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Abstract: The proliferation of Artificial Intelligence (AI) models such as Generative Adversarial Net-
works (GANs) has shown impressive success in image synthesis. Artificial GAN-based synthesized
images have been widely spread over the Internet with the advancement in generating naturalistic
and photo-realistic images. This might have the ability to improve content and media; however, it also
constitutes a threat with regard to legitimacy, authenticity, and security. Moreover, implementing an
automated system that is able to detect and recognize GAN-generated images is significant for image
synthesis models as an evaluation tool, regardless of the input modality. To this end, we propose a
framework for reliably detecting AI-generated images from real ones through Convolutional Neural
Networks (CNNs). First, GAN-generated images were collected based on different tasks and different
architectures to help with the generalization. Then, transfer learning was applied. Finally, several
Class Activation Maps (CAM) were integrated to determine the discriminative regions that guided
the classification model in its decision. Our approach achieved 100% on our dataset, i.e., Real or
Synthetic Images (RSI), and a superior performance on other datasets and configurations in terms of
its accuracy. Hence, it can be used as an evaluation tool in image generation. Our best detector was a
pre-trained EfficientNetB4 fine-tuned on our dataset with a batch size of 64 and an initial learning
rate of 0.001 for 20 epochs. Adam was used as an optimizer, and learning rate reduction along with
data augmentation were incorporated.

Keywords: GAN-generated images detection; GAN image localization; detection of computer-
generated images; fake AI-generated images recognition; fake and real detection; convolutional
neural networks

1. Introduction

Image synthesis is the process of generating artificial images from different input
modalities, i.e., text, sketch, audio, or image [1]. It is used in many applications, such as art
generation [2], photo editing [3,4], photo inpainting [5,6], and computer-aided design [7].
Thus, image synthesis has received intense research, especially after Generative Adversarial
Networks (GAN) [8] were developed. GAN has two networks, namely, a generator and
a discriminator. The two components compete with each other. While the generator
attempts to generate realistic images to fool the discriminator, the discriminator attempts
to differentiate between artificial and real images. In the beginning, the generator produces
obviously fake data, and the discriminator easily and quickly classifies the generated data
as a fake and penalizes the generator for generating implausible data. As the training
progresses over the time, the generator learns to produce plausible data that can fool the
discriminator, and the discriminator becomes unable to distinguish between synthetic and
real data, leading to classifying synthetic data as real. This contest yields in generating
high-quality photo-realistic images. Therefore, many researchers have incorporated GANs
into image synthesis, which has led to a significant enhancement in generated images.
This tremendous progress over the past decade in generating images has led to the provision
of synthetic media with a great level of photorealism and quality. This, of course, opens
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up a great opportunity for artists, designers, movie makers, game designers, and creative
users to create new content of interest and enhance their media. However, it may constitute
a serious threat regarding legitimacy, authenticity, and security, especially in the hands of
malicious users. Malicious users may exploit this advantage to create and disseminate fake
media that is well-suited to their attacks. Thus, the media forensic community faces new
difficulties as a result of not being able to detect AI-generated images in the real world.
Images are considered to be important evidence in forensic investigations that can help
in determining the authenticity and origin of sources. Thus, image integrity is critical in
forensic investigations. One example of misusing synthetic images in a way that may affect
forensic investigations is when generated images are planted at a crime scene or sent to
investigation offices as a false lead. Furthermore, being able to create images that may be
used for criminal or malicious goals raises a concern. For instance, criminal and malicious
users could create fake websites on the internet or fake profiles on social media to widely
spread false information or advertise false products that can be used for fraud purposes.

As shown in Figure 1, it is hard to distinguish synthetic images from genuine ones with
the rapid improvement in the image synthesis field. Hence, an automated tool for detecting
and localizing GAN-generated images is necessary, since most synthetic images contain
traces invisible to the human eye. In fact, in spite of the high-quality images resulting
from GAN models, synthesized images bear explicit or implicit artifacts resulting from
the generation process. Figure 2 shows both explicit artifacts in terms of pixel anomalies
and implicit artifacts, which are considered as artificial signatures/fingerprints based
on the generative model architecture. Different GAN architectures may have different
fingerprints seen in the spatial or frequency domains. Thus, these artifacts could be
exploited to distinguish between synthetic and real images. Since each GAN architecture
produces a specific pattern that is inserted automatically into each generated image as
a distinct fingerprint [9,10], it is hard to generalize detectors on GAN-generated images
from other GAN architectures. Other studies have worked on the Fourier domain to
detect GAN-generated images from real ones [11–13]. These studies have shown that a
distinct signature is observed in the frequency domain as a peak, which does not appear
in the Fourier spectrum of the real image. This artificial fingerprint depends on the GAN
architecture and is caused by the up-sampling operations. Thus, it fails to generalize.
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Figure 1. Examples of real images and their corresponding generated ones produced by various 
GAN-models based on different tasks. 

