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UIT-ADrone: A Novel Drone Dataset for Traffic
Anomaly Detection

Tung Minh Tran , Tu N. Vu , Tam V. Nguyen , Senior Member, IEEE, and Khang Nguyen

Abstract—Anomaly detection plays an increasingly important
role in video surveillance and is one of the issues that have attracted
various communities, such as computer vision, machine learn-
ing, and data mining in recent years. Moreover, drones equipped
with cameras have quickly been deployed to a wide range of
applications, starting from border security applications to street
monitoring systems. However, there is a notable lack of adequate
drone-based datasets available to detect unusual events in the
urban traffic environment, especially in roundabouts, due to the
density of interaction between road users and vehicles. To pro-
mote the development of anomalous event detection with drones in
the complex traffic environment, we construct a novel large-scale
drone dataset to detect anomalies involving realistic roundabouts
in Vietnam, covering a large variety of anomalous events. Traffic
at a total of three different roundabouts in Ho Chi Minh City
was recorded with a camera-equipped drone. The resulting dataset
contains 51 videos with total data traffic of nearly 6.5 h, captured
across 206K frames with ten abnormal event types. Based on this
dataset, we comprehensively evaluate the current state-of-the-art
algorithms and what anomaly detection can do in drone-based
video surveillance. This study presents a detailed description of the
proposed UIT-ADrone dataset, along with information regarding
data distribution, protocols for evaluation, baseline experimental
results on our dataset, and other benchmark datasets, discussions,
and paves the way for future work.

Index Terms—Benchmark, convolutional neural networks
(CNNs), drone-based surveillance, object detection, traffic anomaly
detection.

I. INTRODUCTION

UNUSUAL event detection is an active research topic in the
fields of image processing and computer vision, which

has attracted considerable attention from both academia and
industry due to its many applications in real life. It is noteworthy
that the detection of abnormal events, such as traffic collisions,
violations, traffic accidents, fights, and crimes, has been one
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of the most crucial research topics of smart city transportation
management systems in recent years.

An anomaly/outlier can be identified as activities or events
that differ from what is expected, common, or normal [1], [2].
It means that it deviates significantly or has a low probability
of occurring from some concept of normal, such as animals
running into the roadway, truck accidents, stalled vehicles in
transportation systems, defective products in the manufacturing
industry, and the presence of a tumor in medicine. Thus, there
is no fixed definition of anomalous actions or events in all the
domains because the abnormality definition changes according
to various application contexts, i.e., time, place, and scenarios.
For instance, a person running at a park is usually a normal
behavior but an abnormal event in other locations, such as a mall.
Likewise, vehicles stopped near traffic lights are normal events
when the traffic signal is red; however, they may be considered
anomalous if the traffic light is green.

In recent years, unusual event detection has been a cru-
cial component of the intelligent city transportation manage-
ment system, primarily focusing on solving minority, unpre-
dictable/uncertain, and rare events. It should be noted that de-
tecting traffic anomalies involves multiple kinds of violations
of regulations, such as driving in the wrong direction, illegal
parking, car/motorcycle accidents, cyclist running on a pedes-
trian sidewalk, walking, fighting, robbing, and acts of vandalism.
This is still a challenging problem due to the complex traffic
environment, lightning conditions, dynamic weather conditions,
lack of high-quality data, and the complexity of the traffic scene.
Owing to recent considerable technological advancements, there
is rapid growth in video surveillance networks that provide
safety and security in public and private places, such as airports,
streets, subway stations, hospitals, colleges, shopping malls,
banks, companies, government buildings, and private homes.
Moreover, drones are increasingly employed in various domains
related to agriculture, the construction industry, border security,
traffic monitoring system, and disaster area investigation.

When it comes to traffic surveillance systems, developing
a the large dataset has become a challenge because abnormal
objects are usually small interobject occlusions, and their vi-
sual features are not easily distinguishable, especially anomaly
datasets from drone-based video surveillance to enhance public
safety under real-world conditions. The main reason is that
anomalous events occur infrequently and rarely due to the
dependence on the changing visual context and the difficulty, un-
expected cost, and laboriousness of sample collection in real-life
situations. As a result, real-world anomaly datasets are severely

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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imbalanced since the number of anomalies is much smaller
than that of normal data. This problem leads to insufficiently
labeled anomalous data, including suspicious human activities
via training.

Motivated by the aforementioned challenges and the increas-
ing demand for public safety and security, we particularly in-
troduce a novel benchmark dataset captured by an aerial drone
focusing on anomaly detection that is relevant to road traffic
situations. Moreover, a comparative study with the existing
state-of-the-art methods is also conducted in order to provide
a challenging benchmark for real-time object detection and
anomaly detection in aerial videos. Furthermore, to overcome
the shortage of labeled anomaly data and to design a method that
can extract meaningful features to effectively represent informa-
tion from surveillance videos in a reasonable time frame, we pro-
pose a combination of deep transfer learning with unsupervised
fine-tuning for anomaly detection from drone-based surveillance
sequences. Transfer learning is based on a model trained with
large-scale datasets from action recognition; that is, the convo-
lutional neural networks (CNNs) trained on a particular dataset
may be fine-tuned for a new dataset even if the scope is different
without the need for relearning or providing new datasets. For
example, a model that learned to identify trucks in a video stream
can detect unseen cars without relearning the process.

The rest of this article is organized as follows. We first deliver
related work on anomaly detection and review previous anomaly
datasets captured by an aerial drone in Section II. We then
detail the novel outlier detection relationships of our dataset in
Section III. After that, experimental settings and several analyt-
ical experiments, including quality comparisons, are reported in
Section IV. We then discuss the quantitative results and address
the challenges associated with drone-view images in Section V.
Finally, Section VI concludes this article.

