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Abstract

In this paper, we mainly consider the real interpolation spaces for variable Lebesgue
spaces defined by the decreasing rearrangement function and for the corresponding
martingale Hardy spaces. Let 0 < ¢ < oo and 0 < 8 < 1. Our three main results are
the following:

(Lp()(R"), Loo(®™))g.q = Lp()/(1-0).4(R"),
(M) D Hs(D)o.g = Hp(/1-0),4 (D)

and
(H;(.)(Q): BMO2(Q))6,q = H;(-)/(l—@),q (2),

where the variable exponent p(-) is a measurable function.
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1 Introduction

In the past three decades, as a generalization of the classical Lebesgue spaces L, (R"),
the variable exponent Lebesgue spaces L (. (R") have attracted much attention. Here,
we refer the interested readers to the monographs [4, 5] for more information. Kempka
and Vybiral investigated the Lorentz spaces L () 4(R") and L () 4¢)(R") with vari-
able exponents in [19]. Recently, a new kind of variable Lebesgue spaces and variable
Lorentz spaces, which are defined by rearrangement functions, came into sight: Kok-
ilashvili et al. [20] introduced the variable Lebesgue spaces £ (. (R"); Ephremidze et
al. [7] studied the variable Lorentz spaces £, q) (R").

The classical martingale theory was systematically studied by Garsia [9], Long [21],
Weisz [27] and many others. With the development of variable Lebesgue spaces in har-
monic analysis, variable martingale spaces have gained a steadily increasing interest.
Let (2, F, P) be a complete probability space and let p(-) be a measurable function
on . Similar to L,)(R") and L ()4 (R"), we can define L ,)(2) and L . 4(2)
(see the definitions of these spaces in Sect. 2.1). Aoyama [1] proved the boundedness
of the Doob maximal operator on L ,,(.)(£2) as p(-) meets certain condition, which was
pointed out to be quite strong by Nakai and Sadasue [22]. Jiao et al. [17] introduced
variable martingale Hardy spaces associated with L .)(£2). Very recently, Jiao et al.
provided a relatively complete research on variable Hardy—Lorentz spaces relative to
L (y,4(82) in [14]. Now let p(-) be a variable exponent on [0, 1]. With the emergence
of variable Lebesgue spaces defined by the rearrangement function, Jiao et al. [16]
introduced new variable martingale Hardy spaces associated with £ ,.)(2) and Zeng
[28] investigated variable martingale Hardy—Lorentz spaces relative to £ () 4 (€2) (for
the definitions of these spaces, see Sects. 2.2 and 2.3). The readers may consult the
articles [11, 15] for more results about variable martingale spaces.

The real interpolation of variable Lebesgue spaces defined on R” has been studied
in several papers. In [19], the authors proved that the Lorentz spaces L () 4 (R") serve
as the intermediate spaces between L ) (R") and L (R") via the real interpolation.
To be precise,

(Lp(.)(Rn), LOO(RH))g’q = Lp(.)/(l_g)’q(]Rn), 0<0<1,0<qg <o0.
Very recently, the real interpolation between variable Hardy spaces H,(.)(R") and

Lo (R™) was investigated in [18, 29], where the authors obtained that, if p(-) satisfies
the log-Holder continuous condition, then

(H,,(.)(Rn), LOO(Rn))g’q = Hp(.)/(l_g),q(Rn), 0<0 < 1, 0< q < o0.
This extends Fefferman’s corresponding interpolation results on the classical H,(IR")
spaces in [8]. The real interpolation for martingale Hardy spaces is also fruitful. Weisz
[27] firstly studied the real interpolation spaces of martingale Hardy spaces. Indeed,
he proved that

(H3(Q), H3, ()9, = H3 1 _g) (). 0<60<1,0<g < oc0.
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Recently, Jiao et al. [13] extended Weisz’s result above to variable martingale setting,
that is, they achieved that

(H;(‘)(Q)a H;o(Q))Gq = H[S,(.)/(l_g)’q(gz)a 0<0<1,0<gq <o0.

With the help of a new sharp maximal function and a new BMO space, Weisz identified
the real interpolation spaces between martingale Hardy and BMO spaces in [26]. For
more results about the real interpolation of martingale Hardy spaces, we refer to [12,
23-25].

Based on the works of Jiao et al. [16] and Zeng [28], our main purpose of this
article is to establish the real interpolation spaces between variable martingale Hardy
spaces H;(.)(Q) defined in [16] and martingale BMO spaces BM 0,(£2). To this
end, we firstly identify the interpolation spaces between variable Lebesgue spaces
Lpy(R™") and Lo (R") spaces as variable Lorentz £, ,(R") spaces, and then via
formulating the real interpolation spaces between variable martingale Hardy spaces
and applying the sharp maximal functions of martingales, we further prove that the real
interpolation spaces between variable martingale Hardy and BMO spaces are just the
variable martingale Hardy—Lorentz spaces. More precisely, we obtain the following
results:

(,Cp(.)(Rn), LOO(RH))Q,LI = ,Cp(.)/(l_@)’q(Rn), 0<6<1,0<qg < o0,
(H‘;(V)(Q), HgO(Q))g)q = H‘;(')/(l_g)’q(ﬂ), 0<f6<1,0<g <o

and
(H;(.)(Q), BM02(R2))g,4q = H;(l)/(l_e),q(ﬂ), 0<0<1,0<qg <o0;

see the definitions in Sect. 2.

This paper is organized as follows. In Sect. 2, we present the necessary background
and some basic facts that will be used later. Section 3 is devoted to establishing the
real interpolation between £,y (R") spaces and L., (R") spaces. In Sect. 4, we aim
at identifying the real interpolation spaces between variable martingale Hardy spaces.
Finally, we formulate the real interpolation between variable martingale Hardy spaces
and martingale BMO spaces in Sect. 5.

Now, let us make some conventions to end this section. In the whole article, we use
Z and N to denote the integer set and nonnegative integer set, respectively. We denote
by C an absolute positive constant that is independent of the main parameters but
whose value may differ from line to line, and denote by C (. the constant depending
only on p(-). The symbol a < b stands for the inequality a < Cb ora < Cpyb. If
we write a = b, it means that a < b < a. The characteristic function of a measurable
set A is written as x 4.

) Birkhauser
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2 Preliminaries

In this section, we mainly provide some preparations for the follow-up work. We
divide this section into four subsections. Throughout the paper, we always assume that
(2, F, P) is a complete probability space. Let (R, ;) be a complete measure space.
In this section, (R, u) could be (2, F, P) or the Euclidean space (R", m) (n > 1),
where m denotes the Lebesgue measure. In Sect. 2.1, we give the definitions of vari-
able Lebesgue spaces L ,(.)(R) and variable Lorentz spaces L (. 4(R). In Sect. 2.2,
we introduce the variable Lebesgue spaces L,()(R), the variable Lorentz spaces
Lp),q(R) and £, 4(R), which are defined by rearrangement function, and give
some useful properties about these spaces. To our surprise, the variable Lorentz space
Lpy,4(2) is equivalent to the classical Lorentz space L ,),4(2) if p(-) satisfies
the locally log-Holder condition. In Sect. 2.3, we introduce the variable martingale
Hardy spaces and variable martingale Hardy—Lorentz spaces associated with vari-
able Lebesgue spaces £ ,.(£2) and variable Lorentz spaces L.),4(2), respectively.
Finally, we recall some basic notations and results about real interpolation in Sect. 2.4.