  

Figure 1. Examples of real images and their corresponding generated ones produced by various
GAN-models based on different tasks.

Accordingly, in this paper, we conducted an extensive experimental study that led to
creating an automated model that is able to reliably detect GAN-generated images from real
ones. Our approach was based on fine-tuning a pre-trained convolutional neural networks
(CNN) model on a newly collected dataset. Our dataset was based on different modalities
of image synthesis and different GAN architectures to help with the generalization ability
across various tasks and architectures. We further visualized where the model looked at
the image during the classification process by incorporating various CAMs.
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The remainder of this paper is organized as follows. We briefly introduce the related
works in Section 2. The proposed data collection and method are presented in Section 3.
We conduct the experiments in Section 4 and discuss the results and limitations of our
approach in Section 5. Finally, the paper is concluded, and the future work is introduced in
Section 6.
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left to right: pixel anomalies, artificial fingerprints, and spectral artifacts.

2. Related Work

Image generation is the task of synthesizing a high-quality realistic image from an
image [14–17], sketch [18], or text [19–22]. It is a challenging and interesting problem in
the computer vision area. Research on image synthesis has been actively conducted over
the past decade, especially after the advent of GANs [8]. The GAN architecture and its
variants have improved these generated images. Sometimes, these artificial images are
hardly distinguishable from real images. This could help in improving the media and
content in the digital world; nonetheless, it likewise comprises dangers with respect to
authenticity, genuineness, and security.

2.1. Image-to-Image Synthesis

This is the process of translating images from a source domain to another domain.
This mapping works by modifying some characteristics in the input image from the source
domain to have the same characteristics in the target domain while maintaining its content.
For instance, segmentation mask maps are transformed into color images [14–17].

2.1.1. Image-to-Image Synthesis through Conditional GAN (cGAN)

Conditional GAN (cGAN) [23] is a conditional version of GAN, where an additional
input, e.g., class labels, is fed into the generator along with the noise input to generate
synthetic data. This condition extension, e.g., class labels, is also fed into the discriminator
along with the real and synthetic data so it can differentiate between them. OASIS [14]
uses a simplified version of the GAN architecture. The discriminator is re-designed as
a semantic segmentation network, where label maps are directly used as ground truth.
The discriminator’s architecture is based on U-Net [24], which is an encoder–decoder model
connected by skip connections. This helps in generating images that are well-aligned with
their corresponding semantic label maps. To promote the discriminator to concentrate on
the semantic/content and differences in the structural information of the generated and
real images, LabelMix regularization is leveraged, leading to re-designing the discriminator.
Hence, the generator is re-designed to allow for the synthesis of multi-modal data through
3D noise sampling. This enables partially or completely changing the images, which
leads to enhancing the diversity of the generated images. CC-FPSE [15] uses a conditional
GAN for semantic image synthesis. It works by exploiting the semantic layout during
the generation process. The generator predicts the convolutional kernels restricted on
the semantic label maps to produce feature maps. The resulting feature maps from the
noise are used to generate the image. To improve the alignment of the synthesized images
with their label maps and generate fine details, the discriminator is designed based on
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a feature pyramid semantic-embedding discriminator. This predicts not only real/fake
scores, but also the semantic alignment scores to the semantic label maps. SPADE [16] is
proposed upon a pix2pix model [25]. It uses a spatially adaptive normalization layer with
learned parameters in the generator to maintain the semantic information, leading to the
generation of photo-realistic images. The reason for this is that SPADE normalizes only
the activations from the prior layer. Thus, it preserves the input information, as opposed
to InstanceNorm [26], which tends to wash away the semantic information during the
generation process.

2.1.2. Image-to-Image Synthesis through Transformers

Taming-transformers [17] incorporates a transformer with the inductive bias of a CNN.
In the generator, the CNN, which consists of encoder–decoder architecture, learns a discrete
spatial codebook. To learn this context-rich codebook and generate local realism, the model uses
VQ-GAN, which is a type of VQVAE, along with perceptual loss. Then, the transformer learns
the global composition within the image to generate high-resolution images.

