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Abstract
In this paper, we mainly consider the real interpolation spaces for variable Lebesgue
spaces defined by the decreasing rearrangement function and for the corresponding
martingale Hardy spaces. Let 0 < q ≤ ∞ and 0 < θ < 1. Our three main results are
the following:

(Lp(·)(Rn), L∞(Rn))θ,q = Lp(·)/(1−θ),q(R
n),

(Hs
p(·)(�), Hs∞(�))θ,q = Hs

p(·)/(1−θ),q(�)

and

(Hs
p(·)(�), BMO2(�))θ,q = Hs

p(·)/(1−θ),q(�),

where the variable exponent p(·) is a measurable function.
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1 Introduction

In the past three decades, as a generalization of the classical Lebesgue spaces L p(R
n),

the variable exponent Lebesgue spaces L p(·)(Rn) have attracted much attention. Here,
we refer the interested readers to the monographs [4, 5] for more information. Kempka
and Vybíral investigated the Lorentz spaces L p(·),q(Rn) and L p(·),q(·)(Rn) with vari-
able exponents in [19]. Recently, a new kind of variable Lebesgue spaces and variable
Lorentz spaces, which are defined by rearrangement functions, came into sight: Kok-
ilashvili et al. [20] introduced the variable Lebesgue spaces Lp(·)(Rn); Ephremidze et
al. [7] studied the variable Lorentz spaces Lp(·),q(·)(Rn).

The classicalmartingale theorywas systematically studied byGarsia [9], Long [21],
Weisz [27] andmany others.With the development of variable Lebesgue spaces in har-
monic analysis, variable martingale spaces have gained a steadily increasing interest.
Let (�,F , P) be a complete probability space and let p(·) be a measurable function
on �. Similar to L p(·)(Rn) and L p(·),q(Rn), we can define L p(·)(�) and L p(·),q(�)

(see the definitions of these spaces in Sect. 2.1). Aoyama [1] proved the boundedness
of the Doob maximal operator on L p(·)(�) as p(·)meets certain condition, which was
pointed out to be quite strong by Nakai and Sadasue [22]. Jiao et al. [17] introduced
variable martingale Hardy spaces associated with L p(·)(�). Very recently, Jiao et al.
provided a relatively complete research on variable Hardy–Lorentz spaces relative to
L p(·),q(�) in [14]. Now let p(·) be a variable exponent on [0, 1]. With the emergence
of variable Lebesgue spaces defined by the rearrangement function, Jiao et al. [16]
introduced new variable martingale Hardy spaces associated with Lp(·)(�) and Zeng
[28] investigated variable martingale Hardy–Lorentz spaces relative toLp(·),q(�) (for
the definitions of these spaces, see Sects. 2.2 and 2.3). The readers may consult the
articles [11, 15] for more results about variable martingale spaces.

The real interpolation of variable Lebesgue spaces defined on R
n has been studied

in several papers. In [19], the authors proved that the Lorentz spaces L p(·),q(Rn) serve
as the intermediate spaces between L p(·)(Rn) and L∞(Rn) via the real interpolation.
To be precise,

(L p(·)(Rn), L∞(Rn))θ,q = L p(·)/(1−θ),q(R
n), 0 < θ < 1, 0 < q ≤ ∞.

Very recently, the real interpolation between variable Hardy spaces Hp(·)(Rn) and
L∞(Rn) was investigated in [18, 29], where the authors obtained that, if p(·) satisfies
the log-Hölder continuous condition, then

(Hp(·)(Rn), L∞(Rn))θ,q = Hp(·)/(1−θ),q(R
n), 0 < θ < 1, 0 < q ≤ ∞.

This extends Fefferman’s corresponding interpolation results on the classical Hp(R
n)

spaces in [8]. The real interpolation for martingale Hardy spaces is also fruitful. Weisz
[27] firstly studied the real interpolation spaces of martingale Hardy spaces. Indeed,
he proved that

(Hs
p(�), Hs∞(�))θ,q = Hs

p/(1−θ),q(�), 0 < θ < 1, 0 < q ≤ ∞.
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Recently, Jiao et al. [13] extended Weisz’s result above to variable martingale setting,
that is, they achieved that

(Hs
p(·)(�), Hs∞(�))θ,q = Hs

p(·)/(1−θ),q(�), 0 < θ < 1, 0 < q ≤ ∞.

With the help of a new sharpmaximal function and a newBMO space,Weisz identified
the real interpolation spaces between martingale Hardy and BMO spaces in [26]. For
more results about the real interpolation of martingale Hardy spaces, we refer to [12,
23–25].

Based on the works of Jiao et al. [16] and Zeng [28], our main purpose of this
article is to establish the real interpolation spaces between variable martingale Hardy
spaces Hs

p(·)(�) defined in [16] and martingale BMO spaces BMO2(�). To this
end, we firstly identify the interpolation spaces between variable Lebesgue spaces
Lp(·)(Rn) and L∞(Rn) spaces as variable Lorentz Lp(·),q(Rn) spaces, and then via
formulating the real interpolation spaces between variable martingale Hardy spaces
and applying the sharpmaximal functions ofmartingales, we further prove that the real
interpolation spaces between variable martingale Hardy and BMO spaces are just the
variable martingale Hardy–Lorentz spaces. More precisely, we obtain the following
results:

(Lp(·)(Rn), L∞(Rn))θ,q = Lp(·)/(1−θ),q(R
n), 0 < θ < 1, 0 < q ≤ ∞,

(Hs
p(·)(�), Hs∞(�))θ,q = Hs

p(·)/(1−θ),q(�), 0 < θ < 1, 0 < q ≤ ∞

and

(Hs
p(·)(�), BMO2(�))θ,q = Hs

p(·)/(1−θ),q(�), 0 < θ < 1, 0 < q ≤ ∞;

see the definitions in Sect. 2.
This paper is organized as follows. In Sect. 2, we present the necessary background

and some basic facts that will be used later. Section 3 is devoted to establishing the
real interpolation between Lp(·)(Rn) spaces and L∞(Rn) spaces. In Sect. 4, we aim
at identifying the real interpolation spaces between variable martingale Hardy spaces.
Finally, we formulate the real interpolation between variable martingale Hardy spaces
and martingale BMO spaces in Sect. 5.

Now, let us make some conventions to end this section. In the whole article, we use
Z and N to denote the integer set and nonnegative integer set, respectively. We denote
by C an absolute positive constant that is independent of the main parameters but
whose value may differ from line to line, and denote by Cp(·) the constant depending
only on p(·). The symbol a � b stands for the inequality a ≤ Cb or a ≤ Cp(·)b. If
we write a ≈ b, it means that a � b � a. The characteristic function of a measurable
set A is written as χA.
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2 Preliminaries

In this section, we mainly provide some preparations for the follow-up work. We
divide this section into four subsections. Throughout the paper, we always assume that
(�,F , P) is a complete probability space. Let (R, μ) be a complete measure space.
In this section, (R, μ) could be (�,F , P) or the Euclidean space (Rn,m) (n ≥ 1),
where m denotes the Lebesgue measure. In Sect. 2.1, we give the definitions of vari-
able Lebesgue spaces L p(·)(R) and variable Lorentz spaces L p(·),q(R). In Sect. 2.2,
we introduce the variable Lebesgue spaces Lp(·)(R), the variable Lorentz spaces
Lp(·),q(R) and Lp(·),q(R), which are defined by rearrangement function, and give
some useful properties about these spaces. To our surprise, the variable Lorentz space
Lp(·),q(�) is equivalent to the classical Lorentz space L p(0),q(�) if p(·) satisfies
the locally log-Hölder condition. In Sect. 2.3, we introduce the variable martingale
Hardy spaces and variable martingale Hardy–Lorentz spaces associated with vari-
able Lebesgue spaces Lp(·)(�) and variable Lorentz spaces Lp(·),q(�), respectively.
Finally, we recall some basic notations and results about real interpolation in Sect. 2.4.

2.1 Variable Lebesgue spaces Lp(·)(R) and variable Lorentz spaces Lp(·),q(R)

The so-called variable exponent function (or simply variable exponent) on R is a
measurable function p(·) : R → (0,∞). Let P(R) be the collection of all variable
exponents on R. For a variable exponent p(·) ∈ P(R) and a set E ⊂ R, we denote

p−(E) := ess inf
x∈E p(x), p+(E) := ess sup

x∈E
p(x),

and

p− := p−(R), p+ := p+(R), p := min{1, p−}.