II. RELATED WORK

Detecting anomalous traffic events is a challenging problem in
computer vision as it involves object detection, object tracking,
and motion detection. To address the problem where anomalies
only occupy a small amount of collected data, contrasting to
normal data patterns that account for an overwhelming propor-
tion of the data in various real-world applications, we review
some methodologies that are closely related to deep learning
drone-based video surveillance as well as existing drone-based
datasets for object detection and anomaly detection tasks.

A. Methodologies for Anomaly Detection in Traffic
Surveillance Videos

Concerning anomaly analysis in the traffic monitoring system,
the main approach to anomaly problems using deep models con-
sists of unsupervised and weakly supervised learning methods
due to the limitations in the availability of annotated anomalous
instances. Note that unsupervised learning techniques are used
to detect abnormal events in surveillance videos, in which only
normal data are available in the training step because anoma-
lous events are diverse and difficult to capture. As a result,
the number of anomalous samples collected for these methods

needs to be increased compared with the normal objects. On the
contrary, weakly supervised video anomaly detection methods
that concentrate on training with numerous normal samples and
a small number of category labels of unusual data patterns
significantly improve learning accuracy compared to full un-
supervised approaches. In particular, a comprehensive review
of [3] focused solely on traffic anomalies. This survey presented
different types of modern deep learning techniques applied in
video clips to understand traffic violations and abnormalities
in road traffic scenarios involving vehicles, pedestrians, and
their interactions with the environment. Furthermore, this study
reviewed computer-vision-based methods, frameworks, their
applicability, implementation details, and limitations, discussed
challenges, compared various benchmark datasets, identified
gaps, and suggested future research directions. Next, in [4],
U-Net used a generator to predict the next frame to detect
anomalies in surveillance videos. After that, an optical flow
constraint was proposed for the objective function constraining
in terms of appearance and motion to ensure motion consistency
for regular events in the training set to boost anomaly detection
performance.

Moreover, it also used adversarial training to discriminate
whether the prediction was actual or fake. In another one,
Chang et al. [5] proposed a framework that dissociated spa-
tial information and motion information using a two-stream
architecture for video anomaly detection. In addition, the model
utilized both reconstruction and prediction as auxiliary tasks for
spatial and motion streams. This framework contained three key
components. First, the first frame of the input video clips was
fed into the spatial autoencoder network to detect anomalous
objects with spatial features (e.g., scene and appearance). The
given individual frame was encoded to a mid-level appearance
representation by using the spatial encoder. Second, a motion
autoencoder generated an RGB difference by inputting consec-
utive video frames, which could learn the temporal regularity.
Moreover, its captured feature representation contained essential
motion information. Third, variance-based attention in temporal
autoencoder automatically assigned the importance weight to the
moving part of video clips.

Concerning anomaly detection in aerial traffic surveillance,
not much work has been done previously on unusual event
detection for drone-based surveillance sequences. To be more
detailed, a hybrid approach of [11] proposed to integrate
space-time trajectories and semantic information of objects to
build high-level knowledge for extracting complicated critical
activities and events from drone-based video surveillance. In
another work, Yang et al. [12] first classified safety-related
abnormalities into three groups: 1) vehicles commit dangerous
or illegal lane-changing behaviors; 2) vehicles slow down or stop
unexpectedly or abruptly; and 3) vehicles blocked by vehicles
in the crossing directions. Then, a functional approach was
proposed to model temporal relations of time-to-collision safety
indicators to detect safety-related anomalies from drone video
surveillance. Next, an approach was made in [13] and proposed
an architecture based on deep learning for contextual anomaly
detection called CADNet. This method worked based on a
variational autoencoder with a context subnetwork by exploiting
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contextual information related to the environment from aerial
video surveillance to find point anomalies and contextual
anomalies. Then, Hamdi [18] proposed an unsupervised learning
method based on deep end-to-end architecture for the detection
of anomalies from drone-based surveillance. This method used
only normal samples for the training phase, and the optical
flow representations of abnormal samples were generated from
consecutive original images in the testing phase. Most recently,
Jin et al. [14] have introduced a method of anomaly detection
in aerial videos using transformers by an encoder–decoder
architecture called anomaly detection with transformer (ANDT).
This framework aimed to treat adjacent frames as a sequence of
triplets and then implemented a Transformer encoder to learn
a spatiotemporal feature from the video sequence. Afterward, a
decoder was applied to combine with the encoder to predict the
next frame. Furthermore, ANDT focused solely on normal data
in the training phase and identified an unknown or unpredictable
event as an anomaly in the test phase.

B. Object Detection Models

We conduct a review of the literature related to real-time
object detectors. As we can observe, real-time object detection
plays an essential role in the field of computer vision to detect
people, cars, bicycles, boats, and other objects in various con-
texts, such as traffic surveillance, robotics, and medical image
analysis. In recent years, the top deep-learning-based object de-
tection frameworks have been divided into two main categories,
including one-stage architectures (e.g., YOLO [6], YOLOF [21],
YOLOR [22], YOLOX [23], and YOLOv7 [25]) and two-stage
architectures (e.g., Faster R-CNN [7]).