2.2. Sketch-to-Image Synthesis

This is a task that converts an input sketch into a photo-realistic image. Thus, it maps
a simple and rough sketch that only contains basic structural information to a color image
that consists of rich features. S2I-DetectoRS [18], S2I-HTC [18], S2I-QueryInst [18], and
S2I-MaskRCNN [18] share the same framework and consist of four main stages. In the
first stage, a pre-trained instance segmentation model on the MS-COCO dataset [27] is
leveraged. Specifically, DetectoRS [28], HTC [29], QueryInst [30], or Mask R-CNN [31]
are fine-tuned on different types of edge maps [32–35] to segment 92 classes of the MS-
COCO dataset [27]. Then, the semantic segmentation stage takes place. Next, the resultant
semantic mask map is fed into an image-to-image translation model, namely SPADE [16], to
generate a photo-realistic image. Finally, a post-processing stage is incorporated to enhance
the background further and refine human faces.

2.3. Text-to-Image Synthesis

This is the process that maps a natural language description into a realistic image that
conveys the same semantic information as the input text [18–21]. Hence, it substitutes a
long sentence into one still image.

2.3.1. Text-to-Image Synthesis though Attention Module

In AttnGAN [19], an attention module is integrated to generate fine details. The words
in the input text are encoded into word vectors along with a sentence vector that results
from encoding the whole sentence. The generation process occurs over two stages. In the
first stage, based on the sentence vector, a low-quality image is generated. Then, multi-stage
refinement takes place to successively refine the image by focusing on specific regions of
the low-quality image based on the related word vectors. In ControlGAN [22], an attention
module is used. In particular, a word-level spatial and channel-wise attention module is
integrated into the generator to concentrate on subregions each time, depending on the more
related words. Additionally, to obtain fine-grained feedback, a word-level discriminator
is introduced to correlate subregions of the image with words. Therefore, this enables
the generator to change the visual attributes of specific subregions without impacting the
other regions.

2.3.2. Text-to-Image Synthesis though Contrastive Learning

Since the text is created by humans during annotation, different captions might be
assigned to one image based on the annotators’ point of view. This discrepancy could lead to
generated images which are different from their corresponding ground truth. To tackle this
problem, DM-GAN+CL [20] is proposed. It is a contrastive learning method for learning
consistent representations of the input text. Hence, this improves the semantic consistency.
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2.3.3. Text-to-Image Synthesis though Deep Fusion Block (DFBlock)

DF-GAN [21] is a one-stage, simple, yet effective model that is able to directly generate
high-quality images from input text. The generator incorporates a Deep text–image Fusion
Block (DFBlock) to enhance the semantic consistency between the synthesized images and
their corresponding texts. The discriminator consists of Matching-Aware Gradient Penalty
(MA-GP) to encourage the generator to produce more photo-realistic images.

3. Data Collection and Methodology

In this section, we first introduce the Real or Synthetic Images (RSI) dataset that was
used for the training and testing. Then, our proposed framework is discussed in detail.
An overview of our proposed method is illustrated in Figure 3.
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3.1. Data Collection: Real or Synthetic Images (RSI)

To enable our method to generalize better, a dataset was collected based on 12 different
image synthesis models from several tasks, i.e., image-to-image, sketch-to-image, and
text-to-image. Having a dataset of various tasks and diverse GAN architectures helped
not only with the generalization capability, but also in boosting the accuracy. Our dataset
was compiled based on the COCO-Stuff dataset [36] through (1) image-to-image syn-
thesis models: OASIS [14], CC-FPSE [15], SPADE [16], and Taming-transformers [17],
(2) sketch-to-image synthesis models: S2I-DetectoRS [18], S2I-HTC [18], S2I-QueryInst [18],
and S2I-MaskRCNN [18], and (3) text-to-image synthesis models: AttnGAN [19], DM-
GAN+CL [20], DF-GAN [21], and ControlGAN [22]. The COCO-Stuff dataset [36] is an
extension of the MS COCO dataset [27]. The COCO dataset [27] contains only instance-level
annotations for classes of things. In total, 164k images of the MS COCO dataset [27] were
augmented with pixel-level annotations corresponding to stuff. Then, the dataset was split
into 118k, 5k, and 40k images for the training, validation, and testing sets, respectively.
Indeed, the COCO-Stuff dataset [36] is composed of 172 classes: 80 thing classes, 91 stuff
classes, and 1 ‘unlabeled’ class. Thus, it can be used in many tasks, such as classification,
detection, segmentation, scene understanding, captioning, and image generation, just to
name a few. Examples of synthesized images generated by different tasks conditioned on
different input types are shown in Figure 4.
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Our dataset consisted of 24k, 12k, and 12k images for the training, validation, and
testing, respectively. For each set, the number of images was split evenly between real and
synthetic images. More details about our data collection are provided in Table 1.