2.1 Variable Lebesgue spaces L,(.)(R) and variable Lorentz spaces Lp.) q(R)

The so-called variable exponent function (or simply variable exponent) on R is a
measurable function p(-) : R — (0, 00). Let P(R) be the collection of all variable
exponents on R. For a variable exponent p(-) € P(R) and a set E C R, we denote

p—(E) :=ess iﬁr}f p(x), py(E):=-esssupp(x),
xe

xeE

and
p-=p-(R), pt+:=p4(R), p:=min{l, p_}.
For simplicity, we adopt the following notation in the sequel:
B(R) ={p() € P(R) : 0 < p_ < py < o0}

Moreover, we recall the definition of locally log-Holder continuous condition for
the variable exponent p(-) defined on R".

Definition 2.1 ([4, Definition 2.2]) Given p(-) € P(IR"), we say that p(-) is locally log-
Holder continuous if there exists a constant C > Qsuchthatforallx, y € R?, [x—y| <

s

=

C
p(x) = p(y)| £ ——. (2.1
—In|x — y|

Remark 2.2 Let p(-) € B(R"). It was proved in [4, Proposition 2.3] that p(-) satisfies
the locally log-Holder continuous condition is equivalent to % satisfies the locally
log-Holder continuous condition.
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Now the definitions of variable Lebesgue spaces L, )(R) and variable Lorentz
spaces L (.4 (R) are given as follows.

Definition 2.3 Given p(-) € B(R), the variable Lebesgue space L ,.)(R) is defined
to be the collection of all measurable functions f on R such that || f|| Ly (R) < 09,
where

px)
If(;)l) du <1

1Ly = inf A>O:p(f/x)é/<

R

Definition2.4 Let p(-) € B(R) and 0 < g < oo. Then the variable Lorentz
space L () 4(R) is defined as the set of all measurable functions f on R such that
I flL,,r) < o0, where

1/q
4 g _ q dk) . .
”f”Lp(.)‘q(R) _ { (f() A ||X{xeR‘|f(x)|>)»}”LP(‘)(R) n , lf 0< q < o0,
sup; -0 Al Xgxer: £ o)1= L0y (R)S if g = oo.

If p(-) = p (0 < p < 00), then the variable Lebesgue space L () (R) and variable
Lorentz space L. 4(R) reduce to the classical Lebesgue space L ,(R) and Lorentz
space L p 4(R), respectively.

2.2 Variable Lebesgue spaces Lp.) (R) and variable Lorentz spaces L,(.) 4(R),
Lp),qR)

Let f be a measurable function defined on (R, u). The distribution function of f is
given by

dr(s) = /L{x €ER:|f(x)] > s}, s € [0, 00).
While the decreasing rearrangement function of f is defined as
f5@) :=inf{s > 0:ds(s) <t}, 1€][0,00).

In addition, as the maximal function of f*, the function f** is defined by

t
@) = %/f*(s)ds, t>0.
0

It is well known that f** is non-negative, non-increasing and continuous on (0, 00).
Moreover,

fH@) < f*(@) and (Z fk) ) <Y @), t>0. 22)

keZ keZ

) Birkhauser
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We refer to [2] for these properties.
Next, we use the rearrangement function to define respectively the variable
Lebesgue spaces L, (.)(R) and variable Lorentz spaces L () 4 (R).

Definition 2.5 Let p(-) € B([0, 00)). We define the variable Lebesgue space L) (R)
as the collection of all measurable functions f on R such that

op(H(f) = / F*)PVdr < 0.
0

This is a quasi-Banach space with respect to the quasi-norm

I £z, @® =inf{A >0:0(f/2) = 1}.

If R = Q, then f*(tr) = 0fort > 1, so it is enough to suppose that p(-) € B([0, 1])
in this case. It is clear that || fllz,.,r) = I/ * Il 10.00))-

Definition 2.6 Let p(-) € B([0,o0)) and 0 < g < o0. Then the variable Lorentz
space Lp(),q(R) is defined as the set of all measurable functions f on R such that
I fllz,.,r) < 00, where

1/q

o
A : g dx ,if 0 < g < oo
17y, g = { (L 2R 1000, g
sup; o Ml Xixer: f)1= 23,0 (R) S if g =o0.

Obviously, when p(-) = p (0 < p < 00), the variable Lebesgue spaces L,(.)(R)
and variable Lorentz spaces £ (. 4 (R) respectively go back to the classical Lebesgue
spaces L, (R) and Lorentz spaces L 4(R).

The following two useful lemmas can be founded in [16] and [28], respectively.

Lemma 2.7 Given p(-) € B([0, 0)) and f € L,)(R), we have
11N g, 0 = 10z oy 1> 0 2.3)

Lemma 2.8 Let p(-) € B([0,00)) and 0 < g < oo. If f € L(),4(R), then

I f Nz, ) =
1
(ZkeZ 2kq||X{xeR:|f(x)|>2k}”%p(_)(m)q Jif 0 < g < o0 2.4)
SUP ez, 2k”X{xeR:|f(x)|>2k}||£p(-)(R)’ if g =o0.
The following result tells us that || - 2, (R is a b-norm (0 < b < p) in some

sense if p(-) € B([0, 00)) is locally log-Holder continuous.

W Birkhauser
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Proposition 2.9 If p(-) € B([0,00)) satisfies the locally log-Hélder continuous
condition, fi € Lp)(R) (k € Z)and0 < b < D, then

b

> ok

keZ

b
S I, k-

Lpo(R) kel

Proof According to (2.3) and (2.2), we find that

b b
D ok <D 1Al
keZo NL,omy kel Ly (R)
b
b
= (Dm) <[> 1Al
ke Lpym(R) kez Lpyp(R)
*
k
= (Dm”) = N (AN
keZ keZ

L,(/6(10,00)) L p(p(10,00))

Since p(-)/b > 1, | - 2, (10,00)) is a norm. Moreover, it follows from [6, Theorem
3.1] that

” (|fk |h)** ” L p(y/5(10,00)) S ” (|fk |h)* H Lp(y5([0,00))°

Again, by (2.3), we deduce that

b

>k

= Z (1Al HL,,(,)/;,([0,00))

keZ Lpy(R) keZ
S Z H(|fk|b)*”L,,<A),b([o,oo))
keZ
= 2 NPl iy = 2Nz 0
keZ keZ
The proof is complete. O

Inspired by Ephremidze et al. [7], Zeng [28] gave another way to define the variable
Lorentz space £, 4(£2) as follows. Furthermore, the author in [28] showed that
Lpy,q4(R2) = £p(,4(2) with equivalent quasi-norms if p(-) satisfies the locally log-
Holder continuous condition.