For simplicity, we adopt the following notation in the sequel:

B(R) = {p(·) ∈ P(R) : 0 < p− ≤ p+ < ∞}.

Moreover, we recall the definition of locally log-Hölder continuous condition for
the variable exponent p(·) defined on R

n .

Definition 2.1 ([4,Definition 2.2])Given p(·) ∈ P(Rn), we say that p(·) is locally log-
Hölder continuous if there exists a constantC > 0 such that for all x, y ∈ R

n, |x−y| <
1
2 ,

∣
∣p(x) − p(y)

∣
∣ ≤ C

− ln |x − y| . (2.1)

Remark 2.2 Let p(·) ∈ B(Rn). It was proved in [4, Proposition 2.3] that p(·) satisfies
the locally log-Hölder continuous condition is equivalent to 1

p(·) satisfies the locally
log-Hölder continuous condition.
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Now the definitions of variable Lebesgue spaces L p(·)(R) and variable Lorentz
spaces L p(·),q(R) are given as follows.

Definition 2.3 Given p(·) ∈ B(R), the variable Lebesgue space L p(·)(R) is defined
to be the collection of all measurable functions f on R such that ‖ f ‖L p(·)(R) < ∞,
where

‖ f ‖L p(·)(R) = inf

⎧

⎨

⎩
λ > 0 : ρ( f /λ) �

∫

R

( | f (x)|
λ

)p(x)

dμ ≤ 1

⎫

⎬

⎭
.

Definition 2.4 Let p(·) ∈ B(R) and 0 < q ≤ ∞. Then the variable Lorentz
space L p(·),q(R) is defined as the set of all measurable functions f on R such that
‖ f ‖L p(·),q (R) < ∞, where

‖ f ‖L p(·),q (R) =
{(∫ ∞

0 λq‖χ{x∈R:| f (x)|>λ}‖qL p(·)(R)
dλ
λ

)1/q
, if 0 < q < ∞;

supλ>0 λ‖χ{x∈R:| f (x)|>λ}‖L p(·)(R), if q = ∞.

If p(·) ≡ p (0 < p < ∞), then the variable Lebesgue space L p(·)(R) and variable
Lorentz space L p(·),q(R) reduce to the classical Lebesgue space L p(R) and Lorentz
space L p,q(R), respectively.

2.2 Variable Lebesgue spacesLp(·)(R) and variable Lorentz spacesLp(·),q(R),
Lp(·),q(R)

Let f be a measurable function defined on (R, μ). The distribution function of f is
given by

d f (s) := μ
{

x ∈ R : | f (x)| > s
}

, s ∈ [0,∞).

While the decreasing rearrangement function of f is defined as

f ∗(t) := inf
{

s ≥ 0 : d f (s) ≤ t
}

, t ∈ [0,∞).

In addition, as the maximal function of f ∗, the function f ∗∗ is defined by

f ∗∗(t) := 1

t

t∫

0

f ∗(s)ds, t > 0.

It is well known that f ∗∗ is non-negative, non-increasing and continuous on (0,∞).
Moreover,

f ∗(t) ≤ f ∗∗(t) and

(
∑

k∈Z
fk

)∗∗
(t) ≤

∑

k∈Z
f ∗∗
k (t), t > 0. (2.2)
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We refer to [2] for these properties.
Next, we use the rearrangement function to define respectively the variable

Lebesgue spaces Lp(·)(R) and variable Lorentz spaces Lp(·),q(R).

Definition 2.5 Let p(·) ∈ B([0,∞)). We define the variable Lebesgue spaceLp(·)(R)

as the collection of all measurable functions f on R such that

�p(·)( f ) :=
∞∫

0

f ∗(t)p(t)dt < ∞.

This is a quasi-Banach space with respect to the quasi-norm

‖ f ‖Lp(·)(R) = inf {λ > 0 : �( f /λ) ≤ 1} .

If R = �, then f ∗(t) = 0 for t ≥ 1, so it is enough to suppose that p(·) ∈ B([0, 1])
in this case. It is clear that ‖ f ‖Lp(·)(R) = ‖ f ∗‖L p(·)([0,∞)).

Definition 2.6 Let p(·) ∈ B([0,∞)) and 0 < q ≤ ∞. Then the variable Lorentz
space Lp(·),q(R) is defined as the set of all measurable functions f on R such that
‖ f ‖Lp(·),q (R) < ∞, where

‖ f ‖Lp(·),q (R) =

⎧

⎪⎨

⎪⎩

(∞∫

0
λq‖χ{x∈R:| f (x)|>λ}‖qLp(·)(R)

dλ
λ

)1/q

, if 0 < q < ∞;
supλ>0 λ‖χ{x∈R:| f (x)|>λ}‖Lp(·)(R), if q = ∞.

Obviously, when p(·) ≡ p (0 < p < ∞), the variable Lebesgue spaces Lp(·)(R)

and variable Lorentz spaces Lp(·),q(R) respectively go back to the classical Lebesgue
spaces L p(R) and Lorentz spaces L p,q(R).

The following two useful lemmas can be founded in [16] and [28], respectively.

Lemma 2.7 Given p(·) ∈ B([0,∞)) and f ∈ Lp(·)(R), we have

∥
∥| f |t∥∥Lp(·)(R)

= ‖ f ‖tLtp(·)(R), t > 0. (2.3)

Lemma 2.8 Let p(·) ∈ B([0,∞)) and 0 < q ≤ ∞. If f ∈ Lp(·),q(R), then

‖ f ‖Lp(·),q (R) ≈
⎧

⎨

⎩

(
∑

k∈Z 2kq‖χ{x∈R:| f (x)|>2k }‖qLp(·)(R)

) 1
q

, if 0 < q < ∞;
supk∈Z 2k‖χ{x∈R:| f (x)|>2k }‖Lp(·)(R), if q = ∞.

(2.4)

The following result tells us that ‖ · ‖Lp(·)(R) is a b-norm (0 < b < p) in some
sense if p(·) ∈ B([0,∞)) is locally log-Hölder continuous.
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Proposition 2.9 If p(·) ∈ B([0,∞)) satisfies the locally log-Hölder continuous
condition, fk ∈ Lp(·)(R) (k ∈ Z) and 0 < b < p, then

∥
∥
∥
∥
∥

∑

k∈Z
fk

∥
∥
∥
∥
∥

b

Lp(·)(R)

�
∑

k∈Z
‖ fk‖bLp(·)(R).

Proof According to (2.3) and (2.2), we find that

∥
∥
∥
∥
∥

∑

k∈Z
fk

∥
∥
∥
∥
∥

b

Lp(·)(R)

≤
∥
∥
∥
∥
∥

∑

k∈Z
| fk |

∥
∥
∥
∥
∥

b

Lp(·)(R)

=
∥
∥
∥
∥
∥
∥

(
∑

k∈Z
| fk |

)b
∥
∥
∥
∥
∥
∥Lp(·)/b(R)

≤
∥
∥
∥
∥
∥

∑

k∈Z
| fk |b

∥
∥
∥
∥
∥
Lp(·)/b(R)

=
∥
∥
∥
∥
∥

(
∑

k∈Z
| fk |b

)∗∥∥
∥
∥
∥

L p(·)/b([0,∞))

≤
∥
∥
∥
∥
∥

∑

k∈Z

(| fk |b
)∗∗

∥
∥
∥
∥
∥

L p(·)/b([0,∞))

.

Since p(·)/b > 1, ‖ · ‖L p(·)/b([0,∞)) is a norm. Moreover, it follows from [6, Theorem
3.1] that

∥
∥
(| fk |b

)∗∗∥
∥
L p(·)/b([0,∞))

�
∥
∥
(| fk |b

)∗∥
∥
L p(·)/b([0,∞))

.

Again, by (2.3), we deduce that

∥
∥
∥
∥
∥

∑

k∈Z
fk

∥
∥
∥
∥
∥

b

Lp(·)(R)

≤
∑

k∈Z

∥
∥
(| fk |b

)∗∗∥∥
L p(·)/b([0,∞))

�
∑

k∈Z

∥
∥
(| fk |b

)∗∥
∥
L p(·)/b([0,∞))

=
∑

k∈Z

∥
∥| fk |b

∥
∥Lp(·)/b(R)

=
∑

k∈Z
‖ fk‖bLp(·)(R).