Table 1. Specification of our dataset.

Task Model Input Training Set Validation Set Testing Set Total

Image-to-image
synthesis

OASIS [14]

Semantic
mask map

2000 1000 1000 4000

CC-FPSE [15] 2000 1000 1000 4000

SPADE [16] 2000 1000 1000 4000

Taming-transformers [17] 2000 1000 1000 4000

Sketch-to-
image

synthesis

S2I-DetectoRS [18]

Sketch

2000 1000 1000 4000

S2I-HTC [18] 2000 1000 1000 4000

S2I-QueryInst [18] 2000 1000 1000 4000

S2I-MaskRCNN [18] 2000 1000 1000 4000

Text-to-image
synthesis

AttnGAN [19]

Text

2000 1000 1000 4000

DM-GAN+CL [20] 2000 1000 1000 4000

DF-GAN [21] 2000 1000 1000 4000

ControlGAN [22] 2000 1000 1000 4000

24,000 12,000 12,000 48,000

The process of collecting our dataset was as follows. We first collected real images
based on the COCO-Stuff dataset [36]. Then, for each real image, we generated differ-
ent inputs in terms of text, sketch, and semantic segmentation mask maps depending
on [36]. Specifically, for the tasks of text-to-image synthesis and image-to-image synthe-
sis, we collected the captions and semantic mask maps from [36]. However, for the task
sketch-to-image synthesis, we generated the sketches based on a dodging and burning
algorithm [32], which produced pencil sketches and maintain structural details. Next, for
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each of the 12 image synthesis models and based on the input modality, we ran the pre-
trained model on the generated inputs to obtain synthetic artificial images. The resolution
of the real and synthetic images was rescaled to 256 × 256, regardless the image synthesis
models’ resolution.

3.2. Methodology

With the recent improvements in image synthesis, it is significant to develop an
automated tool to dependably and timely recognize GAN-generated images. Thus, after
the dataset was collected, we trained a classifier by fine-tuning the classifier that was
pre-trained on the ImageNet dataset [37] on our newly collected RSI dataset. The reason for
this was that training a classifier from scratch is not only time consuming and costly, but
also less efficient in terms of classification performance. Therefore, transfer learning is a
better approach. Since there were only two classes in our dataset, namely, real or synthetic,
the training process was conducted in binary classification setting. A variety of classifiers
were leveraged through an experimental study to reach the best model that was able to
reliably and precisely detect and localize GAN-generated images.

The details of the training procedure were as follows. We fine-tuned our dataset
on VGG19 [38], ResNet [39] with different number of layers: (50, 101, and 152), Incep-
tionV3 [40], Xception [41], DenseNet121 [42], InceptionResNetV2 [43], MixConv [44],
MaxViT [45], and EfficientNetB4 [46]. The head of the classifier pre-trained on Ima-
geNet [37] was removed, and a new head was placed on top of the classifier. The new head
for all our classifiers consisted of a global average pooling, a dense layer with a ReLU [47]
activation function, a batch normalization layer [48] to reduce the internal co-variant shift
and stabilize the training process, a dropout layer [49] to overcome the overfitting problem,
and finally, a dense layer with a sigmoid activation function. For all the classifiers, a batch
size of 64 was used, and the initial learning rate was 0.001. The training lasted for 20 epochs;
however, checkpoints were saved whenever there was an improvement in the validation
loss, so that the best model could be loaded later during testing. Moreover, for all the
classifiers, the learning rate was reduced automatically when the validation loss stopped
improving. Furthermore, data augmentation, in particular, horizontal flip, was applied on
the training set during the training process. Adam [50] was incorporated as an optimizer
for all the classifiers except ResNet101, where RMSprop [51] was used.

4. Results and Analysis

In this section, we first introduce the evaluation metrics used to evaluate performance.
Then, the experimental results are reported based on the metrics adopted on our RSI
dataset to evaluate the efficiency of our proposed methods in detecting and localizing
GAN-generated images from real ones. Next, an ablation study was conducted to show
the effectiveness of our proposed approach in recognizing GAN-synthesized images on
different modalities of image synthesis (text, sketch, or image) and different GAN-based
image synthesis models.