) Birkhauser
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Definition 2.10 Let p(-) € B([0, 1]) and 0 < g < oo. Then we define the variable
Lorentz space £,(.),4(£2) as the space of all measurable functions f on £ such that

I fllg,q @ < oo, where

1, 1/q
) -

1 .
SUPg<,<1 17O f¥(t), if g =o0.

tﬁf*(t)H

,if 0 <g < o0

IFlle,0,@ = Ly(10,11,%)

Lemma 2.11 [28, Proposition 2.15] Let p(-) € B([0, 1]) satisfy the locally log-Hélder
continuous condition and let 0 < q < 00. If f € L,(,4(K2), then

1A, @ 2 N1 lg,0 @
that is, Lp,4(2) = £5(.),4(2) with equivalent quasi-norms.

Based on this, we further prove that £, 4(2) = Lj(),4(2) with equivalent
quasi-norms under the same condition as in the lemma above.

Proposition 2.12 Let p(-) € B([0, 1]) satisfy the locally log-Hélder continuous
condition and 0 < q < o0. If f € L(),4(R), then

1Az, @ = N0, @
namely, L,(),4(2) = L p0),4(2) with equivalent quasi-norms.

Proof From Lemma 2.11, it suffices to show that 1fllg,0q@ = IfIL,q., - Since
p(-) € B([0, 1]) satisfies the locally log-Holder continuous condition, we assert that

1 1

(PO & PO

&

) t €[0,1]. 2.5)
Indeed, if ¢ € [1/2, 1], then

1 1 1 1

1
_L 1\ »® 1 1 L
27— < > <tP0 < PO PO < TP < 270

which means that (2.5) holds for ¢ € [1/2, 1].
By (2.1), it is easy to see that

C
PO = pO] = ——.  1e€l0.1/2). 2.6)

Now let us consider the functions

1

1
g(t)y =tr® 20 te[0,1/2)

W Birkhauser
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and

1 1
h()—(p(t) p(o))lnt, t €0, 1/2).

Then g(t) = exph(t), t € [0, 1/2). From Remark 2.2 and (2.6), it is clear that A(¢)
is bounded on [0, 1/2). Hence, there exist two positive constants C and C’ such that
C <g() <C’,t€[0,1/2). Thus, (2.5) holds. Consequently,

1
tr® *tH
f()L

1

p(0)

If g, @ = 0.11.4)

~
~

[01 ) = ”f”Lp(o),q(Q)

for0 < g < oo and

1
11,0000 = Sup “’(”f t) ~ sup 170 f5(1) = | flIL 0002

0<r<1 0<t<1

Now the proof is complete. O

2.3 Variable martingale Hardy spaces

In this subsection, we give some basic notions and notations for martingales. We refer
the interested readers to monographs [9, 21, 27] for further study. Let (2, F, IP) be a
complete probability space and (F},),>0 be an increasing sequence of sub-o -algebras
of F such that F = o( U,>o0 fn). The expectation operator and the conditional
expectation operator relative to 7, are written as E and E,, respectively. A sequence
f = (fu)n>o0 of adapted and integrable functions is said to be a martingale with
respect to (F)n>0 if B, (fu41) = fy foralln > 0. For a martingale f = ( f,,)n>0, the
martingale differences are given by d,, f = f,, — f,—1 (with the convention dy f = 0
and f_; = 0). Let 7 be the set of all stopping times with respect to (F),>0. For a
martingale f = (f,,)n>0 and a stopping time t € 7, we denote the stopped martingale
by 7 = (f7)n>0 = (fanr)n>0, Where a A b = min(a, b). Let p(-) € B([O, 1]). If
S € Lpy() forevery n > 0, f is called an L )-martingale. In this case, we set

I f 1z, @ ==supllfallz, -
n>0

If ||f||£p(‘)(9) < oo, f is called a bounded L,(.)-martingale and denote it by f €
Lp0)(Q).

The maximal function, the square function and the conditional square function of
a martingale f = (f,)n>0 are defined respectively as follows:

n<m

M f = sup | ful,  M(f) :Sug|fn|;

) Birkhauser
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1 1
m

Sm(f)z(ZIdnflz) : S(f)=<Z|dnf|2) ;

n=0 n=0

1
2

sm(f) = (ZJEnndan) . s = (ZEnndan)
n=0 n=0

Denote by I' the set of all sequences (1,),>0 of non-negative, non-decreasing and
adapted functions with Aog = limu—, o0 An. Let p(-) € B([0, 1]) and let 0 < g < o0.
Denote variable exponent p(-) or (p(-), g) by 8. Define the variable martingale Hardy
spaces associated with the variable Lebesgue spaces Ly (£2) as follows:

Hy (@ = { £ = Udazo : 1 /gy = [ 0 < 0}
HE@) = { £ = nzo 1/ lygsie = 15D 0y < o0}

H{;W(Q) = {f = (fulnz0: ”f”Hg’I(Q) = ”M(f) ”EQ(Q) < 00};

Po(Q) = {f = (fidn=0: I0Inz0 € T, .t | ful < Aot hoo € Lo(D},
1 f Py = o )inf - Ao ll 2o

n)n>0

Q@(Q) = {f = (fn)nZO . EIOw)nzO € Fs s.t. |Sn(f)| =< )\'}’l—lv )\oo € ['9(9)} s
lf g = o )inf o 1Aooll o (2)-

n)n>0

In [16, Theorem 2.22], the authors obtained the Doob’s inequality for variable
martingale spaces L, (£2).

Lemma 2.13 Let p(-) € B([0, 1]) satisfy the locally log-Hdélder continuous con-
dition. Then there exists a positive constant Cp(y such that, for every martingale

f e Ly (),
IMfllz,@ = Cpollflig, @, pP->1

To establish the interpolation theorems, we need the atomic characterizations of
variable martingale Hardy—Lorentz spaces. First, let us recall the definition of an
atom.

Definition 2.14 Let p(-) € B([0, 1]). A measurable function a is said to be a
(1, p(-), oo0)-atom (or (2, p(-), oo)-atom, (3, p(-), co0)-atom, respectively), if there
exists a stopping time t € 7 such that

() a, :=E,;a=0,ifn <rt;

(i) (@] (or [S@]|o. [M(@)]] . respectively) < | xie<oeil 2, (0

Definition 2.15 Given p(-) € B([0, 1]) and 0 < g < oo. Assume that i = 1,2 or 3.