With regard to the one-stage-based methods, the YOLO [6]
series is a representative one-stage network to enhance high
accuracy and real-time speed. After that, this method continued
to inspire further researches by making subsequent versions,
and the detection performance improved steadily. Notably, the
YOLO series has attracted considerable attention in the field of
computer vision and various researchers in recent years. In par-
ticular, the architecture of YOLOF [21] consists of three main
components: backbone, encoder, and decoder. YOLOF extracts
only feature C5 level features from the backbone, without using
extra features at other levels. Moreover, YOLOF replaces the
RPN with a dilated encoder instead of using the feature pyramid
network to extract features. In this architecture, the dilated
encoder is designed to enlarge the receptive field. Furthermore,
YOLOF addresses the imbalance problem in single-in-single-
out encoders by applying a Uniform Matching strategy, which
assigns each ground-truth box to the k nearest anchor points and
k prediction boxes that are closest to it. This ensures that positive
anchors are selected based on their proximity to the ground-truth
boxes. In addition, uniform matching ensures that all the ground-
truth boxes can be matched to the same number of positive an-
chors uniformly, regardless of their sizes. Next, YOLOR [22] is
a useful unified model for multitasking purposes, especially real-
time object detection. This network encoded implicit knowledge
and explicit knowledge together and enabled the learned model
to generate a unified representation to serve multiple tasks.

Moreover, the kernel space in this framework was applied, which
could be translated, rotated, and scaled to align each output
kernel space of neural networks, prediction refinement, and mul-
titask learning into the implicit knowledge learning process, and
verified their effectiveness. Then, YOLOX [23] adopts the archi-
tecture of YOLOv3 [24] with DarkNet53 backbone by replacing
the YOLO detect head with decoupled one to improve the con-
vergence speed greatly. Moreover, the anchor-free and advanced
labels were also assigned to this framework to improve object
detector performance. In another one, TPH-YOLOv5 [30],
another variant of YOLOv5 [26], aims to detect multiscale ob-
jects by incorporating an additional prediction head. The model
leverages transformer prediction heads and the convolutional
block attention model to locate attention regions in dense object
scenarios. Furthermore, various strategies, such as data augmen-
tation, multiscale testing, multimodel integration, and leverag-
ing extra classifiers, are employed in this framework to enhance
the model’s performance. Recently, YOLOv7 [25] has been the
trainable bag-of-freebies method to enhance the accuracy of
real-time object detection. This method modified a more efficient
ELAN module based on the YOLOv5 [26] algorithm and pro-
posed a framework for auxiliary head training to enhance feature
extraction, which improved accuracy and high performance.

Regarding the two-stage-based methods, Faster R-CNN [7]
is a CNN-based method improved from the R-CNN architecture.
The significant contribution of this model is the inference time
at an approximate real-time speed. Faster R-CNN uses a pre-
trained CNN model to generate a feature map and bypasses the
traditional region proposal algorithm of selective search. This
feature map is then fed to the region proposal network (RPN) to
identify the area recommendations and create predefined boxes
called anchor boxes. The RPN is an alternative recommendation
network to the selective search method. The anchor boxes are
further classified and regressed. In addition, the nonmaximum
suppression algorithm selects the overlapping anchors to ensure
that the proposals do not contain overlapping boxes.

Concerning extensive experiments for object detection tasks,
Nguyen et al. [32] investigated the impact of different deep
learning object detection methods, including Faster R-CNN [7],
RFCN [33], SNIPER [34], SSD [35], YOLOv3 [24], Reti-
naNet [36], and CenterNet [37] for object detection tasks in aerial
images from drones. It has been demonstrated that the YOLO
method is both feasible and effective based on experimental
results, and the YOLO series is considered the optimal choice for
real-time object detection applications. Next, Nguyen et al. [38]
proposed an efficient approach (YALA) for learning to de-
tect unseen (missing) objects. In this framework, a dual level
of deep networks was designed to efficiently detect difficult
objects in images by adopting Faster R-CNN [7] to train in
the detection model and then training another Faster R-CNN
model to tackle the unseen and challenging objects. Moreover,
this pipeline leverages deep-learning-based multiscale detection
for better performance. Further improvement of YALA was
proposed in the study [39], named YADA, to improve object
detection performance in images. This framework consisted of
two stages: 1) data preparation during pretraining and 2) data
residual posttraining. More specifically, lucid data synthesizing
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TABLE I
COMPARISON OF PUBLICLY AVAILABLE DRONE-BASED DATASETS FOR ANOMALY DETECTION

was applied in the data preparation to generate data by exploiting
hard examples and embedding them in the same contextual lo-
cations. Furthermore, a dual-level deep network leveraged with
these generated data was used by modifying Faster R-CNN [7]
to train in a detection model. After that, another Faster R-CNN
model was trained to detect hard objects in images.

C. Related Benchmark Drone-Based Datasets

This section introduces the public benchmark anomaly
datasets developed by researchers in drone-based video surveil-
lance, dealing with the complex traffic environment, as seen
in Table I. Some of the mentioned datasets from aerial im-
ages focusing primarily on road traffic surveillance have been
studied and published in recent years [15], [16]. However, in
anomaly event detection, there are some drone datasets that
exist [14], [17], [18], [19], [20]. To better understand different
drone datasets, we briefly summarize them as well as are publicly
available for research and useful for the comparison of different
methods as follows.

1) Drone-Based Datasets for Vehicle Detection: The Vis-
Drone dataset [29] consists of 10 209 images taken from drones
in various locations at different heights for object detection
task. There are ten predefined categories of interest, including
pedestrian, people, bicycle, car, van, truck, tricycle, awning
tricycle, bus, and motor. Moreover, some rare special vehicles
are classified as “ignored regions” and “others,” but they are
not used in the evaluation. Out of 10 209 images, 6471 images
are divided into training, 548 for validation, 1610 images for
test-dev set, and 1580 images for testing. Furthermore, more
than 540K bounding boxes of targets are annotated with ten
predefined classes.