The proof is complete. ��

Inspired by Ephremidze et al. [7], Zeng [28] gave another way to define the variable
Lorentz space Lp(·),q(�) as follows. Furthermore, the author in [28] showed that
Lp(·),q(�) = Lp(·),q(�) with equivalent quasi-norms if p(·) satisfies the locally log-
Hölder continuous condition.
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Definition 2.10 Let p(·) ∈ B([0, 1]) and 0 < q ≤ ∞. Then we define the variable
Lorentz space Lp(·),q(�) as the space of all measurable functions f on � such that
‖ f ‖Lp(·),q (�) < ∞, where

‖ f ‖Lp(·),q (�) =

⎧

⎪⎪⎨

⎪⎪⎩

(
1∫

0
t

q
p(t) f ∗(t)q dt

t

)1/q

=
∥
∥
∥t

1
p(t) f ∗(t)

∥
∥
∥
Lq ([0,1], dtt )

, if 0 < q < ∞;

sup0≤t≤1 t
1

p(t) f ∗(t), if q = ∞.

Lemma 2.11 [28, Proposition 2.15] Let p(·) ∈ B([0, 1]) satisfy the locally log-Hölder
continuous condition and let 0 < q ≤ ∞. If f ∈ Lp(·),q(�), then

‖ f ‖Lp(·),q (�) ≈ ‖ f ‖Lp(·),q (�),

that is, Lp(·),q(�) = Lp(·),q(�) with equivalent quasi-norms.

Based on this, we further prove that Lp(·),q(�) = L p(0),q(�) with equivalent
quasi-norms under the same condition as in the lemma above.

Proposition 2.12 Let p(·) ∈ B([0, 1]) satisfy the locally log-Hölder continuous
condition and 0 < q ≤ ∞. If f ∈ Lp(·),q(�), then

‖ f ‖Lp(·),q (�) ≈ ‖ f ‖L p(0),q (�),

namely, Lp(·),q(�) = L p(0),q(�) with equivalent quasi-norms.

Proof From Lemma 2.11, it suffices to show that ‖ f ‖Lp(·),q (�) ≈ ‖ f ‖L p(0),q (�). Since
p(·) ∈ B([0, 1]) satisfies the locally log-Hölder continuous condition, we assert that

t
1

p(t) ≈ t
1

p(0) , t ∈ [0, 1]. (2.5)

Indeed, if t ∈ [1/2, 1], then

2
− 1

p− ≤
(
1

2

) 1
p(t) ≤ t

1
p(t) ≤ t

1
p(t) − 1

p(0) ≤ t−
1

p(0) ≤ 2
1

p(0) ,

which means that (2.5) holds for t ∈ [1/2, 1].
By (2.1), it is easy to see that

∣
∣p(t) − p(0)

∣
∣ ≤ C

− ln t
, t ∈ [0, 1/2). (2.6)

Now let us consider the functions

g(t) = t
1

p(t) − 1
p(0) , t ∈ [0, 1/2)



Real interpolation of variable martingale... Page 9 of 28 47

and

h(t) =
(

1

p(t)
− 1

p(0)

)

ln t, t ∈ [0, 1/2).

Then g(t) = exp h(t), t ∈ [0, 1/2). From Remark 2.2 and (2.6), it is clear that h(t)
is bounded on [0, 1/2). Hence, there exist two positive constants C and C ′ such that
C ≤ g(t) ≤ C ′, t ∈ [0, 1/2). Thus, (2.5) holds. Consequently,

‖ f ‖Lp(·),q (�) =
∥
∥
∥t

1
p(t) f ∗(t)

∥
∥
∥
Lq

(

[0,1], dtt
)

≈
∥
∥
∥t

1
p(0) f ∗(t)

∥
∥
∥
Lq

(

[0,1], dtt
) = ‖ f ‖L p(0),q (�)

for 0 < q < ∞ and

‖ f ‖Lp(·),∞(�) = sup
0≤t≤1

t
1

p(t) f ∗(t) ≈ sup
0≤t≤1

t
1

p(0) f ∗(t) = ‖ f ‖L p(0),∞(�).

Now the proof is complete. ��

2.3 Variable martingale Hardy spaces

In this subsection, we give some basic notions and notations for martingales. We refer
the interested readers to monographs [9, 21, 27] for further study. Let (�,F , P) be a
complete probability space and (Fn)n≥0 be an increasing sequence of sub-σ -algebras
of F such that F = σ

(⋃

n≥0 Fn
)

. The expectation operator and the conditional
expectation operator relative to Fn are written as E and En , respectively. A sequence
f = ( fn)n≥0 of adapted and integrable functions is said to be a martingale with
respect to (Fn)n≥0 if En( fn+1) = fn for all n ≥ 0. For a martingale f = ( fn)n≥0, the
martingale differences are given by dn f = fn − fn−1 (with the convention d0 f = 0
and f−1 = 0). Let T be the set of all stopping times with respect to (Fn)n≥0. For a
martingale f = ( fn)n≥0 and a stopping time τ ∈ T , we denote the stoppedmartingale
by f τ = ( f τ

n )n≥0 = ( fn∧τ )n≥0, where a ∧ b = min(a, b). Let p(·) ∈ B
([0, 1]). If

fn ∈ Lp(·)(�) for every n ≥ 0, f is called an Lp(·)-martingale. In this case, we set

‖ f ‖Lp(·)(�) := sup
n≥0

‖ fn‖Lp(·)(�).

If ‖ f ‖Lp(·)(�) < ∞, f is called a bounded Lp(·)-martingale and denote it by f ∈
Lp(·)(�).

The maximal function, the square function and the conditional square function of
a martingale f = ( fn)n≥0 are defined respectively as follows:

Mm f = sup
n≤m

| fn|, M( f ) = sup
n≥0

| fn|;
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Sm( f ) =
(

m
∑

n=0

|dn f |2
) 1

2

, S( f ) =
( ∞
∑

n=0

|dn f |2
) 1

2

;

sm( f ) =
(

m
∑

n=0

En−1|dn f |2
) 1

2

, s( f ) =
( ∞
∑

n=0

En−1|dn f |2
) 1

2

.

Denote by 
 the set of all sequences (λn)n≥0 of non-negative, non-decreasing and
adapted functions with λ∞ = limn→∞ λn . Let p(·) ∈ B

([0, 1]) and let 0 < q ≤ ∞.
Denote variable exponent p(·) or (p(·), q) by θ . Define the variable martingale Hardy
spaces associated with the variable Lebesgue spaces Lθ (�) as follows:

Hs
θ (�) :=

{

f = ( fn)n≥0 : ‖ f ‖Hs
θ (�) = ∥

∥s( f )
∥
∥Lθ (�)

< ∞
}

;
HS

θ (�) :=
{

f = ( fn)n≥0 : ‖ f ‖HS
θ (�) = ∥

∥S( f )
∥
∥Lθ (�)

< ∞
}

;
HM

θ (�) :=
{

f = ( fn)n≥0 : ‖ f ‖HM
θ (�) = ∥

∥M( f )
∥
∥Lθ (�)

< ∞
}

;
Pθ (�) := {

f = ( fn)n≥0 : ∃(λn)n≥0 ∈ 
, s.t. | fn| ≤ λn−1, λ∞ ∈ Lθ (�)
}

,

‖ f ‖Pθ (�) = inf
(λn)n≥0∈


‖λ∞‖Lθ (�);
Qθ (�) := {

f = ( fn)n≥0 : ∃(λn)n≥0 ∈ 
, s.t. |Sn( f )| ≤ λn−1, λ∞ ∈ Lθ (�)
}

,

‖ f ‖Qθ (�) = inf
(λn)n≥0∈


‖λ∞‖Lθ (�).

In [16, Theorem 2.22], the authors obtained the Doob’s inequality for variable
martingale spaces Lp(·)(�).