Denote by HZT(’;’;O(Q) the space of all martingales f = (f;,)»>0 such that, for any

W Birkhauser
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n>0

fo=_ mBad ae, (2.7

keZ

where (a¥)rez is a sequence of (i, p(-), co)-atoms with respect to the stopping time
sequence (Tx)kez and pur = 3 - 2k||x{1k<oo} ||£p(l)(g2) (k € Z). Endow this space with
the following quasi-norm

”f”’H‘;)’(J)zo(Q) :=inf ”{M’k}kEZHZ,i’

where the infimum is taken over all the decompositions of f by the form (2.7).

Lemma 2.16 [28, Theorem 3.3] Let p(-) € B([0, 1]) and 0 < g < oco. Then

(Q) = Hyiy s (@)

)
p().q
with equivalent quasi-norms.

Lemma 2.17 [28, Theorem 3.4] Let p(-) € B([0, 1]) and 0 < g < oo. Then

)2, \3,
Qp(1,g() =Hy( (), Ppiy,q(R) = Hiy3 (),

with equivalent quasi-norms.

2.4 Real interpolation

In this subsection, we collect some basic concepts and results about real interpolation
theory. For the details, we refer to the monographs [2, 3]. Let (Yp, Y1) be a compatible

couple of quasi-normed spaces, namely, Yy and Y7 can be embedded continuously into
a topological vector space Y. Define the sum of Y and Y as

Yo+ Yi:={feY:f=fo+ fi.fieY,i=01}.
For any ¢ € (0, 00) and f € Yy + Y1, the Peetre K-functional is defined by

K@, f,Yy,Y)):= inf +t .
@, f, Yo, Y1) f=fo+f1{”f0”Y0 I filly, }

Forevery 0 < 6 < 1,0 < g < oo, define the real interpolation space (Yo, Y1)g,4 as
the set of all functions f € Yy + Y such that

1
(oK@, f. Yo, YDI9¥) 7 | g < oo,

1 f Nl v, Yo, ==
’ sup,.ot UK (t, f, Yo, Y1), q = 00,

) Birkhauser
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is finite. We adopt the conventions (Yo, Y1)o,q = Yo and (Yo, Y1)1,4 = Y1 for each
0 < g < oo. Now we give two basic properties of K and (Yp, ¥1)g,4, which may be
used in the sequel.

L [fl <lgl= K. f. Yo, Y1) < K(t, 8, Yo, Y1);
2. Yy = Yo = (Yo,Y1)e,q — (Yo,Y1)s,4, Where — denotes the continuous
embedding relationship.

We take the following reiteration lemma and Wolff’s lemma from [2].

Lemma 2.18 Suppose that (Yo, Y1) is a compatible couple of quasi-normed spaces.
Let 0 < 60p,01 < 1,0 < qo,q1 < oo and let Z; = (Yo,Y1)g,,q; (0 = 0, 1). If
0o #601,0<n<1and0 < g < 00, then

(Zo, Z1)y,q = (Y0, Y1) 4,

where 0 = (1 —n)6p + n01. In addition, if Yy and Y1 are complete and 0 < 6y = 61 =
0 < 1, then

1 1—n n
= o, Y)oqy, — = + —.

((YO, Y])G,q()v (YO’ Yl)e»ql)n,q q q0 q1

Lemma 2.19 Suppose that Y1, Y», Y3 and Y4 are four quasi-normed spaces continu-
ously embedded in some quasi-normed space. Let 0 < L, u < 1 and 0 < p,q < oo.

If
Yo =1, Y3)ap, Y= (Y2, Ya)uq,

then

Yo=01,Ya)yp, Y3=(1,Ya)ey,
where

Al 2z

=t =
1—A+Au [

3 Interpolation between L) (R") and L, (R")

Before we formulate the interpolation between variable martingale Hardy spaces, we
need to establish the real interpolation between £, (R") and L (R") spaces. The
main result of this section is stated as follows.

Theorem 3.1 Let p(-) € B([0, o0)) be locally log-Hélder continuous and let0 < 0 <
1,0 < g < oo. Put

11
pe)  pO)

W Birkhauser
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Then
(Lpy[R"), Loo(RM)a,q = L(,q(R").

Remark 3.2 With only minor modifications to the following proof of Theorem 3.1, we
can easily find that Theorem 3.1 is also true for general measure spaces (R, ().

To prove the theorem above, we need the following technical lemma.
Lemma3.3 Foranyt € (0,00) and f € L,)(R") + Loo(R"), we have
K, f,Lpy(R"), Lo(R")) > tfi (1),

where

fe@) =sup{r>0: I Xtxerr:) feoza1 12 R = t}.

Proof We show the above inequality in two steps.
Step 1: In this step, we show that

K(t9 fs ‘Cp()(Rn)v LOO(Rn)) 2 K(t’ f*’ LP()([Ov OO)), LOO([Ov OO)))v > 0
3.1

Let f = fo+ fi with fo € L, )R"), fi € Lo(R"). Then we have f; €
L ([0, 00)) and

[ = fo) + 70 = fg6) + I fil Loen, s> 0.

From the property of the K-functional, we obtain

K(t, f*, Lp()([0,00)), Loo ([0, 00))) < /5|, 10.00)) + I f1ll Lo )
=l follz,., @ + Il fill Lo rr)-
Taking the infimum over all decompositions f = fo + fi € Lp)(R") + Loo(R?),

we get (3.1).
Step 2: By Step 1, it is enough to prove that

We can show easily (see also the proof of [19, Theorem 4.1]) that

K(t, f*, Lp»(10, 00)), Loo([0, 00)))

, . (3.3)
- ;irlfo { (7= “)+”Lp<»>([0,0<>)> + 1] min (f% 1) ”quo,oo))}‘
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First, we note that, for every g € L ([0, 00)),

N811L 000 10,00) = N&IIL,)(10,00))-
In fact, Definition 2.4 gives that
18 1L ) c0(t0.000) = SUP AIX(lgl=2) 12 (10.00)) = SUP 2 l181/21 2, 0,000
= 11811L ¢, (10,00))-
Furthermore, by (3.3), one can conclude that
K(t, f*, Lpc)([0,00)), Loo([0, 00)))
z l‘};‘; I ” (- M)Jr”L,,(_)_OO([O,oo)) + t“ min (f*, w) “LOO(IO,OO))} (3.4)

= /i‘lfo { i'i%)”||X{f*>k+u} “LP(,)([O,oo)) + t” min (f*’ “) ”LOC([O,oo))]'

Obviously, fi(t) < || fllL @) forany ¢t > 0. For a given ¢ > 0, divide the interval
(0, 00) into the subintervals

O, f@), [f« @), 1 f l Loo@n 1 ULf | oo 00),

when f € Ly (R") and into the subintervals

O, fx(@®), [fx(), 00),
when f ¢ Lo (R™). Further on, we estimate the last infimum of (3.4) on each

subinterval.
For the estimation on the first interval (0, f.(¢)), denote

() = I Xixerm: | foi=atll 2, @) -
Then we have
[ () = sup{)» >0:h(A) > t}.