The MONET dataset [31] contains 53K images with 162K
annotated bounding boxes captured with drones both day and
night in a rural area near the city of Nicosia, Cyprus. Further-
more, there are three types of targets: vehicle, person, and ignore.
Moreover, the dataset has many annotations that can also be used
for multiple object-tracking problems.

The UAVDT dataset [9] contains 100 videos with a total
duration of more than 10 h using drone cameras for object
detection, single object tracking, and multiple object-tracking
problems. The video sequences were recorded at 30 frames/s,

with 1080× 540 pixel resolution. Moreover, it was recorded
at various locations in urban areas, including squares, arterial
streets, toll stations, highways, crossings, and T-junctions. In
addition, the videos cover different lighting conditions due to
the time of the day and the weather conditions. In addition,
approximately 80 000 frames in this dataset are labeled for more
than 2700 vehicles with 0.84 million bounding boxes.

The Stanford Drone dataset [15] comprises about 10 000
trajectories with 929 499 samples in total. It was recorded from
a drone’s perspective with a length of 9 h at eight unique
locations on the Stanford Campus. This dataset analyzes human
trajectories in crowded scenes, such as pedestrians, bicycles,
cars, skateboards, carts, and buses. Moreover, it has a high
percentage rate of labeled pedestrians and cyclists, and their
trajectory in time and space is also identified. At the same time,
only approximately 7% of the labeled targets are cars.

The DroneSURF dataset [16] consists of 200 videos of 58
subjects captured with a drone camera for the problem of face
recognition. The dataset includes a total of 411 451 samples. In
addition, video footage has some challenges, such as motion,
variations in pose, illumination change, background, altitude,
and resolution. In addition, more than 786 000 face annotations
are also provided for performance evaluation.

2) Drone-Based Datasets for Anomaly Detection: The Mini-
Drone dataset [17] consists of 38 videos recorded with a Phan-
tom 2 drone flying at low altitude in a parking lot for privacy
protection. These videos are high resolution, with a duration
ranging from 16 to 24 s each. The videos in this dataset are
divided into three situation categories: normal, suspicious, and
abnormal. Noticeably, these types are almost all identified by
the actions of the persons involved in videos. More specifically,
the normal actions in these videos relate to several events, such
as people walking, getting in their cars, or parking correctly.
The unusual activities include people fighting, a person falling
down, and stealing. The suspicious cases represent situations
where people behave suspiciously, which could distract the
surveillance staff. For example, a person loitering in a parking
lot can be considered as looking for a car/motorcycle to steal.
Furthermore, the dataset comprises 15 training video sequences
(9497 frames) and 23 testing video sequences (13 798 frames).
The dataset is challenging because of changes in illumination,
environmental variations, and different altitudes between videos.
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In addition, the ground-truth annotations are provided for each
video in the form of bounding boxes for each person and vehicle
in each frame, which helps evaluate the performance.

The UTT Drone dataset [18] was captured with Mavic Air 2
from the DJI series with a total of 14 021 video frames (8933 for
training and 5088 for testing). It contains seven folders for the
training and 12 folders for the test. Particularly, the train folders
contain only normal events, such as people walking on the lawn,
whereas the test folders consist of both the normal and abnormal
events. Unusual activities include running, fighting, and falling.
However, the number of videos and the full video duration were
not mentioned in detail in the original article.

The Brutal Running dataset [19] consists of 1000 samples in
total captured with a Phantom 4 pro drone. There are 340 training
samples and 660 samples for testing. The normal event consists
of a girl walking outside, whereas the anomalous event occurs
while running. Nevertheless, the number of videos, situations,
and video length were not specifically mentioned in the original
article.

The AU-AIR-Anomaly dataset [20] contains eight aerial
videos of more than 2 h for traffic surveillance. Moreover, these
videos were primarily captured at Skejby Nordlandsvej and P.O.
Pedersens Vej roads (Aarhus, Denmark). Noticeably, this dataset
was originally created for object detection tasks. Based on the
dataset, Bozcan and Kayacan [13] annotated various abnormal
events to detect anomalies in aerial videos. In addition, there are
a total of 32 823 video frames covering four anomalous events,
namely, a car on a bike road, a parked van in front of a building,
a person on the road, and a bicycle on the road. Furthermore,
frame-level ground truth is provided to evaluate the performance
of state-of-the-art anomaly detection methods.

The Drone-Anomaly dataset [14] has a total of 59 untrimmed
videos that are captured at seven different scenes in real-world
environments, including highways, crossroads, bike round-
abouts, vehicle roundabouts, railway inspection, solar panel in-
spection, and farmland inspection. Notably, aerial videos in this
dataset were collected from YouTube and Pexels. In addition, the
dataset comprises 37 training video sequences and 22 testing se-
quences with various real-world anomalous events. In addition,
there are 87 488 video frames (51 635 for training and 35 853
for testing) in total, with each frame of 640× 640 resolution
and a frame rate of 30 frames/s. Moreover, the ground-truth
annotations are provided for each testing video in the form
of each anomalous event in each frame, which helps evaluate
the performance. Nonetheless, the number of anomalies and the
length of videos were not detailed in the original article.