Lemma 2.13 Let p(·) ∈ B([0, 1]) satisfy the locally log-Hölder continuous con-
dition. Then there exists a positive constant Cp(·) such that, for every martingale
f ∈ Lp(·)(�),

‖M f ‖Lp(·)(�) ≤ Cp(·)‖ f ‖Lp(·)(�), p− > 1.

To establish the interpolation theorems, we need the atomic characterizations of
variable martingale Hardy–Lorentz spaces. First, let us recall the definition of an
atom.

Definition 2.14 Let p(·) ∈ B([0, 1]). A measurable function a is said to be a
(1, p(·),∞)-atom (or (2, p(·),∞)-atom, (3, p(·),∞)-atom, respectively), if there
exists a stopping time τ ∈ T such that

(i) an := Ena = 0, if n ≤ τ ;
(ii)

∥
∥s(a)

∥
∥∞ (or

∥
∥S(a)

∥
∥∞,

∥
∥M(a)

∥
∥∞, respectively) ≤ ∥

∥χ{τ<∞}
∥
∥−1
Lp(·)(�)

.

Definition 2.15 Given p(·) ∈ B([0, 1]) and 0 < q ≤ ∞. Assume that i = 1, 2 or 3.
Denote by Hat,i,∞

p(·),q (�) the space of all martingales f = ( fn)n≥0 such that, for any
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n ≥ 0

fn =
∑

k∈Z
μkEna

k a.e., (2.7)

where (ak)k∈Z is a sequence of (i, p(·),∞)-atoms with respect to the stopping time
sequence (τk)k∈Z and μk = 3 · 2k‖χ{τk<∞}‖Lp(·)(�) (k ∈ Z). Endow this space with
the following quasi-norm

‖ f ‖Hat,i,∞
p(·),q (�)

:= inf ‖{μk}k∈Z‖�q ,

where the infimum is taken over all the decompositions of f by the form (2.7).

Lemma 2.16 [28, Theorem 3.3] Let p(·) ∈ B([0, 1]) and 0 < q ≤ ∞. Then

Hs
p(·),q(�) = Hat,1,∞

p(·),q (�)

with equivalent quasi-norms.

Lemma 2.17 [28, Theorem 3.4] Let p(·) ∈ B([0, 1]) and 0 < q ≤ ∞. Then

Qp(·),q(�) = Hat,2,∞
p(·),q (�), Pp(·),q(�) = Hat,3,∞

p(·),q (�),

with equivalent quasi-norms.

2.4 Real interpolation

In this subsection, we collect some basic concepts and results about real interpolation
theory. For the details, we refer to the monographs [2, 3]. Let (Y0,Y1) be a compatible
couple of quasi-normed spaces, namely, Y0 and Y1 can be embedded continuously into
a topological vector space Y . Define the sum of Y0 and Y1 as

Y0 + Y1 := {

f ∈ Y : f = f0 + f1, fi ∈ Yi , i = 0, 1
}

.

For any t ∈ (0,∞) and f ∈ Y0 + Y1, the Peetre K -functional is defined by

K (t, f ,Y0,Y1) := inf
f = f0+ f1

{‖ f0‖Y0 + t‖ f1‖Y1
}

.

For every 0 < θ < 1, 0 < q ≤ ∞, define the real interpolation space (Y0,Y1)θ,q as
the set of all functions f ∈ Y0 + Y1 such that

‖ f ‖(Y0,Y1)θ,q :=
{
(∫ ∞

0 [t−θK (t, f ,Y0,Y1)]q dt
t

) 1
q , q < ∞,

supt>0 t
−θK (t, f ,Y0,Y1), q = ∞,
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is finite. We adopt the conventions (Y0,Y1)0,q = Y0 and (Y0,Y1)1,q = Y1 for each
0 < q ≤ ∞. Now we give two basic properties of K and (Y0,Y1)θ,q , which may be
used in the sequel.

1. | f | ≤ |g| ⇒ K (t, f ,Y0,Y1) ≤ K (t, g,Y0,Y1);
2. Y0 ↪→ Ỹ0 ⇒ (Y0,Y1)θ,q ↪→ (Ỹ0,Y1)θ,q , where ↪→ denotes the continuous

embedding relationship.

We take the following reiteration lemma and Wolff’s lemma from [2].

Lemma 2.18 Suppose that (Y0,Y1) is a compatible couple of quasi-normed spaces.
Let 0 ≤ θ0, θ1 ≤ 1, 0 < q0, q1 ≤ ∞ and let Zi = (Y0,Y1)θi ,qi (i = 0, 1). If
θ0 �= θ1, 0 < η < 1 and 0 < q ≤ ∞, then

(Z0, Z1)η,q = (Y0,Y1)θ,q ,

where θ = (1−η)θ0 +ηθ1. In addition, if Y0 and Y1 are complete and 0 < θ0 = θ1 =
θ < 1, then

(

(Y0,Y1)θ,q0 , (Y0,Y1)θ,q1

)

η,q = (Y0,Y1)θ,q ,
1

q
= 1 − η

q0
+ η

q1
.

Lemma 2.19 Suppose that Y1,Y2,Y3 and Y4 are four quasi-normed spaces continu-
ously embedded in some quasi-normed space. Let 0 < λ,μ < 1 and 0 < p, q ≤ ∞.
If

Y2 = (Y1,Y3)λ,p, Y3 = (Y2,Y4)μ,q ,

then

Y2 = (Y1,Y4)η,p, Y3 = (Y1,Y4)θ,q ,

where

η = λμ

1 − λ + λμ
, θ = μ

1 − λ + λμ
.

3 Interpolation betweenLp(·)(Rn) and L∞(Rn)

Before we formulate the interpolation between variable martingale Hardy spaces, we
need to establish the real interpolation between Lp(·)(Rn) and L∞(Rn) spaces. The
main result of this section is stated as follows.

Theorem 3.1 Let p(·) ∈ B([0,∞)) be locally log-Hölder continuous and let 0 < θ <

1, 0 < q ≤ ∞. Put

1

p̃(·) = 1 − θ

p(·) .
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Then

(Lp(·)(Rn), L∞(Rn))θ,q = L p̃(·),q(Rn).

Remark 3.2 With only minor modifications to the following proof of Theorem 3.1, we
can easily find that Theorem 3.1 is also true for general measure spaces (R, μ).

To prove the theorem above, we need the following technical lemma.

Lemma 3.3 For any t ∈ (0,∞) and f ∈ Lp(·)(Rn) + L∞(Rn), we have

K (t, f ,Lp(·)(Rn), L∞(Rn)) ≥ t f∗(t),

where

f∗(t) = sup
{

λ > 0 : ‖χ{x∈Rn :| f (x)|≥λ}‖Lp(·)(Rn) ≥ t
}

.

Proof We show the above inequality in two steps.
Step 1: In this step, we show that

K (t, f ,Lp(·)(Rn), L∞(Rn)) ≥ K (t, f ∗, L p(·)([0,∞)), L∞([0,∞))), t > 0.
(3.1)

Let f = f0 + f1 with f0 ∈ Lp(·)(Rn), f1 ∈ L∞(Rn). Then we have f ∗
0 ∈

L p(·)([0,∞)) and

f ∗(s) ≤ f ∗
0 (s) + f ∗

1 (0) = f ∗
0 (s) + ‖ f1‖L∞(Rn), s > 0.

From the property of the K -functional, we obtain

K (t, f ∗, L p(·)([0,∞)), L∞([0,∞))) ≤ ‖ f ∗
0 ‖L p(·)([0,∞)) + t‖ f1‖L∞(Rn)

= ‖ f0‖Lp(·)(Rn) + t‖ f1‖L∞(Rn).

Taking the infimum over all decompositions f = f0 + f1 ∈ Lp(·)(Rn) + L∞(Rn),
we get (3.1).

Step 2: By Step 1, it is enough to prove that

K (t, f ∗, L p(·)([0,∞)), L∞([0,∞))) ≥ t f∗(t), t > 0. (3.2)

We can show easily (see also the proof of [19, Theorem 4.1]) that

K (t, f ∗, L p(·)([0,∞)), L∞([0,∞)))

= inf
μ>0

{∥
∥
(

f ∗ − μ
)

+
∥
∥
L p(·)([0,∞))

+ t
∥
∥min

(

f ∗, μ
)∥
∥
L∞([0,∞))

}

.
(3.3)
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First, we note that, for every g ∈ L p(·)([0,∞)),

‖g‖L p(·),∞([0,∞)) ≤ ‖g‖L p(·)([0,∞)).