Moreover,

O<ljf<1§*(t) { i‘ipo)‘ Xt o2t ”Lp(‘)([o,oo)) + 1| min (£*, ) ||Loo([0,oo))}

—  inf {s e ; }
O<p<fu®) Al>lI()) s >A+M}”Lp(->([0s00))+ H

W Birkhauser



Real interpolation of variable martingale... Page 150f28 47

Note that { f* > s} = [0, ds(s)); see [10, Proposition 1.4.5(3)]. Since x5 = x{0,m(E))
for any measurable set E C R”, we have

Ixtr=sill 2, ey = lxomar=sml, ., qo.000

= HXlO ds(s)) ”L () ([0,00) HX{f >S}HLP()([0 00)) *

Thus

oo 30ttt L 000y + 0 (7% )]0 |

- 0<u12£‘*(t) { Sup)‘ H X{f>rumd HE p( (RM) + t,u}

Since 4 is left-continuous, we conclude that 2 ( fi(¢)) > ¢ for all + > 0. Moreover, we
cantake all 0 < A < fi(¥) —pnas0 < pu < fi(t). Hence,

0<;Eff*(t) { supk | Xtresaem ”L,,( J([0.00) T ¢ min (f*, ) “Loo( 0, oo))}

= Ml f*(){(f*(t)— 1) | xir=poonl () (R 'H'“}

= it (A0 - W) + 10} (335)

O<p<fult)
> inf {(f*(t)—u)ﬂrm]

O<p<ful(t)

= tf*(t)~

Now suppose that f ¢ Loo(R"?). Since lim;—.0+9 f*(t) = oo, we estimate (3.4)
further by

f*(z;2£<m { SUPKHX{f*>A+u} ”Ll,(.)([(),oo)) + 1| min (f*, n) ”Loc([O,oo))]

- f*(t)H<1£<oo { SuPA|| X{f*>)‘+”‘ “L,,()([O OO)) + [/,L}

= f*(t)lglft<oo{tu} = 1f+(1). (3.6)

Now suppose that f € Lo (R"). The same estimation holds on the second interval
[f«®), | f | Lo (10,00)] s in (3.6), because f*(0) = || fllLo®r) = w and f* is right-
continuous.

Finally, on the last interval,

inf { SUP)‘||X{f*>/\+u ”Lp()([O o) T t] min (£*, n) ||Loo( 0, oo))}

1l oo @ny<m<oo Ly
7 oo |

inf {
1 f 1l oo Ry < <00
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=t fllLeo@n) = 1fi(D).
Combining this with (3.2), (3.4), (3.5) and (3.6), we finish the proof of Lemma 3.3. O
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 Step 1: In this step, we shall prove
(Lpoy(R™M), Loo(R")a,qg = Lj(y,q(R").
For this, it suffices to show that

o]

. . dx
A ”X{xeR”:\f(x)|>A}”L‘,ﬁ(A)(Rn)T
0
o0

dr
S f MK f Ly (R, Loo (R 3.7
0
By (2.3), we find that

o8]

o0
da dx
q . q q (1-6)q
fk I X {xer :\f(x)|>x}||[;ﬁ(l)(w) . < /)» h(})) ;

0 0

<) 2@y,

keZ

where the last inequality is referred to [19, p. 948]. On the other hand, it follows from
Lemma 3.3 that

o0 o0
/fe"K(t,f,£p<.>(R"),Loo(R”))qi—t > /fe’ft‘ff*(t)‘f?
0 0
z Y 2= p .My,
keZ

see also [19, p. 948] for the details. Thus (3.7) is valid.
Step 2: In this step, let us verify the reverse embedding, that is,

L50).qR") = (L) ([R"), Loo(R™))g,q-

By (2.4), it is enough to check the following inequality:

o]

/t_qu(t,f,ﬁp(.)(R"),Loo(Rn))q%
0

W Birkhauser
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k
< 22 M pwerm g2 I oy 3-8)
keZ

To this end, we begin with a reformulation of K (¢, f, L,y (R"), Lo (R")). Similarly
to (3.3),

K(tv f» ‘Cp() (Rn)v LOO(RH))
{1 foll 2,y ey + 21 fill Log Ry |

inf
Jfot+fi
= inf {051 =0+ g, oy + 0 minCA 1100,

=< b=l o + 1)

o
= inf 1121 Xt fr=2 M
i=0 Ly R
o0
S inf 41> 2 g =0 i
" i=0 L) (R

By Proposition 2.9, we have

K, f, Lp)(R"), Loo(R™))

- 1
< inf 2l )b Y /A t
S Inf) g( WX 152l @y | T IR

- oo %

o ib ) b

= jnf ;(2) ”X{|f>2'll«}||ﬁp(.)(R"):| nt
L=

1

[ oo b

_inf 2136 4 (21 )P il

inf, 2&( )’g( u)} 1+t
L=

where
0<b<p and g) = lIxXxerr:| r) =11l L, @), A >0.
For fixed ¢ > 0, we choose 1 = u(t) by
1
00 b
() = inf 40> 0 [Z(Z')"g(zlm"} <t
i=0
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Since g(-) is right-continuous, we have
1
o ‘ b
[Dz’)bg(z’u(r))b} =3
i=0
Thus,
K(t, f, Lp)(R"), Loo(R™)) S tpa(2). (3.9)

Applying (3.9), one can deduce that

oo

/‘fqu(t, £y LpoyRY), Loo(Rn))q(i_t

0

dr
S | M=

\8

2k (g 4
t

N
Mo

~
N

8 2k apn <2k

30k / [-6)g 4t
keZ

t
{r:2F<p(1)}

A

Since

i=0

we conclude that

o0

/t_aqK(t, £y LpoyRY), Loo(Rn))q%

0
. . 1
[Z’C_)io(zt)bg(21+k)h] b
<ok / (- 4

keZ 0 f
§ Z 2kq |:Z(2i)bg(2i+k)b:|
keZ i=0

W Birkhauser
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Setl =i+ k.If (1 —60)g < b, then

o0
/ qu(t f E,,()(Rn) LOO(RI’L))L] < szq Zzi(lfe)qg(zH»k)(lfﬂ)q
0 keZ i=0
o
= 33 2010 g o1y 1=0)a
leZ i=0
— Zzlqg(zl)(l 9)q ZZ l@q
leZ
< Zz’qg@’)“*’)q.
leZ

If(1—60)q > b,thenwe setr = a- g)q and choose § € (O ) A similar approach
combined with Holder’s inequality glves that

o0

/ 709K (1, f, LyR"), Loo(Rn))q%

o0 r

keZ i=0

o / o0
< szq (Zz 5!17}”) Z2(5+1)i(1—0)qg(2l)(1—9)q

keZ i=0

=

5 Z 2kq Z 2(5+1)l(179)qg(21)(179)q
keZ i=0

=Y 2g2h - 9)q22[8(1 6)—0li

leZ

S Zz’qg@’)“*@)‘f.

leZ

On the other hand, using (2.3), we find that

k q Nk (1-0)q
> 2Nt eerrg o2 1 ey = D 2 X e peoi=2 I i

keZ keZ
_ Z 2kd g (2k)(1=0)a.
keZ
Hence, (3.8) holds. The proof is complete. O
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4 Interpolation between variable martingale Hardy spaces

This section is devoted to identifying the interpolation spaces between variable
martingale Hardy spaces. The following theorem is the main result of this section.