III. DATASET DESCRIPTION

To tackle the limited availability of drone-based datasets
with real anomalies for traffic anomaly detection, we construct
a drone-view anomaly detection dataset, named UIT-ADrone.
The drone took the video clips we chose to capture at realistic
roundabouts, which are the most common place to capture all
the road users present in a scene. Furthermore, the interac-
tion between traffic participants is particularly high at these
intersections, especially motorcycles. Our dataset has a wide

range of challenges. In more detail, the object scale in aerial
images varies dramatically due to the substantial change in flight
altitude and distance between the drone and objects of interest.
In addition, drone-based video surveillance objects (e.g., cars,
bicycles, and motorcycles) have illumination changes, occlusion
of independently moving objects, and complex backgrounds. In
addition, anomalies mostly occur for a short span of time in
video drones.

A. Data Acquisition

We have conducted videos captured by the aerial perspective
with a camera to collect practical traffic data for detecting traffic
abnormalities in Ho Chi Minh City, Vietnam. The used drone is a
DJI MAVIC MINI 2, recording at 30 frames/s, with a resolution
of 1920× 1080 pixels ranging from 50 to 70 m in height at
different times of the day. More specifically, the videos of the
drone are recorded at two roundabouts on the campus of the
Vietnam National University, Ho Chi Minh City, and at one
public roundabout in Ho Chi Minh City. Note that the public
roundabout has an especially high traffic volume, with a variety
of motorbikes on the streets. Moreover, Fig. 1 shows a scene at
the roundabout in our dataset.

B. Dataset Statistics

The UIT-ADrone dataset consists of 51 videos with a total
of 206 194 extracted video frames covering various anomalous
events. The entire video is approximately 6.50 h long, recorded
in complex real-world scenarios, and they pose significant new
challenges, such as complex scenes, high density, occlusion of
moving objects, lighting conditions, small objects, and large
camera motion. Furthermore, it contains ten abnormal events
related to various types of violations of regulations, including
crossing the road at the wrong lane, walking under the street,
driving in the wrong roundabout, illegally driving on the side-
walk, illegal left turn/turn right, illegally parking in the street,
carrying bulky goods, parking on the sidewalk, driving in the
opposite directions, and falling off motorcycles.

In Table I, we compare the UIT-ADrone dataset with cur-
rent public datasets for anomaly detection problems, which are
similar to the UIT-ADrone dataset: Mini-Drone [15] and UTT
Drone [18]. It is essential to notice that the datasets in this table
only provide three types of abnormal events, involving some
pedestrians and cars. Therefore, there is not much interaction
between road users and vehicles (e.g., cars, buses, trucks, and
bikes), as well as interactions between objects of interest, es-
pecially motorcycles. In contrast to the existing datasets, the
UIT-ADrone dataset consists of ten different types of anomalous
events and a more representative distribution of the types of
road users in public urban interchanges. Moreover, the videos
captured with a drone have a duration of nearly 6.50 h of
data. Furthermore, the detailed descriptions of anomalous event
types in our dataset are given in Table II. Notably, a frame can
have more than one outlier event because of the huge diversity
of situations that are encountered on real-world roundabouts,
especially motorbikes. Thus, our dataset is much more suitable
for detecting abnormal events from drone-based traffic videos.
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Fig. 1. Visualization of traffic scenes included in the UIT-ADrone (Ours) dataset.

TABLE II
STATISTICS OF THE UIT-ADRONE (OURS) DATASET

C. Annotation

To generate ground-truth data for the purpose of evaluating
different models to detect traffic anomalies, we use a tool called
Supervisely assign frame-level labels. This tool is browser based
and supports advanced functions, such as drawing a bound-
ing box or tracking the objects of interest in a video drone.
Since the frames we label are sequential at a frame rate of 30
frames/s and the position of objects of interest changes little
from frame to frame, Supervisely is an easy-to-use tool for
annotating challenge data. Furthermore, some screenshots of
the Supervisely tool are illustrated in Figs. 2 and 3. This tool is
available at https://supervise.ly/. In addition, the UIT-ADrone
dataset comprises bounding boxes for the training and testing
sets for object detection, following the format of the MS COCO
dataset [27], which is standard for object detection. Therefore,
our dataset contains train.json and test.json for the training and
testing sets, respectively. For anomaly detection, testing labels
are organized as arrays (.npy). It means that the video is equal to

the array. The indexes for frames start at 0 and end at a total of
frames subtraction of 1. Each element in the array is set to 0 as
normal or 1 as abnormal. Notably, only normal data are available
in the training step for these unsupervised tasks in our study. In
addition, we also carry out cross-checking between annotators
to check for error labels based on the consensus of annotators.

IV. PROTOCOLS AND BASELINE RESULTS

In this section, we demonstrate experimental results to verify
the challenges and effectiveness of our dataset based on a set of
state-of-the-art algorithms. Concretely, protocols and baseline
results have been provided for the task of object detection and
traffic anomaly detection on our dataset and two public datasets.
The performance of the methods on standard datasets for both
of these tasks is illustrated in Tables III and IV. Furthermore, we
also conduct extensive cross-dataset experiments to investigate
the cross-dataset adaptability of our dataset. The experimental
outcomes are presented in Tables V and VI.

A. Protocols

The proposed UIT-ADrone dataset is downsampled and di-
vided into the number of abnormal and normal snippets for
training and testing sets. In particular, the training set only
includes normal snippets, whereas the testing set consists of
normal and abnormal snippets. The resulting dataset has a total
of 1497 snippets (592 for training and 905 for testing), or the
equivalent of 206 194 video frames. In more detail, there are
59 186 frames for the training set and 147 005 frames for the
testing set. Moreover, there are 63 485 ground-truth annotations
provided for testing snippets in the form of bounding boxes

https://supervise.ly/
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Fig. 2. Example images from two traffic scenes of the UIT-ADrone dataset by using Supervisely. The left column shows normal frames, and the right column
demonstrates abnormal frames. Note that, red boxes denote anomalies in abnormal frames. Please zoom by 400% in the electronic version.