In fact, Definition 2.4 gives that

‖g‖L p(·),∞([0,∞)) = sup
λ>0

λ‖χ{|g|>λ}‖L p(·)([0,∞)) ≤ sup
λ>0

λ
∥
∥|g|/λ∥∥L p(·)([0,∞))

= ‖g‖L p(·)([0,∞)).

Furthermore, by (3.3), one can conclude that

K (t, f ∗, L p(·)([0,∞)), L∞([0,∞)))

≥ inf
μ>0

{∥
∥
(

f ∗ − μ
)

+
∥
∥
L p(·),∞([0,∞))

+ t
∥
∥min

(

f ∗, μ
)∥
∥
L∞([0,∞))

}

= inf
μ>0

{

sup
λ>0

λ
∥
∥χ{ f ∗>λ+μ}

∥
∥
L p(·)([0,∞))

+ t
∥
∥min

(

f ∗, μ
)∥
∥
L∞([0,∞))

}

.

(3.4)

Obviously, f∗(t) ≤ ‖ f ‖L∞(Rn) for any t > 0. For a given t > 0, divide the interval
(0,∞) into the subintervals

(0, f∗(t)), [ f∗(t), ‖ f ‖L∞(Rn)], (‖ f ‖L∞(Rn),∞),

when f ∈ L∞(Rn) and into the subintervals

(0, f∗(t)), [ f∗(t),∞),

when f /∈ L∞(Rn). Further on, we estimate the last infimum of (3.4) on each
subinterval.

For the estimation on the first interval (0, f∗(t)), denote

h(λ) = ‖χ{x∈Rn :| f (x)|≥λ}‖Lp(·)(Rn).

Then we have

f∗(t) = sup
{

λ > 0 : h(λ) ≥ t
}

.

Moreover,

inf
0<μ< f∗(t)

{

sup
λ>0

λ
∥
∥χ{ f ∗>λ+μ}

∥
∥
L p(·)([0,∞))

+ t
∥
∥min

(

f ∗, μ
)∥
∥
L∞([0,∞))

}

= inf
0<μ< f∗(t)

{

sup
λ>0

λ
∥
∥χ{ f ∗>λ+μ}

∥
∥
L p(·)([0,∞))

+ tμ
}

.
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Note that { f ∗ > s} = [0, d f (s)); see [10, Proposition 1.4.5(3)]. Since χ∗
E = χ[0,m(E))

for any measurable set E ⊂ R
n , we have

∥
∥χ{ f >s}

∥
∥Lp(·)(Rn)

= ∥
∥χ[0,m({ f >s}))

∥
∥
L p(·)([0,∞))

= ∥
∥χ[0,d f (s))

∥
∥
L p(·)([0,∞))

= ∥
∥χ{ f ∗>s}

∥
∥
L p(·)([0,∞))

.

Thus

inf
0<μ< f∗(t)

{

sup
λ>0

λ
∥
∥χ{ f ∗>λ+μ}

∥
∥
L p(·)([0,∞))

+ t
∥
∥min

(

f ∗, μ
)∥
∥
L∞([0,∞))

}

= inf
0<μ< f∗(t)

{

sup
λ>0

λ
∥
∥χ{ f >λ+μ}

∥
∥Lp(·)(Rn)

+ tμ
}

.

Since h is left-continuous, we conclude that h( f∗(t)) ≥ t for all t > 0. Moreover, we
can take all 0 < λ < f∗(t) − μ as 0 < μ < f∗(t). Hence,

inf
0<μ< f∗(t)

{

sup
λ>0

λ
∥
∥χ{ f ∗>λ+μ}

∥
∥
L p(·)([0,∞))

+ t
∥
∥min

(

f ∗, μ
)∥
∥
L∞([0,∞))

}

≥ inf
0<μ< f∗(t)

{(

f∗(t) − μ
) ∥
∥χ{ f ≥ f∗(t)}

∥
∥Lp(·)(Rn)

+ tμ
}

= inf
0<μ< f∗(t)

{(

f∗(t) − μ
)

h( f∗(t)) + tμ
}

≥ inf
0<μ< f∗(t)

{(

f∗(t) − μ
)

t + tμ
}

= t f∗(t).

(3.5)

Now suppose that f /∈ L∞(Rn). Since limt→0+0 f ∗(t) = ∞, we estimate (3.4)
further by

inf
f∗(t)≤μ<∞

{

sup
λ>0

λ
∥
∥χ{ f ∗>λ+μ}

∥
∥
L p(·)([0,∞))

+ t
∥
∥min

(

f ∗, μ
)∥
∥
L∞([0,∞))

}

= inf
f∗(t)≤μ<∞

{

sup
λ>0

λ
∥
∥χ{ f ∗>λ+μ}

∥
∥
L p(·)([0,∞))

+ tμ
}

≥ inf
f∗(t)≤μ<∞{tμ} = t f∗(t). (3.6)

Now suppose that f ∈ L∞(Rn). The same estimation holds on the second interval
[ f∗(t), ‖ f ‖L∞([0,∞))] as in (3.6), because f ∗(0) = ‖ f ‖L∞(Rn) ≥ μ and f ∗ is right-
continuous.

Finally, on the last interval,

inf‖ f ‖L∞(Rn )<μ<∞

{

sup
λ>0

λ
∥
∥χ{ f ∗>λ+μ}

∥
∥
L p(·)([0,∞))

+ t
∥
∥min

(

f ∗, μ
)∥
∥
L∞([0,∞))

}

= inf‖ f ‖L∞(Rn )<μ<∞

{

t
∥
∥ f ∗∥∥

L∞([0,∞))

}
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= t‖ f ‖L∞(Rn) ≥ t f∗(t).

Combining this with (3.2), (3.4), (3.5) and (3.6), we finish the proof of Lemma 3.3. ��
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 Step 1: In this step, we shall prove

(Lp(·)(Rn), L∞(Rn))θ,q ↪→ L p̃(·),q(Rn).

For this, it suffices to show that

∞∫

0

λq‖χ{x∈Rn :| f (x)|>λ}‖qL p̃(·)(Rn)

dλ

λ

�
∞∫

0

t−θq K (t, f ,Lp(·)(Rn), L∞(Rn))q
dt

t
. (3.7)

By (2.3), we find that

∞∫

0

λq‖χ{x∈Rn :| f (x)|>λ}‖qL p̃(·)(Rn)

dλ

λ
≤

∞∫

0

λqh(λ)(1−θ)q dλ

λ

�
∑

k∈Z
2k(1−θ)q f∗(2k)q ,

where the last inequality is referred to [19, p. 948]. On the other hand, it follows from
Lemma 3.3 that

∞∫

0

t−θq K (t, f ,Lp(·)(Rn), L∞(Rn))q
dt

t
≥

∞∫

0

t−θq tq f∗(t)q
dt

t

�
∑

k∈Z
2k(1−θ)q f∗(2k)q ,

see also [19, p. 948] for the details. Thus (3.7) is valid.
Step 2: In this step, let us verify the reverse embedding, that is,

L p̃(·),q(Rn) ↪→ (Lp(·)(Rn), L∞(Rn))θ,q .

By (2.4), it is enough to check the following inequality:

∞∫

0

t−θq K (t, f ,Lp(·)(Rn), L∞(Rn))q
dt

t
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�
∑

k∈Z
2kq‖χ{x∈Rn :| f (x)|>2k }‖qL p̃(·)(Rn)

. (3.8)

To this end, we begin with a reformulation of K (t, f ,Lp(·)(Rn), L∞(Rn)). Similarly
to (3.3),

K (t, f ,Lp(·)(Rn), L∞(Rn))

= inf
f0+ f1

{‖ f0‖Lp(·)(Rn) + t‖ f1‖L∞(Rn)

}

= inf
μ>0

{∥
∥(| f | − μ)+

∥
∥Lp(·)(Rn)

+ t
∥
∥min(| f |, μ)

∥
∥
L∞(Rn)

}

≤ inf
μ>0

{∥
∥| f |χ{| f |>μ}

∥
∥Lp(·)(Rn)

+ tμ
}

= inf
μ>0

⎧

⎨

⎩

∥
∥
∥
∥
∥

∞
∑

i=0

| f |χ{2iμ<| f |≤2i+1μ}

∥
∥
∥
∥
∥
Lp(·)(Rn)

+ tμ

⎫

⎬

⎭

� inf
μ>0

⎧

⎨

⎩

∥
∥
∥
∥
∥

∞
∑

i=0

2iμχ{| f |>2iμ}

∥
∥
∥
∥
∥
Lp(·)(Rn)

+ tμ

⎫

⎬

⎭
.