Theorem 4.1 Let p(-) € B([0, 1]) satisfy the locally log-Hélder continuous condition,
0<6<1,0<qg <oc. Put

1 1-6

= —. 4.1
p¢)  pO) @D
Then
(H (R, Hiy()p.g = M, (),
(Pp)(2), Po(£2))0.g = Pp(),q(52),
and

(2p(1(€2), Qoo())e,q = Ljj(),q(€2)-

Remark 4.2 According to Proposition 2.12, we can see that the real interpolation spaces
between variable martingale Hardy H‘;, ((€2) and H{_(L2) are just the classical Hardy—

Lorentz martingale spaces H E(O) q(Q). The same holds for the other two types of
spaces.

To prove this theorem, we state the following lemma first.
Lemma4.3 Let p(-) € B([0, 1]) satisfy the locally log-Hdlder continuous condition,
0<60<1,0<gq <ooand p(-) be defined as (4.1). Then, for every f € H? (RQ)

P().q
andt > 0, we have

1

oo b
. ib b
K(t, f. My, (), H () < inf [22 le{s(f>>2fx}||£p(.>(sz>} A+tAy,
i=0

where 0 < b < p-

Proof Assume that f € H%(.) q(Q). It follows from Lemma 2.16 that f can be
decomposed as

f= Zukak a.e.,

keZ

where (a¥)reyz is a sequence of (1, p(-), oo)-atoms with respect to the stopping time
sequence (Ti)kez and wp = 3 - 2k||X{rk<00}||£,;<-)(Q) (k € Z). Moreover, by the
definition of (1, p(-), co)-atom a*, we find that,

,uks(ak) < 3. sz{Tk<OO}7 keZ.

W Birkhauser
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For any A > 0, there exists a kg € Z such that 2k < 3 < 2kotl Denote
00 ko
g= Z pra* and h = Z pra*.
k=ko+1 k=—00
Then

Kt . H 0 (Q), H3 ()

< ,{2{) {||g||H§,(,)(sz) + 1Al g )}

ko
> ms(a®)

k=—o00

oo
< inf k t
< Inf Z mis(a”) +
k=ko+1

[,p(.)(Q) Loo(2)

00 ko
< inf 2k t 2k
Sinf 4l D0 2imeo) +r )
k=ko+1 Lp(.>(§2) k=—o00

0
. k k
< )I»I;f(‘) } 2% Xz <00} +12%0
k=ko+1

Ly ()
Note that
o
Z sz{rk<oo} = zs(f)X{s(f)>2ko+1}
k=ko+1
(see [13, Lemma 3.5]). Therefore,
K(t, f.HS ) (), H3 ()
S inf { Is (Y xtsr>) ||£p(.)(9) + tk}

o
s(f) Z X(2ir<s(f)=<2i+12)
i=0

= inf +tA
A>0

Lpy ()

< inf

+ A
A>0

Lp)(Q)

Oo .
Z 2" A Xir<s()
i=0

We obtain by Proposition 2.9 that

1
b

o0
. ib . b
K(t. f. Hy (), H(Q) < inf [X&z ||x{s<f)>m||EP(A)(Q>} Ay,
1=

) Birkhauser
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where 0 < b < p. This finishes the proof. O

Remark 4.4 Similarly, by Lemma 2.17, one can deduce that

1

oo b
. ib ) b
Kt f. Ppy(Q). Pool(Q)) < inf [Zoz ||X{xm>2tx}||gp(_)(g):| AIAg,
1=

and

1

o0 b
. ib . b
K(t. f. Qp()(R). Qoo()) < inf [2(;2 ||x{xoo>2m}||%(g)} rHIAy,
1=l

where 0 < b < gand (Ap) € T withlimy, o0 Ay = Ao

Proof of Theorem 4.1 We are going to show the theorem for H‘; (-, (§2) only, since the
proofs for the other two spaces are similar. Firstly, let us prove

(HS()(Q) (Q))Hq — H*()q(Q)
Consider the operator 7 : f — s(f). Note that both T : H‘;(,)(Q) — Ly ()

and H (2) — Loo(R2) are bounded. It follows from the interpolation theorem and
Theorem 3.1 that

T+ (H (R, H3o (e, = (Lo (R Loo(@)p.g = L0 (R)
is bounded as well, which means that

||f||H~;;(.)’q(Q) = ls(Nligs @ S ||f||(H‘()(s2) HE(2))0.4 -
Conversely, we show that

Hi(,4 () = (H (), H3, ()6,

or, equivalently,

e ¢]

[k @, @

0

k
S ZZ q||X{xe§2:s(f)(x)>2k}”%i)(.)(g)' (4.2)
keZ

W Birkhauser
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Let f € H%(,) q(Q). Applying Lemma 4.3, we have, for every ¢ > 0,

1

00 b
; ; ~ ib b
K(t, f,H;(‘)(Q),HgO(Q))gigfo [X&zl ||X{s(f)>2'k}||£p(.>(s2):| A+ihg,
1=

where 0 < b < p. Denote g(1) = ||X{s(f)>x}||£,,(.>(sz)- Then

1
00 b
K(t, f. My, (R), H () S inf [Zzl’bgm)”} A1k
i=0

Now an argument similar to Step 2 of the proof in Theorem 3.1 allows us to prove
(4.2) as well as the theorem. O

Remark 4.5 If p(-) = p (0 < p < o0), then the theorem above reduces to [27,
Theorem 5.11].

5 Interpolation between variable martingale Hardy spaces and BMO
spaces

In this section, we aim at formulating the real interpolation between variable martingale
Hardy spaces and martingale BMO spaces. Recall that, for any » € [1, 00), the space
BM O, (R2) is defined to be the collection of all martingales f € L,(€2) such that

< Q.

‘(En(v ~ )’

| fllBmo, (@) := sup
n=0 Loo(®)

To be precise, we mainly obtain the following theorem.

Theorem 5.1 Let p(-) € B([0, 1]) satisfy the locally log-Hdlder continuous condition
andlet) <q <00,0 <0 < 1withd + p_ > 1. Then

(H2 (), BM02(Q))o.4 = Hi(, ().

where p(-) was defined in (4.1).