Fig. 3. Image samples for object detection from two traffic scenes of the UIT-ADrone dataset by using the Supervisely annotation tool. Please zoom by 400% in
the electronic version.

around each abnormal event in each extracted video frame.
Noticeably, each anomalous event (object) is also labeled with
a tracking number. Furthermore, a single frame can have more
than one labeled anomaly.

B. Experimental Results

In this section, we discuss the experimental results of our
UIT-ADrone dataset with two common tasks: object detection
and anomaly detection. Based on related works, thoroughly
empirical studies with five object detectors consisting of Faster
R-CNN [7], YOLOF [21], YOLOR [22], YOLOX [23], and
YOLOv7 [24] are performed on the UAVDT dataset [9] and
our dataset for the object detection task. Moreover, we also
conduct an evaluation of three current state-of-the-art anomaly
detection algorithms based on deep architectures, namely, Fu-
ture Frame Prediction [4], ANDTs [14], and Spatiotemporal

Dissociation [5] on two anomaly datasets, including the Drone-
Anomaly [14] dataset and our dataset, which follow the same
setup as other similar unsupervised video anomaly detection
studies.

1) Metrics: We use a frame-based receiver operating charac-
teristic (ROC) curve and the corresponding area under the curve
(AUC) [8] to evaluate the performance of experimental methods
for anomaly detection problems. In addition, mAP [10] is a very
important metric used to measure object detection performance
in our benchmark. mAP metric will be calculated by using offi-
cial MS-COCO api. It should be noted that the higher the value
of AUC, as well as the value of mAP, is, the better the model’s
performances will have. Furthermore, Fig. 4 presents the results
of our experiments on the Drone-Anomaly [14] and our datasets
in terms of the ROC-AUC metric at the frame level. Moreover,
we provide the snapshots of some correct cases and failure cases
on our dataset from our experiments, as seen in Fig. 5.
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TABLE III
COMPARISON OF EXPERIMENTAL METHODS IN TERMS OF AVERAGE PRECISION VALUES ON THE UIT-ADRONE (OURS) AND THE UAVDT DATASET (%).

Fig. 4. Experimental results of Future Frame Prediction [4], ANDT [14], and Spatiotemporal Dissociation [5] methods based on ROC-AUC metric at the
frame level of the Drone-Anomaly [14] and the UIT-ADrone (Ours) datasets. (a) Visualization plot of ROC-AUC score on the Drone-Anomaly dataset [14].
(b) Visualization plot of ROC-AUC score on the UIT-ADrone (Ours) dataset.

TABLE IV
PERFORMANCE COMPARISON OF ANOMALY DETECTION METHODS IN TERMS

OF AVERAGE AUC METRIC AT FRAME LEVEL ON THE DRONE-ANOMALY [14]
AND OUR DATASETS (%)

TABLE V
RESULTS OF CROSS-DATASET ADAPTATION EXPERIMENTS IN TERMS OF

AVERAGE AUC METRIC AT FRAME LEVEL ON THE DRONE-ANOMALY AND THE

UIT-ADRONE (OURS) DATASETS WITH FINE-TUNING AND WITHOUT

FINE-TUNING (%)

TABLE VI
COMPARISON OF THE NUMBER OF SAMPLES BETWEEN DRONE-ANOMALY [14]

AND UIT-ADRONE (OUR) DATASETS

2) Object Detection: Table III uses mAP metric to show a
performance comparison of various algorithms, including the
Faster R-CNN [7], YOLOF [21], YOLOR [22], YOLOX [23],
and YOLOv7 [24] models for object detection task on the
UIT-ADrone (Ours) and UAVDT [9] datasets. In general, out of
five well-known methods, the mAP of the YOLOR [22] on our
dataset and that of the YOLOv7 [24] method on the UAVDT
dataset [9] are the highest at nearly 17.00% and at just over
20.00%, respectively. In contrast, the figure of the YOLOX [23]
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Fig. 5. Correct and failure cases for anomaly prediction on the UIT-ADrone (Ours) datasets. (a) Correct cases for frame prediction on the UIT-ADrone dataset.
(b) Failure cases for frame prediction on the UIT-ADrone dataset.

method is the lowest on the UIT-ADrone and UAVDT datasets at
nearly 9.00% and at roundly 12.00%, respectively. Moreover, the
experiments also show that one-stage YOLO family detectors
perform well in contexts of aerial images rather than two-stage
detectors, such as Faster R-CNN [7]. As regards the UIT-ADrone
dataset, the figures of the YOLOR [22] model surpass the
other state-of-the-art methods in most of the classes on the
UIT-ADrone dataset, ranging from about 1.00% to nearly 4.00%.
However, this method achieves the lowest result on APbike class
at nearly 2.00%. Furthermore, the mAP of the YOLOv7 [24]
method is slightly higher than the Faster R-CNN [7] model at
nearly 15.00% and 14.50%. Regarding the UAVDT dataset [9],
it is clear that the largest percentage of the YOLOv7 [24] method
accounts for 20.10%, and this figure is slightly higher than that
of the YOLOX [23] method at 19.00%. Moreover, compared
with the rest of the models, the performance result of the
YOLOR [22] method is better across all the classes, ranging from
about 2.60% to over 20.00%. On the other hand, the percentage
of the YOLOX [23] and YOLOF [21] methods is the lowest
at approximately 9.00% and at roundly 10.00%, respectively.
Notably, the object detection result of the YOLOX [23] method
onAPtruck class is 0.00%. From the results presented in this table,
it can be seen that the YOLOR [23] and YOLOv7 [24] models
obtain the best object detection performance for both single
and multiple object detection compared with the existing meth-
ods on two benchmarks. Interestingly, the performance of the
YOLOv7 [24] method on the UAVDT dataset [9] is higher than
that of the YOLOR [23] method; however, its performance is
less than that of the YOLOR method on our UIT-ADrone dataset.
Theoretically, YOLOR [23] is the model that is proposed to train