By Proposition 2.9, we have

K (t, f ,Lp(·)(Rn), L∞(Rn))

� inf
μ>0

⎧

⎨

⎩

[ ∞
∑

i=0

(2iμ)b‖χ{| f |>2iμ}‖bLp(·)(Rn)

] 1
b

+ tμ

⎫

⎬

⎭

= inf
μ>0

⎧

⎨

⎩

[ ∞
∑

i=0

(2i )b‖χ{| f |>2iμ}‖bLp(·)(Rn)

] 1
b

μ + tμ

⎫

⎬

⎭

= inf
μ>0

⎧

⎨

⎩

[ ∞
∑

i=0

(2i )bg(2iμ)b

] 1
b

μ + tμ

⎫

⎬

⎭
,

where

0 < b < p and g(λ) = ‖χ{x∈Rn :| f (x)|>λ}‖Lp(·)(Rn), λ > 0.

For fixed t > 0, we choose μ = μ(t) by

μ(t) := inf

⎧

⎨

⎩
μ > 0 :

[ ∞
∑

i=0

(2i )bg(2iμ)b

] 1
b

≤ t

⎫

⎬

⎭
.
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Since g(·) is right-continuous, we have
[ ∞
∑

i=0

(2i )bg(2iμ(t))b
] 1

b

≤ t .

Thus,

K (t, f ,Lp(·)(Rn), L∞(Rn)) � tμ(t). (3.9)

Applying (3.9), one can deduce that

∞∫

0

t−θq K (t, f ,Lp(·)(Rn), L∞(Rn))q
dt

t

�
∞∫

0

t−θq tqμ(t)q
dt

t

�
∑

k∈Z
2kq

∫

{t :2k<μ(t)≤2k+1}
t (1−θ)q dt

t

≤
∑

k∈Z
2kq

∫

{t :2k<μ(t)}
t (1−θ)q dt

t
.

Since

[ ∞
∑

i=0

(2i )bg(2i+k)b

] 1
b

≥ t if μ(t) > 2k,

we conclude that

∞∫

0

t−θq K (t, f ,Lp(·)(Rn), L∞(Rn))q
dt

t

≤
∑

k∈Z
2kq

[∑∞
i=0(2

i )bg(2i+k)b
] 1
b

∫

0

t (1−θ)q dt

t

�
∑

k∈Z
2kq

[ ∞
∑

i=0

(2i )bg(2i+k)b

] (1−θ)q
b

.
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Set l = i + k. If (1 − θ)q ≤ b, then

∞∫

0

t−θq K (t, f ,Lp(·)(Rn), L∞(Rn))q
dt

t
�

∑

k∈Z
2kq

∞
∑

i=0

2i(1−θ)qg(2i+k)(1−θ)q

=
∑

l∈Z

∞
∑

i=0

2(l−i)q2i(1−θ)qg(2l)(1−θ)q

=
∑

l∈Z
2lq g(2l)(1−θ)q

∞
∑

i=0

2−iθq

�
∑

l∈Z
2lq g(2l)(1−θ)q .

If (1−θ)q > b, then we set r = (1−θ)q
b and choose δ ∈

(

0, θ
1−θ

)

. A similar approach

combined with Hölder’s inequality gives that

∞∫

0

t−θq K (t, f ,Lp(·)(Rn), L∞(Rn))q
dt

t

�
∑

k∈Z
2kq

[ ∞
∑

i=0

2−δib · 2(δ+1)ibg(2l)b
]r

≤
∑

k∈Z
2kq

( ∞
∑

i=0

2−δibr ′
) r

r ′ ∞
∑

i=0

2(δ+1)i(1−θ)qg(2l)(1−θ)q

�
∑

k∈Z
2kq

∞
∑

i=0

2(δ+1)i(1−θ)qg(2l)(1−θ)q

=
∑

l∈Z
2lq g(2l)(1−θ)q

∞
∑

i=0

2[δ(1−θ)−θ]iq

�
∑

l∈Z
2lq g(2l)(1−θ)q .

On the other hand, using (2.3), we find that

∑

k∈Z
2kq‖χ{x∈Rn :| f (x)|>2k }‖qL p̃(·)(Rn)

=
∑

k∈Z
2kq‖χ{x∈Rn :| f (x)|>2k }‖(1−θ)q

Lp(·)(Rn)

=
∑

k∈Z
2kqg(2k)(1−θ)q .

Hence, (3.8) holds. The proof is complete. ��
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4 Interpolation between variable martingale Hardy spaces

This section is devoted to identifying the interpolation spaces between variable
martingale Hardy spaces. The following theorem is the main result of this section.

Theorem 4.1 Let p(·) ∈ B([0, 1]) satisfy the locally log-Hölder continuous condition,
0 < θ < 1, 0 < q ≤ ∞. Put

1

p̃(·) = 1 − θ

p(·) . (4.1)

Then

(Hs
p(·)(�), Hs∞(�))θ,q = Hs

p̃(·),q(�),

(Pp(·)(�), P∞(�))θ,q = P p̃(·),q(�),

and

(Qp(·)(�), Q∞(�))θ,q = Q p̃(·),q(�).

Remark 4.2 According toProposition 2.12,we can see that the real interpolation spaces
between variable martingale HardyHs

p(·)(�) and Hs∞(�) are just the classical Hardy–
Lorentz martingale spaces Hs

p̃(0),q(�). The same holds for the other two types of
spaces.

To prove this theorem, we state the following lemma first.

Lemma 4.3 Let p(·) ∈ B([0, 1]) satisfy the locally log-Hölder continuous condition,
0 < θ < 1, 0 < q ≤ ∞ and p̃(·) be defined as (4.1). Then, for every f ∈ Hs

p̃(·),q(�)

and t > 0, we have

K (t, f ,Hs
p(·)(�), Hs∞(�)) � inf

λ>0

⎧

⎨

⎩

[ ∞
∑

i=0

2ib‖χ{s( f )>2iλ}‖bLp(·)(�)

] 1
b

λ + tλ

⎫

⎬

⎭
,

where 0 < b < p.

Proof Assume that f ∈ Hs
p̃(·),q(�). It follows from Lemma 2.16 that f can be

decomposed as

f =
∑

k∈Z
μka

k a.e.,

where (ak)k∈Z is a sequence of (1, p̃(·),∞)-atoms with respect to the stopping time
sequence (τk)k∈Z and μk = 3 · 2k‖χ{τk<∞}‖L p̃(·)(�) (k ∈ Z). Moreover, by the

definition of (1, p̃(·),∞)-atom ak , we find that,

μks(a
k) ≤ 3 · 2kχ{τk<∞}, k ∈ Z.
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For any λ > 0, there exists a k0 ∈ Z such that 2k0 < λ ≤ 2k0+1. Denote

g =
∞
∑

k=k0+1

μka
k and h =

k0∑

k=−∞
μka

k .

Then

K (t, f ,Hs
p(·)(�), Hs∞(�))

≤ inf
λ>0

{‖g‖Hs
p(·)(�) + t‖h‖Hs∞(�)

}

≤ inf
λ>0

⎧

⎪⎨

⎪⎩

∥
∥
∥
∥
∥
∥

∞
∑

k=k0+1

μks(a
k)

∥
∥
∥
∥
∥
∥Lp(·)(�)

+ t

∥
∥
∥
∥
∥

k0∑

k=−∞
μks(a

k)

∥
∥
∥
∥
∥

L∞(�)

⎫

⎪⎬

⎪⎭

� inf
λ>0

⎧

⎪⎨

⎪⎩

∥
∥
∥
∥
∥
∥

∞
∑

k=k0+1

2kχ{τk<∞}

∥
∥
∥
∥
∥
∥Lp(·)(�)

+ t
k0∑

k=−∞
2k

⎫

⎪⎬

⎪⎭

� inf
λ>0

⎧

⎪⎨

⎪⎩

∥
∥
∥
∥
∥
∥

∞
∑

k=k0+1

2kχ{τk<∞}

∥
∥
∥
∥
∥
∥Lp(·)(�)

+ t2k0

⎫

⎪⎬

⎪⎭

.