Remark 5.2 According to Proposition 2.12, we can see that the real interpolation spaces
between variable martingale Hardy 'H‘;(V)(Q) and BM O,(2) are just the classical
Hardy—Lorentz martingale spaces H f} ©0).q ().

In order to prove the theorem above, we also introduce the sharp maximal function
/¥ and BMO space BM O; (R2), which were developed by Weisz [27]. For any r > 0,
the sharp maximal function f;’ of a martingale f = (f;,),>0 is defined by

~ =

£ 1= sup [Ba (209 = 52(9) ]

n>0

) Birkhauser
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and BM O} (£2) denotes the set of all martingales f = (f;;),>0 for which

< OQ.
Loo(€2)

I fllBMmos () = sup

n>0

‘ (B2 = 52))’

Obviously, || fllmos @) = IIf; |L (- It was proved in [27, Theorem 2.50] that, for
every r > 0,

BMO}(Q) = BM0,(%) 5.1)

with equivalent quasi-norms.
Before proving Theorem 5.1, we first give the following technical results.

Proposition 5.3 Let p(-) € B([0, 1]) satisfy the locally log-Holder continuous
condition and letr € (0, p_). Then

15,0 @ S ||f||H5()(Q)

Proof Note that

5= sup[ ( - s,%(f))%]% < |:sup]En(sr(f)):|, = (M(s’(f)))%.

n>0 n>0

Since r € (0, p_), it follows immediately from (2.3) and Lemma 2.13 that

(40" (1))

1520 = =M
r p() C ()(Q) p()/r(Q)
< ”S (f)”ﬁ)()/r(g) ”f“'Hp()(Q)a
which completes the proof. O

Proposition 5.4 Let p(-) € B([0, 1]) satisfy the locally log-Hdlder continuous condi-
tion and let g € (0, ). If r € [1, 00), then there exists a positive constant C such
that, for every martingale f,

||f||Hf() @ = ClIf Nz, @-

To prove this proposition, we need the following lemma.

Lemma5.5 [23, Lemma 1] Ifr € [1, 00), then, for any martingale f = (fu)n>0, we
have

s(OT@) =4/ +s()*2n), t>0.

Now we provide the proof of Proposition 5.4.

W Birkhauser
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Proof of Proposition 5.4 Since p(-) € B([0, 1]) satisfies the locally log-Holder con-
tinuous condition, by Proposition 2.12, we know that the quasi-norm || - || Lprq(Q) is
equivalent to the quasi-norm || - ||, , (2)- Hence, to prove Proposition 5.4, it suffices
to show that

”S(f)”Lp(())q(Q) ~ ”fr ”Lp(())q(Q) (52)

Recall that [|s(f)lL, o) S 171z, @ forany 0 < r, p < oo (see [24, Theorem
23] and [Is(H)lL,, @ < I f7NL, @ forany O < p < oo, 1 < ¢q,r < oo (see [23,
Theorem 1]). It remains to verify (5.2) for the case 0 < ¢ < 1. Applying Lemma 5.5,
we find that

o0

1
ISCOIL 00 = / [P0 w50y 0] ar

1

/ [t~ i ( (U /2 + s en)|'dr
0

IA

]

4‘1/ tl’(()) q(f) (t/2) dt+ tP(l(’)_és(f)*(Zt)]th

0
o0 q o0
|1 70 11 q
=44 . p<0)/ tp(f» q(frf)*(;)] dt+< ) /tf’“)) ‘IS(f)*(t)] dr
0 0
_4q

_4q 2])(0) 1 PO
LT o+ (5)" 5O @

which implies that (5.2) is valid for 0 < g < 1. Now the proof is complete. O
Based on the results above, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1 Let us prove this theorem in two steps.
Step 1: In this step, we verify Theorem 5.1 for the case p_ > 1. From (5.1) and
the boundedness of the Doob maximal operator on L (£2), it follows that

sup E, s (f)

n>0

I flBmor S I lBmoy@) = 17 Lo =

Loo(2)
SISO zs = I1f I as, @)-

Combining this with Theorem 4.1, we deduce that
I Nrs, ., @.8M 03 @005 S I NS @, 13 @00 = W2 @5
where p(-) was defined in (4.1).
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Conversely, for any r € [1, p_), consider the operator 7; : f — f;°. Obviously,
T? is sublinear. By (5.1), itis easy to see that 7' : BM 0>(2) — Lo (L) is bounded.
Since r < p_, we deduce from Proposition 5.3 that T : ’H;(,)(Q) — L, () is
bounded as well. Applying Theorem 3.1, we find that

t (M) (), BMO2(R2))9,g = (Lp() (), Loo(R)o,g = Lj(.4()
is bounded. In other words,

1A g0, S ||f||(HA()(sz) BMO2(2)s,4

Since r > 1, from this and Proposition 5.4, one can conclude that

Il @ S WF s, . BM0x(@))5.4-

Pe)
Consequently, (HS (), BMO2())o,q = H
finishes the proof of Step 1.

Step 2: In this step, we show Theorem 5.1 for the case p_— < 1 with6 + p_ > 1.
Since 6 + p_ > 1, there exists A € (0, 1) such that p_ > 1 —0A. Letn € (0, 1) with
n =M and let 0 < ¢g,q < oo. It then follows from Lemma 2.18 and Theorem 4.1
that

p()q(Q) for the case p_ > 1, which

(0 (R0 1r.g D = (M (). (H (), HEo(R)ag),
= (M) (D). Hoo (0)ng = My 01 n)q(Q)

Moreover, we can find a number 8 € (1, o) such that p% < B < ﬁ, and choose
a € (0,1)suchthat 1 —a = B(1 —n). We know that 1 —n < p_, thus Bp_ > 1. By
Step 1 of this proof, we have

Hpy -5 €D = (Hpp(y (). BM O2(R))acg-

Take o € (0, 1) satisfying (1 — n)(1 — o) = (1 — ). Using the preceding equality
and Lemma 2.18, we further get

(Hp (1=, (2 BMO2) g = ((Hpg (), BM O2(2))ag. BM02()),
= (Hp ) (@), BM O02()) (1-pya+11.q
= Hﬂl’(-)/(l—u)(l—d)’q(sz) = H;’(')/(l—9),q(9)'
Now, set
i=Ho @) =H00-56:
and

Y; = H;(~)/(1—9),q(9)’ Yy = BMO,(R2).

