchy.

Parameterized class

Parameterized class provides a template
for creating other classes. Similar classes
(array of integer, array of string) can be
created from same template by filling in
different values for the parameters that
the template carries. The term “generic
class” is a synonym of "parameterized
class”.

Polymorphism

The mechanism to hide different
implementations behind a common
interface, simplifying the
communications among objects.
Polymorphism means that the same
operation may behave differently on
different classes (objects).

Private

A declaration specifies that the declared
features are accessed only by their owner
class. Note that IDEFA4 has a different
scope for general "private” definition. In
IDEF4, private features can be accessed
by their owner class and also all the
derived classes.

Private derivation

In a private derivation, the inherited
nonprivate features of the base class
become private features of the derived
class. ’

Property Propernes of an object is a synonym of
“attributes”. Both are defined for

_ associating values.

Protected A declaration that lets the declared

features can be accessed only by their
owner class and the direct subclasses.
(C++)

159

Term #

Term

Protec vation

Glossary

A protected denivation lets the inhen
nonprivate features from the base class
become protected features of the derived
class. (C++)

Public

A declaration specifies that the declared
features are accessed by every class in

the program.

Public derivation

In a public derivation, the inherited
nonprivate features of the base class
become public features of the derived
class.

Return value

An object or a data type that a receiver
object passes to a sender object to
respond to that message.

Routine

In IDEF4, “routine” 1s used torefer to a
feature which is computational-initiating.
The term "routine” is a synonym of
“method”, which is used to implement
object behavior. In the late design phase,
a routine can be further specified as a
function or a procedure.

Single inheritance

A scheme for structuring inheritance
relationship among classes so that each
class has only one superclass. Single
inheritance assures that all class
hierarchies will conform to a simple tree
structure.

Single polymorphism

The invocation of a method is based only
on the name of the receiver object.
Example such as C++ function
overriding.

Static polymorphism

The invocation of a method 1s
determined at compile-time. Example
such as C++ funcuon overloading.

Virtual function

In C++, only the class member functions
can be declared as virtual. Virtual
functions, which are bound dynamically
at run-time, provide a way of hiding
(encapsulating) the implementation
details of a class inheritance hierarchy
from programs that make use of the class
hierarchy. Note that, only the member
functions that are declared as virtual can
be overridden by subclass.

160

161

LI-TSUNG HSIEH received a B.S. degree in Industrial Engineering from
Tunghai University, Taichung, Taiwan in 1988. He was a consulting assistant for
projects entrusted by the Ministry of Economic Affairs in Taiwan from 1987 to
1988. He served in the Army from 1988 to 1990. From 1990 to 1991, he worked as
a full-time teaching assistant with the Computer Center of the College of
Management at Tunghai University. He is currently a research assistant in the
Knowledge Based Systems Laboratory of the Industrial Engineering Department at
Texas A&M University. His research interests include cbject-oriented system
development, modeling methodology, and expert system applications. His

permanent address is 4F NO 3 LN 3, Hsintung Street, Taipei, Taiwan.