Note that

∞
∑

k=k0+1

2kχ{τk<∞} ≤ 2s( f )χ{s( f )>2k0+1}

(see [13, Lemma 3.5]). Therefore,

K (t, f ,Hs
p(·)(�), Hs∞(�))

� inf
λ>0

{∥
∥s( f )χ{s( f )>λ}

∥
∥Lp(·)(�)

+ tλ
}

= inf
λ>0

⎧

⎨

⎩

∥
∥
∥
∥
∥
s( f )

∞
∑

i=0

χ{2iλ<s( f )≤2i+1λ}

∥
∥
∥
∥
∥
Lp(·)(�)

+ tλ

⎫

⎬

⎭

� inf
λ>0

⎧

⎨

⎩

∥
∥
∥
∥
∥

∞
∑

i=0

2iλχ{2iλ<s( f )}

∥
∥
∥
∥
∥
Lp(·)(�)

+ tλ

⎫

⎬

⎭
.

We obtain by Proposition 2.9 that

K (t, f ,Hs
p(·)(�), Hs∞(�)) � inf

λ>0

⎧

⎨

⎩

[ ∞
∑

i=0

2ib‖χ{s( f )>2iλ}‖bLp(·)(�)

] 1
b

λ + tλ

⎫

⎬

⎭
,
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where 0 < b < p. This finishes the proof. ��

Remark 4.4 Similarly, by Lemma 2.17, one can deduce that

K (t, f ,Pp(·)(�), P∞(�)) � inf
λ>0

⎧

⎨

⎩

[ ∞
∑

i=0

2ib‖χ{λ∞>2iλ}‖bLp(·)(�)

] 1
b

λ + tλ

⎫

⎬

⎭
,

and

K (t, f ,Qp(·)(�), Q∞(�)) � inf
λ>0

⎧

⎨

⎩

[ ∞
∑

i=0

2ib‖χ{λ∞>2iλ}‖bLp(·)(�)

] 1
b

λ + tλ

⎫

⎬

⎭
,

where 0 < b < p and (λn) ∈ 
 with limn→∞ λn = λ∞.

Proof of Theorem 4.1 We are going to show the theorem for Hs
p(·)(�) only, since the

proofs for the other two spaces are similar. Firstly, let us prove

(Hs
p(·)(�), Hs∞(�))θ,q ↪→ Hs

p̃(·),q(�).

Consider the operator T : f → s( f ). Note that both T : Hs
p(·)(�) → Lp(·)(�)

and Hs∞(�) → L∞(�) are bounded. It follows from the interpolation theorem and
Theorem 3.1 that

T : (Hs
p(·)(�), Hs∞(�))θ,q → (Lp(·)(�), L∞(�))θ,q = L p̃(·),q(�)

is bounded as well, which means that

‖ f ‖Hs
p̃(·),q (�) = ‖s( f )‖L p̃(·),q (�) � ‖ f ‖(Hs

p(·)(�),Hs∞(�))θ,q .

Conversely, we show that

Hs
p̃(·),q(�) ↪→ (Hs

p(·)(�), Hs∞(�))θ,q ,

or, equivalently,

∞∫

0

t−θq K (t, f ,Hs
p(·)(�), Hs∞(�))q

dt

t

�
∑

k∈Z
2kq‖χ{x∈�:s( f )(x)>2k }‖qL p̃(·)(�)

. (4.2)
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Let f ∈ Hs
p̃(·),q(�). Applying Lemma 4.3, we have, for every t > 0,

K (t, f ,Hs
p(·)(�), Hs∞(�)) � inf

λ>0

⎧

⎨

⎩

[ ∞
∑

i=0

2ib‖χ{s( f )>2iλ}‖bLp(·)(�)

] 1
b

λ + tλ

⎫

⎬

⎭
,

where 0 < b < p. Denote g(λ) = ‖χ{s( f )>λ}‖Lp(·)(�). Then

K (t, f ,Hs
p(·)(�), Hs∞(�)) � inf

λ>0

⎧

⎨

⎩

[ ∞
∑

i=0

2ibg(2iλ)b

] 1
b

λ + tλ

⎫

⎬

⎭
.

Now an argument similar to Step 2 of the proof in Theorem 3.1 allows us to prove
(4.2) as well as the theorem. ��
Remark 4.5 If p(·) ≡ p (0 < p < ∞), then the theorem above reduces to [27,
Theorem 5.11].

5 Interpolation between variable martingale Hardy spaces and BMO
spaces

In this section,we aimat formulating the real interpolation betweenvariablemartingale
Hardy spaces and martingale BMO spaces. Recall that, for any r ∈ [1,∞), the space
BMOr (�) is defined to be the collection of all martingales f ∈ Lr (�) such that

‖ f ‖BMOr (�) := sup
n≥0

∥
∥
∥
∥

(

En
(| f − fn|r

))
1
r

∥
∥
∥
∥
L∞(�)

< ∞.

To be precise, we mainly obtain the following theorem.

Theorem 5.1 Let p(·) ∈ B([0, 1]) satisfy the locally log-Hölder continuous condition
and let 0 < q ≤ ∞, 0 < θ < 1 with θ + p− > 1. Then

(Hs
p(·)(�), BMO2(�))θ,q = Hs

p̃(·),q(�),

where p̃(·) was defined in (4.1).

Remark 5.2 According toProposition 2.12,we can see that the real interpolation spaces
between variable martingale Hardy Hs

p(·)(�) and BMO2(�) are just the classical
Hardy–Lorentz martingale spaces Hs

p̃(0),q(�).

In order to prove the theorem above, we also introduce the sharp maximal function
f sr and BMO space BMOs

r (�), which were developed by Weisz [27]. For any r > 0,
the sharp maximal function f sr of a martingale f = ( fn)n≥0 is defined by

f sr := sup
n≥0

[

En
(

s2( f ) − s2n ( f )
) r
2
] 1
r
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and BMOs
r (�) denotes the set of all martingales f = ( fn)n≥0 for which

‖ f ‖BMOs
r (�) := sup

n≥0

∥
∥
∥
∥

(

En
(

s2( f ) − s2n ( f )
) r
2
) 1

r

∥
∥
∥
∥
L∞(�)

< ∞.

Obviously, ‖ f ‖BMOs
r (�) = ‖ f sr ‖L∞(�). It was proved in [27, Theorem 2.50] that, for

every r > 0,

BMOs
r (�) = BMO2(�) (5.1)

with equivalent quasi-norms.
Before proving Theorem 5.1, we first give the following technical results.

Proposition 5.3 Let p(·) ∈ B([0, 1]) satisfy the locally log-Hölder continuous
condition and let r ∈ (0, p−). Then

‖ f sr ‖Lp(·)(�) � ‖ f ‖Hs
p(·)(�).

Proof Note that

f sr = sup
n≥0

[

En
(

s2( f ) − s2n ( f )
) r
2
] 1
r ≤

[

sup
n≥0

En
(

sr ( f )
)

] 1
r

=
(

M
(

sr ( f )
))

1
r
.

Since r ∈ (0, p−), it follows immediately from (2.3) and Lemma 2.13 that

‖ f sr ‖Lp(·)(�) ≤
∥
∥
∥
∥

(

M
(

sr ( f )
))

1
r

∥
∥
∥
∥Lp(·)(�)

=
∥
∥
∥M

(

sr ( f )
)
∥
∥
∥

1
r

Lp(·)/r (�)

�
∥
∥sr ( f )

∥
∥

1
r
Lp(·)/r (�)

= ‖ f ‖Hs
p(·)(�),

which completes the proof. ��
Proposition 5.4 Let p(·) ∈ B([0, 1]) satisfy the locally log-Hölder continuous condi-
tion and let q ∈ (0,∞]. If r ∈ [1,∞), then there exists a positive constant C such
that, for every martingale f ,

‖ f ‖Hs
p(·),q (�) ≤ C‖ f sr ‖Lp(·),q (�).