4.1. Evaluation Metrics

To evaluate the performance of our proposed methods in detecting GAN-generated
images from real ones, eight common evaluation metrics were adopted. Specifically,
Precision, Recall, F1 score, Accuracy, Average Precision (AP), Area Under Curve of Receiver
Operating Characteristic (ROC-AUC), False Positive Rate (FPR), and False Negative Rate
(FNR) were measured and recorded.

4.2. Experimental Results on RSI

A comprehensive performance evaluation was conducted on our RSI dataset to val-
idate the performance of our approach in detecting GAN-generated images. In particu-
lar, the testing set of RSI, which consisted of 12,000 images split equally between GAN-
generated and real images, based on the COCO-Stuff dataset [36], was used during the
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evaluation. The eight evaluation metrics were computed on the testing set of our dataset
and are reported in Table 2. As can be seen, EfficientNetB4 achieved the best performance
in recognizing and localizing GAN-generated images, with a 100% accuracy, followed by
InceptionV3 with 98% in terms of accuracy on this particular dataset, i.e., the RSI dataset.
Instances of GAN-generated and real images from the RSI dataset that were classified
properly via our best model (EfficientNetB4), with a 100% accuracy, are illustrated in
Figure 5.

Table 2. Performance of different classifiers on testing set.

Precision Recall F1 Accuracy AP ROC-AUC FPR FNR

VGG19 0.94 0.94 0.94 0.94 0.9819 0.9803 0.053 0.064
ResNet50 0.93 0.91 0.91 0.91 0.9933 0.9927 0.0035 0.168

ResNet101 0.95 0.95 0.95 0.95 0.9879 0.9877 0.028 0.08
ResNet152 0.92 0.92 0.92 0.92 0.9743 0.9718 0.042 0.118

InceptionV3 0.98 0.98 0.98 0.98 0.9976 0.9974 0.016 0.03
Xception 0.97 0.97 0.97 0.97 0.9995 0.9994 0.0003 0.054

DenseNet121 0.97 0.97 0.97 0.97 0.9969 0.9966 0.012 0.044
InceptionResNetV2 0.96 0.96 0.96 0.96 0.9942 0.9943 0.037 0.036

MixConv 0.94 0.94 0.94 0.94 0.9411 0.9412 0.057 0.056
MaxViT 0.92 0.86 0.89 0.89 0.9375 0.9375 0.087 0.137

EfficientNetB4 1.00 1.00 1.00 1.00 1.00 1.00 0.0 0.0
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Figure 5. Examples of detecting real and GAN-generated images with 100% accuracy using our best
model on the testing set.

Furthermore, to locate the region where our model was looking at during the classifica-
tion process, different types of Class Activation Maps (CAM) were integrated. Specifically,
GradCAM [52], AblationCAM [53], LayerCAM [54], and Faster ScoreCAM [55] were
adopted to inspect the images by identifying which parts of the image contributed more to
the classification decision of our model. A visualization of the four different CAM methods
is demonstrated in Figure 6.
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As shown, the model looked mostly to the background of the GAN-generated images.
However, it also looked at some regions where distortion and anomalies appeared in the
synthetic images. To faithfully explain the predictions of our method, an explanation
technique called LIME [56] was leveraged, as shown in Figure 7.
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Figure 7. Visualization of LIME interpretability technique on detecting GAN-generated images from
real ones based on our method. The first and fourth columns represent the input image whether
synthetic or real. The second and fifth columns illustrate LIME explanation based on super-pixels,
where only the super-pixels that contribute to the final classification decision are presented. The third
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red-colored regions of super-pixels correspond to regions that decrease the probability of the classified
label. (a) GAN-generated images classified as “Synthetic”; (b) Real images classified as “Real”.

4.3. Effectiveness of Our Model

To show the effectiveness of our model in recognizing GAN-generated images for other
models that were not trained on them, we further conducted one more experiment. In this
experiment, we trained three models separately based on the input modality. Specifically,
we trained a model on sketch-to-image and text-to-image models, named (S2I_T2I). In total,
eight models were used for both modalities. Then, the trained model was tested on
an image-to-image modality which consisted of four models. The second experiment
(I2I_T2I) was that the model was trained on image-to-image and text-to-image models,
and then tested on sketch-to-image modality models. The same specification was followed
in the third and last experiment, where we trained the model on image-to-image and
sketch-to-image models (I2I_S2I), and then tested the trained model on text-to-image
models. The results of these experiments are reported in Table 3. As can be seen, while the
performance of the S2I_T2I model, when excluding I2I models, achieved 0.99 in terms of
accuracy, the I2I_S2I model reached 0.95. In the meantime, the I2I_T2I model achieved less
accuracy with 0.83 due to the image improvement step used in sketch-to-image models. This
image improvement step attempts to enhance the background by replacing the generated
background with a real background consistent and aligned with the context/objects in the



J. Imaging 2023, 9, 199 11 of 18

image. Even though this step enhances the generated results, our GAN detection model
was still able to detect GAN-generated images with a high accuracy of 0.83.