W Birkhauser
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From the argument above, it follows immediately that
Yo =(Y1,Y3)55, and Y3 = (Y2,Y4), 4.
Therefore, applying Lemma 2.19, we obtain
Y3 = H;(.)/(l_g),q(g) = (Y1, Y4)9,q = (H;(.)(Q)’ BMOZ(Q))G,qa

that is, (H;(,)(Q), BMO0>(2))g,q = H%(,) q(Q). Now the proof is complete. O

Recall that the stochastic basis (F,),>0 18 said to be regular, if for every n > 0 and
A € F,, there exists B € F,,_1 such that

ACB and P(B) < KP(A),

where K is a positive constant independent of n and the choices A and B; see [21].
From [16, Theorem 5.4], it follows that, if (F,),>0 is regular and p(-) € B([0, 1])
satisfies the locally log-Holder continuous condition, then,

Hiy (R) = M) (R) = Hpl ) () = Py () = Qp( (),
with equivalent quasi-norms. Furthermore, for any g € (0, oo],

(@) = HE () = HY (@) = Py (D) = Qpio.q (),
with equivalent quasi-norms; see [28, Theorem 4.4]. A combination of these results
and Theorem 5.1 immediately yields the following corollary.

Corollary 5.6 Let p(-) € B([0, 1]) satisfy the locally log-Hélder continuous condition
andlet) < g <00,0 <0 < 1 with0 4 p_ > 1. If (F)uxo0 is regular, then

(Xp()(R), BMO2(R))0.4 = Xj(.4(Q),

where p(-) was defined in (4.1). Here X denotes one of the spaces HS, HM , P and Q.

Applying Lemma 2.18 together with Theorem 5.1 and Corollary 5.6, one can further
obtain the real interpolation between variable martingale Hardy—Lorentz spaces and
martingale BMO spaces.

Funding Open access funding provided by E6tvos Lorand University.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

) Birkhauser


http://creativecommons.org/licenses/by/4.0/

47 Page 280f28 J.Luetal.
References
1. Aoyama, H.: Lebesgue spaces with variable exponent on a probability space. Hiroshima Math. J. 39,

10.

11.

12.

14.

15.

16.

17.

18.

19.
20.

21.
22.

23.

24.

25.
26.

27.

28.

29.

207-216 (2009)

. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press Inc, Boston, MA (1988)
. Bergh, J., Lofstrom, J.: Interpolation Spaces. An Introduction. Springer-Verlag, Berlin, New York

(1976)

. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Birkhduser/Springer, Heidelberg (2013)
. Diening, L., Harjulehto, P., Histo, P., Rauzicka, M.: Lebesgue and Sobolev Spaces with Variable

Exponents. Springer, Heidelberg (2011)

. Diening, L., Samko, S.: Hardy inequality in variable exponent Lebesgue spaces. Fract. Calc. Appl.

Anal. 10, 1-18 (2007)

. Ephremidze, L., Kokilashvili, V., Samko, S.: Fractional, maximal and singular operators in variable

exponent Lorentz spaces. Fract. Calc. Appl. Anal. 11, 407-420 (2008)

. Fefferman, C., Riviere, N., Sagher, Y.: Interpolation between HP spaces: the real method. Trans. Am.

Math. Soc. 191, 75-81 (1974)

. Garsia, A.: Martingale Inequalities: Seminar Notes on Recent Progress. Mathematics Lecture Note

Series. W. A. Benjamin Inc., Reading, MA (1973)

Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, 2nd edn. Springer, New York
(2008)

Hao, Z., Jiao, Y.: Fractional integral on martingale Hardy spaces with variable exponents. Fract. Calc.
Appl. Anal. 18, 1128-1145 (2015)

Ho, K.: Atomic decompositions, dual spaces and interpolations of martingale Hardy—Lorentz—
Karamata spaces. Q. J. Math. 65, 985-1009 (2014)

. Jiao, Y., Weisz, F., Wu, L., Zhou, D.: Real interpolation for variable martingale Hardy spaces. J. Math.

Anal. Appl. 491, 124267 (2020)

Jiao, Y., Weisz, F., Wu, L., Zhou, D.: Variable martingale Hardy spaces and their applications in Fourier
analysis. Dissertation. Math. 550, 67 (2020)

Jiao, Y., Weisz, F., Wu, L., Zhou, D.: Dual spaces for variable martingale Lorentz—Hardy spaces.
Banach J. Math. Anal. 15, 31 (2021)

Jiao, Y., Zeng, D., Zhou, D.: New variable martingale Hardy spaces. Proc. Roy. Soc. Edinburgh Sect.
A 152, 450-478 (2022)

Jiao, Y., Zhou, D., Hao, Z., Chen, W.: Martingale Hardy spaces with variable exponents. Banach J.
Math. Anal. 10, 750-770 (2016)

Jiao, Y., Zuo, Y., Zhou, D., Wu, L.: Variable Hardy—Lorentz spaces H P().4 (R"). Math. Nachr. 292,
309-349 (2019)

Kempka, H., Vybiral, J.: Lorentz spaces with variable exponents. Math. Nachr. 287, 938-954 (2014)
Kokilashvili, V., Samko, S.: Singular integrals and potentials in some Banach function spaces with
variable exponent. J. Funct. Spaces Appl. 1, 45-59 (2003)

Long, R.: Martingale Spaces and Inequalities. Peking University Press, Beijing (1993)

Nakai, E., Sadasue, G.: Maximal function on generalized martingale Lebesgue spaces with variable
exponent. Stat. Prob. Lett. 83, 2168-2171 (2013)

Ren, Y.: A note on some inequalities of martingale sharp functions. Math. Inequal. Appl. 16, 153-157
(2013)

Ren, Y.: Real interpolation with a function parameter for martingale Hardy—Lorentz and BMO spaces.
J. Math. Inequal. 14, 1055-1066 (2020)

Ren, Y., Guo, T.: Interpolation of Lorentz martingale spaces. Sci. China Math. 55, 1951-1959 (2012)
Weisz, F.: Interpolation between martingale Hardy and BMO spaces, the real method. Bull. Sci. Math.
116, 145-158 (1992)

Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis. Lecture Notes in
Mathematics, vol. 1568. Springer-Verlag, Berlin (1994)

Zeng, D.: Martingale inequalities and fractional integral operator in variable Hardy—Lorentz spaces. J.
Math. Anal. Appl. 500, 125169 (2021)

Zhuo, C., Yang, D., Yuan, W.: Interpolation between H? (‘)(R”) and L% (R"): real method. J. Geom.
Anal. 28, 2288-2311 (2018)

W Birkhauser



	Real interpolation of variable martingale Hardy spaces and BMO spaces
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Variable Lebesgue spaces Lp(cdot)(R) and variable Lorentz spaces Lp(cdot),q(R)
	2.2 Variable Lebesgue spaces mathcalLp(cdot)(R) and variable Lorentz spaces mathcalLp(cdot),q(R), mathfrakLp(cdot),q(R)
	2.3 Variable martingale Hardy spaces
	2.4 Real interpolation

	3 Interpolation between mathcalLp(cdot)(mathbbRn) and Linfty(mathbbRn)
	4 Interpolation between variable martingale Hardy spaces
	5 Interpolation between variable martingale Hardy spaces and BMO spaces
	References