To prove this proposition, we need the following lemma.

Lemma 5.5 [23, Lemma 1] If r ∈ [1,∞), then, for any martingale f = ( fn)n≥0, we
have

s( f )∗(t) ≤ 4( f sr )∗(t/2) + s( f )∗(2t), t > 0.

Now we provide the proof of Proposition 5.4.
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Proof of Proposition 5.4 Since p(·) ∈ B([0, 1]) satisfies the locally log-Hölder con-
tinuous condition, by Proposition 2.12, we know that the quasi-norm ‖ · ‖Lp(·),q (�) is
equivalent to the quasi-norm ‖ · ‖L p(0),q (�). Hence, to prove Proposition 5.4, it suffices
to show that

‖s( f )‖L p(0),q (�) � ‖ f sr ‖L p(0),q (�). (5.2)

Recall that ‖s( f )‖L p,∞(�) � ‖ f sr ‖L p,∞(�) for any 0 < r , p < ∞ (see [24, Theorem
2.3]) and ‖s( f )‖L p,q (�) � ‖ f sr ‖L p,q (�) for any 0 < p < ∞, 1 ≤ q, r < ∞ (see [23,
Theorem 1]). It remains to verify (5.2) for the case 0 < q < 1. Applying Lemma 5.5,
we find that

‖s( f )‖qL p(0),q (�)
=

∞∫

0

[

t
1

p(0) − 1
q s( f )∗(t)

]q
dt

≤
∞∫

0

[

t
1

p(0) − 1
q
(

4( f sr )∗(t/2) + s( f )∗(2t)
)]q

dt

≤ 4q
∞∫

0

[

t
1

p(0) − 1
q ( f sr )∗(t/2)

]q
dt +

∞∫

0

[

t
1

p(0) − 1
q s( f )∗(2t)

]q
dt

= 4q · 2
q

p(0)

∞∫

0

[

t
1

p(0) − 1
q ( f sr )∗(t)

]q
dt +

(
1

2

) q
p(0)

∞∫

0

[

t
1

p(0) − 1
q s( f )∗(t)

]q
dt

= 4q · 2
q

p(0) ‖ f sr ‖qL p(0),q (�)
+

(
1

2

) q
p(0) ‖s( f )‖qL p(0),q (�)

,

which implies that (5.2) is valid for 0 < q < 1. Now the proof is complete. ��
Based on the results above, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1 Let us prove this theorem in two steps.
Step 1: In this step, we verify Theorem 5.1 for the case p− > 1. From (5.1) and

the boundedness of the Doob maximal operator on L∞(�), it follows that

‖ f ‖BMO2(�) � ‖ f ‖BMOs
1(�) = ‖ f s1 ‖L∞(�) ≤

∥
∥
∥
∥
∥
sup
n≥0

Ens( f )

∥
∥
∥
∥
∥
L∞(�)

� ‖s( f )‖L∞(�) = ‖ f ‖Hs∞(�).

Combining this with Theorem 4.1, we deduce that

‖ f ‖(Hs
p(·)(�),BMO2(�))θ,q � ‖ f ‖(Hs

p(·)(�),Hs∞(�))θ,q = ‖ f ‖Hs
p̃(·),q (�),

where p̃(·) was defined in (4.1).
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Conversely, for any r ∈ [1, p−), consider the operator T s
r : f → f sr . Obviously,

T s
r is sublinear. By (5.1), it is easy to see that T s

r : BMO2(�) → L∞(�) is bounded.
Since r < p−, we deduce from Proposition 5.3 that T s

r : Hs
p(·)(�) → Lp(·)(�) is

bounded as well. Applying Theorem 3.1, we find that

T s
r : (Hs

p(·)(�), BMO2(�))θ,q → (Lp(·)(�), L∞(�))θ,q = L p̃(·),q(�)

is bounded. In other words,

‖ f sr ‖L p̃(·),q (�) � ‖ f ‖(Hs
p(·)(�),BMO2(�))θ,q .

Since r ≥ 1, from this and Proposition 5.4, one can conclude that

‖ f ‖Hs
p̃(·),q (�) � ‖ f ‖(Hs

p(·)(�),BMO2(�))θ,q .

Consequently, (Hs
p(·)(�), BMO2(�))θ,q = Hs

p̃(·),q(�) for the case p− > 1, which
finishes the proof of Step 1.

Step 2: In this step, we show Theorem 5.1 for the case p− ≤ 1 with θ + p− > 1.
Since θ + p− > 1, there exists λ ∈ (0, 1) such that p− > 1− θλ. Let η ∈ (0, 1) with
η = λθ and let 0 < q, q̄ ≤ ∞. It then follows from Lemma 2.18 and Theorem 4.1
that

(Hs
p(·)(�),Hs

p(·)/(1−θ),q(�))λ,q̄ = (

Hs
p(·)(�), (Hs

p(·)(�), Hs∞(�))θ,q
)

λ,q̄

= (Hs
p(·)(�), Hs∞(�))η,q̄ = Hs

p(·)/(1−η),q̄(�).

Moreover, we can find a number β ∈ (1,∞) such that 1
p− < β < 1

1−η
, and choose

α ∈ (0, 1) such that 1− α = β(1− η). We know that 1− η < p−, thus β p− > 1. By
Step 1 of this proof, we have

Hs
p(·)/(1−η),q̄(�) = (Hs

β p(·)(�), BMO2(�))α,q̄ .

Take μ ∈ (0, 1) satisfying (1 − μ)(1 − α) = β(1 − θ). Using the preceding equality
and Lemma 2.18, we further get

(Hs
p(·)/(1−η),q̄(�), BMO2(�))μ,q = (

(Hs
β p(·)(�), BMO2(�))α,q̄ , BMO2(�)

)

μ,q

= (Hs
β p(·)(�), BMO2(�))(1−μ)α+μ,q

= Hs
β p(·)/(1−μ)(1−α),q(�) = Hs

p(·)/(1−θ),q(�).

Now, set

Y1 = Hs
p(·)(�), Y2 = Hs

p(·)/(1−η),q̄(�),

and

Y3 = Hs
p(·)/(1−θ),q(�), Y4 = BMO2(�).



Real interpolation of variable martingale... Page 27 of 28 47

From the argument above, it follows immediately that

Y2 = (Y1,Y3)λ,q̄ , and Y3 = (Y2,Y4)μ,q .

Therefore, applying Lemma 2.19, we obtain

Y3 = Hs
p(·)/(1−θ),q(�) = (Y1,Y4)θ,q = (Hs

p(·)(�), BMO2(�))θ,q ,

that is, (Hs
p(·)(�), BMO2(�))θ,q = Hs

p̃(·),q(�). Now the proof is complete. ��
Recall that the stochastic basis (Fn)n≥0 is said to be regular, if for every n ≥ 0 and

A ∈ Fn , there exists B ∈ Fn−1 such that

A ⊂ B and P(B) ≤ KP(A),

where K is a positive constant independent of n and the choices A and B; see [21].
From [16, Theorem 5.4], it follows that, if (Fn)n≥0 is regular and p(·) ∈ B([0, 1])
satisfies the locally log-Hölder continuous condition, then,

Hs
p(·)(�) = HS

p(·)(�) = HM
p(·)(�) = Pp(·)(�) = Qp(·)(�),

with equivalent quasi-norms. Furthermore, for any q ∈ (0,∞],

Hs
p(·),q(�) = HS

p(·),q(�) = HM
p(·),q(�) = Pp(·),q(�) = Qp(·),q(�),

with equivalent quasi-norms; see [28, Theorem 4.4]. A combination of these results
and Theorem 5.1 immediately yields the following corollary.

Corollary 5.6 Let p(·) ∈ B([0, 1]) satisfy the locally log-Hölder continuous condition
and let 0 < q ≤ ∞, 0 < θ < 1 with θ + p− > 1. If (Fn)n≥0 is regular, then

(X p(·)(�), BMO2(�))θ,q = X p̃(·),q(�),

where p̃(·) was defined in (4.1). Here X denotes one of the spacesHS,HM ,P andQ.

ApplyingLemma2.18 togetherwith Theorem5.1 andCorollary 5.6, one can further
obtain the real interpolation between variable martingale Hardy–Lorentz spaces and
martingale BMO spaces.
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