Table 3. Performance of our model trained on two modalities and tested on the third and excluded
modality to show the effectiveness of our model in detecting GAN-generated images.

Precision Recall F1 Accuracy AP ROC-AUC FPR FNR

S2I_T2I 0.99 0.99 0.99 0.99 0.9998 0.9997 0.026 0.001
I2I_T2I 0.87 0.83 0.82 0.83 0.9684 0.9801 0.347 0.0
I2I_S2I 0.96 0.95 0.95 0.95 0.99997 0.99997 0.093 0.0

Consequently, our current model proved its capability in detecting GAN-generated
images from real ones with a high accuracy, even though the model and its modality were
not trained on. Thus, our GAN detection model is able to recognize GAN-generated images
if a new GAN model is proposed in the future.

4.4. Ablation Study

To demonstrate the effectiveness of our method in detecting GAN-based synthetic
images, we evaluated our second-best model, InceptionV3, on the testing set of different
input modalities separately. We further assessed the performance of our second-best model
on the testing set of image synthesis models individually. The reason that the second-best
model, InceptionV3, was used during the ablation study was due to the fact that our best
model EfficientNetB4 achieved 100% accuracy. Thus, there were no differences in the
performance when part of the dataset was evaluated.

While Table 4 reports the performance based on the eight common evaluation metrics,
Figure 8 presents the confusion matrices of our second-best model on the testing set
generated from the image-to-image, sketch-to-image, and text-to-image synthesis models.
The highest accuracy was accomplished with the GAN-based synthetic images generated
from the texts, at 98.35%. On the contrary, the lowest accuracy was achieved when the
inputs to the image synthesis models were semantic segmentation maps, at 96.90%.

Moreover, we studied the performance of our second-best model on the GAN-synthesized
images separately produced by various synthesis images models. Table 5 provides a com-
prehensive performance evaluation of the models in detecting GAN-generated images
produced by a single image synthesis model. From Table 5, we can conclude that it might
be more challenging to detect GAN-generated images obtained from semantic segmentation
mask maps than ones produced by natural language descriptions. Since the layout, shape, size,
and semantic information are maintained in image-to-image synthesis, the generated images
are more photo-realistic and naturalistic than the ones produced from text-to-image synthesis.

Table 4. Performance of our second-best model in terms of accuracy (InceptionV3) on GAN-generated
images individually produced by different input modalities.

Precision Recall F1 Accuracy AP ROC-AUC FPR FNR

Image-to-image (I2I) 0.97 0.97 0.97 0.9690 0.9961 0.9957 0.032 0.03
Sketch-to-image (S2I) 0.98 0.98 0.98 0.9790 0.9977 0.9974 0.012 0.03
Text-to-image (T2I) 0.98 0.98 0.98 0.9835 0.9991 0.9990 0.003 0.03
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Table 5. Performance of our second-best model in terms of accuracy (InceptionV3) on GAN-generated
images individually produced by different models.

Input
Modality Precision Recall F1 Accuracy AP ROC-

AUC FPR FNR

OASIS [14]

I2I

0.96 0.96 0.96 0.964 0.9958 0.9951 0.042 0.03
CC-FPSE [15] 0.98 0.98 0.98 0.983 0.9983 0.9981 0.004 0.03
SPADE [16] 0.98 0.98 0.98 0.978 0.9979 0.9977 0.014 0.03

Taming-transformers [17] 0.95 0.95 0.95 0.951 0.9928 0.9920 0.068 0.03

S2I-DetectoRS [18]

S2I

0.98 0.98 0.98 0.981 0.9977 0.9974 0.008 0.03
S2I-HTC [18] 0.98 0.98 0.98 0.977 0.9977 0.9973 0.016 0.03

S2I-QueryInst [18] 0.98 0.98 0.98 0.978 0.9977 0.9975 0.014 0.03
S2I-MaskRCNN [18] 0.98 0.98 0.98 0.980 0.9978 0.9974 0.010 0.03

AttnGAN [19]