multitasks for gaining implicit knowledge to serve other tasks.
In the case of the UAVDT dataset [9], having images captured
at an angle of under 90◦ with the horizontal, and the objects are
much smaller than our UIT-ADrone dataset; implicit knowledge
from pretrained models may not work well, leading to a worse
performance than the YOLOv7 [24] model. The images’ context
of our UIT-ADrone dataset seems to be similar to knowledge
trained on the YOLOR [23] method; therefore, the implicit
knowledge works well. Conversely, the YOLOv7 [24] model
aims to generalize on different contexts of datasets without prior
knowledge; thus, its performance may be worse than that of the
YOLOR [23] method. In addition, experimental results obtained
on two benchmark datasets demonstrate the effectiveness of
the YOLOv7 [24] method in the case of less training data
and faster computation. In contrast, the YOLOR [23] algorithm
requires large data to train. Therefore, this method significantly
improves the result of common classes on two datasets. As
regards the UIT-ADrone dataset, besides the common classes,
there are some classes with small objects along with complicated
calculations; then, the YOLOR [23] model gives better results.
Notably, the number of object classes detected in our dataset
is almost three times more than that of object classes in the
UAVDT dataset [9] (eight classes compared with three classes).
Still, the YOLOv7 [24] model on the UAVDT dataset [9] has
a much higher mAP value (about 5.00%) than the achieved
result of this method on the UIT-ADrone dataset at 20.10%
and 15.00%. The detailed figures’ analysis demonstrates that
our anomaly dataset is challenging for the current state-of-the-
art algorithms for object detection tasks in drone-based video
surveillance systems.
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3) Anomaly Detection: Table IV shows performances of
three prominent methods, namely, Future Frame Prediction [4],
ANDT [14], and Spatiotemporal Dissociation [5] on two
abnormal drone datasets, namely, Drone-Anomaly [14] and
UIT-ADrone based on AUC metric at the frame level. Overall,
there are considerable differences in results between the state-of-
the-art methods on these datasets. The ANDT method’s result is
the highest figure of the three prominent methods on two datasets
at over 82.00% for the Drone-Anomaly dataset and at 60.50%
for the UIT-ADrone dataset. Furthermore, the ANDT method is
higher than that of the other ones ranging from about 3.00% to
over 10.00% on two anomalous datasets. Similar to the ANDT
method, the next most substantial percentage of the Spatiotem-
poral Dissociation method is at 79.50% for the Drone-Anomaly
dataset and at 64.00% for the UIT-ADrone dataset. By contrast,
the figure of the Future Frame Prediction method is the lowest
on these datasets at 64.00% for the Drone-Anomaly dataset and
53.00% for the UIT-ADrone dataset. Based on the analysis of
these experimental results, the results of these well-known meth-
ods on the UIT-ADrone dataset are much lower than the results
of the Drone-Anomaly dataset. It is clear that our dataset is very
challenging due to the complex traffic environment and diversity
of anomalous data. Obviously, the issue of anomalous event
detection in drone-based video surveillance is still challenging,
depending on the realistic conditions and environment.

4) Transfer Learning: Our extensive experiments aim to
fine-tune as well as without fine-tuning for detecting anomalies
in frames on cross-dataset adaptation. The detailed analysis of
the performance and its comparison in terms of AUC metric at
frame level with the state-of-the-art method, namely, Spatiotem-
poral Dissociation [5] on two sources, and destination datasets,
including the Drone-Anomaly [14] and UIT-ADrone datasets,
are also reported. To be more detailed, we first train the model
on training images from the source dataset and then perform
a transfer learning setting by loading the pretrained weights
learned from the training image in the source dataset to continue
to learn the training image patterns from the target dataset.
After that, the final weights will be evaluated on the testing set
of the target dataset. By refining the learned representations
for anomaly detection, the Drone-Anomaly and UIT-ADrone
datasets serve as source and target datasets, respectively.
Similarly, we also experiment without fine-tuning (inference
dataset B directly from the model trained on dataset A, and vice
versa) for detecting anomalies in frames on these datasets.

Table V shows the performance evaluation of the Spa-
tiotemporal Dissociation [5] method for anomaly detection in
the two sources and destination datasets, namely, the Drone-
Anomaly [14] and UIT-ADrone datasets. It is noteworthy that
the experimental method with fine-tuning has superior results
to those without fine-tuning on cross-dataset adaptation. Specif-
ically, the performance of the setting UIT-ADrone → Drone-
Anomaly [14] with the Spatiotemporal Dissociation [5] method
on the Drone-Anomaly’s testing set with fine-tuning surpasses
the performance of the setting without fine-tuning by over
6.50%, at 83.40% compared to at 76.86%. Likewise, the perfor-
mance of the setting Drone-Anomaly [14]→UIT-ADrone wit-
nesses the same conclusion with transfer learning experiments:

the setting of fine-tuning achieves the higher AUC score (about
2.50%) than that of without fine-tuning at 55.30% and 52.84%.
Moreover, from the results presented in this table, we see that the
performance of the setting UIT-ADrone→Drone-Anomaly [14]
with the Spatiotemporal Dissociation [5] method on the Drone-
Anomaly’s testing set outperforms the performance of the setting
without loading the learned weights increased by nearly 4.00%,
at 83.40% compared to at 79.50% of the previous experimental
result from Table IV. The learned models can explain this
outcome through the load weights learned from the UIT-ADrone
dataset, which provides significant prior knowledge because our
dataset includes numerous images captured from roundabout
scenes. Although humble AUC scores obtained from the setting
without fine-tuning compared to those with fine-tuning, the
results are also pretty good and even acceptable in the context
of no training. This, therefore, leads to better performance in
small-scale datasets, such as Drone-Anomaly (captured at the
roundabout scene similar to our dataset context). On the con-
trary, the performance of the setting Drone-Anomaly [14]→UIT-
ADrone with the Spatiotemporal Dissociation [5] baseline does
not improve on the testing set of our dataset at 55.30%, nearly
2.00% lower than the previous experimental result from Table IV
of 57.00%. We assume that the Drone-Anomaly dataset has
a much smaller number of samples than that of our dataset
(26 377 samples compared to 206 194 samples, according to
Table VI) as well as the lack of variety of unusual event types
in the same context, resulting in poor generalization of the
trained model due to the rapid growth of video surveillance
data, especially data captured with drone in the complex traffic
environment. It is essential to note that loading learned weights
from the Drone-Anomaly dataset generates some noise due to
insufficient training data. Thus, the trained model has difficulty
continuing to learn patterns from large-scale datasets, such as the
UIT-ADrone dataset.

V. DISCUSSION

In this article, we create an annotated aerial video dataset
consisting of 51 video sequences involving three realistic traffic
scenes. Our UIT-ADrone dataset expands the scope of anomaly
detection research in real-world applications by covering a large
variety of anomalous events with characteristics in Vietnam.
In addition, we extensively validate the existing methods in
order to provide a benchmark for this task. In addition, owing
to the complexity and diversity of real-world scenarios, the
most significant challenge in traffic anomaly detection problems
is that available data are highly imbalanced toward normality
(i.e., nonanomalous), leading to the fact that the availability of
anomalous cases may be limited and may evolve over time due
to external factors. Within such scenarios, it is impossible to take
into account all the unseen abnormal examples, so our dataset
is very challenging for well-established state-of-the-art methods
to detect unusual events.

According to the above experimental findings, we find that
compared with natural images, new challenges appear in aerial
images based on real scenes, including dense distribution, minia-
ture objects with only a few pixels, large aspect ratios, arbitrary
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orientations, and camera motion. These characteristics make
deep learning models, such as CNN-based and transformer-
based, face challenges for aerial object detection as well as detect
anomalous events in drone-based video surveillance, especially
the recorded surveillance footage of dense populations in urban
environments. Furthermore, small objects are easily fooled by
complex background noise interference, thus, in turn, increas-
ing the difficulty of accurate object detection and detection of
unusual events. In addition, anomalies in surveillance footage
are difficult to anticipate, as the prior knowledge about these
anomalies is usually limited or even unavailable. In addition,
when new categories of anomalies emerge, the data acquisi-
tion environments are extremely diverse, and the labeling of
training data for novel categories is complex and prohibitively
expensive. Furthermore, abnormal event detection is more than
just dependent on circumstances and context but also depends
on the appearance of the objects and their movements in real
scenes. Moreover, challenges in anomaly detection with mas-
sive volumes of aerial videos include inconsistent behavior
of different types of anomalies, camera movements, variable
spatial resolution due to changes in flight altitude, and handling
imbalanced distribution of normal and abnormal data, in which
normal events often account for an overwhelming proportion.
Therefore, state-of-the-art methods are typically trained only on
normal data while being tested on both the normal and abnormal
data, which are difficult to adapt to various monitoring scenarios.
Furthermore, the analysis of the extensive experiments shows
the superiority of the proposal for cross-domain adaptivity on
our dataset, in which many anomalous events with temporal
dynamics exist. It is clear that these experimental outcomes
demonstrate that our dataset can apply deep-learning-based
transfer learning for drone-based anomaly detection. Moreover,
since the main focus of this article is to introduce a novel dataset
for anomaly detection in drone images, we have not yet evaluated
the accuracy of various kinds of anomalous events.

VI. CONCLUSION

In this article, we presented our efforts to build a novel dataset
for the real-time detection of anomalous events in aerial traffic
surveillance at three various locations, in which the primary
context is roundabout. We contributed the large-scale dataset of
aerial videos, named UIT-ADrone, with specific applicability
to detect anomalous events in the complicated background and
various object sizes. The proposed dataset contained 51 original
videos of ten abnormal events recorded on various roundabouts
and at different times of the day. Video frames were captured
across over 206 000 frames, with 63 485 anomalous frames
annotated. Furthermore, extensive empirical results performed
on various publicly available benchmarks demonstrated that it is
challenging to track small objects. The experiments showed that
it is feasible to detect anomaly frames in real-life applications.

Future work will consider increasing the number of environ-
mental contexts to increase the diversity of anomalous event
types and more experiments that can be performed by evaluating
the accuracy of different abnormal events, as well as tracking
anomalous events from the UIT-ADrone dataset. Finally, by

sharing our dataset, we hope that researchers will push the
limitations of the existing methods for object detection as well
as outlier event detection in aerial videos.
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