T2I

0.98 0.98 0.98 0.984 0.9990 0.9989 0.002 0.03
DM-GAN+CL [20] 0.98 0.98 0.98 0.984 0.9996 0.9996 0.002 0.03

DF-GAN [21] 0.98 0.98 0.98 0.982 0.9986 0.9985 0.006 0.03
ControlGAN [22] 0.98 0.98 0.98 0.984 0.9991 0.9990 0.002 0.03

4.5. Experimental Results on Other Datasets

To show our model’s efficacy in detecting generated images from real ones, we further
ran one more experiment. In this experiment, the first model in each modality from Table 1
was selected. More specifically, OASIS [14], S2I-DetectoRS [18], and AttnGAN [19] were
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used as image-to-image, sketch-to-image, and text-to-image synthesis models, respectively.
Then, different datasets, which our model was not trained on, were utilized to generate
synthetic images. Particularly, the ADE20K [57], Sketchy [58], and Caltech-UCSD Birds-
200-2011 (CUB-200-2011) [59] datasets were leveraged. Following this, both generated and
real images were fed into our best detector, i.e., EfficientNetB4, to detect synthetic images
from real ones. Finally, eight common evaluation metrics were leveraged to measure our
model’s performance. Mainly, Precision, Recall, F1 score, Accuracy, Average Precision (AP),
Area Under Curve of Receiver Operating Characteristic (ROC-AUC), False Positive Rate
(FPR), and False Negative Rate (FNR) were adopted. The details are explained as follows.

With regard to the OASIS image-to-image synthesis model [14], the testing set of the
ADE20K dataset [57], which consisted of 2000 semantic segmentation images, was fed into
the pre-trained OASIS model [14]. This step output synthesized images from the semantic
segmentation images. Then, the generated and real images of the ADE20K testing set [57]
were input into our best model, and the performance was evaluated and recorded.

As for S2I-DetectoRS [18], a subset of the Sketchy dataset [58], which contained
2470 sketches, was used as an input into the S2I-DetectoRS sketch-to-image synthesis
model [18]. This subset of the Sketchy dataset [58] was used because S2I-DetectoRS [18]
was trained on the MS COCO dataset [27], and only 35 classes from the Sketchy dataset [58]
matched the classes in the MS COCO dataset [27]. These classes were airplane, alarm_clock,
apple, banana, bear, bench, bicycle, car_(sedan), cat, chair, couch, cow, cup, dog, door,
elephant, eyeglasses, giraffe, hat, horse, hotdog, knife, motorcycle, pickup_truck, pizza,
sailboat, scissors, sheep, shoe, spoon, table, teddy_bear, umbrella, window, and zebra.
In the generation phase, sketches were converted into colored images. After that, both
generated and real images were fed into our best model, and the eight-evaluation metrics
were measured.

With respect to the AttnGAN text-to-image synthesis model [19], the same procedure
was followed. The only difference was the dataset, where the testing set of Caltech-UCSD
Birds-200-2011 (CUB-200-2011) [59] was used. The testing set was composed of 5794
captions/descriptions. After generating the corresponding images for the input text de-
scriptions, both synthetic and real images were fed into our best model, i.e., EfficientNetB4.
In the final step, the performance was assessed based on our adopted evaluation metrics.

The experimental results were recorded and are shown in Table 6. As can be seen,
our model was able to detect and recognize the GAN-generated images from real ones,
even with other datasets that our classifier was not trained on. While the highest accuracy
roughly reached 98% with the CUB-200-2011 dataset [59] and the AttnGAN [18] text-to-
image synthesis model, our model achieved 89% in terms of accuracy with the ADE20K
dataset [57] and the OASIS [14] image-to-image synthesis model. This may be attributed
to the dataset complexity and generator capability. Hence, our model could be used as an
evaluation tool regardless of the input modality.

Table 6. Performance of our best model on different datasets that our model was not trained on.

Input
Modality Used Dataset Precision Recall F1 Accuracy AP ROC-

AUC FPR FNR

OASIS [14] I2I ADE20K [57] 0.91 0.89 0.89 0.889 0.9839 0.9826 0.008 0.22

S2I-DetectoRS
[18] S2I Sketchy [58] 0.95 0.94 0.94 0.943 0.9998 0.9998 0.0 0.13

AttnGAN [19] T2I CUB-200-2011
[59] 0.98 0.98 0.98 0.978 0.9991 0.9988 0.0 0.04

5. Discussion and Limitations

This paper provides a comprehensive performance evaluation to assess the perfor-
mance of our method in GAN-generated images detection. We first evaluated several
classifiers that were fine-tuned and re-trained on our newly collected dataset, namely Real
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or Synthetic Images (RSI). The evaluation process was based on the testing set of RSI that
contained 12k images. Based on the evaluation metrics used in this study, EfficientNetB4
achieved the highest accuracy, with 100% on this particular dataset.

To show the efficiency of our model in detecting GAN-generated images, we further
conducted two different experiments. The first experiment was based on the input modality,
where we fine-tuned and re-trained EfficientNetB4 on two input modalities of the RSI
training set. Then, we tested the modality-based trained model on the third excluded
input modality of the RSI testing set. Our model achieved a superior performance in terms
of accuracy with 99%, 83%, and 95% when I2I, S2I, and T2I were excluded during the
training process, respectively. The reason behind the accuracy reduction in our model to
83% when the S2I input modality was excluded could be attributed to the background
improvement and face refinement steps used in sketch-to-image models [18]. While the
background improvement step works by replacing the synthetic background with a real,
high-quality background well-suited and aligned with the foregrounds in each image, the
face refinement step works by reconstructing and aligning faces. These post-processing
steps improve the synthetic images further. However, our model was still capable of
recognizing these images as generated images, even when our model was not trained on
the S2I modality, at 83% in terms of accuracy.

In the second experiment, different datasets were leveraged in the evaluation phase
to show the ability of our model in detecting GAN-generated images, even with other
datasets that our model was not trained on. Based on this experiment, it was clear that
our model was able to detect generated images from real ones with a high accuracy.
Thus, our model can be used in synthetic images detection, which could help in forensic
investigations, mitigating the misuse of AI image generation, the alleviation of cyberattacks,
and confronting criminal and malicious goals.

To demonstrate the discriminative region(s) of the image that highly influenced the
classifier to make a decision, several types of Class Activation Maps (CAM) were adopted.
As seen in Figure 6, our model mostly looked at the background of the generated im-
ages. This was because generators usually concentrate more on the foreground than the
background, leading to generating explicit or implicit artifacts during the generation pro-
cess of the background. However, in some cases, our model looked at some parts of the
foreground(s) in the generated images. This was because of anomalies and distortions
generated in the foreground(s) during the generation process.

Regardless of the high accuracy produced by our model, it sometimes failed to properly
classify images. A visualization of these failure cases is illustrated in Figure 9. As can be
seen from this figure, our model might fail in classifying authentic and genuine images as
real when the background or foreground(s) is blurry, when the image looks vintage and old,
when the image is of low quality, and/or when motion exists in the image. Furthermore,
our model could misclassify GAN-generated images as fake when fine-grained details
are represented, whether in the foreground(s) or background, and when the textures are
sharper, since GAN-generated images tend to have smoother textures.

To overcome these limitations, the aforementioned aspects of misclassifying the images
should be more integrated into the training dataset. Thus, our classifier can learn more
about these aspects and hence properly classify the images.
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6. Conclusions and Future Work

With the rapid and continuous evolution of AI-based image synthesis, generated im-
ages are coming much closer to being photo-realistic and deceiving human eyes. This may
improve media and content; however, it could pose challenges to security and authenticity.
Therefore, an automated tool to detect and localize AI-based generated images is necessary.
Hence, this paper proposed a machine model for recognizing AI-generated images from
real ones. A large dataset, namely, RSI, was compiled based on a variety of GAN-based
image synthesis tasks and models, and then a CNN model was well-trained on RSI. Exten-
sive experiments led to a method that is able to recognize GAN-generated images from
real ones with an outstanding accuracy, even with other datasets that our model was not
trained on. Thus, our detector can be used to detect synthetic images from genuine ones.
Hence, it can aid against malicious or criminal ends by helping the multimedia forensics
research community to confront threats that may emerge from the advancements in AI
image synthesis technologies. Our findings suggest that GAN-generated images contain
some common flaws, distortions, and artifacts that can be exploited to detect synthetic
images. These traces are not visible to human eyes; however, a well-trained model can
easily detect these flaws and classify the images as synthetic/fake images. Therefore,
researchers should pay more attention to these traces during the image generation process
to generate not only high-quality photo-realistic images, but also to conceal all fingerprints
and traces.

In the future, we plan to incorporate different image synthesis tasks with different
architectures and datasets, including facial and biological images, e.g., Western blot and
microscopic images. Moreover, we aim to integrate the frequency domain of the dataset
along with the spatial domain. Finally, to enhance our GAN-generated image detector, we
plan to include proper techniques and strategies to overcome possible adversarial attacks
added to the synthetic images, where tiny and imperceptible adversarial perturbation
added to generated images may fool the detector.
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